1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <asm/param.h> /* for HZ */ 5 6 #include <linux/config.h> 7 #include <linux/capability.h> 8 #include <linux/threads.h> 9 #include <linux/kernel.h> 10 #include <linux/types.h> 11 #include <linux/timex.h> 12 #include <linux/jiffies.h> 13 #include <linux/rbtree.h> 14 #include <linux/thread_info.h> 15 #include <linux/cpumask.h> 16 #include <linux/errno.h> 17 #include <linux/nodemask.h> 18 19 #include <asm/system.h> 20 #include <asm/semaphore.h> 21 #include <asm/page.h> 22 #include <asm/ptrace.h> 23 #include <asm/mmu.h> 24 #include <asm/cputime.h> 25 26 #include <linux/smp.h> 27 #include <linux/sem.h> 28 #include <linux/signal.h> 29 #include <linux/securebits.h> 30 #include <linux/fs_struct.h> 31 #include <linux/compiler.h> 32 #include <linux/completion.h> 33 #include <linux/pid.h> 34 #include <linux/percpu.h> 35 #include <linux/topology.h> 36 #include <linux/seccomp.h> 37 38 struct exec_domain; 39 40 /* 41 * cloning flags: 42 */ 43 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 44 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 45 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 46 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 47 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 48 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 49 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 50 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 51 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 52 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 53 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 54 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 55 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 56 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 57 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 58 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 59 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 60 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 61 62 /* 63 * List of flags we want to share for kernel threads, 64 * if only because they are not used by them anyway. 65 */ 66 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 67 68 /* 69 * These are the constant used to fake the fixed-point load-average 70 * counting. Some notes: 71 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 72 * a load-average precision of 10 bits integer + 11 bits fractional 73 * - if you want to count load-averages more often, you need more 74 * precision, or rounding will get you. With 2-second counting freq, 75 * the EXP_n values would be 1981, 2034 and 2043 if still using only 76 * 11 bit fractions. 77 */ 78 extern unsigned long avenrun[]; /* Load averages */ 79 80 #define FSHIFT 11 /* nr of bits of precision */ 81 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 82 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */ 83 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 84 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 85 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 86 87 #define CALC_LOAD(load,exp,n) \ 88 load *= exp; \ 89 load += n*(FIXED_1-exp); \ 90 load >>= FSHIFT; 91 92 extern unsigned long total_forks; 93 extern int nr_threads; 94 extern int last_pid; 95 DECLARE_PER_CPU(unsigned long, process_counts); 96 extern int nr_processes(void); 97 extern unsigned long nr_running(void); 98 extern unsigned long nr_uninterruptible(void); 99 extern unsigned long nr_iowait(void); 100 101 #include <linux/time.h> 102 #include <linux/param.h> 103 #include <linux/resource.h> 104 #include <linux/timer.h> 105 106 #include <asm/processor.h> 107 108 #define TASK_RUNNING 0 109 #define TASK_INTERRUPTIBLE 1 110 #define TASK_UNINTERRUPTIBLE 2 111 #define TASK_STOPPED 4 112 #define TASK_TRACED 8 113 #define EXIT_ZOMBIE 16 114 #define EXIT_DEAD 32 115 116 #define __set_task_state(tsk, state_value) \ 117 do { (tsk)->state = (state_value); } while (0) 118 #define set_task_state(tsk, state_value) \ 119 set_mb((tsk)->state, (state_value)) 120 121 #define __set_current_state(state_value) \ 122 do { current->state = (state_value); } while (0) 123 #define set_current_state(state_value) \ 124 set_mb(current->state, (state_value)) 125 126 /* Task command name length */ 127 #define TASK_COMM_LEN 16 128 129 /* 130 * Scheduling policies 131 */ 132 #define SCHED_NORMAL 0 133 #define SCHED_FIFO 1 134 #define SCHED_RR 2 135 136 struct sched_param { 137 int sched_priority; 138 }; 139 140 #ifdef __KERNEL__ 141 142 #include <linux/spinlock.h> 143 144 /* 145 * This serializes "schedule()" and also protects 146 * the run-queue from deletions/modifications (but 147 * _adding_ to the beginning of the run-queue has 148 * a separate lock). 