1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void update_cpu_load_nohz(void); 181 #else 182 static inline void update_cpu_load_nohz(void) { } 183 #endif 184 185 extern unsigned long get_parent_ip(unsigned long addr); 186 187 extern void dump_cpu_task(int cpu); 188 189 struct seq_file; 190 struct cfs_rq; 191 struct task_group; 192 #ifdef CONFIG_SCHED_DEBUG 193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194 extern void proc_sched_set_task(struct task_struct *p); 195 #endif 196 197 /* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207 #define TASK_RUNNING 0 208 #define TASK_INTERRUPTIBLE 1 209 #define TASK_UNINTERRUPTIBLE 2 210 #define __TASK_STOPPED 4 211 #define __TASK_TRACED 8 212 /* in tsk->exit_state */ 213 #define EXIT_DEAD 16 214 #define EXIT_ZOMBIE 32 215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216 /* in tsk->state again */ 217 #define TASK_DEAD 64 218 #define TASK_WAKEKILL 128 219 #define TASK_WAKING 256 220 #define TASK_PARKED 512 221 #define TASK_NOLOAD 1024 222 #define TASK_STATE_MAX 2048 223 224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN" 225 226 extern char ___assert_task_state[1 - 2*!!( 227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 228 229 /* Convenience macros for the sake of set_task_state */ 230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 233 234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 235 236 /* Convenience macros for the sake of wake_up */ 237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 239 240 /* get_task_state() */ 241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 244 245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 247 #define task_is_stopped_or_traced(task) \ 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 249 #define task_contributes_to_load(task) \ 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 251 (task->flags & PF_FROZEN) == 0 && \ 252 (task->state & TASK_NOLOAD) == 0) 253 254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 255 256 #define __set_task_state(tsk, state_value) \ 257 do { \ 258 (tsk)->task_state_change = _THIS_IP_; \ 259 (tsk)->state = (state_value); \ 260 } while (0) 261 #define set_task_state(tsk, state_value) \ 262 do { \ 263 (tsk)->task_state_change = _THIS_IP_; \ 264 smp_store_mb((tsk)->state, (state_value)); \ 265 } while (0) 266 267 /* 268 * set_current_state() includes a barrier so that the write of current->state 269 * is correctly serialised wrt the caller's subsequent test of whether to 270 * actually sleep: 271 * 272 * set_current_state(TASK_UNINTERRUPTIBLE); 273 * if (do_i_need_to_sleep()) 274 * schedule(); 275 * 276 * If the caller does not need such serialisation then use __set_current_state() 277 */ 278 #define __set_current_state(state_value) \ 279 do { \ 280 current->task_state_change = _THIS_IP_; \ 281 current->state = (state_value); \ 282 } while (0) 283 #define set_current_state(state_value) \ 284 do { \ 285 current->task_state_change = _THIS_IP_; \ 286 smp_store_mb(current->state, (state_value)); \ 287 } while (0) 288 289 #else 290 291 #define __set_task_state(tsk, state_value) \ 292 do { (tsk)->state = (state_value); } while (0) 293 #define set_task_state(tsk, state_value) \ 294 smp_store_mb((tsk)->state, (state_value)) 295 296 /* 297 * set_current_state() includes a barrier so that the write of current->state 298 * is correctly serialised wrt the caller's subsequent test of whether to 299 * actually sleep: 300 * 301 * set_current_state(TASK_UNINTERRUPTIBLE); 302 * if (do_i_need_to_sleep()) 303 * schedule(); 304 * 305 * If the caller does not need such serialisation then use __set_current_state() 306 */ 307 #define __set_current_state(state_value) \ 308 do { current->state = (state_value); } while (0) 309 #define set_current_state(state_value) \ 310 smp_store_mb(current->state, (state_value)) 311 312 #endif 313 314 /* Task command name length */ 315 #define TASK_COMM_LEN 16 316 317 #include <linux/spinlock.h> 318 319 /* 320 * This serializes "schedule()" and also protects 321 * the run-queue from deletions/modifications (but 322 * _adding_ to the beginning of the run-queue has 323 * a separate lock). 324 */ 325 extern rwlock_t tasklist_lock; 326 extern spinlock_t mmlist_lock; 327 328 struct task_struct; 329 330 #ifdef CONFIG_PROVE_RCU 331 extern int lockdep_tasklist_lock_is_held(void); 332 #endif /* #ifdef CONFIG_PROVE_RCU */ 333 334 extern void sched_init(void); 335 extern void sched_init_smp(void); 336 extern asmlinkage void schedule_tail(struct task_struct *prev); 337 extern void init_idle(struct task_struct *idle, int cpu); 338 extern void init_idle_bootup_task(struct task_struct *idle); 339 340 extern cpumask_var_t cpu_isolated_map; 341 342 extern int runqueue_is_locked(int cpu); 343 344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 345 extern void nohz_balance_enter_idle(int cpu); 346 extern void set_cpu_sd_state_idle(void); 347 extern int get_nohz_timer_target(void); 348 #else 349 static inline void nohz_balance_enter_idle(int cpu) { } 350 static inline void set_cpu_sd_state_idle(void) { } 351 #endif 352 353 /* 354 * Only dump TASK_* tasks. (0 for all tasks) 355 */ 356 extern void show_state_filter(unsigned long state_filter); 357 358 static inline void show_state(void) 359 { 360 show_state_filter(0); 361 } 362 363 extern void show_regs(struct pt_regs *); 364 365 /* 366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 367 * task), SP is the stack pointer of the first frame that should be shown in the back 368 * trace (or NULL if the entire call-chain of the task should be shown). 369 */ 370 extern void show_stack(struct task_struct *task, unsigned long *sp); 371 372 extern void cpu_init (void); 373 extern void trap_init(void); 374 extern void update_process_times(int user); 375 extern void scheduler_tick(void); 376 377 extern void sched_show_task(struct task_struct *p); 378 379 #ifdef CONFIG_LOCKUP_DETECTOR 380 extern void touch_softlockup_watchdog(void); 381 extern void touch_softlockup_watchdog_sync(void); 382 extern void touch_all_softlockup_watchdogs(void); 383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 384 void __user *buffer, 385 size_t *lenp, loff_t *ppos); 386 extern unsigned int softlockup_panic; 387 void lockup_detector_init(void); 388 #else 389 static inline void touch_softlockup_watchdog(void) 390 { 391 } 392 static inline void touch_softlockup_watchdog_sync(void) 393 { 394 } 395 static inline void touch_all_softlockup_watchdogs(void) 396 { 397 } 398 static inline void lockup_detector_init(void) 399 { 400 } 401 #endif 402 403 #ifdef CONFIG_DETECT_HUNG_TASK 404 void reset_hung_task_detector(void); 405 #else 406 static inline void reset_hung_task_detector(void) 407 { 408 } 409 #endif 410 411 /* Attach to any functions which should be ignored in wchan output. */ 412 #define __sched __attribute__((__section__(".sched.text"))) 413 414 /* Linker adds these: start and end of __sched functions */ 415 extern char __sched_text_start[], __sched_text_end[]; 416 417 /* Is this address in the __sched functions? */ 418 extern int in_sched_functions(unsigned long addr); 419 420 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 421 extern signed long schedule_timeout(signed long timeout); 422 extern signed long schedule_timeout_interruptible(signed long timeout); 423 extern signed long schedule_timeout_killable(signed long timeout); 424 extern signed long schedule_timeout_uninterruptible(signed long timeout); 425 asmlinkage void schedule(void); 426 extern void schedule_preempt_disabled(void); 427 428 extern long io_schedule_timeout(long timeout); 429 430 static inline void io_schedule(void) 431 { 432 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 433 } 434 435 struct nsproxy; 436 struct user_namespace; 437 438 #ifdef CONFIG_MMU 439 extern void arch_pick_mmap_layout(struct mm_struct *mm); 440 extern unsigned long 441 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 442 unsigned long, unsigned long); 443 extern unsigned long 444 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 445 unsigned long len, unsigned long pgoff, 446 unsigned long flags); 447 #else 448 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 449 #endif 450 451 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 452 #define SUID_DUMP_USER 1 /* Dump as user of process */ 453 #define SUID_DUMP_ROOT 2 /* Dump as root */ 454 455 /* mm flags */ 456 457 /* for SUID_DUMP_* above */ 458 #define MMF_DUMPABLE_BITS 2 459 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 460 461 extern void set_dumpable(struct mm_struct *mm, int value); 462 /* 463 * This returns the actual value of the suid_dumpable flag. For things 464 * that are using this for checking for privilege transitions, it must 465 * test against SUID_DUMP_USER rather than treating it as a boolean 466 * value. 467 */ 468 static inline int __get_dumpable(unsigned long mm_flags) 469 { 470 return mm_flags & MMF_DUMPABLE_MASK; 471 } 472 473 static inline int get_dumpable(struct mm_struct *mm) 474 { 475 return __get_dumpable(mm->flags); 476 } 477 478 /* coredump filter bits */ 479 #define MMF_DUMP_ANON_PRIVATE 2 480 #define MMF_DUMP_ANON_SHARED 3 481 #define MMF_DUMP_MAPPED_PRIVATE 4 482 #define MMF_DUMP_MAPPED_SHARED 5 483 #define MMF_DUMP_ELF_HEADERS 6 484 #define MMF_DUMP_HUGETLB_PRIVATE 7 485 #define MMF_DUMP_HUGETLB_SHARED 8 486 487 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 488 #define MMF_DUMP_FILTER_BITS 7 489 #define MMF_DUMP_FILTER_MASK \ 490 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 491 #define MMF_DUMP_FILTER_DEFAULT \ 492 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 493 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 494 495 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 496 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 497 #else 498 # define MMF_DUMP_MASK_DEFAULT_ELF 0 499 #endif 500 /* leave room for more dump flags */ 501 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 502 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 503 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 504 505 #define MMF_HAS_UPROBES 19 /* has uprobes */ 506 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 507 508 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 509 510 struct sighand_struct { 511 atomic_t count; 512 struct k_sigaction action[_NSIG]; 513 spinlock_t siglock; 514 wait_queue_head_t signalfd_wqh; 515 }; 516 517 struct pacct_struct { 518 int ac_flag; 519 long ac_exitcode; 520 unsigned long ac_mem; 521 cputime_t ac_utime, ac_stime; 522 unsigned long ac_minflt, ac_majflt; 523 }; 524 525 struct cpu_itimer { 526 cputime_t expires; 527 cputime_t incr; 528 u32 error; 529 u32 incr_error; 530 }; 531 532 /** 533 * struct prev_cputime - snaphsot of system and user cputime 534 * @utime: time spent in user mode 535 * @stime: time spent in system mode 536 * @lock: protects the above two fields 537 * 538 * Stores previous user/system time values such that we can guarantee 539 * monotonicity. 540 */ 541 struct prev_cputime { 542 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 543 cputime_t utime; 544 cputime_t stime; 545 raw_spinlock_t lock; 546 #endif 547 }; 548 549 static inline void prev_cputime_init(struct prev_cputime *prev) 550 { 551 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 552 prev->utime = prev->stime = 0; 553 raw_spin_lock_init(&prev->lock); 554 #endif 555 } 556 557 /** 558 * struct task_cputime - collected CPU time counts 559 * @utime: time spent in user mode, in &cputime_t units 560 * @stime: time spent in kernel mode, in &cputime_t units 561 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 562 * 563 * This structure groups together three kinds of CPU time that are tracked for 564 * threads and thread groups. Most things considering CPU time want to group 565 * these counts together and treat all three of them in parallel. 