xref: /linux/include/linux/sched.h (revision 6a143a7cf94730f57544ea14a987dc025364dbb8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <asm/kmap_size.h>
39 
40 /* task_struct member predeclarations (sorted alphabetically): */
41 struct audit_context;
42 struct backing_dev_info;
43 struct bio_list;
44 struct blk_plug;
45 struct bpf_local_storage;
46 struct capture_control;
47 struct cfs_rq;
48 struct fs_struct;
49 struct futex_pi_state;
50 struct io_context;
51 struct io_uring_task;
52 struct mempolicy;
53 struct nameidata;
54 struct nsproxy;
55 struct perf_event_context;
56 struct pid_namespace;
57 struct pipe_inode_info;
58 struct rcu_node;
59 struct reclaim_state;
60 struct robust_list_head;
61 struct root_domain;
62 struct rq;
63 struct sched_attr;
64 struct sched_param;
65 struct seq_file;
66 struct sighand_struct;
67 struct signal_struct;
68 struct task_delay_info;
69 struct task_group;
70 
71 /*
72  * Task state bitmask. NOTE! These bits are also
73  * encoded in fs/proc/array.c: get_task_state().
74  *
75  * We have two separate sets of flags: task->state
76  * is about runnability, while task->exit_state are
77  * about the task exiting. Confusing, but this way
78  * modifying one set can't modify the other one by
79  * mistake.
80  */
81 
82 /* Used in tsk->state: */
83 #define TASK_RUNNING			0x0000
84 #define TASK_INTERRUPTIBLE		0x0001
85 #define TASK_UNINTERRUPTIBLE		0x0002
86 #define __TASK_STOPPED			0x0004
87 #define __TASK_TRACED			0x0008
88 /* Used in tsk->exit_state: */
89 #define EXIT_DEAD			0x0010
90 #define EXIT_ZOMBIE			0x0020
91 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
92 /* Used in tsk->state again: */
93 #define TASK_PARKED			0x0040
94 #define TASK_DEAD			0x0080
95 #define TASK_WAKEKILL			0x0100
96 #define TASK_WAKING			0x0200
97 #define TASK_NOLOAD			0x0400
98 #define TASK_NEW			0x0800
99 #define TASK_STATE_MAX			0x1000
100 
101 /* Convenience macros for the sake of set_current_state: */
102 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
103 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
104 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
105 
106 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
107 
108 /* Convenience macros for the sake of wake_up(): */
109 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
110 
111 /* get_task_state(): */
112 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
113 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
114 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
115 					 TASK_PARKED)
116 
117 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
118 
119 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
120 
121 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
122 
123 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
124 
125 /*
126  * Special states are those that do not use the normal wait-loop pattern. See
127  * the comment with set_special_state().
128  */
129 #define is_special_task_state(state)				\
130 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
131 
132 #define __set_current_state(state_value)			\
133 	do {							\
134 		WARN_ON_ONCE(is_special_task_state(state_value));\
135 		current->task_state_change = _THIS_IP_;		\
136 		current->state = (state_value);			\
137 	} while (0)
138 
139 #define set_current_state(state_value)				\
140 	do {							\
141 		WARN_ON_ONCE(is_special_task_state(state_value));\
142 		current->task_state_change = _THIS_IP_;		\
143 		smp_store_mb(current->state, (state_value));	\
144 	} while (0)
145 
146 #define set_special_state(state_value)					\
147 	do {								\
148 		unsigned long flags; /* may shadow */			\
149 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
150 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
151 		current->task_state_change = _THIS_IP_;			\
152 		current->state = (state_value);				\
153 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
154 	} while (0)
155 #else
156 /*
157  * set_current_state() includes a barrier so that the write of current->state
158  * is correctly serialised wrt the caller's subsequent test of whether to
159  * actually sleep:
160  *
161  *   for (;;) {
162  *	set_current_state(TASK_UNINTERRUPTIBLE);
163  *	if (CONDITION)
164  *	   break;
165  *
166  *	schedule();
167  *   }
168  *   __set_current_state(TASK_RUNNING);
169  *
170  * If the caller does not need such serialisation (because, for instance, the
171  * CONDITION test and condition change and wakeup are under the same lock) then
172  * use __set_current_state().
173  *
174  * The above is typically ordered against the wakeup, which does:
175  *
176  *   CONDITION = 1;
177  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
178  *
179  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
180  * accessing p->state.
181  *
182  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
183  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
184  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
185  *
186  * However, with slightly different timing the wakeup TASK_RUNNING store can
187  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
188  * a problem either because that will result in one extra go around the loop
189  * and our @cond test will save the day.
190  *
191  * Also see the comments of try_to_wake_up().
192  */
193 #define __set_current_state(state_value)				\
194 	current->state = (state_value)
195 
196 #define set_current_state(state_value)					\
197 	smp_store_mb(current->state, (state_value))
198 
199 /*
200  * set_special_state() should be used for those states when the blocking task
201  * can not use the regular condition based wait-loop. In that case we must
202  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
203  * will not collide with our state change.
204  */
205 #define set_special_state(state_value)					\
206 	do {								\
207 		unsigned long flags; /* may shadow */			\
208 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
209 		current->state = (state_value);				\
210 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
211 	} while (0)
212 
213 #endif
214 
215 /* Task command name length: */
216 #define TASK_COMM_LEN			16
217 
218 extern void scheduler_tick(void);
219 
220 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
221 
222 extern long schedule_timeout(long timeout);
223 extern long schedule_timeout_interruptible(long timeout);
224 extern long schedule_timeout_killable(long timeout);
225 extern long schedule_timeout_uninterruptible(long timeout);
226 extern long schedule_timeout_idle(long timeout);
227 asmlinkage void schedule(void);
228 extern void schedule_preempt_disabled(void);
229 asmlinkage void preempt_schedule_irq(void);
230 
231 extern int __must_check io_schedule_prepare(void);
232 extern void io_schedule_finish(int token);
233 extern long io_schedule_timeout(long timeout);
234 extern void io_schedule(void);
235 
236 /**
237  * struct prev_cputime - snapshot of system and user cputime
238  * @utime: time spent in user mode
239  * @stime: time spent in system mode
240  * @lock: protects the above two fields
241  *
242  * Stores previous user/system time values such that we can guarantee
243  * monotonicity.
244  */
245 struct prev_cputime {
246 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
247 	u64				utime;
248 	u64				stime;
249 	raw_spinlock_t			lock;
250 #endif
251 };
252 
253 enum vtime_state {
254 	/* Task is sleeping or running in a CPU with VTIME inactive: */
255 	VTIME_INACTIVE = 0,
256 	/* Task is idle */
257 	VTIME_IDLE,
258 	/* Task runs in kernelspace in a CPU with VTIME active: */
259 	VTIME_SYS,
260 	/* Task runs in userspace in a CPU with VTIME active: */
261 	VTIME_USER,
262 	/* Task runs as guests in a CPU with VTIME active: */
263 	VTIME_GUEST,
264 };
265 
266 struct vtime {
267 	seqcount_t		seqcount;
268 	unsigned long long	starttime;
269 	enum vtime_state	state;
270 	unsigned int		cpu;
271 	u64			utime;
272 	u64			stime;
273 	u64			gtime;
274 };
275 
276 /*
277  * Utilization clamp constraints.
278  * @UCLAMP_MIN:	Minimum utilization
279  * @UCLAMP_MAX:	Maximum utilization
280  * @UCLAMP_CNT:	Utilization clamp constraints count
281  */
282 enum uclamp_id {
283 	UCLAMP_MIN = 0,
284 	UCLAMP_MAX,
285 	UCLAMP_CNT
286 };
287 
288 #ifdef CONFIG_SMP
289 extern struct root_domain def_root_domain;
290 extern struct mutex sched_domains_mutex;
291 #endif
292 
293 struct sched_info {
294 #ifdef CONFIG_SCHED_INFO
295 	/* Cumulative counters: */
296 
297 	/* # of times we have run on this CPU: */
298 	unsigned long			pcount;
299 
300 	/* Time spent waiting on a runqueue: */
301 	unsigned long long		run_delay;
302 
303 	/* Timestamps: */
304 
305 	/* When did we last run on a CPU? */
306 	unsigned long long		last_arrival;
307 
308 	/* When were we last queued to run? */
309 	unsigned long long		last_queued;
310 
311 #endif /* CONFIG_SCHED_INFO */
312 };
313 
314 /*
315  * Integer metrics need fixed point arithmetic, e.g., sched/fair
316  * has a few: load, load_avg, util_avg, freq, and capacity.