149 */ 150 extern rwlock_t tasklist_lock; 151 extern spinlock_t mmlist_lock; 152 153 typedef struct task_struct task_t; 154 155 extern void sched_init(void); 156 extern void sched_init_smp(void); 157 extern void init_idle(task_t *idle, int cpu); 158 159 extern cpumask_t nohz_cpu_mask; 160 161 extern void show_state(void); 162 extern void show_regs(struct pt_regs *); 163 164 /* 165 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 166 * task), SP is the stack pointer of the first frame that should be shown in the back 167 * trace (or NULL if the entire call-chain of the task should be shown). 168 */ 169 extern void show_stack(struct task_struct *task, unsigned long *sp); 170 171 void io_schedule(void); 172 long io_schedule_timeout(long timeout); 173 174 extern void cpu_init (void); 175 extern void trap_init(void); 176 extern void update_process_times(int user); 177 extern void scheduler_tick(void); 178 179 /* Attach to any functions which should be ignored in wchan output. */ 180 #define __sched __attribute__((__section__(".sched.text"))) 181 /* Is this address in the __sched functions? */ 182 extern int in_sched_functions(unsigned long addr); 183 184 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 185 extern signed long FASTCALL(schedule_timeout(signed long timeout)); 186 asmlinkage void schedule(void); 187 188 struct namespace; 189 190 /* Maximum number of active map areas.. This is a random (large) number */ 191 #define DEFAULT_MAX_MAP_COUNT 65536 192 193 extern int sysctl_max_map_count; 194 195 #include <linux/aio.h> 196 197 extern unsigned long 198 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 199 unsigned long, unsigned long); 200 extern unsigned long 201 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 202 unsigned long len, unsigned long pgoff, 203 unsigned long flags); 204 extern void arch_unmap_area(struct mm_struct *, unsigned long); 205 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 206 207 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 208 #define get_mm_counter(mm, member) ((mm)->_##member) 209 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 210 #define inc_mm_counter(mm, member) (mm)->_##member++ 211 #define dec_mm_counter(mm, member) (mm)->_##member-- 212 typedef unsigned long mm_counter_t; 213 214 struct mm_struct { 215 struct vm_area_struct * mmap; /* list of VMAs */ 216 struct rb_root mm_rb; 217 struct vm_area_struct * mmap_cache; /* last find_vma result */ 218 unsigned long (*get_unmapped_area) (struct file *filp, 219 unsigned long addr, unsigned long len, 220 unsigned long pgoff, unsigned long flags); 221 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 222 unsigned long mmap_base; /* base of mmap area */ 223 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 224 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 225 pgd_t * pgd; 226 atomic_t mm_users; /* How many users with user space? */ 227 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 228 int map_count; /* number of VMAs */ 229 struct rw_semaphore mmap_sem; 230 spinlock_t page_table_lock; /* Protects page tables and some counters */ 231 232 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 233 * together off init_mm.mmlist, and are protected 234 * by mmlist_lock 235 */ 236 237 unsigned long start_code, end_code, start_data, end_data; 238 unsigned long start_brk, brk, start_stack; 239 unsigned long arg_start, arg_end, env_start, env_end; 240 unsigned long total_vm, locked_vm, shared_vm; 241 unsigned long exec_vm, stack_vm, reserved_vm, def_flags, nr_ptes; 242 243 /* Special counters protected by the page_table_lock */ 244 mm_counter_t _rss; 245 mm_counter_t _anon_rss; 246 247 unsigned long saved_auxv[42]; /* for /proc/PID/auxv */ 248 249 unsigned dumpable:1; 250 cpumask_t cpu_vm_mask; 251 252 /* Architecture-specific MM context */ 253 mm_context_t context; 254 255 /* Token based thrashing protection. */ 256 unsigned long swap_token_time; 257 char recent_pagein; 258 259 /* coredumping support */ 260 int core_waiters; 261 struct completion *core_startup_done, core_done; 262 263 /* aio bits */ 264 rwlock_t ioctx_list_lock; 265 struct kioctx *ioctx_list; 266 267 struct kioctx default_kioctx; 268 269 unsigned long hiwater_rss; /* High-water RSS usage */ 270 unsigned long hiwater_vm; /* High-water virtual memory usage */ 271 }; 272 273 struct sighand_struct { 274 atomic_t count; 275 struct k_sigaction action[_NSIG]; 276 spinlock_t siglock; 277 }; 278 279 /* 280 * NOTE! "signal_struct" does not have it's own 281 * locking, because a shared signal_struct always 282 * implies a shared sighand_struct, so locking 283 * sighand_struct is always a proper superset of 284 * the locking of signal_struct. 