xref: /linux/include/linux/sched.h (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * Define 'struct task_struct' and provide the main scheduler
6  * APIs (schedule(), wakeup variants, etc.)
7  */
8 
9 #include <uapi/linux/sched.h>
10 
11 #include <asm/current.h>
12 
13 #include <linux/pid.h>
14 #include <linux/sem.h>
15 #include <linux/shm.h>
16 #include <linux/kcov.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/seccomp.h>
21 #include <linux/nodemask.h>
22 #include <linux/rcupdate.h>
23 #include <linux/resource.h>
24 #include <linux/latencytop.h>
25 #include <linux/sched/prio.h>
26 #include <linux/signal_types.h>
27 #include <linux/mm_types_task.h>
28 #include <linux/task_io_accounting.h>
29 
30 /* task_struct member predeclarations (sorted alphabetically): */
31 struct audit_context;
32 struct backing_dev_info;
33 struct bio_list;
34 struct blk_plug;
35 struct cfs_rq;
36 struct fs_struct;
37 struct futex_pi_state;
38 struct io_context;
39 struct mempolicy;
40 struct nameidata;
41 struct nsproxy;
42 struct perf_event_context;
43 struct pid_namespace;
44 struct pipe_inode_info;
45 struct rcu_node;
46 struct reclaim_state;
47 struct robust_list_head;
48 struct sched_attr;
49 struct sched_param;
50 struct seq_file;
51 struct sighand_struct;
52 struct signal_struct;
53 struct task_delay_info;
54 struct task_group;
55 
56 /*
57  * Task state bitmask. NOTE! These bits are also
58  * encoded in fs/proc/array.c: get_task_state().
59  *
60  * We have two separate sets of flags: task->state
61  * is about runnability, while task->exit_state are
62  * about the task exiting. Confusing, but this way
63  * modifying one set can't modify the other one by
64  * mistake.
65  */
66 
67 /* Used in tsk->state: */
68 #define TASK_RUNNING			0
69 #define TASK_INTERRUPTIBLE		1
70 #define TASK_UNINTERRUPTIBLE		2
71 #define __TASK_STOPPED			4
72 #define __TASK_TRACED			8
73 /* Used in tsk->exit_state: */
74 #define EXIT_DEAD			16
75 #define EXIT_ZOMBIE			32
76 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
77 /* Used in tsk->state again: */
78 #define TASK_DEAD			64
79 #define TASK_WAKEKILL			128
80 #define TASK_WAKING			256
81 #define TASK_PARKED			512
82 #define TASK_NOLOAD			1024
83 #define TASK_NEW			2048
84 #define TASK_STATE_MAX			4096
85 
86 #define TASK_STATE_TO_CHAR_STR		"RSDTtXZxKWPNn"
87 
88 /* Convenience macros for the sake of set_current_state: */
89 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
90 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
91 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
92 
93 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
94 
95 /* Convenience macros for the sake of wake_up(): */
96 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
97 #define TASK_ALL			(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
98 
99 /* get_task_state(): */
100 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
101 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
102 					 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
103 
104 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
105 
106 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
107 
108 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109 
110 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 					 (task->flags & PF_FROZEN) == 0 && \
112 					 (task->state & TASK_NOLOAD) == 0)
113 
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115 
116 #define __set_current_state(state_value)			\
117 	do {							\
118 		current->task_state_change = _THIS_IP_;		\
119 		current->state = (state_value);			\
120 	} while (0)
121 #define set_current_state(state_value)				\
122 	do {							\
123 		current->task_state_change = _THIS_IP_;		\
124 		smp_store_mb(current->state, (state_value));	\
125 	} while (0)
126 
127 #else
128 /*
129  * set_current_state() includes a barrier so that the write of current->state
130  * is correctly serialised wrt the caller's subsequent test of whether to
131  * actually sleep:
132  *
133  *   for (;;) {
134  *	set_current_state(TASK_UNINTERRUPTIBLE);
135  *	if (!need_sleep)
136  *		break;
137  *
138  *	schedule();
139  *   }
140  *   __set_current_state(TASK_RUNNING);
141  *
142  * If the caller does not need such serialisation (because, for instance, the
143  * condition test and condition change and wakeup are under the same lock) then
144  * use __set_current_state().
145  *
146  * The above is typically ordered against the wakeup, which does:
147  *
148  *	need_sleep = false;
149  *	wake_up_state(p, TASK_UNINTERRUPTIBLE);
150  *
151  * Where wake_up_state() (and all other wakeup primitives) imply enough
152  * barriers to order the store of the variable against wakeup.
153  *
154  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
155  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
156  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
157  *
158  * This is obviously fine, since they both store the exact same value.
159  *
160  * Also see the comments of try_to_wake_up().
161  */
162 #define __set_current_state(state_value) do { current->state = (state_value); } while (0)
163 #define set_current_state(state_value)	 smp_store_mb(current->state, (state_value))
164 #endif
165 
166 /* Task command name length: */
167 #define TASK_COMM_LEN			16
168 
169 extern cpumask_var_t			cpu_isolated_map;
170 
171 extern void scheduler_tick(void);
172 
173 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
174 
175 extern long schedule_timeout(long timeout);
176 extern long schedule_timeout_interruptible(long timeout);
177 extern long schedule_timeout_killable(long timeout);
178 extern long schedule_timeout_uninterruptible(long timeout);
179 extern long schedule_timeout_idle(long timeout);
180 asmlinkage void schedule(void);
181 extern void schedule_preempt_disabled(void);
182 
183 extern int __must_check io_schedule_prepare(void);
184 extern void io_schedule_finish(int token);
185 extern long io_schedule_timeout(long timeout);
186 extern void io_schedule(void);
187 
188 /**
189  * struct prev_cputime - snapshot of system and user cputime
190  * @utime: time spent in user mode
191  * @stime: time spent in system mode
192  * @lock: protects the above two fields
193  *
194  * Stores previous user/system time values such that we can guarantee
195  * monotonicity.
196  */
197 struct prev_cputime {
198 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
199 	u64				utime;
200 	u64				stime;
201 	raw_spinlock_t			lock;
202 #endif
203 };
204 
205 /**
206  * struct task_cputime - collected CPU time counts
207  * @utime:		time spent in user mode, in nanoseconds
208  * @stime:		time spent in kernel mode, in nanoseconds
209  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
210  *
211  * This structure groups together three kinds of CPU time that are tracked for
212  * threads and thread groups.  Most things considering CPU time want to group
213  * these counts together and treat all three of them in parallel.