317  *
318  * We define a basic fixed point arithmetic range, and then formalize
319  * all these metrics based on that basic range.
320  */
321 # define SCHED_FIXEDPOINT_SHIFT		10
322 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
323 
324 /* Increase resolution of cpu_capacity calculations */
325 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
326 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
327 
328 struct load_weight {
329 	unsigned long			weight;
330 	u32				inv_weight;
331 };
332 
333 /**
334  * struct util_est - Estimation utilization of FAIR tasks
335  * @enqueued: instantaneous estimated utilization of a task/cpu
336  * @ewma:     the Exponential Weighted Moving Average (EWMA)
337  *            utilization of a task
338  *
339  * Support data structure to track an Exponential Weighted Moving Average
340  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
341  * average each time a task completes an activation. Sample's weight is chosen
342  * so that the EWMA will be relatively insensitive to transient changes to the
343  * task's workload.
344  *
345  * The enqueued attribute has a slightly different meaning for tasks and cpus:
346  * - task:   the task's util_avg at last task dequeue time
347  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
348  * Thus, the util_est.enqueued of a task represents the contribution on the
349  * estimated utilization of the CPU where that task is currently enqueued.
350  *
351  * Only for tasks we track a moving average of the past instantaneous
352  * estimated utilization. This allows to absorb sporadic drops in utilization
353  * of an otherwise almost periodic task.
354  */
355 struct util_est {
356 	unsigned int			enqueued;
357 	unsigned int			ewma;
358 #define UTIL_EST_WEIGHT_SHIFT		2
359 } __attribute__((__aligned__(sizeof(u64))));
360 
361 /*
362  * The load/runnable/util_avg accumulates an infinite geometric series
363  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
364  *
365  * [load_avg definition]
366  *
367  *   load_avg = runnable% * scale_load_down(load)
368  *
369  * [runnable_avg definition]
370  *
371  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
372  *
373  * [util_avg definition]
374  *
375  *   util_avg = running% * SCHED_CAPACITY_SCALE
376  *
377  * where runnable% is the time ratio that a sched_entity is runnable and
378  * running% the time ratio that a sched_entity is running.
379  *
380  * For cfs_rq, they are the aggregated values of all runnable and blocked
381  * sched_entities.
382  *
383  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
384  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
385  * for computing those signals (see update_rq_clock_pelt())
386  *
387  * N.B., the above ratios (runnable% and running%) themselves are in the
388  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
389  * to as large a range as necessary. This is for example reflected by
390  * util_avg's SCHED_CAPACITY_SCALE.
391  *
392  * [Overflow issue]
393  *
394  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
395  * with the highest load (=88761), always runnable on a single cfs_rq,
396  * and should not overflow as the number already hits PID_MAX_LIMIT.
397  *
398  * For all other cases (including 32-bit kernels), struct load_weight's
399  * weight will overflow first before we do, because:
400  *
401  *    Max(load_avg) <= Max(load.weight)
402  *
403  * Then it is the load_weight's responsibility to consider overflow
404  * issues.
405  */
406 struct sched_avg {
407 	u64				last_update_time;
408 	u64				load_sum;
409 	u64				runnable_sum;
410 	u32				util_sum;
411 	u32				period_contrib;
412 	unsigned long			load_avg;
413 	unsigned long			runnable_avg;
414 	unsigned long			util_avg;
415 	struct util_est			util_est;
416 } ____cacheline_aligned;
417 
418 struct sched_statistics {
419 #ifdef CONFIG_SCHEDSTATS
420 	u64				wait_start;
421 	u64				wait_max;
422 	u64				wait_count;
423 	u64				wait_sum;
424 	u64				iowait_count;
425 	u64				iowait_sum;
426 
427 	u64				sleep_start;
428 	u64				sleep_max;
429 	s64				sum_sleep_runtime;
430 
431 	u64				block_start;
432 	u64				block_max;
433 	u64				exec_max;
434 	u64				slice_max;
435 
436 	u64				nr_migrations_cold;
437 	u64				nr_failed_migrations_affine;
438 	u64				nr_failed_migrations_running;
439 	u64				nr_failed_migrations_hot;
440 	u64				nr_forced_migrations;
441 
442 	u64				nr_wakeups;
443 	u64				nr_wakeups_sync;
444 	u64				nr_wakeups_migrate;
445 	u64				nr_wakeups_local;
446 	u64				nr_wakeups_remote;
447 	u64				nr_wakeups_affine;
448 	u64				nr_wakeups_affine_attempts;
449 	u64				nr_wakeups_passive;
450 	u64				nr_wakeups_idle;
451 #endif
452 };
453 
454 struct sched_entity {
455 	/* For load-balancing: */
456 	struct load_weight		load;
457 	struct rb_node			run_node;
458 	struct list_head		group_node;
459 	unsigned int			on_rq;
460 
461 	u64				exec_start;
462 	u64				sum_exec_runtime;
463 	u64				vruntime;
464 	u64				prev_sum_exec_runtime;
465 
466 	u64				nr_migrations;
467 
468 	struct sched_statistics		statistics;
469 
470 #ifdef CONFIG_FAIR_GROUP_SCHED
471 	int				depth;
472 	struct sched_entity		*parent;
473 	/* rq on which this entity is (to be) queued: */
474 	struct cfs_rq			*cfs_rq;
475 	/* rq "owned" by this entity/group: */
476 	struct cfs_rq			*my_q;
477 	/* cached value of my_q->h_nr_running */
478 	unsigned long			runnable_weight;
479 #endif
480 
481 #ifdef CONFIG_SMP
482 	/*
483 	 * Per entity load average tracking.
484 	 *
485 	 * Put into separate cache line so it does not
486 	 * collide with read-mostly values above.
487 	 */
488 	struct sched_avg		avg;
489 #endif
490 };
491 
492 struct sched_rt_entity {
493 	struct list_head		run_list;
494 	unsigned long			timeout;
495 	unsigned long			watchdog_stamp;
496 	unsigned int			time_slice;
497 	unsigned short			on_rq;
498 	unsigned short			on_list;
499 
500 	struct sched_rt_entity		*back;
501 #ifdef CONFIG_RT_GROUP_SCHED
502 	struct sched_rt_entity		*parent;
503 	/* rq on which this entity is (to be) queued: */
504 	struct rt_rq			*rt_rq;
505 	/* rq "owned" by this entity/group: */
506 	struct rt_rq			*my_q;
507 #endif
508 } __randomize_layout;
509 
510 struct sched_dl_entity {
511 	struct rb_node			rb_node;
512 
513 	/*
514 	 * Original scheduling parameters. Copied here from sched_attr
515 	 * during sched_setattr(), they will remain the same until
516 	 * the next sched_setattr().
517 	 */
518 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
519 	u64				dl_deadline;	/* Relative deadline of each instance	*/
520 	u64				dl_period;	/* Separation of two instances (period) */
521 	u64				dl_bw;		/* dl_runtime / dl_period		*/
522 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
523 
524 	/*
525 	 * Actual scheduling parameters. Initialized with the values above,
526 	 * they are continuously updated during task execution. Note that
527 	 * the remaining runtime could be < 0 in case we are in overrun.
528 	 */
529 	s64				runtime;	/* Remaining runtime for this instance	*/
530 	u64				deadline;	/* Absolute deadline for this instance	*/
531 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
532 
533 	/*
534 	 * Some bool flags:
535 	 *
536 	 * @dl_throttled tells if we exhausted the runtime. If so, the
537 	 * task has to wait for a replenishment to be performed at the
538 	 * next firing of dl_timer.
539 	 *
540 	 * @dl_boosted tells if we are boosted due to DI. If so we are
541 	 * outside bandwidth enforcement mechanism (but only until we
542 	 * exit the critical section);
543 	 *
544 	 * @dl_yielded tells if task gave up the CPU before consuming
545 	 * all its available runtime during the last job.