285 */ 286 struct signal_struct { 287 atomic_t count; 288 atomic_t live; 289 290 wait_queue_head_t wait_chldexit; /* for wait4() */ 291 292 /* current thread group signal load-balancing target: */ 293 task_t *curr_target; 294 295 /* shared signal handling: */ 296 struct sigpending shared_pending; 297 298 /* thread group exit support */ 299 int group_exit_code; 300 /* overloaded: 301 * - notify group_exit_task when ->count is equal to notify_count 302 * - everyone except group_exit_task is stopped during signal delivery 303 * of fatal signals, group_exit_task processes the signal. 304 */ 305 struct task_struct *group_exit_task; 306 int notify_count; 307 308 /* thread group stop support, overloads group_exit_code too */ 309 int group_stop_count; 310 unsigned int flags; /* see SIGNAL_* flags below */ 311 312 /* POSIX.1b Interval Timers */ 313 struct list_head posix_timers; 314 315 /* ITIMER_REAL timer for the process */ 316 struct timer_list real_timer; 317 unsigned long it_real_value, it_real_incr; 318 319 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 320 cputime_t it_prof_expires, it_virt_expires; 321 cputime_t it_prof_incr, it_virt_incr; 322 323 /* job control IDs */ 324 pid_t pgrp; 325 pid_t tty_old_pgrp; 326 pid_t session; 327 /* boolean value for session group leader */ 328 int leader; 329 330 struct tty_struct *tty; /* NULL if no tty */ 331 332 /* 333 * Cumulative resource counters for dead threads in the group, 334 * and for reaped dead child processes forked by this group. 335 * Live threads maintain their own counters and add to these 336 * in __exit_signal, except for the group leader. 337 */ 338 cputime_t utime, stime, cutime, cstime; 339 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 340 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 341 342 /* 343 * Cumulative ns of scheduled CPU time for dead threads in the 344 * group, not including a zombie group leader. (This only differs 345 * from jiffies_to_ns(utime + stime) if sched_clock uses something 346 * other than jiffies.) 347 */ 348 unsigned long long sched_time; 349 350 /* 351 * We don't bother to synchronize most readers of this at all, 352 * because there is no reader checking a limit that actually needs 353 * to get both rlim_cur and rlim_max atomically, and either one 354 * alone is a single word that can safely be read normally. 355 * getrlimit/setrlimit use task_lock(current->group_leader) to 356 * protect this instead of the siglock, because they really 357 * have no need to disable irqs. 358 */ 359 struct rlimit rlim[RLIM_NLIMITS]; 360 361 struct list_head cpu_timers[3]; 362 363 /* keep the process-shared keyrings here so that they do the right 364 * thing in threads created with CLONE_THREAD */ 365 #ifdef CONFIG_KEYS 366 struct key *session_keyring; /* keyring inherited over fork */ 367 struct key *process_keyring; /* keyring private to this process */ 368 #endif 369 }; 370 371 /* 372 * Bits in flags field of signal_struct. 373 */ 374 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 375 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 376 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 377 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 378 379 380 /* 381 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 382 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL tasks are 383 * in the range MAX_RT_PRIO..MAX_PRIO-1. Priority values 384 * are inverted: lower p->prio value means higher priority. 385 * 386 * The MAX_USER_RT_PRIO value allows the actual maximum 387 * RT priority to be separate from the value exported to 388 * user-space. This allows kernel threads to set their 389 * priority to a value higher than any user task. Note: 390 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 391 */ 392 393 #define MAX_USER_RT_PRIO 100 394 #define MAX_RT_PRIO MAX_USER_RT_PRIO 395 396 #define MAX_PRIO (MAX_RT_PRIO + 40) 397 398 #define rt_task(p) (unlikely((p)->prio < MAX_RT_PRIO)) 399 400 /* 401 * Some day this will be a full-fledged user tracking system.. 