566 */ 567 struct task_cputime { 568 cputime_t utime; 569 cputime_t stime; 570 unsigned long long sum_exec_runtime; 571 }; 572 573 /* Alternate field names when used to cache expirations. */ 574 #define virt_exp utime 575 #define prof_exp stime 576 #define sched_exp sum_exec_runtime 577 578 #define INIT_CPUTIME \ 579 (struct task_cputime) { \ 580 .utime = 0, \ 581 .stime = 0, \ 582 .sum_exec_runtime = 0, \ 583 } 584 585 /* 586 * This is the atomic variant of task_cputime, which can be used for 587 * storing and updating task_cputime statistics without locking. 588 */ 589 struct task_cputime_atomic { 590 atomic64_t utime; 591 atomic64_t stime; 592 atomic64_t sum_exec_runtime; 593 }; 594 595 #define INIT_CPUTIME_ATOMIC \ 596 (struct task_cputime_atomic) { \ 597 .utime = ATOMIC64_INIT(0), \ 598 .stime = ATOMIC64_INIT(0), \ 599 .sum_exec_runtime = ATOMIC64_INIT(0), \ 600 } 601 602 #ifdef CONFIG_PREEMPT_COUNT 603 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 604 #else 605 #define PREEMPT_DISABLED PREEMPT_ENABLED 606 #endif 607 608 /* 609 * Disable preemption until the scheduler is running. 610 * Reset by start_kernel()->sched_init()->init_idle(). 611 * 612 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 613 * before the scheduler is active -- see should_resched(). 614 */ 615 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 616 617 /** 618 * struct thread_group_cputimer - thread group interval timer counts 619 * @cputime_atomic: atomic thread group interval timers. 620 * @running: non-zero when there are timers running and 621 * @cputime receives updates. 622 * 623 * This structure contains the version of task_cputime, above, that is 624 * used for thread group CPU timer calculations. 625 */ 626 struct thread_group_cputimer { 627 struct task_cputime_atomic cputime_atomic; 628 int running; 629 }; 630 631 #include <linux/rwsem.h> 632 struct autogroup; 633 634 /* 635 * NOTE! "signal_struct" does not have its own 636 * locking, because a shared signal_struct always 637 * implies a shared sighand_struct, so locking 638 * sighand_struct is always a proper superset of 639 * the locking of signal_struct. 640 */ 641 struct signal_struct { 642 atomic_t sigcnt; 643 atomic_t live; 644 int nr_threads; 645 struct list_head thread_head; 646 647 wait_queue_head_t wait_chldexit; /* for wait4() */ 648 649 /* current thread group signal load-balancing target: */ 650 struct task_struct *curr_target; 651 652 /* shared signal handling: */ 653 struct sigpending shared_pending; 654 655 /* thread group exit support */ 656 int group_exit_code; 657 /* overloaded: 658 * - notify group_exit_task when ->count is equal to notify_count 659 * - everyone except group_exit_task is stopped during signal delivery 660 * of fatal signals, group_exit_task processes the signal. 661 */ 662 int notify_count; 663 struct task_struct *group_exit_task; 664 665 /* thread group stop support, overloads group_exit_code too */ 666 int group_stop_count; 667 unsigned int flags; /* see SIGNAL_* flags below */ 668 669 /* 670 * PR_SET_CHILD_SUBREAPER marks a process, like a service 671 * manager, to re-parent orphan (double-forking) child processes 672 * to this process instead of 'init'. The service manager is 673 * able to receive SIGCHLD signals and is able to investigate 674 * the process until it calls wait(). All children of this 675 * process will inherit a flag if they should look for a 676 * child_subreaper process at exit. 677 */ 678 unsigned int is_child_subreaper:1; 679 unsigned int has_child_subreaper:1; 680 681 /* POSIX.1b Interval Timers */ 682 int posix_timer_id; 683 struct list_head posix_timers; 684 685 /* ITIMER_REAL timer for the process */ 686 struct hrtimer real_timer; 687 struct pid *leader_pid; 688 ktime_t it_real_incr; 689 690 /* 691 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 692 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 693 * values are defined to 0 and 1 respectively 694 */ 695 struct cpu_itimer it[2]; 696 697 /* 698 * Thread group totals for process CPU timers. 699 * See thread_group_cputimer(), et al, for details. 700 */ 701 struct thread_group_cputimer cputimer; 702 703 /* Earliest-expiration cache. */ 704 struct task_cputime cputime_expires; 705 706 struct list_head cpu_timers[3]; 707 708 struct pid *tty_old_pgrp; 709 710 /* boolean value for session group leader */ 711 int leader; 712 713 struct tty_struct *tty; /* NULL if no tty */ 714 715 #ifdef CONFIG_SCHED_AUTOGROUP 716 struct autogroup *autogroup; 717 #endif 718 /* 719 * Cumulative resource counters for dead threads in the group, 720 * and for reaped dead child processes forked by this group. 721 * Live threads maintain their own counters and add to these 722 * in __exit_signal, except for the group leader. 723 */ 724 seqlock_t stats_lock; 725 cputime_t utime, stime, cutime, cstime; 726 cputime_t gtime; 727 cputime_t cgtime; 728 struct prev_cputime prev_cputime; 729 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 730 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 731 unsigned long inblock, oublock, cinblock, coublock; 732 unsigned long maxrss, cmaxrss; 733 struct task_io_accounting ioac; 734 735 /* 736 * Cumulative ns of schedule CPU time fo dead threads in the 737 * group, not including a zombie group leader, (This only differs 738 * from jiffies_to_ns(utime + stime) if sched_clock uses something 739 * other than jiffies.) 740 */ 741 unsigned long long sum_sched_runtime; 742 743 /* 744 * We don't bother to synchronize most readers of this at all, 745 * because there is no reader checking a limit that actually needs 746 * to get both rlim_cur and rlim_max atomically, and either one 747 * alone is a single word that can safely be read normally. 748 * getrlimit/setrlimit use task_lock(current->group_leader) to 749 * protect this instead of the siglock, because they really 750 * have no need to disable irqs. 751 */ 752 struct rlimit rlim[RLIM_NLIMITS]; 753 754 #ifdef CONFIG_BSD_PROCESS_ACCT 755 struct pacct_struct pacct; /* per-process accounting information */ 756 #endif 757 #ifdef CONFIG_TASKSTATS 758 struct taskstats *stats; 759 #endif 760 #ifdef CONFIG_AUDIT 761 unsigned audit_tty; 762 unsigned audit_tty_log_passwd; 763 struct tty_audit_buf *tty_audit_buf; 764 #endif 765 766 oom_flags_t oom_flags; 767 short oom_score_adj; /* OOM kill score adjustment */ 768 short oom_score_adj_min; /* OOM kill score adjustment min value. 769 * Only settable by CAP_SYS_RESOURCE. */ 770 771 struct mutex cred_guard_mutex; /* guard against foreign influences on 772 * credential calculations 773 * (notably. ptrace) */ 774 }; 775 776 /* 777 * Bits in flags field of signal_struct. 778 */ 779 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 780 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 781 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 782 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 783 /* 784 * Pending notifications to parent. 785 */ 786 #define SIGNAL_CLD_STOPPED 0x00000010 787 #define SIGNAL_CLD_CONTINUED 0x00000020 788 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 789 790 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 791 792 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 793 static inline int signal_group_exit(const struct signal_struct *sig) 794 { 795 return (sig->flags & SIGNAL_GROUP_EXIT) || 796 (sig->group_exit_task != NULL); 797 } 798 799 /* 800 * Some day this will be a full-fledged user tracking system.. 801 */ 802 struct user_struct { 803 atomic_t __count; /* reference count */ 804 atomic_t processes; /* How many processes does this user have? */ 805 atomic_t sigpending; /* How many pending signals does this user have? */ 806 #ifdef CONFIG_INOTIFY_USER 807 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 808 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 809 #endif 810 #ifdef CONFIG_FANOTIFY 811 atomic_t fanotify_listeners; 812 #endif 813 #ifdef CONFIG_EPOLL 814 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 815 #endif 816 #ifdef CONFIG_POSIX_MQUEUE 817 /* protected by mq_lock */ 818 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 819 #endif 820 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 821 822 #ifdef CONFIG_KEYS 823 struct key *uid_keyring; /* UID specific keyring */ 824 struct key *session_keyring; /* UID's default session keyring */ 825 #endif 826 827 /* Hash table maintenance information */ 828 struct hlist_node uidhash_node; 829 kuid_t uid; 830 831 #ifdef CONFIG_PERF_EVENTS 832 atomic_long_t locked_vm; 833 #endif 834 }; 835 836 extern int uids_sysfs_init(void); 837 838 extern struct user_struct *find_user(kuid_t); 839 840 extern struct user_struct root_user; 841 #define INIT_USER (&root_user) 842 843 844 struct backing_dev_info; 845 struct reclaim_state; 846 847 #ifdef CONFIG_SCHED_INFO 848 struct sched_info { 849 /* cumulative counters */ 850 unsigned long pcount; /* # of times run on this cpu */ 851 unsigned long long run_delay; /* time spent waiting on a runqueue */ 852 853 /* timestamps */ 854 unsigned long long last_arrival,/* when we last ran on a cpu */ 855 last_queued; /* when we were last queued to run */ 856 }; 857 #endif /* CONFIG_SCHED_INFO */ 858 859 #ifdef CONFIG_TASK_DELAY_ACCT 860 struct task_delay_info { 861 spinlock_t lock; 862 unsigned int flags; /* Private per-task flags */ 863 864 /* For each stat XXX, add following, aligned appropriately 865 * 866 * struct timespec XXX_start, XXX_end; 867 * u64 XXX_delay; 868 * u32 XXX_count; 869 * 870 * Atomicity of updates to XXX_delay, XXX_count protected by 871 * single lock above (split into XXX_lock if contention is an issue). 872 */ 873 874 /* 875 * XXX_count is incremented on every XXX operation, the delay 876 * associated with the operation is added to XXX_delay. 877 * XXX_delay contains the accumulated delay time in nanoseconds. 878 */ 879 u64 blkio_start; /* Shared by blkio, swapin */ 880 u64 blkio_delay; /* wait for sync block io completion */ 881 u64 swapin_delay; /* wait for swapin block io completion */ 882 u32 blkio_count; /* total count of the number of sync block */ 883 /* io operations performed */ 884 u32 swapin_count; /* total count of the number of swapin block */ 885 /* io operations performed */ 886 887 u64 freepages_start; 888 u64 freepages_delay; /* wait for memory reclaim */ 889 u32 freepages_count; /* total count of memory reclaim */ 890 }; 891 #endif /* CONFIG_TASK_DELAY_ACCT */ 892 893 static inline int sched_info_on(void) 894 { 895 #ifdef CONFIG_SCHEDSTATS 896 return 1; 897 #elif defined(CONFIG_TASK_DELAY_ACCT) 898 extern int delayacct_on; 899 return delayacct_on; 900 #else 901 return 0; 902 #endif 903 } 904 905 enum cpu_idle_type { 906 CPU_IDLE, 907 CPU_NOT_IDLE, 908 CPU_NEWLY_IDLE, 909 CPU_MAX_IDLE_TYPES 910 }; 911 912 /* 913 * Increase resolution of cpu_capacity calculations 914 */ 915 #define SCHED_CAPACITY_SHIFT 10 916 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 917 918 /* 919 * Wake-queues are lists of tasks with a pending wakeup, whose 920 * callers have already marked the task as woken internally, 921 * and can thus carry on. A common use case is being able to 922 * do the wakeups once the corresponding user lock as been 923 * released. 924 * 925 * We hold reference to each task in the list across the wakeup, 926 * thus guaranteeing that the memory is still valid by the time 927 * the actual wakeups are performed in wake_up_q(). 