546 	 *
547 	 * @dl_non_contending tells if the task is inactive while still
548 	 * contributing to the active utilization. In other words, it
549 	 * indicates if the inactive timer has been armed and its handler
550 	 * has not been executed yet. This flag is useful to avoid race
551 	 * conditions between the inactive timer handler and the wakeup
552 	 * code.
553 	 *
554 	 * @dl_overrun tells if the task asked to be informed about runtime
555 	 * overruns.
556 	 */
557 	unsigned int			dl_throttled      : 1;
558 	unsigned int			dl_yielded        : 1;
559 	unsigned int			dl_non_contending : 1;
560 	unsigned int			dl_overrun	  : 1;
561 
562 	/*
563 	 * Bandwidth enforcement timer. Each -deadline task has its
564 	 * own bandwidth to be enforced, thus we need one timer per task.
565 	 */
566 	struct hrtimer			dl_timer;
567 
568 	/*
569 	 * Inactive timer, responsible for decreasing the active utilization
570 	 * at the "0-lag time". When a -deadline task blocks, it contributes
571 	 * to GRUB's active utilization until the "0-lag time", hence a
572 	 * timer is needed to decrease the active utilization at the correct
573 	 * time.
574 	 */
575 	struct hrtimer inactive_timer;
576 
577 #ifdef CONFIG_RT_MUTEXES
578 	/*
579 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
580 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
581 	 * to (the original one/itself).
582 	 */
583 	struct sched_dl_entity *pi_se;
584 #endif
585 };
586 
587 #ifdef CONFIG_UCLAMP_TASK
588 /* Number of utilization clamp buckets (shorter alias) */
589 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
590 
591 /*
592  * Utilization clamp for a scheduling entity
593  * @value:		clamp value "assigned" to a se
594  * @bucket_id:		bucket index corresponding to the "assigned" value
595  * @active:		the se is currently refcounted in a rq's bucket
596  * @user_defined:	the requested clamp value comes from user-space
597  *
598  * The bucket_id is the index of the clamp bucket matching the clamp value
599  * which is pre-computed and stored to avoid expensive integer divisions from
600  * the fast path.
601  *
602  * The active bit is set whenever a task has got an "effective" value assigned,
603  * which can be different from the clamp value "requested" from user-space.
604  * This allows to know a task is refcounted in the rq's bucket corresponding
605  * to the "effective" bucket_id.
606  *
607  * The user_defined bit is set whenever a task has got a task-specific clamp
608  * value requested from userspace, i.e. the system defaults apply to this task
609  * just as a restriction. This allows to relax default clamps when a less
610  * restrictive task-specific value has been requested, thus allowing to
611  * implement a "nice" semantic. For example, a task running with a 20%
612  * default boost can still drop its own boosting to 0%.
613  */
614 struct uclamp_se {
615 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
616 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
617 	unsigned int active		: 1;
618 	unsigned int user_defined	: 1;
619 };
620 #endif /* CONFIG_UCLAMP_TASK */
621 
622 union rcu_special {
623 	struct {
624 		u8			blocked;
625 		u8			need_qs;
626 		u8			exp_hint; /* Hint for performance. */
627 		u8			need_mb; /* Readers need smp_mb(). */
628 	} b; /* Bits. */
629 	u32 s; /* Set of bits. */
630 };
631 
632 enum perf_event_task_context {
633 	perf_invalid_context = -1,
634 	perf_hw_context = 0,
635 	perf_sw_context,
636 	perf_nr_task_contexts,
637 };
638 
639 struct wake_q_node {
640 	struct wake_q_node *next;
641 };
642 
643 struct kmap_ctrl {
644 #ifdef CONFIG_KMAP_LOCAL
645 	int				idx;
646 	pte_t				pteval[KM_MAX_IDX];
647 #endif
648 };
649 
650 struct task_struct {
651 #ifdef CONFIG_THREAD_INFO_IN_TASK
652 	/*
653 	 * For reasons of header soup (see current_thread_info()), this
654 	 * must be the first element of task_struct.
655 	 */
656 	struct thread_info		thread_info;
657 #endif
658 	/* -1 unrunnable, 0 runnable, >0 stopped: */
659 	volatile long			state;
660 
661 	/*
662 	 * This begins the randomizable portion of task_struct. Only
663 	 * scheduling-critical items should be added above here.
664 	 */
665 	randomized_struct_fields_start
666 
667 	void				*stack;
668 	refcount_t			usage;
669 	/* Per task flags (PF_*), defined further below: */
670 	unsigned int			flags;
671 	unsigned int			ptrace;
672 
673 #ifdef CONFIG_SMP
674 	int				on_cpu;
675 	struct __call_single_node	wake_entry;
676 #ifdef CONFIG_THREAD_INFO_IN_TASK
677 	/* Current CPU: */
678 	unsigned int			cpu;
679 #endif
680 	unsigned int			wakee_flips;
681 	unsigned long			wakee_flip_decay_ts;
682 	struct task_struct		*last_wakee;
683 
684 	/*
685 	 * recent_used_cpu is initially set as the last CPU used by a task
686 	 * that wakes affine another task. Waker/wakee relationships can
687 	 * push tasks around a CPU where each wakeup moves to the next one.
688 	 * Tracking a recently used CPU allows a quick search for a recently
689 	 * used CPU that may be idle.
690 	 */
691 	int				recent_used_cpu;
692 	int				wake_cpu;
693 #endif
694 	int				on_rq;
695 
696 	int				prio;
697 	int				static_prio;
698 	int				normal_prio;
699 	unsigned int			rt_priority;
700 
701 	const struct sched_class	*sched_class;
702 	struct sched_entity		se;
703 	struct sched_rt_entity		rt;
704 #ifdef CONFIG_CGROUP_SCHED
705 	struct task_group		*sched_task_group;
706 #endif
707 	struct sched_dl_entity		dl;
708 
709 #ifdef CONFIG_UCLAMP_TASK
710 	/*
711 	 * Clamp values requested for a scheduling entity.
712 	 * Must be updated with task_rq_lock() held.
713 	 */
714 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
715 	/*
716 	 * Effective clamp values used for a scheduling entity.
717 	 * Must be updated with task_rq_lock() held.
718 	 */
719 	struct uclamp_se		uclamp[UCLAMP_CNT];
720 #endif
721 
722 #ifdef CONFIG_PREEMPT_NOTIFIERS
723 	/* List of struct preempt_notifier: */
724 	struct hlist_head		preempt_notifiers;
725 #endif
726 
727 #ifdef CONFIG_BLK_DEV_IO_TRACE
728 	unsigned int			btrace_seq;
729 #endif
730 
731 	unsigned int			policy;
732 	int				nr_cpus_allowed;
733 	const cpumask_t			*cpus_ptr;
734 	cpumask_t			cpus_mask;
735 	void				*migration_pending;
736 #ifdef CONFIG_SMP
737 	unsigned short			migration_disabled;
738 #endif
739 	unsigned short			migration_flags;
740 
741 #ifdef CONFIG_PREEMPT_RCU
742 	int				rcu_read_lock_nesting;
743 	union rcu_special		rcu_read_unlock_special;
744 	struct list_head		rcu_node_entry;
745 	struct rcu_node			*rcu_blocked_node;
746 #endif /* #ifdef CONFIG_PREEMPT_RCU */
747 
748 #ifdef CONFIG_TASKS_RCU
749 	unsigned long			rcu_tasks_nvcsw;
750 	u8				rcu_tasks_holdout;
751 	u8				rcu_tasks_idx;
752 	int				rcu_tasks_idle_cpu;
753 	struct list_head		rcu_tasks_holdout_list;
754 #endif /* #ifdef CONFIG_TASKS_RCU */
755 
756 #ifdef CONFIG_TASKS_TRACE_RCU
757 	int				trc_reader_nesting;
758 	int				trc_ipi_to_cpu;
759 	union rcu_special		trc_reader_special;
760 	bool				trc_reader_checked;
761 	struct list_head		trc_holdout_list;
762 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
763 
764 	struct sched_info		sched_info;
765 
766 	struct list_head		tasks;
767 #ifdef CONFIG_SMP
768 	struct plist_node		pushable_tasks;
769 	struct rb_node			pushable_dl_tasks;
770 #endif
771 
772 	struct mm_struct		*mm;
773 	struct mm_struct		*active_mm;
774 
775 	/* Per-thread vma caching: */
776 	struct vmacache			vmacache;
777 
778 #ifdef SPLIT_RSS_COUNTING
779 	struct task_rss_stat		rss_stat;
780 #endif
781 	int				exit_state;
782 	int				exit_code;
783 	int				exit_signal;
784 	/* The signal sent when the parent dies: */
785 	int				pdeath_signal;
786 	/* JOBCTL_*, siglock protected: */
787 	unsigned long			jobctl;
788 
789 	/* Used for emulating ABI behavior of previous Linux versions: */
790 	unsigned int			personality;
791 
792 	/* Scheduler bits, serialized by scheduler locks: */
793 	unsigned			sched_reset_on_fork:1;
794 	unsigned			sched_contributes_to_load:1;
795 	unsigned			sched_migrated:1;
796 #ifdef CONFIG_PSI
797 	unsigned			sched_psi_wake_requeue:1;
798 #endif
799 
800 	/* Force alignment to the next boundary: */
801 	unsigned			:0;
802 
803 	/* Unserialized, strictly 'current' */
804 
805 	/*
806 	 * This field must not be in the scheduler word above due to wakelist
807 	 * queueing no longer being serialized by p->on_cpu. However:
808 	 *
809 	 * p->XXX = X;			ttwu()
810 	 * schedule()			  if (p->on_rq && ..) // false
811 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
812 	 *   deactivate_task()		      ttwu_queue_wakelist())
813 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
814 	 *
815 	 * guarantees all stores of 'current' are visible before
816 	 * ->sched_remote_wakeup gets used, so it can be in this word.