402 */ 403 struct user_struct { 404 atomic_t __count; /* reference count */ 405 atomic_t processes; /* How many processes does this user have? */ 406 atomic_t files; /* How many open files does this user have? */ 407 atomic_t sigpending; /* How many pending signals does this user have? */ 408 /* protected by mq_lock */ 409 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 410 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 411 412 #ifdef CONFIG_KEYS 413 struct key *uid_keyring; /* UID specific keyring */ 414 struct key *session_keyring; /* UID's default session keyring */ 415 #endif 416 417 /* Hash table maintenance information */ 418 struct list_head uidhash_list; 419 uid_t uid; 420 }; 421 422 extern struct user_struct *find_user(uid_t); 423 424 extern struct user_struct root_user; 425 #define INIT_USER (&root_user) 426 427 typedef struct prio_array prio_array_t; 428 struct backing_dev_info; 429 struct reclaim_state; 430 431 #ifdef CONFIG_SCHEDSTATS 432 struct sched_info { 433 /* cumulative counters */ 434 unsigned long cpu_time, /* time spent on the cpu */ 435 run_delay, /* time spent waiting on a runqueue */ 436 pcnt; /* # of timeslices run on this cpu */ 437 438 /* timestamps */ 439 unsigned long last_arrival, /* when we last ran on a cpu */ 440 last_queued; /* when we were last queued to run */ 441 }; 442 443 extern struct file_operations proc_schedstat_operations; 444 #endif 445 446 enum idle_type 447 { 448 SCHED_IDLE, 449 NOT_IDLE, 450 NEWLY_IDLE, 451 MAX_IDLE_TYPES 452 }; 453 454 /* 455 * sched-domains (multiprocessor balancing) declarations: 456 */ 457 #ifdef CONFIG_SMP 458 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ 459 460 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 461 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 462 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 463 #define SD_WAKE_IDLE 8 /* Wake to idle CPU on task wakeup */ 464 #define SD_WAKE_AFFINE 16 /* Wake task to waking CPU */ 465 #define SD_WAKE_BALANCE 32 /* Perform balancing at task wakeup */ 466 #define SD_SHARE_CPUPOWER 64 /* Domain members share cpu power */ 467 468 struct sched_group { 469 struct sched_group *next; /* Must be a circular list */ 470 cpumask_t cpumask; 471 472 /* 473 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 474 * single CPU. This is read only (except for setup, hotplug CPU). 475 */ 476 unsigned long cpu_power; 477 }; 478 479 struct sched_domain { 480 /* These fields must be setup */ 481 struct sched_domain *parent; /* top domain must be null terminated */ 482 struct sched_group *groups; /* the balancing groups of the domain */ 483 cpumask_t span; /* span of all CPUs in this domain */ 484 unsigned long min_interval; /* Minimum balance interval ms */ 485 unsigned long max_interval; /* Maximum balance interval ms */ 486 unsigned int busy_factor; /* less balancing by factor if busy */ 487 unsigned int imbalance_pct; /* No balance until over watermark */ 488 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ 489 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 490 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */ 491 int flags; /* See SD_* */ 492 493 /* Runtime fields. */ 494 unsigned long last_balance; /* init to jiffies. units in jiffies */ 495 unsigned int balance_interval; /* initialise to 1. units in ms. */ 496 unsigned int nr_balance_failed; /* initialise to 0 */ 497 498 #ifdef CONFIG_SCHEDSTATS 499 /* load_balance() stats */ 500 unsigned long lb_cnt[MAX_IDLE_TYPES]; 501 unsigned long lb_failed[MAX_IDLE_TYPES]; 502 unsigned long lb_balanced[MAX_IDLE_TYPES]; 503 unsigned long lb_imbalance[MAX_IDLE_TYPES]; 504 unsigned long lb_gained[MAX_IDLE_TYPES]; 505 unsigned long lb_hot_gained[MAX_IDLE_TYPES]; 506 unsigned long lb_nobusyg[MAX_IDLE_TYPES]; 507 unsigned long lb_nobusyq[MAX_IDLE_TYPES]; 508 509 /* Active load balancing */ 510 unsigned long alb_cnt; 511 unsigned long alb_failed; 512 unsigned long alb_pushed; 513 514 /* sched_balance_exec() stats */ 515 unsigned long sbe_attempts; 516 unsigned long sbe_pushed; 517 518 /* try_to_wake_up() stats */ 519 unsigned long ttwu_wake_remote; 520 unsigned long ttwu_move_affine; 521 unsigned long ttwu_move_balance; 522 #endif 523 }; 524 525 #ifdef ARCH_HAS_SCHED_DOMAIN 526 /* Useful helpers that arch setup code may use. Defined in kernel/sched.c */ 527 extern cpumask_t cpu_isolated_map; 528 extern void init_sched_build_groups(struct sched_group groups[], 529 cpumask_t span, int (*group_fn)(int cpu)); 530 extern void cpu_attach_domain(struct sched_domain *sd, int cpu); 531 #endif /* ARCH_HAS_SCHED_DOMAIN */ 532 #endif /* CONFIG_SMP */ 533 534 535 struct io_context; /* See blkdev.h */ 536 void exit_io_context(void); 537 struct cpuset; 538 539 #define NGROUPS_SMALL 32 540 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 541 struct group_info { 542 int ngroups; 543 atomic_t usage; 544 gid_t small_block[NGROUPS_SMALL]; 545 int nblocks; 546 gid_t *blocks[0]; 547 }; 548 549 /* 550 * get_group_info() must