214  */
215 struct task_cputime {
216 	u64				utime;
217 	u64				stime;
218 	unsigned long long		sum_exec_runtime;
219 };
220 
221 /* Alternate field names when used on cache expirations: */
222 #define virt_exp			utime
223 #define prof_exp			stime
224 #define sched_exp			sum_exec_runtime
225 
226 struct sched_info {
227 #ifdef CONFIG_SCHED_INFO
228 	/* Cumulative counters: */
229 
230 	/* # of times we have run on this CPU: */
231 	unsigned long			pcount;
232 
233 	/* Time spent waiting on a runqueue: */
234 	unsigned long long		run_delay;
235 
236 	/* Timestamps: */
237 
238 	/* When did we last run on a CPU? */
239 	unsigned long long		last_arrival;
240 
241 	/* When were we last queued to run? */
242 	unsigned long long		last_queued;
243 
244 #endif /* CONFIG_SCHED_INFO */
245 };
246 
247 /*
248  * Integer metrics need fixed point arithmetic, e.g., sched/fair
249  * has a few: load, load_avg, util_avg, freq, and capacity.
250  *
251  * We define a basic fixed point arithmetic range, and then formalize
252  * all these metrics based on that basic range.
253  */
254 # define SCHED_FIXEDPOINT_SHIFT		10
255 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
256 
257 struct load_weight {
258 	unsigned long			weight;
259 	u32				inv_weight;
260 };
261 
262 /*
263  * The load_avg/util_avg accumulates an infinite geometric series
264  * (see __update_load_avg() in kernel/sched/fair.c).
265  *
266  * [load_avg definition]
267  *
268  *   load_avg = runnable% * scale_load_down(load)
269  *
270  * where runnable% is the time ratio that a sched_entity is runnable.
271  * For cfs_rq, it is the aggregated load_avg of all runnable and
272  * blocked sched_entities.
273  *
274  * load_avg may also take frequency scaling into account:
275  *
276  *   load_avg = runnable% * scale_load_down(load) * freq%
277  *
278  * where freq% is the CPU frequency normalized to the highest frequency.
279  *
280  * [util_avg definition]
281  *
282  *   util_avg = running% * SCHED_CAPACITY_SCALE
283  *
284  * where running% is the time ratio that a sched_entity is running on
285  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
286  * and blocked sched_entities.
287  *
288  * util_avg may also factor frequency scaling and CPU capacity scaling:
289  *
290  *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
291  *
292  * where freq% is the same as above, and capacity% is the CPU capacity
293  * normalized to the greatest capacity (due to uarch differences, etc).
294  *
295  * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
296  * themselves are in the range of [0, 1]. To do fixed point arithmetics,
297  * we therefore scale them to as large a range as necessary. This is for
298  * example reflected by util_avg's SCHED_CAPACITY_SCALE.
299  *
300  * [Overflow issue]
301  *
302  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
303  * with the highest load (=88761), always runnable on a single cfs_rq,
304  * and should not overflow as the number already hits PID_MAX_LIMIT.
305  *
306  * For all other cases (including 32-bit kernels), struct load_weight's
307  * weight will overflow first before we do, because:
308  *
309  *    Max(load_avg) <= Max(load.weight)
310  *
311  * Then it is the load_weight's responsibility to consider overflow
312  * issues.
313  */
314 struct sched_avg {
315 	u64				last_update_time;
316 	u64				load_sum;
317 	u32				util_sum;
318 	u32				period_contrib;
319 	unsigned long			load_avg;
320 	unsigned long			util_avg;
321 };
322 
323 struct sched_statistics {
324 #ifdef CONFIG_SCHEDSTATS
325 	u64				wait_start;
326 	u64				wait_max;
327 	u64				wait_count;
328 	u64				wait_sum;
329 	u64				iowait_count;
330 	u64				iowait_sum;
331 
332 	u64				sleep_start;
333 	u64				sleep_max;
334 	s64				sum_sleep_runtime;
335 
336 	u64				block_start;
337 	u64				block_max;
338 	u64				exec_max;
339 	u64				slice_max;
340 
341 	u64				nr_migrations_cold;
342 	u64				nr_failed_migrations_affine;
343 	u64				nr_failed_migrations_running;
344 	u64				nr_failed_migrations_hot;
345 	u64				nr_forced_migrations;
346 
347 	u64				nr_wakeups;
348 	u64				nr_wakeups_sync;
349 	u64				nr_wakeups_migrate;
350 	u64				nr_wakeups_local;
351 	u64				nr_wakeups_remote;
352 	u64				nr_wakeups_affine;
353 	u64				nr_wakeups_affine_attempts;
354 	u64				nr_wakeups_passive;
355 	u64				nr_wakeups_idle;
356 #endif
357 };
358 
359 struct sched_entity {
360 	/* For load-balancing: */
361 	struct load_weight		load;
362 	struct rb_node			run_node;
363 	struct list_head		group_node;
364 	unsigned int			on_rq;
365 
366 	u64				exec_start;
367 	u64				sum_exec_runtime;
368 	u64				vruntime;
369 	u64				prev_sum_exec_runtime;
370 
371 	u64				nr_migrations;
372 
373 	struct sched_statistics		statistics;
374 
375 #ifdef CONFIG_FAIR_GROUP_SCHED
376 	int				depth;
377 	struct sched_entity		*parent;
378 	/* rq on which this entity is (to be) queued: */
379 	struct cfs_rq			*cfs_rq;
380 	/* rq "owned" by this entity/group: */
381 	struct cfs_rq			*my_q;
382 #endif
383 
384 #ifdef CONFIG_SMP
385 	/*
386 	 * Per entity load average tracking.
387 	 *
388 	 * Put into separate cache line so it does not
389 	 * collide with read-mostly values above.