928 * 929 * One per task suffices, because there's never a need for a task to be 930 * in two wake queues simultaneously; it is forbidden to abandon a task 931 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 932 * already in a wake queue, the wakeup will happen soon and the second 933 * waker can just skip it. 934 * 935 * The WAKE_Q macro declares and initializes the list head. 936 * wake_up_q() does NOT reinitialize the list; it's expected to be 937 * called near the end of a function, where the fact that the queue is 938 * not used again will be easy to see by inspection. 939 * 940 * Note that this can cause spurious wakeups. schedule() callers 941 * must ensure the call is done inside a loop, confirming that the 942 * wakeup condition has in fact occurred. 943 */ 944 struct wake_q_node { 945 struct wake_q_node *next; 946 }; 947 948 struct wake_q_head { 949 struct wake_q_node *first; 950 struct wake_q_node **lastp; 951 }; 952 953 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 954 955 #define WAKE_Q(name) \ 956 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 957 958 extern void wake_q_add(struct wake_q_head *head, 959 struct task_struct *task); 960 extern void wake_up_q(struct wake_q_head *head); 961 962 /* 963 * sched-domains (multiprocessor balancing) declarations: 964 */ 965 #ifdef CONFIG_SMP 966 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 967 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 968 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 969 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 970 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 971 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 972 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 973 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 974 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 975 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 976 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 977 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 978 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 979 #define SD_NUMA 0x4000 /* cross-node balancing */ 980 981 #ifdef CONFIG_SCHED_SMT 982 static inline int cpu_smt_flags(void) 983 { 984 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 985 } 986 #endif 987 988 #ifdef CONFIG_SCHED_MC 989 static inline int cpu_core_flags(void) 990 { 991 return SD_SHARE_PKG_RESOURCES; 992 } 993 #endif 994 995 #ifdef CONFIG_NUMA 996 static inline int cpu_numa_flags(void) 997 { 998 return SD_NUMA; 999 } 1000 #endif 1001 1002 struct sched_domain_attr { 1003 int relax_domain_level; 1004 }; 1005 1006 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1007 .relax_domain_level = -1, \ 1008 } 1009 1010 extern int sched_domain_level_max; 1011 1012 struct sched_group; 1013 1014 struct sched_domain { 1015 /* These fields must be setup */ 1016 struct sched_domain *parent; /* top domain must be null terminated */ 1017 struct sched_domain *child; /* bottom domain must be null terminated */ 1018 struct sched_group *groups; /* the balancing groups of the domain */ 1019 unsigned long min_interval; /* Minimum balance interval ms */ 1020 unsigned long max_interval; /* Maximum balance interval ms */ 1021 unsigned int busy_factor; /* less balancing by factor if busy */ 1022 unsigned int imbalance_pct; /* No balance until over watermark */ 1023 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1024 unsigned int busy_idx; 1025 unsigned int idle_idx; 1026 unsigned int newidle_idx; 1027 unsigned int wake_idx; 1028 unsigned int forkexec_idx; 1029 unsigned int smt_gain; 1030 1031 int nohz_idle; /* NOHZ IDLE status */ 1032 int flags; /* See SD_* */ 1033 int level; 1034 1035 /* Runtime fields. */ 1036 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1037 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1038 unsigned int nr_balance_failed; /* initialise to 0 */ 1039 1040 /* idle_balance() stats */ 1041 u64 max_newidle_lb_cost; 1042 unsigned long next_decay_max_lb_cost; 1043 1044 #ifdef CONFIG_SCHEDSTATS 1045 /* load_balance() stats */ 1046 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1047 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1048 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1049 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1050 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1051 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1052 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1053 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1054 1055 /* Active load balancing */ 1056 unsigned int alb_count; 1057 unsigned int alb_failed; 1058 unsigned int alb_pushed; 1059 1060 /* SD_BALANCE_EXEC stats */ 1061 unsigned int sbe_count; 1062 unsigned int sbe_balanced; 1063 unsigned int sbe_pushed; 1064 1065 /* SD_BALANCE_FORK stats */ 1066 unsigned int sbf_count; 1067 unsigned int sbf_balanced; 1068 unsigned int sbf_pushed; 1069 1070 /* try_to_wake_up() stats */ 1071 unsigned int ttwu_wake_remote; 1072 unsigned int ttwu_move_affine; 1073 unsigned int ttwu_move_balance; 1074 #endif 1075 #ifdef CONFIG_SCHED_DEBUG 1076 char *name; 1077 #endif 1078 union { 1079 void *private; /* used during construction */ 1080 struct rcu_head rcu; /* used during destruction */ 1081 }; 1082 1083 unsigned int span_weight; 1084 /* 1085 * Span of all CPUs in this domain. 1086 * 1087 * NOTE: this field is variable length. (Allocated dynamically 1088 * by attaching extra space to the end of the structure, 1089 * depending on how many CPUs the kernel has booted up with) 1090 */ 1091 unsigned long span[0]; 1092 }; 1093 1094 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1095 { 1096 return to_cpumask(sd->span); 1097 } 1098 1099 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1100 struct sched_domain_attr *dattr_new); 1101 1102 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1103 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1104 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1105 1106 bool cpus_share_cache(int this_cpu, int that_cpu); 1107 1108 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1109 typedef int (*sched_domain_flags_f)(void); 1110 1111 #define SDTL_OVERLAP 0x01 1112 1113 struct sd_data { 1114 struct sched_domain **__percpu sd; 1115 struct sched_group **__percpu sg; 1116 struct sched_group_capacity **__percpu sgc; 1117 }; 1118 1119 struct sched_domain_topology_level { 1120 sched_domain_mask_f mask; 1121 sched_domain_flags_f sd_flags; 1122 int flags; 1123 int numa_level; 1124 struct sd_data data; 1125 #ifdef CONFIG_SCHED_DEBUG 1126 char *name; 1127 #endif 1128 }; 1129 1130 extern struct sched_domain_topology_level *sched_domain_topology; 1131 1132 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1133 extern void wake_up_if_idle(int cpu); 1134 1135 #ifdef CONFIG_SCHED_DEBUG 1136 # define SD_INIT_NAME(type) .name = #type 1137 #else 1138 # define SD_INIT_NAME(type) 1139 #endif 1140 1141 #else /* CONFIG_SMP */ 1142 1143 struct sched_domain_attr; 1144 1145 static inline void 1146 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1147 struct sched_domain_attr *dattr_new) 1148 { 1149 } 1150 1151 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1152 { 1153 return true; 1154 } 1155 1156 #endif /* !CONFIG_SMP */ 1157 1158 1159 struct io_context; /* See blkdev.h */ 1160 1161 1162 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1163 extern void prefetch_stack(struct task_struct *t); 1164 #else 1165 static inline void prefetch_stack(struct task_struct *t) { } 1166 #endif 1167 1168 struct audit_context; /* See audit.c */ 1169 struct mempolicy; 1170 struct pipe_inode_info; 1171 struct uts_namespace; 1172 1173 struct load_weight { 1174 unsigned long weight; 1175 u32 inv_weight; 1176 }; 1177 1178 /* 1179 * The load_avg/util_avg accumulates an infinite geometric series. 1180 * 1) load_avg factors the amount of time that a sched_entity is 1181 * runnable on a rq into its weight. For cfs_rq, it is the aggregated 1182 * such weights of all runnable and blocked sched_entities. 1183 * 2) util_avg factors frequency scaling into the amount of time 1184 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE]. 1185 * For cfs_rq, it is the aggregated such times of all runnable and 1186 * blocked sched_entities. 1187 * The 64 bit load_sum can: 1188 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with 1189 * the highest weight (=88761) always runnable, we should not overflow 1190 * 2) for entity, support any load.weight always runnable 1191 */ 1192 struct sched_avg { 1193 u64 last_update_time, load_sum; 1194 u32 util_sum, period_contrib; 1195 unsigned long load_avg, util_avg; 1196 }; 1197 1198 #ifdef CONFIG_SCHEDSTATS 1199 struct sched_statistics { 1200 u64 wait_start; 1201 u64 wait_max; 1202 u64 wait_count; 1203 u64 wait_sum; 1204 u64 iowait_count; 1205 u64 iowait_sum; 1206 1207 u64 sleep_start; 1208 u64 sleep_max; 1209 s64 sum_sleep_runtime; 1210 1211 u64 block_start; 1212 u64 block_max; 1213 u64 exec_max; 1214 u64 slice_max; 1215 1216 u64 nr_migrations_cold; 1217 u64 nr_failed_migrations_affine; 1218 u64 nr_failed_migrations_running; 1219 u64 nr_failed_migrations_hot; 1220 u64 nr_forced_migrations; 1221 1222 u64 nr_wakeups; 1223 u64 nr_wakeups_sync; 1224 u64 nr_wakeups_migrate; 1225 u64 nr_wakeups_local; 1226 u64 nr_wakeups_remote; 1227 u64 nr_wakeups_affine; 1228 u64 nr_wakeups_affine_attempts; 1229 u64 nr_wakeups_passive; 1230 u64 nr_wakeups_idle; 1231 }; 1232 #endif 1233 1234 struct sched_entity { 1235 struct load_weight load; /* for load-balancing */ 1236 struct rb_node run_node; 1237 struct list_head group_node; 1238 unsigned int on_rq; 1239 1240 u64 exec_start; 1241 u64 sum_exec_runtime; 1242 u64 vruntime; 1243 u64 prev_sum_exec_runtime; 1244 1245 u64 nr_migrations; 1246 1247 #ifdef CONFIG_SCHEDSTATS 1248 struct sched_statistics statistics; 1249 #endif 1250 1251 #ifdef CONFIG_FAIR_GROUP_SCHED 1252 int depth; 1253 struct sched_entity *parent; 1254 /* rq on which this entity is (to be) queued: */ 1255 struct cfs_rq *cfs_rq; 1256 /* rq "owned" by this entity/group: */ 1257 struct cfs_rq *my_q; 1258 #endif 1259 1260 #ifdef CONFIG_SMP 1261 /* Per entity load average tracking */ 1262 struct sched_avg avg; 1263 #endif 1264 }; 1265 1266 struct sched_rt_entity { 1267 struct list_head run_list; 1268 unsigned long timeout; 1269 unsigned long watchdog_stamp; 1270 unsigned int time_slice; 1271 1272 struct sched_rt_entity *back; 1273 #ifdef CONFIG_RT_GROUP_SCHED 1274 struct sched_rt_entity *parent; 1275 /* rq on which this entity is (to be) queued: */ 1276 struct rt_rq *rt_rq; 1277 /* rq "owned" by this entity/group: */ 1278 struct rt_rq *my_q; 1279 #endif 1280 }; 1281 1282 struct sched_dl_entity { 1283 struct rb_node rb_node; 1284 1285 /* 1286 * Original scheduling parameters. Copied here from sched_attr 1287 * during sched_setattr(), they will remain the same until 1288 * the next sched_setattr(). 1289 */ 1290 u64 dl_runtime; /* maximum runtime for each instance */ 1291 u64 dl_deadline; /* relative deadline of each instance */ 1292 u64 dl_period; /* separation of two instances (period) */ 1293 u64 dl_bw; /* dl_runtime / dl_deadline */ 1294 1295 /* 1296 * Actual scheduling parameters. Initialized with the values above, 1297 * they are continously updated during task execution. Note that 1298 * the remaining runtime could be < 0 in case we are in overrun. 1299 */ 1300 s64 runtime; /* remaining runtime for this instance */ 1301 u64 deadline; /* absolute deadline for this instance */ 1302 unsigned int flags; /* specifying the scheduler behaviour */ 1303 1304 /* 1305 * Some bool flags: 1306 * 1307 * @dl_throttled tells if we exhausted the runtime. If so, the 1308 * task has to wait for a replenishment to be performed at the 1309 * next firing of dl_timer. 