be called with the owning task locked (via task_lock()) 551 * when task != current. The reason being that the vast majority of callers are 552 * looking at current->group_info, which can not be changed except by the 553 * current task. Changing current->group_info requires the task lock, too. 554 */ 555 #define get_group_info(group_info) do { \ 556 atomic_inc(&(group_info)->usage); \ 557 } while (0) 558 559 #define put_group_info(group_info) do { \ 560 if (atomic_dec_and_test(&(group_info)->usage)) \ 561 groups_free(group_info); \ 562 } while (0) 563 564 struct group_info *groups_alloc(int gidsetsize); 565 void groups_free(struct group_info *group_info); 566 int set_current_groups(struct group_info *group_info); 567 /* access the groups "array" with this macro */ 568 #define GROUP_AT(gi, i) \ 569 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 570 571 572 struct audit_context; /* See audit.c */ 573 struct mempolicy; 574 575 struct task_struct { 576 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 577 struct thread_info *thread_info; 578 atomic_t usage; 579 unsigned long flags; /* per process flags, defined below */ 580 unsigned long ptrace; 581 582 int lock_depth; /* BKL lock depth */ 583 584 int prio, static_prio; 585 struct list_head run_list; 586 prio_array_t *array; 587 588 unsigned long sleep_avg; 589 unsigned long long timestamp, last_ran; 590 unsigned long long sched_time; /* sched_clock time spent running */ 591 int activated; 592 593 unsigned long policy; 594 cpumask_t cpus_allowed; 595 unsigned int time_slice, first_time_slice; 596 597 #ifdef CONFIG_SCHEDSTATS 598 struct sched_info sched_info; 599 #endif 600 601 struct list_head tasks; 602 /* 603 * ptrace_list/ptrace_children forms the list of my children 604 * that were stolen by a ptracer. 605 */ 606 struct list_head ptrace_children; 607 struct list_head ptrace_list; 608 609 struct mm_struct *mm, *active_mm; 610 611 /* task state */ 612 struct linux_binfmt *binfmt; 613 long exit_state; 614 int exit_code, exit_signal; 615 int pdeath_signal; /* The signal sent when the parent dies */ 616 /* ??? */ 617 unsigned long personality; 618 unsigned did_exec:1; 619 pid_t pid; 620 pid_t tgid; 621 /* 622 * pointers to (original) parent process, youngest child, younger sibling, 623 * older sibling, respectively. (p->father can be replaced with 624 * p->parent->pid) 625 */ 626 struct task_struct *real_parent; /* real parent process (when being debugged) */ 627 struct task_struct *parent; /* parent process */ 628 /* 629 * children/sibling forms the list of my children plus the 630 * tasks I'm ptracing. 631 */ 632 struct list_head children; /* list of my children */ 633 struct list_head sibling; /* linkage in my parent's children list */ 634 struct task_struct *group_leader; /* threadgroup leader */ 635 636 /* PID/PID hash table linkage. */ 637 struct pid pids[PIDTYPE_MAX]; 638 639 struct completion *vfork_done; /* for vfork() */ 640 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 641 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 642 643 unsigned long rt_priority; 644 cputime_t utime, stime; 645 unsigned long nvcsw, nivcsw; /* context switch counts */ 646 struct timespec start_time; 647 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 648 unsigned long min_flt, maj_flt; 649 650 cputime_t it_prof_expires, it_virt_expires; 651 unsigned long long it_sched_expires; 652 struct list_head cpu_timers[3]; 653 654 /* process credentials */ 655 uid_t uid,euid,suid,fsuid; 656 gid_t gid,egid,sgid,fsgid; 657 struct group_info *group_info; 658 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 659 unsigned keep_capabilities:1; 660 struct user_struct *user; 661 #ifdef CONFIG_KEYS 662 struct key *thread_keyring; /* keyring private to this thread */ 663 #endif 664 int oomkilladj; /* OOM kill score adjustment (bit shift). */ 665 char comm[TASK_COMM_LEN]; /* executable name excluding path 666 - access with [gs]et_task_comm (which lock 667 it with task_lock()) 668 - initialized normally by flush_old_exec */ 669 /* file system info */ 670 int link_count, total_link_count; 671 /* ipc stuff */ 672 struct sysv_sem sysvsem; 673 /* CPU-specific state of this task */ 674 struct thread_struct thread; 675 /* filesystem information */ 676 struct fs_struct *fs; 677 /* open file information */ 678 struct files_struct *files; 679 /* namespace */ 680 struct namespace *namespace; 681 /* signal handlers */ 682 struct signal_struct *signal; 683 struct sighand_struct *sighand; 684 685 sigset_t blocked, real_blocked; 686 struct sigpending pending; 687 688 unsigned long sas_ss_sp; 689 