817 	 */
818 	unsigned			sched_remote_wakeup:1;
819 
820 	/* Bit to tell LSMs we're in execve(): */
821 	unsigned			in_execve:1;
822 	unsigned			in_iowait:1;
823 #ifndef TIF_RESTORE_SIGMASK
824 	unsigned			restore_sigmask:1;
825 #endif
826 #ifdef CONFIG_MEMCG
827 	unsigned			in_user_fault:1;
828 #endif
829 #ifdef CONFIG_COMPAT_BRK
830 	unsigned			brk_randomized:1;
831 #endif
832 #ifdef CONFIG_CGROUPS
833 	/* disallow userland-initiated cgroup migration */
834 	unsigned			no_cgroup_migration:1;
835 	/* task is frozen/stopped (used by the cgroup freezer) */
836 	unsigned			frozen:1;
837 #endif
838 #ifdef CONFIG_BLK_CGROUP
839 	unsigned			use_memdelay:1;
840 #endif
841 #ifdef CONFIG_PSI
842 	/* Stalled due to lack of memory */
843 	unsigned			in_memstall:1;
844 #endif
845 
846 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
847 
848 	struct restart_block		restart_block;
849 
850 	pid_t				pid;
851 	pid_t				tgid;
852 
853 #ifdef CONFIG_STACKPROTECTOR
854 	/* Canary value for the -fstack-protector GCC feature: */
855 	unsigned long			stack_canary;
856 #endif
857 	/*
858 	 * Pointers to the (original) parent process, youngest child, younger sibling,
859 	 * older sibling, respectively.  (p->father can be replaced with
860 	 * p->real_parent->pid)
861 	 */
862 
863 	/* Real parent process: */
864 	struct task_struct __rcu	*real_parent;
865 
866 	/* Recipient of SIGCHLD, wait4() reports: */
867 	struct task_struct __rcu	*parent;
868 
869 	/*
870 	 * Children/sibling form the list of natural children:
871 	 */
872 	struct list_head		children;
873 	struct list_head		sibling;
874 	struct task_struct		*group_leader;
875 
876 	/*
877 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
878 	 *
879 	 * This includes both natural children and PTRACE_ATTACH targets.
880 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
881 	 */
882 	struct list_head		ptraced;
883 	struct list_head		ptrace_entry;
884 
885 	/* PID/PID hash table linkage. */
886 	struct pid			*thread_pid;
887 	struct hlist_node		pid_links[PIDTYPE_MAX];
888 	struct list_head		thread_group;
889 	struct list_head		thread_node;
890 
891 	struct completion		*vfork_done;
892 
893 	/* CLONE_CHILD_SETTID: */
894 	int __user			*set_child_tid;
895 
896 	/* CLONE_CHILD_CLEARTID: */
897 	int __user			*clear_child_tid;
898 
899 	/* PF_IO_WORKER */
900 	void				*pf_io_worker;
901 
902 	u64				utime;
903 	u64				stime;
904 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
905 	u64				utimescaled;
906 	u64				stimescaled;
907 #endif
908 	u64				gtime;
909 	struct prev_cputime		prev_cputime;
910 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
911 	struct vtime			vtime;
912 #endif
913 
914 #ifdef CONFIG_NO_HZ_FULL
915 	atomic_t			tick_dep_mask;
916 #endif
917 	/* Context switch counts: */
918 	unsigned long			nvcsw;
919 	unsigned long			nivcsw;
920 
921 	/* Monotonic time in nsecs: */
922 	u64				start_time;
923 
924 	/* Boot based time in nsecs: */
925 	u64				start_boottime;
926 
927 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
928 	unsigned long			min_flt;
929 	unsigned long			maj_flt;
930 
931 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
932 	struct posix_cputimers		posix_cputimers;
933 
934 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
935 	struct posix_cputimers_work	posix_cputimers_work;
936 #endif
937 
938 	/* Process credentials: */
939 
940 	/* Tracer's credentials at attach: */
941 	const struct cred __rcu		*ptracer_cred;
942 
943 	/* Objective and real subjective task credentials (COW): */
944 	const struct cred __rcu		*real_cred;
945 
946 	/* Effective (overridable) subjective task credentials (COW): */
947 	const struct cred __rcu		*cred;
948 
949 #ifdef CONFIG_KEYS
950 	/* Cached requested key. */
951 	struct key			*cached_requested_key;
952 #endif
953 
954 	/*
955 	 * executable name, excluding path.