1310 * 1311 * @dl_new tells if a new instance arrived. If so we must 1312 * start executing it with full runtime and reset its absolute 1313 * deadline; 1314 * 1315 * @dl_boosted tells if we are boosted due to DI. If so we are 1316 * outside bandwidth enforcement mechanism (but only until we 1317 * exit the critical section); 1318 * 1319 * @dl_yielded tells if task gave up the cpu before consuming 1320 * all its available runtime during the last job. 1321 */ 1322 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1323 1324 /* 1325 * Bandwidth enforcement timer. Each -deadline task has its 1326 * own bandwidth to be enforced, thus we need one timer per task. 1327 */ 1328 struct hrtimer dl_timer; 1329 }; 1330 1331 union rcu_special { 1332 struct { 1333 bool blocked; 1334 bool need_qs; 1335 } b; 1336 short s; 1337 }; 1338 struct rcu_node; 1339 1340 enum perf_event_task_context { 1341 perf_invalid_context = -1, 1342 perf_hw_context = 0, 1343 perf_sw_context, 1344 perf_nr_task_contexts, 1345 }; 1346 1347 /* Track pages that require TLB flushes */ 1348 struct tlbflush_unmap_batch { 1349 /* 1350 * Each bit set is a CPU that potentially has a TLB entry for one of 1351 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1352 */ 1353 struct cpumask cpumask; 1354 1355 /* True if any bit in cpumask is set */ 1356 bool flush_required; 1357 1358 /* 1359 * If true then the PTE was dirty when unmapped. The entry must be 1360 * flushed before IO is initiated or a stale TLB entry potentially 1361 * allows an update without redirtying the page. 1362 */ 1363 bool writable; 1364 }; 1365 1366 struct task_struct { 1367 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1368 void *stack; 1369 atomic_t usage; 1370 unsigned int flags; /* per process flags, defined below */ 1371 unsigned int ptrace; 1372 1373 #ifdef CONFIG_SMP 1374 struct llist_node wake_entry; 1375 int on_cpu; 1376 unsigned int wakee_flips; 1377 unsigned long wakee_flip_decay_ts; 1378 struct task_struct *last_wakee; 1379 1380 int wake_cpu; 1381 #endif 1382 int on_rq; 1383 1384 int prio, static_prio, normal_prio; 1385 unsigned int rt_priority; 1386 const struct sched_class *sched_class; 1387 struct sched_entity se; 1388 struct sched_rt_entity rt; 1389 #ifdef CONFIG_CGROUP_SCHED 1390 struct task_group *sched_task_group; 1391 #endif 1392 struct sched_dl_entity dl; 1393 1394 #ifdef CONFIG_PREEMPT_NOTIFIERS 1395 /* list of struct preempt_notifier: */ 1396 struct hlist_head preempt_notifiers; 1397 #endif 1398 1399 #ifdef CONFIG_BLK_DEV_IO_TRACE 1400 unsigned int btrace_seq; 1401 #endif 1402 1403 unsigned int policy; 1404 int nr_cpus_allowed; 1405 cpumask_t cpus_allowed; 1406 1407 #ifdef CONFIG_PREEMPT_RCU 1408 int rcu_read_lock_nesting; 1409 union rcu_special rcu_read_unlock_special; 1410 struct list_head rcu_node_entry; 1411 struct rcu_node *rcu_blocked_node; 1412 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1413 #ifdef CONFIG_TASKS_RCU 1414 unsigned long rcu_tasks_nvcsw; 1415 bool rcu_tasks_holdout; 1416 struct list_head rcu_tasks_holdout_list; 1417 int rcu_tasks_idle_cpu; 1418 #endif /* #ifdef CONFIG_TASKS_RCU */ 1419 1420 #ifdef CONFIG_SCHED_INFO 1421 struct sched_info sched_info; 1422 #endif 1423 1424 struct list_head tasks; 1425 #ifdef CONFIG_SMP 1426 struct plist_node pushable_tasks; 1427 struct rb_node pushable_dl_tasks; 1428 #endif 1429 1430 struct mm_struct *mm, *active_mm; 1431 /* per-thread vma caching */ 1432 u32 vmacache_seqnum; 1433 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1434 #if defined(SPLIT_RSS_COUNTING) 1435 struct task_rss_stat rss_stat; 1436 #endif 1437 /* task state */ 1438 int exit_state; 1439 int exit_code, exit_signal; 1440 int pdeath_signal; /* The signal sent when the parent dies */ 1441 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1442 1443 /* Used for emulating ABI behavior of previous Linux versions */ 1444 unsigned int personality; 1445 1446 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1447 * execve */ 1448 unsigned in_iowait:1; 1449 1450 /* Revert to default priority/policy when forking */ 1451 unsigned sched_reset_on_fork:1; 1452 unsigned sched_contributes_to_load:1; 1453 unsigned sched_migrated:1; 1454 1455 #ifdef CONFIG_MEMCG_KMEM 1456 unsigned memcg_kmem_skip_account:1; 1457 #endif 1458 #ifdef CONFIG_COMPAT_BRK 1459 unsigned brk_randomized:1; 1460 #endif 1461 1462 unsigned long atomic_flags; /* Flags needing atomic access. */ 1463 1464 struct restart_block restart_block; 1465 1466 pid_t pid; 1467 pid_t tgid; 1468 1469 #ifdef CONFIG_CC_STACKPROTECTOR 1470 /* Canary value for the -fstack-protector gcc feature */ 1471 unsigned long stack_canary; 1472 #endif 1473 /* 1474 * pointers to (original) parent process, youngest child, younger sibling, 1475 * older sibling, respectively. (p->father can be replaced with 1476 * p->real_parent->pid) 1477 */ 1478 struct task_struct __rcu *real_parent; /* real parent process */ 1479 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1480 /* 1481 * children/sibling forms the list of my natural children 1482 */ 1483 struct list_head children; /* list of my children */ 1484 struct list_head sibling; /* linkage in my parent's children list */ 1485 struct task_struct *group_leader; /* threadgroup leader */ 1486 1487 /* 1488 * ptraced is the list of tasks this task is using ptrace on. 1489 * This includes both natural children and PTRACE_ATTACH targets. 1490 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1491 */ 1492 struct list_head ptraced; 1493 struct list_head ptrace_entry; 1494 1495 /* PID/PID hash table linkage. */ 1496 struct pid_link pids[PIDTYPE_MAX]; 1497 struct list_head thread_group; 1498 struct list_head thread_node; 1499 1500 struct completion *vfork_done; /* for vfork() */ 1501 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1502 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1503 1504 cputime_t utime, stime, utimescaled, stimescaled; 1505 cputime_t gtime; 1506 struct prev_cputime prev_cputime; 1507 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1508 seqlock_t vtime_seqlock; 1509 unsigned long long vtime_snap; 1510 enum { 1511 VTIME_SLEEPING = 0, 1512 VTIME_USER, 1513 VTIME_SYS, 1514 } vtime_snap_whence; 1515 #endif 1516 unsigned long nvcsw, nivcsw; /* context switch counts */ 1517 u64 start_time; /* monotonic time in nsec */ 1518 u64 real_start_time; /* boot based time in nsec */ 1519 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1520 unsigned long min_flt, maj_flt; 1521 1522 struct task_cputime cputime_expires; 1523 struct list_head cpu_timers[3]; 1524 1525 /* process credentials */ 1526 const struct cred __rcu *real_cred; /* objective and real subjective task 1527 * credentials (COW) */ 1528 const struct cred __rcu *cred; /* effective (overridable) subjective task 1529 * credentials (COW) */ 1530 char comm[TASK_COMM_LEN]; /* executable name excluding path 1531 - access with [gs]et_task_comm (which lock 1532 it with task_lock()) 1533 - initialized normally by setup_new_exec */ 1534 /* file system info */ 1535 struct nameidata *nameidata; 1536 #ifdef CONFIG_SYSVIPC 1537 /* ipc stuff */ 1538 struct sysv_sem sysvsem; 1539 struct sysv_shm sysvshm; 1540 #endif 1541 #ifdef CONFIG_DETECT_HUNG_TASK 1542 /* hung task detection */ 1543 unsigned long last_switch_count; 1544 #endif 1545 /* filesystem information */ 1546 struct fs_struct *fs; 1547 /* open file information */ 1548 struct files_struct *files; 1549 /* namespaces */ 1550 struct nsproxy *nsproxy; 1551 /* signal handlers */ 1552 struct signal_struct *signal; 1553 struct sighand_struct *sighand; 1554 1555 sigset_t blocked, real_blocked; 1556 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1557 struct sigpending pending; 1558 1559 unsigned long sas_ss_sp; 1560 size_t sas_ss_size; 1561 int (*notifier)(void *priv); 1562 void *notifier_data; 1563 sigset_t *notifier_mask; 1564 struct callback_head *task_works; 1565 1566 struct audit_context *audit_context; 1567 #ifdef CONFIG_AUDITSYSCALL 1568 kuid_t loginuid; 1569 unsigned int sessionid; 1570 #endif 1571 struct seccomp seccomp; 1572 1573 /* Thread group tracking */ 1574 u32 parent_exec_id; 1575 u32 self_exec_id; 1576 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1577 * mempolicy */ 1578 spinlock_t alloc_lock; 1579 1580 /* Protection of the PI data structures: */ 1581 raw_spinlock_t pi_lock; 1582 1583 struct wake_q_node wake_q; 1584 1585 #ifdef CONFIG_RT_MUTEXES 1586 /* PI waiters blocked on a rt_mutex held by this task */ 1587 struct rb_root pi_waiters; 1588 struct rb_node *pi_waiters_leftmost; 1589 /* Deadlock detection and priority inheritance handling */ 1590 struct rt_mutex_waiter *pi_blocked_on; 1591 #endif 1592 1593 #ifdef CONFIG_DEBUG_MUTEXES 1594 /* mutex deadlock detection */ 1595 struct mutex_waiter *blocked_on; 1596 #endif 1597 #ifdef CONFIG_TRACE_IRQFLAGS 1598 unsigned int irq_events; 1599 unsigned long hardirq_enable_ip; 1600 unsigned long hardirq_disable_ip; 1601 unsigned int hardirq_enable_event; 1602 unsigned int hardirq_disable_event; 1603 int hardirqs_enabled; 1604 int hardirq_context; 1605 unsigned long softirq_disable_ip; 1606 unsigned long softirq_enable_ip; 1607 unsigned int softirq_disable_event; 1608 unsigned int softirq_enable_event; 1609 int softirqs_enabled; 1610 int softirq_context; 1611 #endif 1612 #ifdef CONFIG_LOCKDEP 1613 # define MAX_LOCK_DEPTH 48UL 1614 u64 curr_chain_key; 1615 int lockdep_depth; 1616 unsigned int lockdep_recursion; 1617 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1618 gfp_t lockdep_reclaim_gfp; 1619 #endif 1620 1621 /* journalling filesystem info */ 1622 void *journal_info; 1623 1624 /* stacked block device info */ 1625 struct bio_list *bio_list; 1626 1627 #ifdef CONFIG_BLOCK 1628 /* stack plugging */ 1629 struct blk_plug *plug; 1630 #endif 1631 1632 /* VM state */ 1633 struct reclaim_state *reclaim_state; 1634 1635 struct backing_dev_info *backing_dev_info; 1636 1637 struct io_context *io_context; 1638 1639 unsigned long ptrace_message; 1640 siginfo_t *last_siginfo; /* For ptrace use. */ 1641 struct task_io_accounting ioac; 1642 #if defined(CONFIG_TASK_XACCT) 1643 u64 acct_rss_mem1; /* accumulated rss usage */ 1644 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1645 cputime_t acct_timexpd; /* stime + utime since last update */ 1646 #endif 1647 #ifdef CONFIG_CPUSETS 1648 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1649 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1650 int cpuset_mem_spread_rotor; 1651 int cpuset_slab_spread_rotor; 1652 #endif 1653 #ifdef CONFIG_CGROUPS 1654 /* Control Group info protected by css_set_lock */ 1655 struct css_set __rcu *cgroups; 1656 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1657 struct list_head cg_list; 1658 #endif 1659 #ifdef CONFIG_FUTEX 1660 struct robust_list_head __user *robust_list; 1661 #ifdef CONFIG_COMPAT 1662 struct compat_robust_list_head __user *compat_robust_list; 1663 #endif 1664 struct list_head pi_state_list; 1665 struct futex_pi_state *pi_state_cache; 1666 #endif 1667 #ifdef CONFIG_PERF_EVENTS 1668 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1669 struct mutex perf_event_mutex; 1670 struct list_head perf_event_list; 1671 #endif 1672 #ifdef CONFIG_DEBUG_PREEMPT 1673 unsigned long preempt_disable_ip; 1674 #endif 1675 #ifdef CONFIG_NUMA 1676 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1677 short il_next; 1678 short pref_node_fork; 1679 #endif 1680 #ifdef CONFIG_NUMA_BALANCING 1681 int numa_scan_seq; 1682 unsigned int numa_scan_period; 1683 unsigned int numa_scan_period_max; 1684 int numa_preferred_nid; 1685 unsigned long numa_migrate_retry; 1686 u64 node_stamp; /* migration stamp */ 1687 u64 last_task_numa_placement; 1688 u64 last_sum_exec_runtime; 1689 struct callback_head numa_work; 1690 1691 struct list_head numa_entry; 1692 struct numa_group *numa_group; 1693 1694 /* 1695 * numa_faults is an array split into four regions: 1696 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1697 * in this precise order. 