size_t sas_ss_size; 690 int (*notifier)(void *priv); 691 void *notifier_data; 692 sigset_t *notifier_mask; 693 694 void *security; 695 struct audit_context *audit_context; 696 seccomp_t seccomp; 697 698 /* Thread group tracking */ 699 u32 parent_exec_id; 700 u32 self_exec_id; 701 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 702 spinlock_t alloc_lock; 703 /* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */ 704 spinlock_t proc_lock; 705 /* context-switch lock */ 706 spinlock_t switch_lock; 707 708 /* journalling filesystem info */ 709 void *journal_info; 710 711 /* VM state */ 712 struct reclaim_state *reclaim_state; 713 714 struct dentry *proc_dentry; 715 struct backing_dev_info *backing_dev_info; 716 717 struct io_context *io_context; 718 719 unsigned long ptrace_message; 720 siginfo_t *last_siginfo; /* For ptrace use. */ 721 /* 722 * current io wait handle: wait queue entry to use for io waits 723 * If this thread is processing aio, this points at the waitqueue 724 * inside the currently handled kiocb. It may be NULL (i.e. default 725 * to a stack based synchronous wait) if its doing sync IO. 726 */ 727 wait_queue_t *io_wait; 728 /* i/o counters(bytes read/written, #syscalls */ 729 u64 rchar, wchar, syscr, syscw; 730 #if defined(CONFIG_BSD_PROCESS_ACCT) 731 u64 acct_rss_mem1; /* accumulated rss usage */ 732 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 733 clock_t acct_stimexpd; /* clock_t-converted stime since last update */ 734 #endif 735 #ifdef CONFIG_NUMA 736 struct mempolicy *mempolicy; 737 short il_next; 738 #endif 739 #ifdef CONFIG_CPUSETS 740 struct cpuset *cpuset; 741 nodemask_t mems_allowed; 742 int cpuset_mems_generation; 743 #endif 744 }; 745 746 static inline pid_t process_group(struct task_struct *tsk) 747 { 748 return tsk->signal->pgrp; 749 } 750 751 /** 752 * pid_alive - check that a task structure is not stale 753 * @p: Task structure to be checked. 754 * 755 * Test if a process is not yet dead (at most zombie state) 756 * If pid_alive fails, then pointers within the task structure 757 * can be stale and must not be dereferenced. 758 */ 759 static inline int pid_alive(struct task_struct *p) 760 { 761 return p->pids[PIDTYPE_PID].nr != 0; 762 } 763 764 extern void free_task(struct task_struct *tsk); 765 extern void __put_task_struct(struct task_struct *tsk); 766 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 767 #define put_task_struct(tsk) \ 768 do { if (atomic_dec_and_test(&(tsk)->usage)) __put_task_struct(tsk); } while(0) 769 770 /* 771 * Per process flags 772 */ 773 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 774 /* Not implemented yet, only for 486*/ 775 #define PF_STARTING 0x00000002 /* being created */ 776 #define PF_EXITING 0x00000004 /* getting shut down */ 777 #define PF_DEAD 0x00000008 /* Dead */ 778 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 779 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 780 #define PF_DUMPCORE 0x00000200 /* dumped core */ 781 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 782 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 783 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 784 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 785 #define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */ 786 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 787 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 788 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 789 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 790 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 791 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 792 #define PF_SYNCWRITE 0x00200000 /* I am doing a sync write */ 793 #define PF_BORROWED_MM 0x00400000 /* I am a kthread doing use_mm */ 794 #define PF_RANDOMIZE 0x00800000 /* randomize virtual address space */ 795 796 /* 797 * Only the _current_ task can read/write to tsk->flags, but other 798 * tasks can access tsk->flags in readonly mode for example 799 * with tsk_used_math (like during threaded core dumping). 