390 	 */
391 	struct sched_avg		avg ____cacheline_aligned_in_smp;
392 #endif
393 };
394 
395 struct sched_rt_entity {
396 	struct list_head		run_list;
397 	unsigned long			timeout;
398 	unsigned long			watchdog_stamp;
399 	unsigned int			time_slice;
400 	unsigned short			on_rq;
401 	unsigned short			on_list;
402 
403 	struct sched_rt_entity		*back;
404 #ifdef CONFIG_RT_GROUP_SCHED
405 	struct sched_rt_entity		*parent;
406 	/* rq on which this entity is (to be) queued: */
407 	struct rt_rq			*rt_rq;
408 	/* rq "owned" by this entity/group: */
409 	struct rt_rq			*my_q;
410 #endif
411 };
412 
413 struct sched_dl_entity {
414 	struct rb_node			rb_node;
415 
416 	/*
417 	 * Original scheduling parameters. Copied here from sched_attr
418 	 * during sched_setattr(), they will remain the same until
419 	 * the next sched_setattr().
420 	 */
421 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
422 	u64				dl_deadline;	/* Relative deadline of each instance	*/
423 	u64				dl_period;	/* Separation of two instances (period) */
424 	u64				dl_bw;		/* dl_runtime / dl_period		*/
425 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
426 
427 	/*
428 	 * Actual scheduling parameters. Initialized with the values above,
429 	 * they are continously updated during task execution. Note that
430 	 * the remaining runtime could be < 0 in case we are in overrun.
431 	 */
432 	s64				runtime;	/* Remaining runtime for this instance	*/
433 	u64				deadline;	/* Absolute deadline for this instance	*/
434 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
435 
436 	/*
437 	 * Some bool flags:
438 	 *
439 	 * @dl_throttled tells if we exhausted the runtime. If so, the
440 	 * task has to wait for a replenishment to be performed at the
441 	 * next firing of dl_timer.
442 	 *
443 	 * @dl_boosted tells if we are boosted due to DI. If so we are
444 	 * outside bandwidth enforcement mechanism (but only until we
445 	 * exit the critical section);
446 	 *
447 	 * @dl_yielded tells if task gave up the CPU before consuming
448 	 * all its available runtime during the last job.
449 	 *
450 	 * @dl_non_contending tells if the task is inactive while still
451 	 * contributing to the active utilization. In other words, it
452 	 * indicates if the inactive timer has been armed and its handler
453 	 * has not been executed yet. This flag is useful to avoid race
454 	 * conditions between the inactive timer handler and the wakeup
455 	 * code.
456 	 */
457 	int				dl_throttled;
458 	int				dl_boosted;
459 	int				dl_yielded;
460 	int				dl_non_contending;
461 
462 	/*
463 	 * Bandwidth enforcement timer. Each -deadline task has its
464 	 * own bandwidth to be enforced, thus we need one timer per task.
465 	 */
466 	struct hrtimer			dl_timer;
467 
468 	/*
469 	 * Inactive timer, responsible for decreasing the active utilization
470 	 * at the "0-lag time". When a -deadline task blocks, it contributes
471 	 * to GRUB's active utilization until the "0-lag time", hence a
472 	 * timer is needed to decrease the active utilization at the correct
473 	 * time.
474 	 */
475 	struct hrtimer inactive_timer;
476 };
477 
478 union rcu_special {
479 	struct {
480 		u8			blocked;
481 		u8			need_qs;
482 		u8			exp_need_qs;
483 
484 		/* Otherwise the compiler can store garbage here: */
485 		u8			pad;
486 	} b; /* Bits. */
487 	u32 s; /* Set of bits. */
488 };
489 
490 enum perf_event_task_context {
491 	perf_invalid_context = -1,
492 	perf_hw_context = 0,
493 	perf_sw_context,
494 	perf_nr_task_contexts,
495 };
496 
497 struct wake_q_node {
498 	struct wake_q_node *next;
499 };
500 
501 struct task_struct {
502 #ifdef CONFIG_THREAD_INFO_IN_TASK
503 	/*
504 	 * For reasons of header soup (see current_thread_info()), this
505 	 * must be the first element of task_struct.
506 	 */
507 	struct thread_info		thread_info;
508 #endif
509 	/* -1 unrunnable, 0 runnable, >0 stopped: */
510 	volatile long			state;
511 	void				*stack;
512 	atomic_t			usage;
513 	/* Per task flags (PF_*), defined further below: */
514 	unsigned int			flags;
515 	unsigned int			ptrace;
516 
517 #ifdef CONFIG_SMP
518 	struct llist_node		wake_entry;
519 	int				on_cpu;
520 #ifdef CONFIG_THREAD_INFO_IN_TASK
521 	/* Current CPU: */
522 	unsigned int			cpu;
523 #endif
524 	unsigned int			wakee_flips;
525 	unsigned long			wakee_flip_decay_ts;
526 	struct task_struct		*last_wakee;
527 
528 	int				wake_cpu;
529 #endif
530 	int				on_rq;
531 
532 	int				prio;
533 	int				static_prio;
534 	int				normal_prio;
535 	unsigned int			rt_priority;
536 
537 	const struct sched_class	*sched_class;
538 	struct sched_entity		se;
539 	struct sched_rt_entity		rt;
540 #ifdef CONFIG_CGROUP_SCHED
541 	struct task_group		*sched_task_group;
542 #endif
543 	struct sched_dl_entity		dl;
544 
545 #ifdef CONFIG_PREEMPT_NOTIFIERS
546 	/* List of struct preempt_notifier: */
547 	struct hlist_head		preempt_notifiers;
548 #endif
549 
550 #ifdef CONFIG_BLK_DEV_IO_TRACE
551 	unsigned int			btrace_seq;
552 #endif
553 
554 	unsigned int			policy;
555 	int				nr_cpus_allowed;
556 	cpumask_t			cpus_allowed;
557 
558 #ifdef CONFIG_PREEMPT_RCU
559 	int				rcu_read_lock_nesting;