1698 * 1699 * faults_memory: Exponential decaying average of faults on a per-node 1700 * basis. Scheduling placement decisions are made based on these 1701 * counts. The values remain static for the duration of a PTE scan. 1702 * faults_cpu: Track the nodes the process was running on when a NUMA 1703 * hinting fault was incurred. 1704 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1705 * during the current scan window. When the scan completes, the counts 1706 * in faults_memory and faults_cpu decay and these values are copied. 1707 */ 1708 unsigned long *numa_faults; 1709 unsigned long total_numa_faults; 1710 1711 /* 1712 * numa_faults_locality tracks if faults recorded during the last 1713 * scan window were remote/local or failed to migrate. The task scan 1714 * period is adapted based on the locality of the faults with different 1715 * weights depending on whether they were shared or private faults 1716 */ 1717 unsigned long numa_faults_locality[3]; 1718 1719 unsigned long numa_pages_migrated; 1720 #endif /* CONFIG_NUMA_BALANCING */ 1721 1722 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1723 struct tlbflush_unmap_batch tlb_ubc; 1724 #endif 1725 1726 struct rcu_head rcu; 1727 1728 /* 1729 * cache last used pipe for splice 1730 */ 1731 struct pipe_inode_info *splice_pipe; 1732 1733 struct page_frag task_frag; 1734 1735 #ifdef CONFIG_TASK_DELAY_ACCT 1736 struct task_delay_info *delays; 1737 #endif 1738 #ifdef CONFIG_FAULT_INJECTION 1739 int make_it_fail; 1740 #endif 1741 /* 1742 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1743 * balance_dirty_pages() for some dirty throttling pause 1744 */ 1745 int nr_dirtied; 1746 int nr_dirtied_pause; 1747 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1748 1749 #ifdef CONFIG_LATENCYTOP 1750 int latency_record_count; 1751 struct latency_record latency_record[LT_SAVECOUNT]; 1752 #endif 1753 /* 1754 * time slack values; these are used to round up poll() and 1755 * select() etc timeout values. These are in nanoseconds. 1756 */ 1757 unsigned long timer_slack_ns; 1758 unsigned long default_timer_slack_ns; 1759 1760 #ifdef CONFIG_KASAN 1761 unsigned int kasan_depth; 1762 #endif 1763 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1764 /* Index of current stored address in ret_stack */ 1765 int curr_ret_stack; 1766 /* Stack of return addresses for return function tracing */ 1767 struct ftrace_ret_stack *ret_stack; 1768 /* time stamp for last schedule */ 1769 unsigned long long ftrace_timestamp; 1770 /* 1771 * Number of functions that haven't been traced 1772 * because of depth overrun. 1773 */ 1774 atomic_t trace_overrun; 1775 /* Pause for the tracing */ 1776 atomic_t tracing_graph_pause; 1777 #endif 1778 #ifdef CONFIG_TRACING 1779 /* state flags for use by tracers */ 1780 unsigned long trace; 1781 /* bitmask and counter of trace recursion */ 1782 unsigned long trace_recursion; 1783 #endif /* CONFIG_TRACING */ 1784 #ifdef CONFIG_MEMCG 1785 struct memcg_oom_info { 1786 struct mem_cgroup *memcg; 1787 gfp_t gfp_mask; 1788 int order; 1789 unsigned int may_oom:1; 1790 } memcg_oom; 1791 #endif 1792 #ifdef CONFIG_UPROBES 1793 struct uprobe_task *utask; 1794 #endif 1795 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1796 unsigned int sequential_io; 1797 unsigned int sequential_io_avg; 1798 #endif 1799 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1800 unsigned long task_state_change; 1801 #endif 1802 int pagefault_disabled; 1803 /* CPU-specific state of this task */ 1804 struct thread_struct thread; 1805 /* 1806 * WARNING: on x86, 'thread_struct' contains a variable-sized 1807 * structure. It *MUST* be at the end of 'task_struct'. 1808 * 1809 * Do not put anything below here! 1810 */ 1811 }; 1812 1813 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1814 extern int arch_task_struct_size __read_mostly; 1815 #else 1816 # define arch_task_struct_size (sizeof(struct task_struct)) 1817 #endif 1818 1819 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1820 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1821 1822 #define TNF_MIGRATED 0x01 1823 #define TNF_NO_GROUP 0x02 1824 #define TNF_SHARED 0x04 1825 #define TNF_FAULT_LOCAL 0x08 1826 #define TNF_MIGRATE_FAIL 0x10 1827 1828 #ifdef CONFIG_NUMA_BALANCING 1829 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1830 extern pid_t task_numa_group_id(struct task_struct *p); 1831 extern void set_numabalancing_state(bool enabled); 1832 extern void task_numa_free(struct task_struct *p); 1833 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1834 int src_nid, int dst_cpu); 1835 #else 1836 static inline void task_numa_fault(int last_node, int node, int pages, 1837 int flags) 1838 { 1839 } 1840 static inline pid_t task_numa_group_id(struct task_struct *p) 1841 { 1842 return 0; 1843 } 1844 static inline void set_numabalancing_state(bool enabled) 1845 { 1846 } 1847 static inline void task_numa_free(struct task_struct *p) 1848 { 1849 } 1850 static inline bool should_numa_migrate_memory(struct task_struct *p, 1851 struct page *page, int src_nid, int dst_cpu) 1852 { 1853 return true; 1854 } 1855 #endif 1856 1857 static inline struct pid *task_pid(struct task_struct *task) 1858 { 1859 return task->pids[PIDTYPE_PID].pid; 1860 } 1861 1862 static inline struct pid *task_tgid(struct task_struct *task) 1863 { 1864 return task->group_leader->pids[PIDTYPE_PID].pid; 1865 } 1866 1867 /* 1868 * Without tasklist or rcu lock it is not safe to dereference 1869 * the result of task_pgrp/task_session even if task == current, 1870 * we can race with another thread doing sys_setsid/sys_setpgid. 1871 */ 1872 static inline struct pid *task_pgrp(struct task_struct *task) 1873 { 1874 return task->group_leader->pids[PIDTYPE_PGID].pid; 1875 } 1876 1877 static inline struct pid *task_session(struct task_struct *task) 1878 { 1879 return task->group_leader->pids[PIDTYPE_SID].pid; 1880 } 1881 1882 struct pid_namespace; 1883 1884 /* 1885 * the helpers to get the task's different pids as they are seen 1886 * from various namespaces 1887 * 1888 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1889 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1890 * current. 1891 * task_xid_nr_ns() : id seen from the ns specified; 1892 * 1893 * set_task_vxid() : assigns a virtual id to a task; 1894 * 1895 * see also pid_nr() etc in include/linux/pid.h 1896 */ 1897 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1898 struct pid_namespace *ns); 1899 1900 static inline pid_t task_pid_nr(struct task_struct *tsk) 1901 { 1902 return tsk->pid; 1903 } 1904 1905 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1906 struct pid_namespace *ns) 1907 { 1908 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1909 } 1910 1911 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1912 { 1913 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1914 } 1915 1916 1917 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1918 { 1919 return tsk->tgid; 1920 } 1921 1922 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1923 1924 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1925 { 1926 return pid_vnr(task_tgid(tsk)); 1927 } 1928 1929 1930 static inline int pid_alive(const struct task_struct *p); 1931 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1932 { 1933 pid_t pid = 0; 1934 1935 rcu_read_lock(); 1936 if (pid_alive(tsk)) 1937 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1938 rcu_read_unlock(); 1939 1940 return pid; 1941 } 1942 1943 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1944 { 1945 return task_ppid_nr_ns(tsk, &init_pid_ns); 1946 } 1947 1948 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1949 struct pid_namespace *ns) 1950 { 1951 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1952 } 1953 1954 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1955 { 1956 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1957 } 1958 1959 1960 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1961 struct pid_namespace *ns) 1962 { 1963 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1964 } 1965 1966 static inline pid_t task_session_vnr(struct task_struct *tsk) 1967 { 1968 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1969 } 1970 1971 /* obsolete, do not use */ 1972 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1973 { 1974 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1975 } 1976 1977 /** 1978 * pid_alive - check that a task structure is not stale 1979 * @p: Task structure to be checked. 1980 * 1981 * Test if a process is not yet dead (at most zombie state) 1982 * If pid_alive fails, then pointers within the task structure 1983 * can be stale and must not be dereferenced. 1984 * 1985 * Return: 1 if the process is alive. 0 otherwise. 1986 */ 1987 static inline int pid_alive(const struct task_struct *p) 1988 { 1989 return p->pids[PIDTYPE_PID].pid != NULL; 1990 } 1991 1992 /** 1993 * is_global_init - check if a task structure is init 1994 * @tsk: Task structure to be checked. 1995 * 1996 * Check if a task structure is the first user space task the kernel created. 1997 * 1998 * Return: 1 if the task structure is init. 0 otherwise. 1999 */ 2000 static inline int is_global_init(struct task_struct *tsk) 2001 { 2002 return tsk->pid == 1; 2003 } 2004 2005 extern struct pid *cad_pid; 2006 2007 extern void free_task(struct task_struct *tsk); 2008 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2009 2010 extern void __put_task_struct(struct task_struct *t); 2011 2012 static inline void put_task_struct(struct task_struct *t) 2013 { 2014 if (atomic_dec_and_test(&t->usage)) 2015 __put_task_struct(t); 2016 } 2017 2018 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2019 extern void task_cputime(struct task_struct *t, 2020 cputime_t *utime, cputime_t *stime); 2021 extern void task_cputime_scaled(struct task_struct *t, 2022 cputime_t *utimescaled, cputime_t *stimescaled); 2023 extern cputime_t task_gtime(struct task_struct *t); 2024 #else 2025 static inline void task_cputime(struct task_struct *t, 2026 cputime_t *utime, cputime_t *stime) 2027 { 2028 if (utime) 2029 *utime = t->utime; 2030 if (stime) 2031 *stime = t->stime; 2032 } 2033 2034 static inline void task_cputime_scaled(struct task_struct *t, 2035 cputime_t *utimescaled, 2036 cputime_t *stimescaled) 2037 { 2038 if (utimescaled) 2039 *utimescaled = t->utimescaled; 2040 if (stimescaled) 2041 *stimescaled = t->stimescaled; 2042 } 2043 2044 static inline cputime_t task_gtime(struct task_struct *t) 2045 { 2046 return t->gtime; 2047 } 2048 #endif 2049 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2050 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2051 2052 /* 2053 * Per process flags 2054 */ 2055 #define PF_EXITING 0x00000004 /* getting shut down */ 2056 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2057 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2058 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2059 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2060 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2061 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2062 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2063 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2064 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2065 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2066 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2067 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2068 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2069 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2070 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2071 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2072 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2073 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2074 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2075 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2076 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2077 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2078 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2079 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2080 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2081 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2082 2083 /* 2084 * Only the _current_ task can read/write to tsk->flags, but other 2085 * tasks can access tsk->flags in readonly mode for example 2086 * with tsk_used_math (like during threaded core dumping). 