800 * There is however an exception to this rule during ptrace 801 * or during fork: the ptracer task is allowed to write to the 802 * child->flags of its traced child (same goes for fork, the parent 803 * can write to the child->flags), because we're guaranteed the 804 * child is not running and in turn not changing child->flags 805 * at the same time the parent does it. 806 */ 807 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 808 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 809 #define clear_used_math() clear_stopped_child_used_math(current) 810 #define set_used_math() set_stopped_child_used_math(current) 811 #define conditional_stopped_child_used_math(condition, child) \ 812 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 813 #define conditional_used_math(condition) \ 814 conditional_stopped_child_used_math(condition, current) 815 #define copy_to_stopped_child_used_math(child) \ 816 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 817 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 818 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 819 #define used_math() tsk_used_math(current) 820 821 #ifdef CONFIG_SMP 822 extern int set_cpus_allowed(task_t *p, cpumask_t new_mask); 823 #else 824 static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask) 825 { 826 if (!cpus_intersects(new_mask, cpu_online_map)) 827 return -EINVAL; 828 return 0; 829 } 830 #endif 831 832 extern unsigned long long sched_clock(void); 833 extern unsigned long long current_sched_time(const task_t *current_task); 834 835 /* sched_exec is called by processes performing an exec */ 836 #ifdef CONFIG_SMP 837 extern void sched_exec(void); 838 #else 839 #define sched_exec() {} 840 #endif 841 842 #ifdef CONFIG_HOTPLUG_CPU 843 extern void idle_task_exit(void); 844 #else 845 static inline void idle_task_exit(void) {} 846 #endif 847 848 extern void sched_idle_next(void); 849 extern void set_user_nice(task_t *p, long nice); 850 extern int task_prio(const task_t *p); 851 extern int task_nice(const task_t *p); 852 extern int can_nice(const task_t *p, const int nice); 853 extern int task_curr(const task_t *p); 854 extern int idle_cpu(int cpu); 855 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 856 extern task_t *idle_task(int cpu); 857 858 void yield(void); 859 860 /* 861 * The default (Linux) execution domain. 862 */ 863 extern struct exec_domain default_exec_domain; 864 865 union thread_union { 866 struct thread_info thread_info; 867 unsigned long stack[THREAD_SIZE/sizeof(long)]; 868 }; 869 870 #ifndef __HAVE_ARCH_KSTACK_END 871 static inline int kstack_end(void *addr) 872 { 873 /* Reliable end of stack detection: 874 * Some APM bios versions misalign the stack 875 */ 876 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 877 } 878 #endif 879 880 extern union thread_union init_thread_union; 881 extern struct task_struct init_task; 882 883 extern struct mm_struct init_mm; 884 885 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) 886 extern struct task_struct *find_task_by_pid_type(int type, int pid); 887 extern void set_special_pids(pid_t session, pid_t pgrp); 888 extern void __set_special_pids(pid_t session, pid_t pgrp); 889 890 /* per-UID process charging. */ 891 extern struct user_struct * alloc_uid(uid_t); 892 static inline struct user_struct *get_uid(struct user_struct *u) 893 { 894 atomic_inc(&u->__count); 895 return u; 896 } 897 extern void free_uid(struct user_struct *); 898 extern void switch_uid(struct user_struct *); 899 900 #include <asm/current.h> 901 902 extern void do_timer(struct pt_regs *); 903 904 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 905 extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 906 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 907 unsigned long clone_flags)); 908 #ifdef CONFIG_SMP 909 extern void kick_process(struct task_struct *tsk); 910 #else 911 static inline void kick_process(struct task_struct *tsk) { } 912 #endif 913 extern void FASTCALL(sched_fork(task_t * p)); 914 extern void FASTCALL(sched_exit(task_t * p)); 915 916 extern int in_group_p(gid_t); 917 extern int in_egroup_p(gid_t); 918 919 extern void proc_caches_init(void); 920 extern void flush_signals(struct task_struct *); 921 extern void flush_signal_handlers(struct task_struct *, int force_default); 922 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 923 924 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 925 { 926 unsigned long flags; 927 int ret; 928 929 spin_lock_irqsave(&tsk->sighand->siglock, flags); 930 ret = dequeue_signal(tsk, mask, info); 931 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 932 933 return ret; 934 } 935 936 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 937 sigset_t *mask); 938 extern void unblock_all_signals(void); 939 extern void release_task(struct task_struct * p); 940 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 941 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 942 extern int force_sigsegv(int, struct task_struct *); 943 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 944 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp); 945 extern int kill_pg_info(int, struct siginfo *, pid_t); 