560 	union rcu_special		rcu_read_unlock_special;
561 	struct list_head		rcu_node_entry;
562 	struct rcu_node			*rcu_blocked_node;
563 #endif /* #ifdef CONFIG_PREEMPT_RCU */
564 
565 #ifdef CONFIG_TASKS_RCU
566 	unsigned long			rcu_tasks_nvcsw;
567 	bool				rcu_tasks_holdout;
568 	struct list_head		rcu_tasks_holdout_list;
569 	int				rcu_tasks_idle_cpu;
570 #endif /* #ifdef CONFIG_TASKS_RCU */
571 
572 	struct sched_info		sched_info;
573 
574 	struct list_head		tasks;
575 #ifdef CONFIG_SMP
576 	struct plist_node		pushable_tasks;
577 	struct rb_node			pushable_dl_tasks;
578 #endif
579 
580 	struct mm_struct		*mm;
581 	struct mm_struct		*active_mm;
582 
583 	/* Per-thread vma caching: */
584 	struct vmacache			vmacache;
585 
586 #ifdef SPLIT_RSS_COUNTING
587 	struct task_rss_stat		rss_stat;
588 #endif
589 	int				exit_state;
590 	int				exit_code;
591 	int				exit_signal;
592 	/* The signal sent when the parent dies: */
593 	int				pdeath_signal;
594 	/* JOBCTL_*, siglock protected: */
595 	unsigned long			jobctl;
596 
597 	/* Used for emulating ABI behavior of previous Linux versions: */
598 	unsigned int			personality;
599 
600 	/* Scheduler bits, serialized by scheduler locks: */
601 	unsigned			sched_reset_on_fork:1;
602 	unsigned			sched_contributes_to_load:1;
603 	unsigned			sched_migrated:1;
604 	unsigned			sched_remote_wakeup:1;
605 	/* Force alignment to the next boundary: */
606 	unsigned			:0;
607 
608 	/* Unserialized, strictly 'current' */
609 
610 	/* Bit to tell LSMs we're in execve(): */
611 	unsigned			in_execve:1;
612 	unsigned			in_iowait:1;
613 #ifndef TIF_RESTORE_SIGMASK
614 	unsigned			restore_sigmask:1;
615 #endif
616 #ifdef CONFIG_MEMCG
617 	unsigned			memcg_may_oom:1;
618 #ifndef CONFIG_SLOB
619 	unsigned			memcg_kmem_skip_account:1;
620 #endif
621 #endif
622 #ifdef CONFIG_COMPAT_BRK
623 	unsigned			brk_randomized:1;
624 #endif
625 #ifdef CONFIG_CGROUPS
626 	/* disallow userland-initiated cgroup migration */
627 	unsigned			no_cgroup_migration:1;
628 #endif
629 
630 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
631 
632 	struct restart_block		restart_block;
633 
634 	pid_t				pid;
635 	pid_t				tgid;
636 
637 #ifdef CONFIG_CC_STACKPROTECTOR
638 	/* Canary value for the -fstack-protector GCC feature: */
639 	unsigned long			stack_canary;
640 #endif
641 	/*
642 	 * Pointers to the (original) parent process, youngest child, younger sibling,
643 	 * older sibling, respectively.  (p->father can be replaced with
644 	 * p->real_parent->pid)
645 	 */
646 
647 	/* Real parent process: */
648 	struct task_struct __rcu	*real_parent;
649 
650 	/* Recipient of SIGCHLD, wait4() reports: */
651 	struct task_struct __rcu	*parent;
652 
653 	/*
654 	 * Children/sibling form the list of natural children:
655 	 */
656 	struct list_head		children;
657 	struct list_head		sibling;
658 	struct task_struct		*group_leader;
659 
660 	/*
661 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
662 	 *
663 	 * This includes both natural children and PTRACE_ATTACH targets.
664 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
665 	 */
666 	struct list_head		ptraced;
667 	struct list_head		ptrace_entry;
668 
669 	/* PID/PID hash table linkage. */
670 	struct pid_link			pids[PIDTYPE_MAX];
671 	struct list_head		thread_group;
672 	struct list_head		thread_node;
673 
674 	struct completion		*vfork_done;
675 
676 	/* CLONE_CHILD_SETTID: */
677 	int __user			*set_child_tid;
678 
679 	/* CLONE_CHILD_CLEARTID: */
680 	int __user			*clear_child_tid;
681 
682 	u64				utime;
683 	u64				stime;
684 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
685 	u64				utimescaled;
686 	u64				stimescaled;
687 #endif
688 	u64				gtime;
689 	struct prev_cputime		prev_cputime;
690 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
691 	seqcount_t			vtime_seqcount;
692 	unsigned long long		vtime_snap;
693 	enum {
694 		/* Task is sleeping or running in a CPU with VTIME inactive: */
695 		VTIME_INACTIVE = 0,
696 		/* Task runs in userspace in a CPU with VTIME active: */
697 		VTIME_USER,
698 		/* Task runs in kernelspace in a CPU with VTIME active: */
699 		VTIME_SYS,
700 	} vtime_snap_whence;
701 #endif
702 
703 #ifdef CONFIG_NO_HZ_FULL
704 	atomic_t			tick_dep_mask;
705 #endif
706 	/* Context switch counts: */
707 	unsigned long			nvcsw;
708 	unsigned long			nivcsw;
709 
710 	/* Monotonic time in nsecs: */
711 	u64				start_time;
712 
713 	/* Boot based time in nsecs: */
714 	u64				real_start_time;
715 
716 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
717 	unsigned long			min_flt;
718 	unsigned long			maj_flt;
719 
720 #ifdef CONFIG_POSIX_TIMERS
721 	struct task_cputime		cputime_expires;
722 	struct list_head		cpu_timers[3];
723 #endif
724 
725 	/* Process credentials: */
726 
727 	/* Tracer's credentials at attach: */
728 	const struct cred __rcu		*ptracer_cred;
729 
730 	/* Objective and real subjective task credentials (COW): */
731 	const struct cred __rcu		*real_cred;
732 
733 	/* Effective (overridable) subjective task credentials (COW): */
734 	const struct cred __rcu		*cred;
735 
736 	/*
737 	 * executable name, excluding path.