2087 * There is however an exception to this rule during ptrace 2088 * or during fork: the ptracer task is allowed to write to the 2089 * child->flags of its traced child (same goes for fork, the parent 2090 * can write to the child->flags), because we're guaranteed the 2091 * child is not running and in turn not changing child->flags 2092 * at the same time the parent does it. 2093 */ 2094 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2095 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2096 #define clear_used_math() clear_stopped_child_used_math(current) 2097 #define set_used_math() set_stopped_child_used_math(current) 2098 #define conditional_stopped_child_used_math(condition, child) \ 2099 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2100 #define conditional_used_math(condition) \ 2101 conditional_stopped_child_used_math(condition, current) 2102 #define copy_to_stopped_child_used_math(child) \ 2103 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2104 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2105 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2106 #define used_math() tsk_used_math(current) 2107 2108 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2109 * __GFP_FS is also cleared as it implies __GFP_IO. 2110 */ 2111 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2112 { 2113 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2114 flags &= ~(__GFP_IO | __GFP_FS); 2115 return flags; 2116 } 2117 2118 static inline unsigned int memalloc_noio_save(void) 2119 { 2120 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2121 current->flags |= PF_MEMALLOC_NOIO; 2122 return flags; 2123 } 2124 2125 static inline void memalloc_noio_restore(unsigned int flags) 2126 { 2127 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2128 } 2129 2130 /* Per-process atomic flags. */ 2131 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2132 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2133 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2134 2135 2136 #define TASK_PFA_TEST(name, func) \ 2137 static inline bool task_##func(struct task_struct *p) \ 2138 { return test_bit(PFA_##name, &p->atomic_flags); } 2139 #define TASK_PFA_SET(name, func) \ 2140 static inline void task_set_##func(struct task_struct *p) \ 2141 { set_bit(PFA_##name, &p->atomic_flags); } 2142 #define TASK_PFA_CLEAR(name, func) \ 2143 static inline void task_clear_##func(struct task_struct *p) \ 2144 { clear_bit(PFA_##name, &p->atomic_flags); } 2145 2146 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2147 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2148 2149 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2150 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2151 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2152 2153 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2154 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2155 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2156 2157 /* 2158 * task->jobctl flags 2159 */ 2160 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2161 2162 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2163 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2164 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2165 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2166 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2167 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2168 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2169 2170 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2171 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2172 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2173 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2174 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2175 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2176 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2177 2178 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2179 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2180 2181 extern bool task_set_jobctl_pending(struct task_struct *task, 2182 unsigned long mask); 2183 extern void task_clear_jobctl_trapping(struct task_struct *task); 2184 extern void task_clear_jobctl_pending(struct task_struct *task, 2185 unsigned long mask); 2186 2187 static inline void rcu_copy_process(struct task_struct *p) 2188 { 2189 #ifdef CONFIG_PREEMPT_RCU 2190 p->rcu_read_lock_nesting = 0; 2191 p->rcu_read_unlock_special.s = 0; 2192 p->rcu_blocked_node = NULL; 2193 INIT_LIST_HEAD(&p->rcu_node_entry); 2194 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2195 #ifdef CONFIG_TASKS_RCU 2196 p->rcu_tasks_holdout = false; 2197 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2198 p->rcu_tasks_idle_cpu = -1; 2199 #endif /* #ifdef CONFIG_TASKS_RCU */ 2200 } 2201 2202 static inline void tsk_restore_flags(struct task_struct *task, 2203 unsigned long orig_flags, unsigned long flags) 2204 { 2205 task->flags &= ~flags; 2206 task->flags |= orig_flags & flags; 2207 } 2208 2209 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2210 const struct cpumask *trial); 2211 extern int task_can_attach(struct task_struct *p, 2212 const struct cpumask *cs_cpus_allowed); 2213 #ifdef CONFIG_SMP 2214 extern void do_set_cpus_allowed(struct task_struct *p, 2215 const struct cpumask *new_mask); 2216 2217 extern int set_cpus_allowed_ptr(struct task_struct *p, 2218 const struct cpumask *new_mask); 2219 #else 2220 static inline void do_set_cpus_allowed(struct task_struct *p, 2221 const struct cpumask *new_mask) 2222 { 2223 } 2224 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2225 const struct cpumask *new_mask) 2226 { 2227 if (!cpumask_test_cpu(0, new_mask)) 2228 return -EINVAL; 2229 return 0; 2230 } 2231 #endif 2232 2233 #ifdef CONFIG_NO_HZ_COMMON 2234 void calc_load_enter_idle(void); 2235 void calc_load_exit_idle(void); 2236 #else 2237 static inline void calc_load_enter_idle(void) { } 2238 static inline void calc_load_exit_idle(void) { } 2239 #endif /* CONFIG_NO_HZ_COMMON */ 2240 2241 /* 2242 * Do not use outside of architecture code which knows its limitations. 2243 * 2244 * sched_clock() has no promise of monotonicity or bounded drift between 2245 * CPUs, use (which you should not) requires disabling IRQs. 2246 * 2247 * Please use one of the three interfaces below. 2248 */ 2249 extern unsigned long long notrace sched_clock(void); 2250 /* 2251 * See the comment in kernel/sched/clock.c 2252 */ 2253 extern u64 cpu_clock(int cpu); 2254 extern u64 local_clock(void); 2255 extern u64 running_clock(void); 2256 extern u64 sched_clock_cpu(int cpu); 2257 2258 2259 extern void sched_clock_init(void); 2260 2261 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2262 static inline void sched_clock_tick(void) 2263 { 2264 } 2265 2266 static inline void sched_clock_idle_sleep_event(void) 2267 { 2268 } 2269 2270 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2271 { 2272 } 2273 #else 2274 /* 2275 * Architectures can set this to 1 if they have specified 2276 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2277 * but then during bootup it turns out that sched_clock() 2278 * is reliable after all: 2279 */ 2280 extern int sched_clock_stable(void); 2281 extern void set_sched_clock_stable(void); 2282 extern void clear_sched_clock_stable(void); 2283 2284 extern void sched_clock_tick(void); 2285 extern void sched_clock_idle_sleep_event(void); 2286 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2287 #endif 2288 2289 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2290 /* 2291 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2292 * The reason for this explicit opt-in is not to have perf penalty with 2293 * slow sched_clocks. 2294 */ 2295 extern void enable_sched_clock_irqtime(void); 2296 extern void disable_sched_clock_irqtime(void); 2297 #else 2298 static inline void enable_sched_clock_irqtime(void) {} 2299 static inline void disable_sched_clock_irqtime(void) {} 2300 #endif 2301 2302 extern unsigned long long 2303 task_sched_runtime(struct task_struct *task); 2304 2305 /* sched_exec is called by processes performing an exec */ 2306 #ifdef CONFIG_SMP 2307 extern void sched_exec(void); 2308 #else 2309 #define sched_exec() {} 2310 #endif 2311 2312 extern void sched_clock_idle_sleep_event(void); 2313 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2314 2315 #ifdef CONFIG_HOTPLUG_CPU 2316 extern void idle_task_exit(void); 2317 #else 2318 static inline void idle_task_exit(void) {} 2319 #endif 2320 2321 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2322 extern void wake_up_nohz_cpu(int cpu); 2323 #else 2324 static inline void wake_up_nohz_cpu(int cpu) { } 2325 #endif 2326 2327 #ifdef CONFIG_NO_HZ_FULL 2328 extern bool sched_can_stop_tick(void); 2329 extern u64 scheduler_tick_max_deferment(void); 2330 #else 2331 static inline bool sched_can_stop_tick(void) { return false; } 2332 #endif 2333 2334 #ifdef CONFIG_SCHED_AUTOGROUP 2335 extern void sched_autogroup_create_attach(struct task_struct *p); 2336 extern void sched_autogroup_detach(struct task_struct *p); 2337 extern void sched_autogroup_fork(struct signal_struct *sig); 2338 extern void sched_autogroup_exit(struct signal_struct *sig); 2339 #ifdef CONFIG_PROC_FS 2340 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2341 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2342 #endif 2343 #else 2344 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2345 static inline void sched_autogroup_detach(struct task_struct *p) { } 2346 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2347 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2348 #endif 2349 2350 extern int yield_to(struct task_struct *p, bool preempt); 2351 extern void set_user_nice(struct task_struct *p, long nice); 2352 extern int task_prio(const struct task_struct *p); 2353 /** 2354 * task_nice - return the nice value of a given task. 2355 * @p: the task in question. 2356 * 2357 * Return: The nice value [ -20 ... 0 ... 19 ]. 2358 */ 2359 static inline int task_nice(const struct task_struct *p) 2360 { 2361 return PRIO_TO_NICE((p)->static_prio); 2362 } 2363 extern int can_nice(const struct task_struct *p, const int nice); 2364 extern int task_curr(const struct task_struct *p); 2365 extern int idle_cpu(int cpu); 2366 extern int sched_setscheduler(struct task_struct *, int, 2367 const struct sched_param *); 2368 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2369 const struct sched_param *); 2370 extern int sched_setattr(struct task_struct *, 2371 const struct sched_attr *); 2372 extern struct task_struct *idle_task(int cpu); 2373 /** 2374 * is_idle_task - is the specified task an idle task? 2375 * @p: the task in question. 2376 * 2377 * Return: 1 if @p is an idle task. 0 otherwise. 