956 	 *
957 	 * - normally initialized setup_new_exec()
958 	 * - access it with [gs]et_task_comm()
959 	 * - lock it with task_lock()
960 	 */
961 	char				comm[TASK_COMM_LEN];
962 
963 	struct nameidata		*nameidata;
964 
965 #ifdef CONFIG_SYSVIPC
966 	struct sysv_sem			sysvsem;
967 	struct sysv_shm			sysvshm;
968 #endif
969 #ifdef CONFIG_DETECT_HUNG_TASK
970 	unsigned long			last_switch_count;
971 	unsigned long			last_switch_time;
972 #endif
973 	/* Filesystem information: */
974 	struct fs_struct		*fs;
975 
976 	/* Open file information: */
977 	struct files_struct		*files;
978 
979 #ifdef CONFIG_IO_URING
980 	struct io_uring_task		*io_uring;
981 #endif
982 
983 	/* Namespaces: */
984 	struct nsproxy			*nsproxy;
985 
986 	/* Signal handlers: */
987 	struct signal_struct		*signal;
988 	struct sighand_struct __rcu		*sighand;
989 	sigset_t			blocked;
990 	sigset_t			real_blocked;
991 	/* Restored if set_restore_sigmask() was used: */
992 	sigset_t			saved_sigmask;
993 	struct sigpending		pending;
994 	unsigned long			sas_ss_sp;
995 	size_t				sas_ss_size;
996 	unsigned int			sas_ss_flags;
997 
998 	struct callback_head		*task_works;
999 
1000 #ifdef CONFIG_AUDIT
1001 #ifdef CONFIG_AUDITSYSCALL
1002 	struct audit_context		*audit_context;
1003 #endif
1004 	kuid_t				loginuid;
1005 	unsigned int			sessionid;
1006 #endif
1007 	struct seccomp			seccomp;
1008 	struct syscall_user_dispatch	syscall_dispatch;
1009 
1010 	/* Thread group tracking: */
1011 	u64				parent_exec_id;
1012 	u64				self_exec_id;
1013 
1014 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1015 	spinlock_t			alloc_lock;
1016 
1017 	/* Protection of the PI data structures: */
1018 	raw_spinlock_t			pi_lock;
1019 
1020 	struct wake_q_node		wake_q;
1021 
1022 #ifdef CONFIG_RT_MUTEXES
1023 	/* PI waiters blocked on a rt_mutex held by this task: */
1024 	struct rb_root_cached		pi_waiters;
1025 	/* Updated under owner's pi_lock and rq lock */
1026 	struct task_struct		*pi_top_task;
1027 	/* Deadlock detection and priority inheritance handling: */
1028 	struct rt_mutex_waiter		*pi_blocked_on;
1029 #endif
1030 
1031 #ifdef CONFIG_DEBUG_MUTEXES
1032 	/* Mutex deadlock detection: */
1033 	struct mutex_waiter		*blocked_on;
1034 #endif
1035 
1036 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1037 	int				non_block_count;
1038 #endif
1039 
1040 #ifdef CONFIG_TRACE_IRQFLAGS
1041 	struct irqtrace_events		irqtrace;
1042 	unsigned int			hardirq_threaded;
1043 	u64				hardirq_chain_key;
1044 	int				softirqs_enabled;
1045 	int				softirq_context;
1046 	int				irq_config;
1047 #endif
1048 
1049 #ifdef CONFIG_LOCKDEP
1050 # define MAX_LOCK_DEPTH			48UL
1051 	u64				curr_chain_key;
1052 	int				lockdep_depth;
1053 	unsigned int			lockdep_recursion;
1054 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1055 #endif
1056 
1057 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1058 	unsigned int			in_ubsan;
1059 #endif
1060 
1061 	/* Journalling filesystem info: */
1062 	void				*journal_info;
1063 
1064 	/* Stacked block device info: */
1065 	struct bio_list			*bio_list;
1066 
1067 #ifdef CONFIG_BLOCK
1068 	/* Stack plugging: */
1069 	struct blk_plug			*plug;
1070 #endif
1071 
1072 	/* VM state: */
1073 	struct reclaim_state		*reclaim_state;
1074 
1075 	struct backing_dev_info		*backing_dev_info;
1076 
1077 	struct io_context		*io_context;
1078 
1079 #ifdef CONFIG_COMPACTION
1080 	struct capture_control		*capture_control;
1081 #endif
1082 	/* Ptrace state: */
1083 	unsigned long			ptrace_message;
1084 	kernel_siginfo_t		*last_siginfo;
1085 
1086 	struct task_io_accounting	ioac;
1087 #ifdef CONFIG_PSI
1088 	/* Pressure stall state */
1089 	unsigned int			psi_flags;
1090 #endif
1091 #ifdef CONFIG_TASK_XACCT
1092 	/* Accumulated RSS usage: */
1093 	u64				acct_rss_mem1;
1094 	/* Accumulated virtual memory usage: */
1095 	u64				acct_vm_mem1;
1096 	/* stime + utime since last update: */
1097 	u64				acct_timexpd;
1098 #endif
1099 #ifdef CONFIG_CPUSETS
1100 	/* Protected by ->alloc_lock: */
1101 	nodemask_t			mems_allowed;
1102 	/* Seqence number to catch updates: */
1103 	seqcount_spinlock_t		mems_allowed_seq;
1104 	int				cpuset_mem_spread_rotor;
1105 	int				cpuset_slab_spread_rotor;
1106 #endif
1107 #ifdef CONFIG_CGROUPS
1108 	/* Control Group info protected by css_set_lock: */
1109 	struct css_set __rcu		*cgroups;
1110 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1111 	struct list_head		cg_list;
1112 #endif
1113 #ifdef CONFIG_X86_CPU_RESCTRL
1114 	u32				closid;
1115 	u32				rmid;
1116 #endif
1117 #ifdef CONFIG_FUTEX
1118 	struct robust_list_head __user	*robust_list;
1119 #ifdef CONFIG_COMPAT
1120 	struct compat_robust_list_head __user *compat_robust_list;
1121 #endif
1122 	struct list_head		pi_state_list;
1123 	struct futex_pi_state		*pi_state_cache;
1124 	struct mutex			futex_exit_mutex;
1125 	unsigned int			futex_state;
1126 #endif
1127 #ifdef CONFIG_PERF_EVENTS
1128 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1129 	struct mutex			perf_event_mutex;
1130 	struct list_head		perf_event_list;
1131 #endif
1132 #ifdef CONFIG_DEBUG_PREEMPT
1133 	unsigned long			preempt_disable_ip;
1134 #endif
1135 #ifdef CONFIG_NUMA
1136 	/* Protected by alloc_lock: */
1137 	struct mempolicy		*mempolicy;
1138 	short				il_prev;
1139 	short				pref_node_fork;
1140 #endif
1141 #ifdef CONFIG_NUMA_BALANCING
1142 	int				numa_scan_seq;
1143 	unsigned int			numa_scan_period;
1144 	unsigned int			numa_scan_period_max;
1145 	int				numa_preferred_nid;
1146 	unsigned long			numa_migrate_retry;
1147 	/* Migration stamp: */
1148 	u64				node_stamp;
1149 	u64				last_task_numa_placement;
1150 	u64				last_sum_exec_runtime;
1151 	struct callback_head		numa_work;
1152 
1153 	/*
1154 	 * This pointer is only modified for current in syscall and
1155 	 * pagefault context (and for tasks being destroyed), so it can be read
1156 	 * from any of the following contexts:
1157 	 *  - RCU read-side critical section
1158 	 *  - current->numa_group from everywhere
1159 	 *  - task's runqueue locked, task not running
1160 	 */
1161 	struct numa_group __rcu		*numa_group;
1162 
1163 	/*
1164 	 * numa_faults is an array split into four regions:
1165 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1166 	 * in this precise order.
1167 	 *
1168 	 * faults_memory: Exponential decaying average of faults on a per-node
1169 	 * basis. Scheduling placement decisions are made based on these
1170 	 * counts. The values remain static for the duration of a PTE scan.
1171 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1172 	 * hinting fault was incurred.
1173 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1174 	 * during the current scan window. When the scan completes, the counts
1175 	 * in faults_memory and faults_cpu decay and these values are copied.
1176 	 */
1177 	unsigned long			*numa_faults;
1178 	unsigned long			total_numa_faults;
1179 
1180 	/*
1181 	 * numa_faults_locality tracks if faults recorded during the last
1182 	 * scan window were remote/local or failed to migrate. The task scan
1183 	 * period is adapted based on the locality of the faults with different
1184 	 * weights depending on whether they were shared or private faults
1185 	 */
1186 	unsigned long			numa_faults_locality[3];
1187 
1188 	unsigned long			numa_pages_migrated;
1189 #endif /* CONFIG_NUMA_BALANCING */
1190 
1191 #ifdef CONFIG_RSEQ
1192 	struct rseq __user *rseq;
1193 	u32 rseq_sig;
1194 	/*
1195 	 * RmW on rseq_event_mask must be performed atomically
1196 	 * with respect to preemption.
1197 	 */
1198 	unsigned long rseq_event_mask;
1199 #endif
1200 
1201 	struct tlbflush_unmap_batch	tlb_ubc;
1202 
1203 	union {
1204 		refcount_t		rcu_users;
1205 		struct rcu_head		rcu;
1206 	};
1207 
1208 	/* Cache last used pipe for splice(): */
1209 	struct pipe_inode_info		*splice_pipe;
1210 
1211 	struct page_frag		task_frag;
1212 
1213 #ifdef CONFIG_TASK_DELAY_ACCT
1214 	struct task_delay_info		*delays;
1215 #endif
1216 
1217 #ifdef CONFIG_FAULT_INJECTION
1218 	int				make_it_fail;
1219 	unsigned int			fail_nth;
1220 #endif
1221 	/*
1222 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1223 	 * balance_dirty_pages() for a dirty throttling pause:
1224 	 */
1225 	int				nr_dirtied;
1226 	int				nr_dirtied_pause;
1227 	/* Start of a write-and-pause period: */
1228 	unsigned long			dirty_paused_when;
1229 
1230 #ifdef CONFIG_LATENCYTOP
1231 	int				latency_record_count;
1232 	struct latency_record		latency_record[LT_SAVECOUNT];
1233 #endif
1234 	/*
1235 	 * Time slack values; these are used to round up poll() and
1236 	 * select() etc timeout values. These are in nanoseconds.