738 	 *
739 	 * - normally initialized setup_new_exec()
740 	 * - access it with [gs]et_task_comm()
741 	 * - lock it with task_lock()
742 	 */
743 	char				comm[TASK_COMM_LEN];
744 
745 	struct nameidata		*nameidata;
746 
747 #ifdef CONFIG_SYSVIPC
748 	struct sysv_sem			sysvsem;
749 	struct sysv_shm			sysvshm;
750 #endif
751 #ifdef CONFIG_DETECT_HUNG_TASK
752 	unsigned long			last_switch_count;
753 #endif
754 	/* Filesystem information: */
755 	struct fs_struct		*fs;
756 
757 	/* Open file information: */
758 	struct files_struct		*files;
759 
760 	/* Namespaces: */
761 	struct nsproxy			*nsproxy;
762 
763 	/* Signal handlers: */
764 	struct signal_struct		*signal;
765 	struct sighand_struct		*sighand;
766 	sigset_t			blocked;
767 	sigset_t			real_blocked;
768 	/* Restored if set_restore_sigmask() was used: */
769 	sigset_t			saved_sigmask;
770 	struct sigpending		pending;
771 	unsigned long			sas_ss_sp;
772 	size_t				sas_ss_size;
773 	unsigned int			sas_ss_flags;
774 
775 	struct callback_head		*task_works;
776 
777 	struct audit_context		*audit_context;
778 #ifdef CONFIG_AUDITSYSCALL
779 	kuid_t				loginuid;
780 	unsigned int			sessionid;
781 #endif
782 	struct seccomp			seccomp;
783 
784 	/* Thread group tracking: */
785 	u32				parent_exec_id;
786 	u32				self_exec_id;
787 
788 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
789 	spinlock_t			alloc_lock;
790 
791 	/* Protection of the PI data structures: */
792 	raw_spinlock_t			pi_lock;
793 
794 	struct wake_q_node		wake_q;
795 
796 #ifdef CONFIG_RT_MUTEXES
797 	/* PI waiters blocked on a rt_mutex held by this task: */
798 	struct rb_root			pi_waiters;
799 	struct rb_node			*pi_waiters_leftmost;
800 	/* Updated under owner's pi_lock and rq lock */
801 	struct task_struct		*pi_top_task;
802 	/* Deadlock detection and priority inheritance handling: */
803 	struct rt_mutex_waiter		*pi_blocked_on;
804 #endif
805 
806 #ifdef CONFIG_DEBUG_MUTEXES
807 	/* Mutex deadlock detection: */
808 	struct mutex_waiter		*blocked_on;
809 #endif
810 
811 #ifdef CONFIG_TRACE_IRQFLAGS
812 	unsigned int			irq_events;
813 	unsigned long			hardirq_enable_ip;
814 	unsigned long			hardirq_disable_ip;
815 	unsigned int			hardirq_enable_event;
816 	unsigned int			hardirq_disable_event;
817 	int				hardirqs_enabled;
818 	int				hardirq_context;
819 	unsigned long			softirq_disable_ip;
820 	unsigned long			softirq_enable_ip;
821 	unsigned int			softirq_disable_event;
822 	unsigned int			softirq_enable_event;
823 	int				softirqs_enabled;
824 	int				softirq_context;
825 #endif
826 
827 #ifdef CONFIG_LOCKDEP
828 # define MAX_LOCK_DEPTH			48UL
829 	u64				curr_chain_key;
830 	int				lockdep_depth;
831 	unsigned int			lockdep_recursion;
832 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
833 	gfp_t				lockdep_reclaim_gfp;
834 #endif
835 
836 #ifdef CONFIG_UBSAN
837 	unsigned int			in_ubsan;
838 #endif
839 
840 	/* Journalling filesystem info: */
841 	void				*journal_info;
842 
843 	/* Stacked block device info: */
844 	struct bio_list			*bio_list;
845 
846 #ifdef CONFIG_BLOCK
847 	/* Stack plugging: */
848 	struct blk_plug			*plug;
849 #endif
850 
851 	/* VM state: */
852 	struct reclaim_state		*reclaim_state;
853 
854 	struct backing_dev_info		*backing_dev_info;
855 
856 	struct io_context		*io_context;
857 
858 	/* Ptrace state: */
859 	unsigned long			ptrace_message;
860 	siginfo_t			*last_siginfo;
861 
862 	struct task_io_accounting	ioac;
863 #ifdef CONFIG_TASK_XACCT
864 	/* Accumulated RSS usage: */
865 	u64				acct_rss_mem1;
866 	/* Accumulated virtual memory usage: */
867 	u64				acct_vm_mem1;
868 	/* stime + utime since last update: */
869 	u64				acct_timexpd;
870 #endif
871 #ifdef CONFIG_CPUSETS
872 	/* Protected by ->alloc_lock: */
873 	nodemask_t			mems_allowed;
874 	/* Seqence number to catch updates: */
875 	seqcount_t			mems_allowed_seq;
876 	int				cpuset_mem_spread_rotor;
877 	int				cpuset_slab_spread_rotor;
878 #endif
879 #ifdef CONFIG_CGROUPS
880 	/* Control Group info protected by css_set_lock: */
881 	struct css_set __rcu		*cgroups;
882 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
883 	struct list_head		cg_list;
884 #endif
885 #ifdef CONFIG_INTEL_RDT_A
886 	int				closid;
887 #endif
888 #ifdef CONFIG_FUTEX
889 	struct robust_list_head __user	*robust_list;
890 #ifdef CONFIG_COMPAT
891 	struct compat_robust_list_head __user *compat_robust_list;
892 #endif
893 	struct list_head		pi_state_list;
894 	struct futex_pi_state		*pi_state_cache;
895 #endif
896 #ifdef CONFIG_PERF_EVENTS
897 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
898 	struct mutex			perf_event_mutex;
899 	struct list_head		perf_event_list;
900 #endif
901 #ifdef CONFIG_DEBUG_PREEMPT
902 	unsigned long			preempt_disable_ip;
903 #endif
904 #ifdef CONFIG_NUMA
905 	/* Protected by alloc_lock: */
906 	struct mempolicy		*mempolicy;
907 	short				il_next;
908 	short				pref_node_fork;
909 #endif
910 #ifdef CONFIG_NUMA_BALANCING
911 	int				numa_scan_seq;
912 	unsigned int			numa_scan_period;
913 	unsigned int			numa_scan_period_max;
914 	int				numa_preferred_nid;
915 	unsigned long			numa_migrate_retry;
916 	/* Migration stamp: */
917 	u64				node_stamp;
918 	u64				last_task_numa_placement;
919 	u64				last_sum_exec_runtime;
920 	struct callback_head		numa_work;
921 
922 	struct list_head		numa_entry;
923 	struct numa_group		*numa_group;
924 
925 	/*
926 	 * numa_faults is an array split into four regions:
927 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
928 	 * in this precise order.