2378 */ 2379 static inline bool is_idle_task(const struct task_struct *p) 2380 { 2381 return p->pid == 0; 2382 } 2383 extern struct task_struct *curr_task(int cpu); 2384 extern void set_curr_task(int cpu, struct task_struct *p); 2385 2386 void yield(void); 2387 2388 union thread_union { 2389 struct thread_info thread_info; 2390 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2391 }; 2392 2393 #ifndef __HAVE_ARCH_KSTACK_END 2394 static inline int kstack_end(void *addr) 2395 { 2396 /* Reliable end of stack detection: 2397 * Some APM bios versions misalign the stack 2398 */ 2399 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2400 } 2401 #endif 2402 2403 extern union thread_union init_thread_union; 2404 extern struct task_struct init_task; 2405 2406 extern struct mm_struct init_mm; 2407 2408 extern struct pid_namespace init_pid_ns; 2409 2410 /* 2411 * find a task by one of its numerical ids 2412 * 2413 * find_task_by_pid_ns(): 2414 * finds a task by its pid in the specified namespace 2415 * find_task_by_vpid(): 2416 * finds a task by its virtual pid 2417 * 2418 * see also find_vpid() etc in include/linux/pid.h 2419 */ 2420 2421 extern struct task_struct *find_task_by_vpid(pid_t nr); 2422 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2423 struct pid_namespace *ns); 2424 2425 /* per-UID process charging. */ 2426 extern struct user_struct * alloc_uid(kuid_t); 2427 static inline struct user_struct *get_uid(struct user_struct *u) 2428 { 2429 atomic_inc(&u->__count); 2430 return u; 2431 } 2432 extern void free_uid(struct user_struct *); 2433 2434 #include <asm/current.h> 2435 2436 extern void xtime_update(unsigned long ticks); 2437 2438 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2439 extern int wake_up_process(struct task_struct *tsk); 2440 extern void wake_up_new_task(struct task_struct *tsk); 2441 #ifdef CONFIG_SMP 2442 extern void kick_process(struct task_struct *tsk); 2443 #else 2444 static inline void kick_process(struct task_struct *tsk) { } 2445 #endif 2446 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2447 extern void sched_dead(struct task_struct *p); 2448 2449 extern void proc_caches_init(void); 2450 extern void flush_signals(struct task_struct *); 2451 extern void ignore_signals(struct task_struct *); 2452 extern void flush_signal_handlers(struct task_struct *, int force_default); 2453 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2454 2455 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2456 { 2457 unsigned long flags; 2458 int ret; 2459 2460 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2461 ret = dequeue_signal(tsk, mask, info); 2462 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2463 2464 return ret; 2465 } 2466 2467 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2468 sigset_t *mask); 2469 extern void unblock_all_signals(void); 2470 extern void release_task(struct task_struct * p); 2471 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2472 extern int force_sigsegv(int, struct task_struct *); 2473 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2474 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2475 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2476 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2477 const struct cred *, u32); 2478 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2479 extern int kill_pid(struct pid *pid, int sig, int priv); 2480 extern int kill_proc_info(int, struct siginfo *, pid_t); 2481 extern __must_check bool do_notify_parent(struct task_struct *, int); 2482 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2483 extern void force_sig(int, struct task_struct *); 2484 extern int send_sig(int, struct task_struct *, int); 2485 extern int zap_other_threads(struct task_struct *p); 2486 extern struct sigqueue *sigqueue_alloc(void); 2487 extern void sigqueue_free(struct sigqueue *); 2488 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2489 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2490 2491 static inline void restore_saved_sigmask(void) 2492 { 2493 if (test_and_clear_restore_sigmask()) 2494 __set_current_blocked(¤t->saved_sigmask); 2495 } 2496 2497 static inline sigset_t *sigmask_to_save(void) 2498 { 2499 sigset_t *res = ¤t->blocked; 2500 if (unlikely(test_restore_sigmask())) 2501 res = ¤t->saved_sigmask; 2502 return res; 2503 } 2504 2505 static inline int kill_cad_pid(int sig, int priv) 2506 { 2507 return kill_pid(cad_pid, sig, priv); 2508 } 2509 2510 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2511 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2512 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2513 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2514 2515 /* 2516 * True if we are on the alternate signal stack. 2517 */ 2518 static inline int on_sig_stack(unsigned long sp) 2519 { 2520 #ifdef CONFIG_STACK_GROWSUP 2521 return sp >= current->sas_ss_sp && 2522 sp - current->sas_ss_sp < current->sas_ss_size; 2523 #else 2524 return sp > current->sas_ss_sp && 2525 sp - current->sas_ss_sp <= current->sas_ss_size; 2526 #endif 2527 } 2528 2529 static inline int sas_ss_flags(unsigned long sp) 2530 { 2531 if (!current->sas_ss_size) 2532 return SS_DISABLE; 2533 2534 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2535 } 2536 2537 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2538 { 2539 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2540 #ifdef CONFIG_STACK_GROWSUP 2541 return current->sas_ss_sp; 2542 #else 2543 return current->sas_ss_sp + current->sas_ss_size; 2544 #endif 2545 return sp; 2546 } 2547 2548 /* 2549 * Routines for handling mm_structs 2550 */ 2551 extern struct mm_struct * mm_alloc(void); 2552 2553 /* mmdrop drops the mm and the page tables */ 2554 extern void __mmdrop(struct mm_struct *); 2555 static inline void mmdrop(struct mm_struct * mm) 2556 { 2557 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2558 __mmdrop(mm); 2559 } 2560 2561 /* mmput gets rid of the mappings and all user-space */ 2562 extern void mmput(struct mm_struct *); 2563 /* Grab a reference to a task's mm, if it is not already going away */ 2564 extern struct mm_struct *get_task_mm(struct task_struct *task); 2565 /* 2566 * Grab a reference to a task's mm, if it is not already going away 2567 * and ptrace_may_access with the mode parameter passed to it 2568 * succeeds. 2569 */ 2570 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2571 /* Remove the current tasks stale references to the old mm_struct */ 2572 extern void mm_release(struct task_struct *, struct mm_struct *); 2573 2574 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2575 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2576 struct task_struct *, unsigned long); 2577 #else 2578 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2579 struct task_struct *); 2580 2581 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2582 * via pt_regs, so ignore the tls argument passed via C. */ 2583 static inline int copy_thread_tls( 2584 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2585 struct task_struct *p, unsigned long tls) 2586 { 2587 return copy_thread(clone_flags, sp, arg, p); 2588 } 2589 #endif 2590 extern void flush_thread(void); 2591 extern void exit_thread(void); 2592 2593 extern void exit_files(struct task_struct *); 2594 extern void __cleanup_sighand(struct sighand_struct *); 2595 2596 extern void exit_itimers(struct signal_struct *); 2597 extern void flush_itimer_signals(void); 2598 2599 extern void do_group_exit(int); 2600 2601 extern int do_execve(struct filename *, 2602 const char __user * const __user *, 2603 const char __user * const __user *); 2604 extern int do_execveat(int, struct filename *, 2605 const char __user * const __user *, 2606 const char __user * const __user *, 2607 int); 2608 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2609 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2610 struct task_struct *fork_idle(int); 2611 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2612 2613 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2614 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2615 { 2616 __set_task_comm(tsk, from, false); 2617 } 2618 extern char *get_task_comm(char *to, struct task_struct *tsk); 2619 2620 #ifdef CONFIG_SMP 2621 void scheduler_ipi(void); 2622 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2623 #else 2624 static inline void scheduler_ipi(void) { } 2625 static inline unsigned long wait_task_inactive(struct task_struct *p, 2626 long match_state) 2627 { 2628 return 1; 2629 } 2630 #endif 2631 2632 #define tasklist_empty() \ 2633 list_empty(&init_task.tasks) 2634 2635 #define next_task(p) \ 2636 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2637 2638 #define for_each_process(p) \ 2639 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2640 2641 extern bool current_is_single_threaded(void); 2642 2643 /* 2644 * Careful: do_each_thread/while_each_thread is a double loop so 2645 * 'break' will not work as expected - use goto instead. 2646 */ 2647 #define do_each_thread(g, t) \ 2648 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2649 2650 #define while_each_thread(g, t) \ 2651 while ((t = next_thread(t)) != g) 2652 2653 #define __for_each_thread(signal, t) \ 2654 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2655 2656 #define for_each_thread(p, t) \ 2657 __for_each_thread((p)->signal, t) 2658 2659 /* Careful: this is a double loop, 'break' won't work as expected. */ 2660 #define for_each_process_thread(p, t) \ 2661 for_each_process(p) for_each_thread(p, t) 2662 2663 static inline int get_nr_threads(struct task_struct *tsk) 2664 { 2665 return tsk->signal->nr_threads; 2666 } 2667 2668 static inline bool thread_group_leader(struct task_struct *p) 2669 { 2670 return p->exit_signal >= 0; 2671 } 2672 2673 /* Do to the insanities of de_thread it is possible for a process 2674 * to have the pid of the thread group leader without actually being 2675 * the thread group leader. For iteration through the pids in proc 2676 * all we care about is that we have a task with the appropriate 2677 * pid, we don't actually care if we have the right task. 2678 */ 2679 static inline bool has_group_leader_pid(struct task_struct *p) 2680 { 2681 return task_pid(p) == p->signal->leader_pid; 2682 } 2683 2684 static inline 2685 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2686 { 2687 return p1->signal == p2->signal; 2688 } 2689 2690 static inline struct task_struct *next_thread(const struct task_struct *p) 2691 { 2692 return list_entry_rcu(p->thread_group.next, 2693 struct task_struct, thread_group); 2694 } 2695 2696 static inline int thread_group_empty(struct task_struct *p) 2697 { 2698 return list_empty(&p->thread_group); 2699 } 2700 2701 #define delay_group_leader(p) \ 2702 (thread_group_leader(p) && !thread_group_empty(p)) 2703 2704 /* 2705 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2706 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2707 * pins the final release of task.io_context. Also protects ->cpuset and 2708 * ->cgroup.subsys[]. And ->vfork_done. 2709 * 2710 * Nests both inside and outside of read_lock(&tasklist_lock). 2711 * It must not be nested with write_lock_irq(&tasklist_lock), 2712 * neither inside nor outside. 2713 */ 2714 static inline void task_lock(struct task_struct *p) 2715 { 2716 spin_lock(&p->alloc_lock); 2717 } 2718 2719 static inline void task_unlock(struct task_struct *p) 2720 { 2721 spin_unlock(&p->alloc_lock); 2722 } 2723 2724 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2725 unsigned long *flags); 2726 2727 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2728 unsigned long *flags) 2729 { 2730 struct sighand_struct *ret; 2731 2732 ret = __lock_task_sighand(tsk, flags); 2733 (void)__cond_lock(&tsk->sighand->siglock, ret); 2734 return ret; 2735 } 2736 2737 static inline void unlock_task_sighand(struct task_struct *tsk, 2738 unsigned long *flags) 2739 { 2740 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2741 } 2742 2743 /** 2744 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 2745 * @tsk: task causing the changes 2746 * 2747 * All operations which modify a threadgroup - a new thread joining the 2748 * group, death of a member thread (the assertion of PF_EXITING) and 2749 * exec(2) dethreading the process and replacing the leader - are wrapped 2750 * by threadgroup_change_{begin|end}(). This is to provide a place which 2751 * subsystems needing threadgroup stability can hook into for 2752 * synchronization. 