1237 	 */
1238 	u64				timer_slack_ns;
1239 	u64				default_timer_slack_ns;
1240 
1241 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1242 	unsigned int			kasan_depth;
1243 #endif
1244 
1245 #ifdef CONFIG_KCSAN
1246 	struct kcsan_ctx		kcsan_ctx;
1247 #ifdef CONFIG_TRACE_IRQFLAGS
1248 	struct irqtrace_events		kcsan_save_irqtrace;
1249 #endif
1250 #endif
1251 
1252 #if IS_ENABLED(CONFIG_KUNIT)
1253 	struct kunit			*kunit_test;
1254 #endif
1255 
1256 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1257 	/* Index of current stored address in ret_stack: */
1258 	int				curr_ret_stack;
1259 	int				curr_ret_depth;
1260 
1261 	/* Stack of return addresses for return function tracing: */
1262 	struct ftrace_ret_stack		*ret_stack;
1263 
1264 	/* Timestamp for last schedule: */
1265 	unsigned long long		ftrace_timestamp;
1266 
1267 	/*
1268 	 * Number of functions that haven't been traced
1269 	 * because of depth overrun:
1270 	 */
1271 	atomic_t			trace_overrun;
1272 
1273 	/* Pause tracing: */
1274 	atomic_t			tracing_graph_pause;
1275 #endif
1276 
1277 #ifdef CONFIG_TRACING
1278 	/* State flags for use by tracers: */
1279 	unsigned long			trace;
1280 
1281 	/* Bitmask and counter of trace recursion: */
1282 	unsigned long			trace_recursion;
1283 #endif /* CONFIG_TRACING */
1284 
1285 #ifdef CONFIG_KCOV
1286 	/* See kernel/kcov.c for more details. */
1287 
1288 	/* Coverage collection mode enabled for this task (0 if disabled): */
1289 	unsigned int			kcov_mode;
1290 
1291 	/* Size of the kcov_area: */
1292 	unsigned int			kcov_size;
1293 
1294 	/* Buffer for coverage collection: */
1295 	void				*kcov_area;
1296 
1297 	/* KCOV descriptor wired with this task or NULL: */
1298 	struct kcov			*kcov;
1299 
1300 	/* KCOV common handle for remote coverage collection: */
1301 	u64				kcov_handle;
1302 
1303 	/* KCOV sequence number: */
1304 	int				kcov_sequence;
1305 
1306 	/* Collect coverage from softirq context: */
1307 	unsigned int			kcov_softirq;
1308 #endif
1309 
1310 #ifdef CONFIG_MEMCG
1311 	struct mem_cgroup		*memcg_in_oom;
1312 	gfp_t				memcg_oom_gfp_mask;
1313 	int				memcg_oom_order;
1314 
1315 	/* Number of pages to reclaim on returning to userland: */
1316 	unsigned int			memcg_nr_pages_over_high;
1317 
1318 	/* Used by memcontrol for targeted memcg charge: */
1319 	struct mem_cgroup		*active_memcg;
1320 #endif
1321 
1322 #ifdef CONFIG_BLK_CGROUP
1323 	struct request_queue		*throttle_queue;
1324 #endif
1325 
1326 #ifdef CONFIG_UPROBES
1327 	struct uprobe_task		*utask;
1328 #endif
1329 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1330 	unsigned int			sequential_io;
1331 	unsigned int			sequential_io_avg;
1332 #endif
1333 	struct kmap_ctrl		kmap_ctrl;
1334 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1335 	unsigned long			task_state_change;
1336 #endif
1337 	int				pagefault_disabled;
1338 #ifdef CONFIG_MMU
1339 	struct task_struct		*oom_reaper_list;
1340 #endif
1341 #ifdef CONFIG_VMAP_STACK
1342 	struct vm_struct		*stack_vm_area;
1343 #endif
1344 #ifdef CONFIG_THREAD_INFO_IN_TASK
1345 	/* A live task holds one reference: */
1346 	refcount_t			stack_refcount;
1347 #endif
1348 #ifdef CONFIG_LIVEPATCH
1349 	int patch_state;
1350 #endif
1351 #ifdef CONFIG_SECURITY
1352 	/* Used by LSM modules for access restriction: */
1353 	void				*security;
1354 #endif
1355 #ifdef CONFIG_BPF_SYSCALL
1356 	/* Used by BPF task local storage */
1357 	struct bpf_local_storage __rcu	*bpf_storage;
1358 #endif
1359 
1360 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1361 	unsigned long			lowest_stack;
1362 	unsigned long			prev_lowest_stack;
1363 #endif
1364 
1365 #ifdef CONFIG_X86_MCE
1366 	void __user			*mce_vaddr;
1367 	__u64				mce_kflags;
1368 	u64				mce_addr;
1369 	__u64				mce_ripv : 1,
1370 					mce_whole_page : 1,
1371 					__mce_reserved : 62;
1372 	struct callback_head		mce_kill_me;
1373 #endif
1374 
1375 #ifdef CONFIG_KRETPROBES
1376 	struct llist_head               kretprobe_instances;
1377 #endif
1378 
1379 	/*
1380 	 * New fields for task_struct should be added above here, so that
1381 	 * they are included in the randomized portion of task_struct.
1382 	 */
1383 	randomized_struct_fields_end
1384 
1385 	/* CPU-specific state of this task: */
1386 	struct thread_struct		thread;
1387 
1388 	/*
1389 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1390 	 * structure.  It *MUST* be at the end of 'task_struct'.
1391 	 *
1392 	 * Do not put anything below here!
1393 	 */
1394 };
1395 
1396 static inline struct pid *task_pid(struct task_struct *task)
1397 {
1398 	return task->thread_pid;
1399 }
1400 
1401 /*
1402  * the helpers to get the task's different pids as they are seen
1403  * from various namespaces
1404  *
1405  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1406  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1407  *                     current.
1408  * task_xid_nr_ns()  : id seen from the ns specified;
1409  *
1410  * see also pid_nr() etc in include/linux/pid.h
1411  */
1412 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1413 
1414 static inline pid_t task_pid_nr(struct task_struct *tsk)
1415 {
1416 	return tsk->pid;
1417 }
1418 
1419 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1420 {
1421 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1422 }
1423 
1424 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1425 {
1426 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1427 }
1428 
1429 
1430 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1431 {
1432 	return tsk->tgid;
1433 }
1434 
1435 /**
1436  * pid_alive - check that a task structure is not stale
1437  * @p: Task structure to be checked.
1438  *
1439  * Test if a process is not yet dead (at most zombie state)
1440  * If pid_alive fails, then pointers within the task structure
1441  * can be stale and must not be dereferenced.
1442  *
1443  * Return: 1 if the process is alive. 0 otherwise.
1444  */
1445 static inline int pid_alive(const struct task_struct *p)
1446 {
1447 	return p->thread_pid != NULL;
1448 }
1449 
1450 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1451 {
1452 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1453 }
1454 
1455 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1456 {
1457 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1458 }
1459 
1460 
1461 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1462 {
1463 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1464 }
1465 
1466 static inline pid_t task_session_vnr(struct task_struct *tsk)
1467 {
1468 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1469 }
1470 
1471 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1472 {
1473 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1474 }
1475 
1476 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1477 {
1478 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1479 }
1480 
1481 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1482 {
1483 	pid_t pid = 0;
1484 
1485 	rcu_read_lock();
1486 	if (pid_alive(tsk))
1487 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1488 	rcu_read_unlock();
1489 
1490 	return pid;
1491 }
1492 
1493 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1494 {
1495 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1496 }
1497 
1498 /* Obsolete, do not use: */
1499 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1500 {
1501 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1502 }
1503 
1504 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1505 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1506 
1507 static inline unsigned int task_state_index(struct task_struct *tsk)
1508 {
1509 	unsigned int tsk_state = READ_ONCE(tsk->state);
1510 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1511 
1512 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1513 
1514 	if (tsk_state == TASK_IDLE)
1515 		state = TASK_REPORT_IDLE;
1516 
1517 	return fls(state);
1518 }
1519 
1520 static inline char task_index_to_char(unsigned int state)
1521 {
1522 	static const char state_char[] = "RSDTtXZPI";
1523 
1524 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1525 
1526 	return state_char[state];
1527 }
1528 
1529 static inline char task_state_to_char(struct task_struct *tsk)
1530 {
1531 	return task_index_to_char(task_state_index(tsk));
1532 }
1533 
1534 /**
1535  * is_global_init - check if a task structure is init. Since init
1536  * is free to have sub-threads we need to check tgid.