929 	 *
930 	 * faults_memory: Exponential decaying average of faults on a per-node
931 	 * basis. Scheduling placement decisions are made based on these
932 	 * counts. The values remain static for the duration of a PTE scan.
933 	 * faults_cpu: Track the nodes the process was running on when a NUMA
934 	 * hinting fault was incurred.
935 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
936 	 * during the current scan window. When the scan completes, the counts
937 	 * in faults_memory and faults_cpu decay and these values are copied.
938 	 */
939 	unsigned long			*numa_faults;
940 	unsigned long			total_numa_faults;
941 
942 	/*
943 	 * numa_faults_locality tracks if faults recorded during the last
944 	 * scan window were remote/local or failed to migrate. The task scan
945 	 * period is adapted based on the locality of the faults with different
946 	 * weights depending on whether they were shared or private faults
947 	 */
948 	unsigned long			numa_faults_locality[3];
949 
950 	unsigned long			numa_pages_migrated;
951 #endif /* CONFIG_NUMA_BALANCING */
952 
953 	struct tlbflush_unmap_batch	tlb_ubc;
954 
955 	struct rcu_head			rcu;
956 
957 	/* Cache last used pipe for splice(): */
958 	struct pipe_inode_info		*splice_pipe;
959 
960 	struct page_frag		task_frag;
961 
962 #ifdef CONFIG_TASK_DELAY_ACCT
963 	struct task_delay_info		*delays;
964 #endif
965 
966 #ifdef CONFIG_FAULT_INJECTION
967 	int				make_it_fail;
968 #endif
969 	/*
970 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
971 	 * balance_dirty_pages() for a dirty throttling pause:
972 	 */
973 	int				nr_dirtied;
974 	int				nr_dirtied_pause;
975 	/* Start of a write-and-pause period: */
976 	unsigned long			dirty_paused_when;
977 
978 #ifdef CONFIG_LATENCYTOP
979 	int				latency_record_count;
980 	struct latency_record		latency_record[LT_SAVECOUNT];
981 #endif
982 	/*
983 	 * Time slack values; these are used to round up poll() and
984 	 * select() etc timeout values. These are in nanoseconds.
985 	 */
986 	u64				timer_slack_ns;
987 	u64				default_timer_slack_ns;
988 
989 #ifdef CONFIG_KASAN
990 	unsigned int			kasan_depth;
991 #endif
992 
993 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
994 	/* Index of current stored address in ret_stack: */
995 	int				curr_ret_stack;
996 
997 	/* Stack of return addresses for return function tracing: */
998 	struct ftrace_ret_stack		*ret_stack;
999 
1000 	/* Timestamp for last schedule: */
1001 	unsigned long long		ftrace_timestamp;
1002 
1003 	/*
1004 	 * Number of functions that haven't been traced
1005 	 * because of depth overrun:
1006 	 */
1007 	atomic_t			trace_overrun;
1008 
1009 	/* Pause tracing: */
1010 	atomic_t			tracing_graph_pause;
1011 #endif
1012 
1013 #ifdef CONFIG_TRACING
1014 	/* State flags for use by tracers: */
1015 	unsigned long			trace;
1016 
1017 	/* Bitmask and counter of trace recursion: */
1018 	unsigned long			trace_recursion;
1019 #endif /* CONFIG_TRACING */
1020 
1021 #ifdef CONFIG_KCOV
1022 	/* Coverage collection mode enabled for this task (0 if disabled): */
1023 	enum kcov_mode			kcov_mode;
1024 
1025 	/* Size of the kcov_area: */
1026 	unsigned int			kcov_size;
1027 
1028 	/* Buffer for coverage collection: */
1029 	void				*kcov_area;
1030 
1031 	/* KCOV descriptor wired with this task or NULL: */
1032 	struct kcov			*kcov;
1033 #endif
1034 
1035 #ifdef CONFIG_MEMCG
1036 	struct mem_cgroup		*memcg_in_oom;
1037 	gfp_t				memcg_oom_gfp_mask;
1038 	int				memcg_oom_order;
1039 
1040 	/* Number of pages to reclaim on returning to userland: */
1041 	unsigned int			memcg_nr_pages_over_high;
1042 #endif
1043 
1044 #ifdef CONFIG_UPROBES
1045 	struct uprobe_task		*utask;
1046 #endif
1047 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1048 	unsigned int			sequential_io;
1049 	unsigned int			sequential_io_avg;
1050 #endif
1051 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1052 	unsigned long			task_state_change;
1053 #endif
1054 	int				pagefault_disabled;
1055 #ifdef CONFIG_MMU
1056 	struct task_struct		*oom_reaper_list;
1057 #endif
1058 #ifdef CONFIG_VMAP_STACK
1059 	struct vm_struct		*stack_vm_area;
1060 #endif
1061 #ifdef CONFIG_THREAD_INFO_IN_TASK
1062 	/* A live task holds one reference: */
1063 	atomic_t			stack_refcount;
1064 #endif
1065 #ifdef CONFIG_LIVEPATCH
1066 	int patch_state;
1067 #endif
1068 #ifdef CONFIG_SECURITY
1069 	/* Used by LSM modules for access restriction: */
1070 	void				*security;
1071 #endif
1072 	/* CPU-specific state of this task: */
1073 	struct thread_struct		thread;
1074 
1075 	/*
1076 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1077 	 * structure.  It *MUST* be at the end of 'task_struct'.
1078 	 *
1079 	 * Do not put anything below here!
1080 	 */
1081 };
1082 
1083 static inline struct pid *task_pid(struct task_struct *task)
1084 {
1085 	return task->pids[PIDTYPE_PID].pid;
1086 }
1087 
1088 static inline struct pid *task_tgid(struct task_struct *task)
1089 {
1090 	return task->group_leader->pids[PIDTYPE_PID].pid;
1091 }
1092 
1093 /*
1094  * Without tasklist or RCU lock it is not safe to dereference
1095  * the result of task_pgrp/task_session even if task == current,
1096  * we can race with another thread doing sys_setsid/sys_setpgid.
1097  */
1098 static inline struct pid *task_pgrp(struct task_struct *task)
1099 {
1100 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1101 }
1102 
1103 static inline struct pid *task_session(struct task_struct *task)
1104 {
1105 	return task->group_leader->pids[PIDTYPE_SID].pid;
1106 }
1107 
1108 /*
1109  * the helpers to get the task's different pids as they are seen
1110  * from various namespaces
1111  *
1112  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1113  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1114  *                     current.