2753 */ 2754 static inline void threadgroup_change_begin(struct task_struct *tsk) 2755 { 2756 might_sleep(); 2757 cgroup_threadgroup_change_begin(tsk); 2758 } 2759 2760 /** 2761 * threadgroup_change_end - mark the end of changes to a threadgroup 2762 * @tsk: task causing the changes 2763 * 2764 * See threadgroup_change_begin(). 2765 */ 2766 static inline void threadgroup_change_end(struct task_struct *tsk) 2767 { 2768 cgroup_threadgroup_change_end(tsk); 2769 } 2770 2771 #ifndef __HAVE_THREAD_FUNCTIONS 2772 2773 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2774 #define task_stack_page(task) ((task)->stack) 2775 2776 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2777 { 2778 *task_thread_info(p) = *task_thread_info(org); 2779 task_thread_info(p)->task = p; 2780 } 2781 2782 /* 2783 * Return the address of the last usable long on the stack. 2784 * 2785 * When the stack grows down, this is just above the thread 2786 * info struct. Going any lower will corrupt the threadinfo. 2787 * 2788 * When the stack grows up, this is the highest address. 2789 * Beyond that position, we corrupt data on the next page. 2790 */ 2791 static inline unsigned long *end_of_stack(struct task_struct *p) 2792 { 2793 #ifdef CONFIG_STACK_GROWSUP 2794 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2795 #else 2796 return (unsigned long *)(task_thread_info(p) + 1); 2797 #endif 2798 } 2799 2800 #endif 2801 #define task_stack_end_corrupted(task) \ 2802 (*(end_of_stack(task)) != STACK_END_MAGIC) 2803 2804 static inline int object_is_on_stack(void *obj) 2805 { 2806 void *stack = task_stack_page(current); 2807 2808 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2809 } 2810 2811 extern void thread_info_cache_init(void); 2812 2813 #ifdef CONFIG_DEBUG_STACK_USAGE 2814 static inline unsigned long stack_not_used(struct task_struct *p) 2815 { 2816 unsigned long *n = end_of_stack(p); 2817 2818 do { /* Skip over canary */ 2819 n++; 2820 } while (!*n); 2821 2822 return (unsigned long)n - (unsigned long)end_of_stack(p); 2823 } 2824 #endif 2825 extern void set_task_stack_end_magic(struct task_struct *tsk); 2826 2827 /* set thread flags in other task's structures 2828 * - see asm/thread_info.h for TIF_xxxx flags available 2829 */ 2830 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2831 { 2832 set_ti_thread_flag(task_thread_info(tsk), flag); 2833 } 2834 2835 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2836 { 2837 clear_ti_thread_flag(task_thread_info(tsk), flag); 2838 } 2839 2840 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2841 { 2842 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2843 } 2844 2845 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2846 { 2847 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2848 } 2849 2850 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2851 { 2852 return test_ti_thread_flag(task_thread_info(tsk), flag); 2853 } 2854 2855 static inline void set_tsk_need_resched(struct task_struct *tsk) 2856 { 2857 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2858 } 2859 2860 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2861 { 2862 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2863 } 2864 2865 static inline int test_tsk_need_resched(struct task_struct *tsk) 2866 { 2867 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2868 } 2869 2870 static inline int restart_syscall(void) 2871 { 2872 set_tsk_thread_flag(current, TIF_SIGPENDING); 2873 return -ERESTARTNOINTR; 2874 } 2875 2876 static inline int signal_pending(struct task_struct *p) 2877 { 2878 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2879 } 2880 2881 static inline int __fatal_signal_pending(struct task_struct *p) 2882 { 2883 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2884 } 2885 2886 static inline int fatal_signal_pending(struct task_struct *p) 2887 { 2888 return signal_pending(p) && __fatal_signal_pending(p); 2889 } 2890 2891 static inline int signal_pending_state(long state, struct task_struct *p) 2892 { 2893 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2894 return 0; 2895 if (!signal_pending(p)) 2896 return 0; 2897 2898 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2899 } 2900 2901 /* 2902 * cond_resched() and cond_resched_lock(): latency reduction via 2903 * explicit rescheduling in places that are safe. The return 2904 * value indicates whether a reschedule was done in fact. 2905 * cond_resched_lock() will drop the spinlock before scheduling, 2906 * cond_resched_softirq() will enable bhs before scheduling. 2907 */ 2908 extern int _cond_resched(void); 2909 2910 #define cond_resched() ({ \ 2911 ___might_sleep(__FILE__, __LINE__, 0); \ 2912 _cond_resched(); \ 2913 }) 2914 2915 extern int __cond_resched_lock(spinlock_t *lock); 2916 2917 #define cond_resched_lock(lock) ({ \ 2918 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2919 __cond_resched_lock(lock); \ 2920 }) 2921 2922 extern int __cond_resched_softirq(void); 2923 2924 #define cond_resched_softirq() ({ \ 2925 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2926 __cond_resched_softirq(); \ 2927 }) 2928 2929 static inline void cond_resched_rcu(void) 2930 { 2931 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2932 rcu_read_unlock(); 2933 cond_resched(); 2934 rcu_read_lock(); 2935 #endif 2936 } 2937 2938 /* 2939 * Does a critical section need to be broken due to another 2940 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2941 * but a general need for low latency) 2942 */ 2943 static inline int spin_needbreak(spinlock_t *lock) 2944 { 2945 #ifdef CONFIG_PREEMPT 2946 return spin_is_contended(lock); 2947 #else 2948 return 0; 2949 #endif 2950 } 2951 2952 /* 2953 * Idle thread specific functions to determine the need_resched 2954 * polling state. 2955 */ 2956 #ifdef TIF_POLLING_NRFLAG 2957 static inline int tsk_is_polling(struct task_struct *p) 2958 { 2959 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2960 } 2961 2962 static inline void __current_set_polling(void) 2963 { 2964 set_thread_flag(TIF_POLLING_NRFLAG); 2965 } 2966 2967 static inline bool __must_check current_set_polling_and_test(void) 2968 { 2969 __current_set_polling(); 2970 2971 /* 2972 * Polling state must be visible before we test NEED_RESCHED, 2973 * paired by resched_curr() 2974 */ 2975 smp_mb__after_atomic(); 2976 2977 return unlikely(tif_need_resched()); 2978 } 2979 2980 static inline void __current_clr_polling(void) 2981 { 2982 clear_thread_flag(TIF_POLLING_NRFLAG); 2983 } 2984 2985 static inline bool __must_check current_clr_polling_and_test(void) 2986 { 2987 __current_clr_polling(); 2988 2989 /* 2990 * Polling state must be visible before we test NEED_RESCHED, 2991 * paired by resched_curr() 2992 */ 2993 smp_mb__after_atomic(); 2994 2995 return unlikely(tif_need_resched()); 2996 } 2997 2998 #else 2999 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3000 static inline void __current_set_polling(void) { } 3001 static inline void __current_clr_polling(void) { } 3002 3003 static inline bool __must_check current_set_polling_and_test(void) 3004 { 3005 return unlikely(tif_need_resched()); 3006 } 3007 static inline bool __must_check current_clr_polling_and_test(void) 3008 { 3009 return unlikely(tif_need_resched()); 3010 } 3011 #endif 3012 3013 static inline void current_clr_polling(void) 3014 { 3015 __current_clr_polling(); 3016 3017 /* 3018 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3019 * Once the bit is cleared, we'll get IPIs with every new 3020 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3021 * fold. 3022 */ 3023 smp_mb(); /* paired with resched_curr() */ 3024 3025 preempt_fold_need_resched(); 3026 } 3027 3028 static __always_inline bool need_resched(void) 3029 { 3030 return unlikely(tif_need_resched()); 3031 } 3032 3033 /* 3034 * Thread group CPU time accounting. 3035 */ 3036 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3037 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3038 3039 /* 3040 * Reevaluate whether the task has signals pending delivery. 3041 * Wake the task if so. 3042 * This is required every time the blocked sigset_t changes. 3043 * callers must hold sighand->siglock. 3044 */ 3045 extern void recalc_sigpending_and_wake(struct task_struct *t); 3046 extern void recalc_sigpending(void); 3047 3048 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3049 3050 static inline void signal_wake_up(struct task_struct *t, bool resume) 3051 { 3052 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3053 } 3054 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3055 { 3056 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3057 } 3058 3059 /* 3060 * Wrappers for p->thread_info->cpu access. No-op on UP. 3061 */ 3062 #ifdef CONFIG_SMP 3063 3064 static inline unsigned int task_cpu(const struct task_struct *p) 3065 { 3066 return task_thread_info(p)->cpu; 3067 } 3068 3069 static inline int task_node(const struct task_struct *p) 3070 { 3071 return cpu_to_node(task_cpu(p)); 3072 } 3073 3074 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3075 3076 #else 3077 3078 static inline unsigned int task_cpu(const struct task_struct *p) 3079 { 3080 return 0; 3081 } 3082 3083 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3084 { 3085 } 3086 3087 #endif /* CONFIG_SMP */ 3088 3089 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3090 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3091 3092 #ifdef CONFIG_CGROUP_SCHED 3093 extern struct task_group root_task_group; 3094 #endif /* CONFIG_CGROUP_SCHED */ 3095 3096 extern int task_can_switch_user(struct user_struct *up, 3097 struct task_struct *tsk); 3098 3099 #ifdef CONFIG_TASK_XACCT 3100 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3101 { 3102 tsk->ioac.rchar += amt; 3103 } 3104 3105 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3106 { 3107 tsk->ioac.wchar += amt; 3108 } 3109 3110 static inline void inc_syscr(struct task_struct *tsk) 3111 { 3112 tsk->ioac.syscr++; 3113 } 3114 3115 static inline void inc_syscw(struct task_struct *tsk) 3116 { 3117 tsk->ioac.syscw++; 3118 } 3119 #else 3120 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3121 { 3122 } 3123 3124 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3125 { 3126 } 3127 3128 static inline void inc_syscr(struct task_struct *tsk) 3129 { 3130 } 3131 3132 static inline void inc_syscw(struct task_struct *tsk) 3133 { 3134 } 3135 #endif 3136 3137 #ifndef TASK_SIZE_OF 3138 #define TASK_SIZE_OF(tsk) TASK_SIZE 3139 #endif 3140 3141 #ifdef CONFIG_MEMCG 3142 extern void mm_update_next_owner(struct mm_struct *mm); 3143 #else 3144 static inline void mm_update_next_owner(struct mm_struct *mm) 3145 { 3146 } 3147 #endif /* CONFIG_MEMCG */ 3148 3149 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3150 unsigned int limit) 3151 { 3152 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3153 } 3154 3155 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3156 unsigned int limit) 3157 { 3158 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3159 } 3160 3161 static inline unsigned long rlimit(unsigned int limit) 3162 { 3163 return task_rlimit(current, limit); 3164 } 3165 3166 static inline unsigned long rlimit_max(unsigned int limit) 3167 { 3168 return task_rlimit_max(current, limit); 3169 } 3170 3171 #endif 3172