1537  * @tsk: Task structure to be checked.
1538  *
1539  * Check if a task structure is the first user space task the kernel created.
1540  *
1541  * Return: 1 if the task structure is init. 0 otherwise.
1542  */
1543 static inline int is_global_init(struct task_struct *tsk)
1544 {
1545 	return task_tgid_nr(tsk) == 1;
1546 }
1547 
1548 extern struct pid *cad_pid;
1549 
1550 /*
1551  * Per process flags
1552  */
1553 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1554 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1555 #define PF_EXITING		0x00000004	/* Getting shut down */
1556 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1557 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1558 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1559 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1560 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1561 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1562 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1563 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1564 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1565 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1566 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1567 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1568 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1569 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1570 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1571 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1572 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1573 						 * I am cleaning dirty pages from some other bdi. */
1574 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1575 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1576 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1577 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1578 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1579 #define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1580 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1581 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1582 
1583 /*
1584  * Only the _current_ task can read/write to tsk->flags, but other
1585  * tasks can access tsk->flags in readonly mode for example
1586  * with tsk_used_math (like during threaded core dumping).
1587  * There is however an exception to this rule during ptrace
1588  * or during fork: the ptracer task is allowed to write to the
1589  * child->flags of its traced child (same goes for fork, the parent
1590  * can write to the child->flags), because we're guaranteed the
1591  * child is not running and in turn not changing child->flags
1592  * at the same time the parent does it.
1593  */
1594 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1595 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1596 #define clear_used_math()			clear_stopped_child_used_math(current)
1597 #define set_used_math()				set_stopped_child_used_math(current)
1598 
1599 #define conditional_stopped_child_used_math(condition, child) \
1600 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1601 
1602 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1603 
1604 #define copy_to_stopped_child_used_math(child) \
1605 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1606 
1607 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1608 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1609 #define used_math()				tsk_used_math(current)
1610 
1611 static inline bool is_percpu_thread(void)
1612 {
1613 #ifdef CONFIG_SMP
1614 	return (current->flags & PF_NO_SETAFFINITY) &&
1615 		(current->nr_cpus_allowed  == 1);
1616 #else
1617 	return true;
1618 #endif
1619 }
1620 
1621 /* Per-process atomic flags. */
1622 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1623 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1624 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1625 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1626 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1627 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1628 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1629 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1630 
1631 #define TASK_PFA_TEST(name, func)					\
1632 	static inline bool task_##func(struct task_struct *p)		\
1633 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1634 
1635 #define TASK_PFA_SET(name, func)					\
1636 	static inline void task_set_##func(struct task_struct *p)	\
1637 	{ set_bit(PFA_##name, &p->atomic_flags); }
1638 
1639 #define TASK_PFA_CLEAR(name, func)					\
1640 	static inline void task_clear_##func(struct task_struct *p)	\
1641 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1642 
1643 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1644 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1645 
1646 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1647 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1648 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1649 
1650 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1651 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1652 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1653 
1654 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1655 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1656 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1657 
1658 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1659 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1660 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1661 
1662 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1663 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1664 
1665 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1666 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1667 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1668 
1669 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1670 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1671 
1672 static inline void
1673 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1674 {
1675 	current->flags &= ~flags;
1676 	current->flags |= orig_flags & flags;
1677 }
1678 
1679 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1680 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1681 #ifdef CONFIG_SMP
1682 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1683 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1684 #else
1685 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1686 {
1687 }
1688 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1689 {
1690 	if (!cpumask_test_cpu(0, new_mask))
1691 		return -EINVAL;
1692 	return 0;
1693 }
1694 #endif
1695 
1696 extern int yield_to(struct task_struct *p, bool preempt);
1697 extern void set_user_nice(struct task_struct *p, long nice);
1698 extern int task_prio(const struct task_struct *p);
1699 
1700 /**
1701  * task_nice - return the nice value of a given task.
1702  * @p: the task in question.
1703  *
1704  * Return: The nice value [ -20 ... 0 ... 19 ].
1705  */
1706 static inline int task_nice(const struct task_struct *p)
1707 {
1708 	return PRIO_TO_NICE((p)->static_prio);
1709 }
1710 
1711 extern int can_nice(const struct task_struct *p, const int nice);
1712 extern int task_curr(const struct task_struct *p);
1713 extern int idle_cpu(int cpu);
1714 extern int available_idle_cpu(int cpu);
1715 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1716 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1717 extern void sched_set_fifo(struct task_struct *p);
1718 extern void sched_set_fifo_low(struct task_struct *p);
1719 extern void sched_set_normal(struct task_struct *p, int nice);
1720 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1721 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1722 extern struct task_struct *idle_task(int cpu);
1723 
1724 /**
1725  * is_idle_task - is the specified task an idle task?
1726  * @p: the task in question.
1727  *
1728  * Return: 1 if @p is an idle task. 0 otherwise.
1729  */
1730 static __always_inline bool is_idle_task(const struct task_struct *p)
1731 {
1732 	return !!(p->flags & PF_IDLE);
1733 }
1734 
1735 extern struct task_struct *curr_task(int cpu);
1736 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1737 
1738 void yield(void);
1739 
1740 union thread_union {
1741 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1742 	struct task_struct task;
1743 #endif
1744 #ifndef CONFIG_THREAD_INFO_IN_TASK
1745 	struct thread_info thread_info;
1746 #endif
1747 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1748 };
1749 
1750 #ifndef CONFIG_THREAD_INFO_IN_TASK
1751 extern struct thread_info init_thread_info;
1752 #endif
1753 
1754 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1755 
1756 #ifdef CONFIG_THREAD_INFO_IN_TASK
1757 static inline struct thread_info *task_thread_info(struct task_struct *task)
1758 {
1759 	return &task->thread_info;
1760 }
1761 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1762 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1763 #endif
1764 
1765 /*
1766  * find a task by one of its numerical ids
1767  *
1768  * find_task_by_pid_ns():
1769  *      finds a task by its pid in the specified namespace
1770  * find_task_by_vpid():
1771  *      finds a task by its virtual pid
1772  *
1773  * see also find_vpid() etc in include/linux/pid.h
1774  */
1775 
1776 extern struct task_struct *find_task_by_vpid(pid_t nr);
1777 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1778 
1779 /*
1780  * find a task by its virtual pid and get the task struct
1781  */
1782 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1783 
1784 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1785 extern int wake_up_process(struct task_struct *tsk);
1786 extern void wake_up_new_task(struct task_struct *tsk);
1787 
1788 #ifdef CONFIG_SMP
1789 extern void kick_process(struct task_struct *tsk);
1790 #else
1791 static inline void kick_process(struct task_struct *tsk) { }
1792 #endif
1793 
1794 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1795 
1796 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1797 {
1798 	__set_task_comm(tsk, from, false);
1799 }
1800 
1801 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1802 #define get_task_comm(buf, tsk) ({			\
1803 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1804 	__get_task_comm(buf, sizeof(buf), tsk);		\
1805 })
1806 
1807 #ifdef CONFIG_SMP
1808 static __always_inline void scheduler_ipi(void)
1809 {
1810 	/*
1811 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1812 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1813 	 * this IPI.
1814 	 */
1815 	preempt_fold_need_resched();
1816 }
1817 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1818 #else
1819 static inline void scheduler_ipi(void) { }
1820 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1821 {
1822 	return 1;
1823 }
1824 #endif
1825 
1826 /*
1827  * Set thread flags in other task's structures.
1828  * See asm/thread_info.h for TIF_xxxx flags available:
1829  */
1830 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1831 {
1832 	set_ti_thread_flag(task_thread_info(tsk), flag);
1833 }
1834 
1835 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1836 {
1837 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1838 }
1839 
1840 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1841 					  bool value)
1842 {
1843 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1844 }
1845 
1846 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1847 {
1848 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1849 }
1850 
1851 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1852 {
1853 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1854 }
1855 
1856 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1857 {
1858 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1859 }
1860 
1861 static inline void set_tsk_need_resched(struct task_struct *tsk)
1862 {
1863 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1864 }
1865 
1866 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1867 {
1868 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1869 }
1870 
1871 static inline int test_tsk_need_resched(struct task_struct *tsk)
1872 {
1873 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1874 }
1875 
1876 /*
1877  * cond_resched() and cond_resched_lock(): latency reduction via
1878  * explicit rescheduling in places that are safe. The return
1879  * value indicates whether a reschedule was done in fact.