1115  * task_xid_nr_ns()  : id seen from the ns specified;
1116  *
1117  * see also pid_nr() etc in include/linux/pid.h
1118  */
1119 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1120 
1121 static inline pid_t task_pid_nr(struct task_struct *tsk)
1122 {
1123 	return tsk->pid;
1124 }
1125 
1126 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1127 {
1128 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1129 }
1130 
1131 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1132 {
1133 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1134 }
1135 
1136 
1137 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1138 {
1139 	return tsk->tgid;
1140 }
1141 
1142 extern pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1143 
1144 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1145 {
1146 	return pid_vnr(task_tgid(tsk));
1147 }
1148 
1149 /**
1150  * pid_alive - check that a task structure is not stale
1151  * @p: Task structure to be checked.
1152  *
1153  * Test if a process is not yet dead (at most zombie state)
1154  * If pid_alive fails, then pointers within the task structure
1155  * can be stale and must not be dereferenced.
1156  *
1157  * Return: 1 if the process is alive. 0 otherwise.
1158  */
1159 static inline int pid_alive(const struct task_struct *p)
1160 {
1161 	return p->pids[PIDTYPE_PID].pid != NULL;
1162 }
1163 
1164 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1165 {
1166 	pid_t pid = 0;
1167 
1168 	rcu_read_lock();
1169 	if (pid_alive(tsk))
1170 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1171 	rcu_read_unlock();
1172 
1173 	return pid;
1174 }
1175 
1176 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1177 {
1178 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1179 }
1180 
1181 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1182 {
1183 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1184 }
1185 
1186 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1187 {
1188 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1189 }
1190 
1191 
1192 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1193 {
1194 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1195 }
1196 
1197 static inline pid_t task_session_vnr(struct task_struct *tsk)
1198 {
1199 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1200 }
1201 
1202 /* Obsolete, do not use: */
1203 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1204 {
1205 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1206 }
1207 
1208 /**
1209  * is_global_init - check if a task structure is init. Since init
1210  * is free to have sub-threads we need to check tgid.
1211  * @tsk: Task structure to be checked.
1212  *
1213  * Check if a task structure is the first user space task the kernel created.
1214  *
1215  * Return: 1 if the task structure is init. 0 otherwise.
1216  */
1217 static inline int is_global_init(struct task_struct *tsk)
1218 {
1219 	return task_tgid_nr(tsk) == 1;
1220 }
1221 
1222 extern struct pid *cad_pid;
1223 
1224 /*
1225  * Per process flags
1226  */
1227 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1228 #define PF_EXITING		0x00000004	/* Getting shut down */
1229 #define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
1230 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1231 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1232 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1233 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1234 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1235 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1236 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1237 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1238 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1239 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1240 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1241 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1242 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1243 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1244 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1245 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1246 #define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
1247 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1248 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1249 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1250 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1251 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1252 #define PF_MUTEX_TESTER		0x20000000	/* Thread belongs to the rt mutex tester */
1253 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1254 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1255 
1256 /*
1257  * Only the _current_ task can read/write to tsk->flags, but other
1258  * tasks can access tsk->flags in readonly mode for example
1259  * with tsk_used_math (like during threaded core dumping).
1260  * There is however an exception to this rule during ptrace
1261  * or during fork: the ptracer task is allowed to write to the
1262  * child->flags of its traced child (same goes for fork, the parent
1263  * can write to the child->flags), because we're guaranteed the
1264  * child is not running and in turn not changing child->flags
1265  * at the same time the parent does it.
1266  */
1267 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1268 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1269 #define clear_used_math()			clear_stopped_child_used_math(current)
1270 #define set_used_math()				set_stopped_child_used_math(current)
1271 
1272 #define conditional_stopped_child_used_math(condition, child) \
1273 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1274 
1275 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1276 
1277 #define copy_to_stopped_child_used_math(child) \
1278 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1279 
1280 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1281 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1282 #define used_math()				tsk_used_math(current)
1283 
1284 static inline bool is_percpu_thread(void)
1285 {
1286 #ifdef CONFIG_SMP
1287 	return (current->flags & PF_NO_SETAFFINITY) &&
1288 		(current->nr_cpus_allowed  == 1);
1289 #else
1290 	return true;
1291 #endif
1292 }
1293 
1294 /* Per-process atomic flags. */
1295 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1296 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1297 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1298 
1299 
1300 #define TASK_PFA_TEST(name, func)					\
1301 	static inline bool task_##func(struct task_struct *p)		\
1302 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1303 
1304 #define TASK_PFA_SET(name, func)					\
1305 	static inline void task_set_##func(struct task_struct *p)	\
1306 	{ set_bit(PFA_##name, &p->atomic_flags); }
1307 
1308 #define TASK_PFA_CLEAR(name, func)					\
1309 	static inline void task_clear_##func(struct task_struct *p)	\
1310 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1311 
1312 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1313 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1314 
1315 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1316 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1317 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1318 
1319 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1320 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1321 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1322 
1323 static inline void
1324 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1325 {
1326 	current->flags &= ~flags;
1327 	current->flags |= orig_flags & flags;
1328 }
1329 
1330 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1331 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1332 #ifdef CONFIG_SMP
1333 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1334 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1335 #else
1336 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1337 {
1338 }
1339 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1340 {
1341 	if (!cpumask_test_cpu(0, new_mask))
1342 		return -EINVAL;
1343 	return 0;
1344 }
1345 #endif
1346 
1347 #ifndef cpu_relax_yield
1348 #define cpu_relax_yield() cpu_relax()
1349 #endif
1350 
1351 extern int yield_to(struct task_struct *p, bool preempt);
1352 extern void set_user_nice(struct task_struct *p, long nice);
1353 extern int task_prio(const struct task_struct *p);
1354 
1355 /**
1356  * task_nice - return the nice value of a given task.
1357  * @p: the task in question.
1358  *
1359  * Return: The nice value [ -20 ... 0 ... 19 ].