1880  * cond_resched_lock() will drop the spinlock before scheduling,
1881  */
1882 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1883 extern int __cond_resched(void);
1884 
1885 #ifdef CONFIG_PREEMPT_DYNAMIC
1886 
1887 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1888 
1889 static __always_inline int _cond_resched(void)
1890 {
1891 	return static_call_mod(cond_resched)();
1892 }
1893 
1894 #else
1895 
1896 static inline int _cond_resched(void)
1897 {
1898 	return __cond_resched();
1899 }
1900 
1901 #endif /* CONFIG_PREEMPT_DYNAMIC */
1902 
1903 #else
1904 
1905 static inline int _cond_resched(void) { return 0; }
1906 
1907 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
1908 
1909 #define cond_resched() ({			\
1910 	___might_sleep(__FILE__, __LINE__, 0);	\
1911 	_cond_resched();			\
1912 })
1913 
1914 extern int __cond_resched_lock(spinlock_t *lock);
1915 extern int __cond_resched_rwlock_read(rwlock_t *lock);
1916 extern int __cond_resched_rwlock_write(rwlock_t *lock);
1917 
1918 #define cond_resched_lock(lock) ({				\
1919 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1920 	__cond_resched_lock(lock);				\
1921 })
1922 
1923 #define cond_resched_rwlock_read(lock) ({			\
1924 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
1925 	__cond_resched_rwlock_read(lock);			\
1926 })
1927 
1928 #define cond_resched_rwlock_write(lock) ({			\
1929 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
1930 	__cond_resched_rwlock_write(lock);			\
1931 })
1932 
1933 static inline void cond_resched_rcu(void)
1934 {
1935 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1936 	rcu_read_unlock();
1937 	cond_resched();
1938 	rcu_read_lock();
1939 #endif
1940 }
1941 
1942 /*
1943  * Does a critical section need to be broken due to another
1944  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1945  * but a general need for low latency)
1946  */
1947 static inline int spin_needbreak(spinlock_t *lock)
1948 {
1949 #ifdef CONFIG_PREEMPTION
1950 	return spin_is_contended(lock);
1951 #else
1952 	return 0;
1953 #endif
1954 }
1955 
1956 /*
1957  * Check if a rwlock is contended.
1958  * Returns non-zero if there is another task waiting on the rwlock.
1959  * Returns zero if the lock is not contended or the system / underlying
1960  * rwlock implementation does not support contention detection.
1961  * Technically does not depend on CONFIG_PREEMPTION, but a general need
1962  * for low latency.
1963  */
1964 static inline int rwlock_needbreak(rwlock_t *lock)
1965 {
1966 #ifdef CONFIG_PREEMPTION
1967 	return rwlock_is_contended(lock);
1968 #else
1969 	return 0;
1970 #endif
1971 }
1972 
1973 static __always_inline bool need_resched(void)
1974 {
1975 	return unlikely(tif_need_resched());
1976 }
1977 
1978 /*
1979  * Wrappers for p->thread_info->cpu access. No-op on UP.
1980  */
1981 #ifdef CONFIG_SMP
1982 
1983 static inline unsigned int task_cpu(const struct task_struct *p)
1984 {
1985 #ifdef CONFIG_THREAD_INFO_IN_TASK
1986 	return READ_ONCE(p->cpu);
1987 #else
1988 	return READ_ONCE(task_thread_info(p)->cpu);
1989 #endif
1990 }
1991 
1992 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1993 
1994 #else
1995 
1996 static inline unsigned int task_cpu(const struct task_struct *p)
1997 {
1998 	return 0;
1999 }
2000 
2001 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2002 {
2003 }
2004 
2005 #endif /* CONFIG_SMP */
2006 
2007 /*
2008  * In order to reduce various lock holder preemption latencies provide an
2009  * interface to see if a vCPU is currently running or not.
2010  *
2011  * This allows us to terminate optimistic spin loops and block, analogous to
2012  * the native optimistic spin heuristic of testing if the lock owner task is
2013  * running or not.
2014  */
2015 #ifndef vcpu_is_preempted
2016 static inline bool vcpu_is_preempted(int cpu)
2017 {
2018 	return false;
2019 }
2020 #endif
2021 
2022 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2023 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2024 
2025 #ifndef TASK_SIZE_OF
2026 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2027 #endif
2028 
2029 #ifdef CONFIG_SMP
2030 /* Returns effective CPU energy utilization, as seen by the scheduler */
2031 unsigned long sched_cpu_util(int cpu, unsigned long max);
2032 #endif /* CONFIG_SMP */
2033 
2034 #ifdef CONFIG_RSEQ
2035 
2036 /*
2037  * Map the event mask on the user-space ABI enum rseq_cs_flags
2038  * for direct mask checks.
2039  */
2040 enum rseq_event_mask_bits {
2041 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2042 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2043 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2044 };
2045 
2046 enum rseq_event_mask {
2047 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2048 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2049 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2050 };
2051 
2052 static inline void rseq_set_notify_resume(struct task_struct *t)
2053 {
2054 	if (t->rseq)
2055 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2056 }
2057 
2058 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2059 
2060 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2061 					     struct pt_regs *regs)
2062 {
2063 	if (current->rseq)
2064 		__rseq_handle_notify_resume(ksig, regs);
2065 }
2066 
2067 static inline void rseq_signal_deliver(struct ksignal *ksig,
2068 				       struct pt_regs *regs)
2069 {
2070 	preempt_disable();
2071 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2072 	preempt_enable();
2073 	rseq_handle_notify_resume(ksig, regs);
2074 }
2075 
2076 /* rseq_preempt() requires preemption to be disabled. */
2077 static inline void rseq_preempt(struct task_struct *t)
2078 {
2079 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2080 	rseq_set_notify_resume(t);
2081 }
2082 
2083 /* rseq_migrate() requires preemption to be disabled. */
2084 static inline void rseq_migrate(struct task_struct *t)
2085 {
2086 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2087 	rseq_set_notify_resume(t);
2088 }
2089 
2090 /*
2091  * If parent process has a registered restartable sequences area, the
2092  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2093  */
2094 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2095 {
2096 	if (clone_flags & CLONE_VM) {
2097 		t->rseq = NULL;
2098 		t->rseq_sig = 0;
2099 		t->rseq_event_mask = 0;
2100 	} else {
2101 		t->rseq = current->rseq;
2102 		t->rseq_sig = current->rseq_sig;
2103 		t->rseq_event_mask = current->rseq_event_mask;
2104 	}
2105 }
2106 
2107 static inline void rseq_execve(struct task_struct *t)
2108 {
2109 	t->rseq = NULL;
2110 	t->rseq_sig = 0;
2111 	t->rseq_event_mask = 0;
2112 }
2113 
2114 #else
2115 
2116 static inline void rseq_set_notify_resume(struct task_struct *t)
2117 {
2118 }
2119 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2120 					     struct pt_regs *regs)
2121 {
2122 }
2123 static inline void rseq_signal_deliver(struct ksignal *ksig,
2124 				       struct pt_regs *regs)
2125 {
2126 }
2127 static inline void rseq_preempt(struct task_struct *t)
2128 {
2129 }
2130 static inline void rseq_migrate(struct task_struct *t)
2131 {
2132 }
2133 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2134 {
2135 }
2136 static inline void rseq_execve(struct task_struct *t)
2137 {
2138 }
2139 
2140 #endif
2141 
2142 #ifdef CONFIG_DEBUG_RSEQ
2143 
2144 void rseq_syscall(struct pt_regs *regs);
2145 
2146 #else
2147 
2148 static inline void rseq_syscall(struct pt_regs *regs)
2149 {
2150 }
2151 
2152 #endif
2153 
2154 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2155 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2156 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2157 
2158 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2159 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2160 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2161 
2162 int sched_trace_rq_cpu(struct rq *rq);
2163 int sched_trace_rq_cpu_capacity(struct rq *rq);
2164 int sched_trace_rq_nr_running(struct rq *rq);
2165 
2166 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2167 
2168 #endif
2169