1360  */
1361 static inline int task_nice(const struct task_struct *p)
1362 {
1363 	return PRIO_TO_NICE((p)->static_prio);
1364 }
1365 
1366 extern int can_nice(const struct task_struct *p, const int nice);
1367 extern int task_curr(const struct task_struct *p);
1368 extern int idle_cpu(int cpu);
1369 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1370 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1371 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1372 extern struct task_struct *idle_task(int cpu);
1373 
1374 /**
1375  * is_idle_task - is the specified task an idle task?
1376  * @p: the task in question.
1377  *
1378  * Return: 1 if @p is an idle task. 0 otherwise.
1379  */
1380 static inline bool is_idle_task(const struct task_struct *p)
1381 {
1382 	return !!(p->flags & PF_IDLE);
1383 }
1384 
1385 extern struct task_struct *curr_task(int cpu);
1386 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1387 
1388 void yield(void);
1389 
1390 union thread_union {
1391 #ifndef CONFIG_THREAD_INFO_IN_TASK
1392 	struct thread_info thread_info;
1393 #endif
1394 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1395 };
1396 
1397 #ifdef CONFIG_THREAD_INFO_IN_TASK
1398 static inline struct thread_info *task_thread_info(struct task_struct *task)
1399 {
1400 	return &task->thread_info;
1401 }
1402 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1403 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1404 #endif
1405 
1406 /*
1407  * find a task by one of its numerical ids
1408  *
1409  * find_task_by_pid_ns():
1410  *      finds a task by its pid in the specified namespace
1411  * find_task_by_vpid():
1412  *      finds a task by its virtual pid
1413  *
1414  * see also find_vpid() etc in include/linux/pid.h
1415  */
1416 
1417 extern struct task_struct *find_task_by_vpid(pid_t nr);
1418 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1419 
1420 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1421 extern int wake_up_process(struct task_struct *tsk);
1422 extern void wake_up_new_task(struct task_struct *tsk);
1423 
1424 #ifdef CONFIG_SMP
1425 extern void kick_process(struct task_struct *tsk);
1426 #else
1427 static inline void kick_process(struct task_struct *tsk) { }
1428 #endif
1429 
1430 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1431 
1432 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1433 {
1434 	__set_task_comm(tsk, from, false);
1435 }
1436 
1437 extern char *get_task_comm(char *to, struct task_struct *tsk);
1438 
1439 #ifdef CONFIG_SMP
1440 void scheduler_ipi(void);
1441 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1442 #else
1443 static inline void scheduler_ipi(void) { }
1444 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1445 {
1446 	return 1;
1447 }
1448 #endif
1449 
1450 /*
1451  * Set thread flags in other task's structures.
1452  * See asm/thread_info.h for TIF_xxxx flags available:
1453  */
1454 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1455 {
1456 	set_ti_thread_flag(task_thread_info(tsk), flag);
1457 }
1458 
1459 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1460 {
1461 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1462 }
1463 
1464 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1465 {
1466 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1467 }
1468 
1469 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1470 {
1471 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1472 }
1473 
1474 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1475 {
1476 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1477 }
1478 
1479 static inline void set_tsk_need_resched(struct task_struct *tsk)
1480 {
1481 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1482 }
1483 
1484 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1485 {
1486 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1487 }
1488 
1489 static inline int test_tsk_need_resched(struct task_struct *tsk)
1490 {
1491 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1492 }
1493 
1494 /*
1495  * cond_resched() and cond_resched_lock(): latency reduction via
1496  * explicit rescheduling in places that are safe. The return
1497  * value indicates whether a reschedule was done in fact.
1498  * cond_resched_lock() will drop the spinlock before scheduling,
1499  * cond_resched_softirq() will enable bhs before scheduling.
1500  */
1501 #ifndef CONFIG_PREEMPT
1502 extern int _cond_resched(void);
1503 #else
1504 static inline int _cond_resched(void) { return 0; }
1505 #endif
1506 
1507 #define cond_resched() ({			\
1508 	___might_sleep(__FILE__, __LINE__, 0);	\
1509 	_cond_resched();			\
1510 })
1511 
1512 extern int __cond_resched_lock(spinlock_t *lock);
1513 
1514 #define cond_resched_lock(lock) ({				\
1515 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1516 	__cond_resched_lock(lock);				\
1517 })
1518 
1519 extern int __cond_resched_softirq(void);
1520 
1521 #define cond_resched_softirq() ({					\
1522 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
1523 	__cond_resched_softirq();					\
1524 })
1525 
1526 static inline void cond_resched_rcu(void)
1527 {
1528 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1529 	rcu_read_unlock();
1530 	cond_resched();
1531 	rcu_read_lock();
1532 #endif
1533 }
1534 
1535 /*
1536  * Does a critical section need to be broken due to another
1537  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1538  * but a general need for low latency)
1539  */
1540 static inline int spin_needbreak(spinlock_t *lock)
1541 {
1542 #ifdef CONFIG_PREEMPT
1543 	return spin_is_contended(lock);
1544 #else
1545 	return 0;
1546 #endif
1547 }
1548 
1549 static __always_inline bool need_resched(void)
1550 {
1551 	return unlikely(tif_need_resched());
1552 }
1553 
1554 /*
1555  * Wrappers for p->thread_info->cpu access. No-op on UP.
1556  */
1557 #ifdef CONFIG_SMP
1558 
1559 static inline unsigned int task_cpu(const struct task_struct *p)
1560 {
1561 #ifdef CONFIG_THREAD_INFO_IN_TASK
1562 	return p->cpu;
1563 #else
1564 	return task_thread_info(p)->cpu;
1565 #endif
1566 }
1567 
1568 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1569 
1570 #else
1571 
1572 static inline unsigned int task_cpu(const struct task_struct *p)
1573 {
1574 	return 0;
1575 }
1576 
1577 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1578 {
1579 }
1580 
1581 #endif /* CONFIG_SMP */
1582 
1583 /*
1584  * In order to reduce various lock holder preemption latencies provide an
1585  * interface to see if a vCPU is currently running or not.
1586  *
1587  * This allows us to terminate optimistic spin loops and block, analogous to
1588  * the native optimistic spin heuristic of testing if the lock owner task is
1589  * running or not.
1590  */
1591 #ifndef vcpu_is_preempted
1592 # define vcpu_is_preempted(cpu)	false
1593 #endif
1594 
1595 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1596 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1597 
1598 #ifndef TASK_SIZE_OF
1599 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1600 #endif
1601 
1602 #endif
1603