946 extern int kill_proc_info(int, struct siginfo *, pid_t); 947 extern void do_notify_parent(struct task_struct *, int); 948 extern void force_sig(int, struct task_struct *); 949 extern void force_sig_specific(int, struct task_struct *); 950 extern int send_sig(int, struct task_struct *, int); 951 extern void zap_other_threads(struct task_struct *p); 952 extern int kill_pg(pid_t, int, int); 953 extern int kill_sl(pid_t, int, int); 954 extern int kill_proc(pid_t, int, int); 955 extern struct sigqueue *sigqueue_alloc(void); 956 extern void sigqueue_free(struct sigqueue *); 957 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 958 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 959 extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *); 960 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 961 962 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 963 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 964 #define SEND_SIG_PRIV ((struct siginfo *) 1) 965 #define SEND_SIG_FORCED ((struct siginfo *) 2) 966 967 /* True if we are on the alternate signal stack. */ 968 969 static inline int on_sig_stack(unsigned long sp) 970 { 971 return (sp - current->sas_ss_sp < current->sas_ss_size); 972 } 973 974 static inline int sas_ss_flags(unsigned long sp) 975 { 976 return (current->sas_ss_size == 0 ? SS_DISABLE 977 : on_sig_stack(sp) ? SS_ONSTACK : 0); 978 } 979 980 981 #ifdef CONFIG_SECURITY 982 /* code is in security.c */ 983 extern int capable(int cap); 984 #else 985 static inline int capable(int cap) 986 { 987 if (cap_raised(current->cap_effective, cap)) { 988 current->flags |= PF_SUPERPRIV; 989 return 1; 990 } 991 return 0; 992 } 993 #endif 994 995 /* 996 * Routines for handling mm_structs 997 */ 998 extern struct mm_struct * mm_alloc(void); 999 1000 /* mmdrop drops the mm and the page tables */ 1001 extern void FASTCALL(__mmdrop(struct mm_struct *)); 1002 static inline void mmdrop(struct mm_struct * mm) 1003 { 1004 if (atomic_dec_and_test(&mm->mm_count)) 1005 __mmdrop(mm); 1006 } 1007 1008 /* mmput gets rid of the mappings and all user-space */ 1009 extern void mmput(struct mm_struct *); 1010 /* Grab a reference to a task's mm, if it is not already going away */ 1011 extern struct mm_struct *get_task_mm(struct task_struct *task); 1012 /* Remove the current tasks stale references to the old mm_struct */ 1013 extern void mm_release(struct task_struct *, struct mm_struct *); 1014 1015 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1016 extern void flush_thread(void); 1017 extern void exit_thread(void); 1018 1019 extern void exit_files(struct task_struct *); 1020 extern void exit_signal(struct task_struct *); 1021 extern void __exit_signal(struct task_struct *); 1022 extern void exit_sighand(struct task_struct *); 1023 extern void __exit_sighand(struct task_struct *); 1024 extern void exit_itimers(struct signal_struct *); 1025 1026 extern NORET_TYPE void do_group_exit(int); 1027 1028 extern void daemonize(const char *, ...); 1029 extern int allow_signal(int); 1030 extern int disallow_signal(int); 1031 extern task_t *child_reaper; 1032 1033 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1034 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1035 task_t *fork_idle(int); 1036 1037 extern void set_task_comm(struct task_struct *tsk, char *from); 1038 extern void get_task_comm(char *to, struct task_struct *tsk); 1039 1040 #ifdef CONFIG_SMP 1041 extern void wait_task_inactive(task_t * p); 1042 #else 1043 #define wait_task_inactive(p) do { } while (0) 1044 #endif 1045 1046 #define remove_parent(p) list_del_init(&(p)->sibling) 1047 #define add_parent(p, parent) list_add_tail(&(p)->sibling,&(parent)->children) 1048 1049 #define REMOVE_LINKS(p) do { \ 1050 if (thread_group_leader(p)) \ 1051 list_del_init(&(p)->tasks); \ 1052 remove_parent(p); \ 1053 } while (0) 1054 1055 #define SET_LINKS(p) do { \ 1056 if (thread_group_leader(p)) \ 1057 list_add_tail(&(p)->tasks,&init_task.tasks); \ 1058 add_parent(p, (p)->parent); \ 1059 } while (0) 1060 1061 #define next_task(p) list_entry((p)->tasks.next, struct task_struct, tasks) 1062 #define prev_task(p) list_entry((p)->tasks.prev, struct task_struct, tasks) 1063 1064 #define for_each_process(p) \ 1065 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1066 1067 /* 1068 * Careful: do_each_thread/while_each_thread is a double loop so 1069 * 'break' will not work as expected - use goto instead. 1070 */ 1071 #define do_each_thread(g, t) \ 1072 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1073 1074 #define while_each_thread(g, t) \ 1075 while ((t = next_thread(t)) != g) 1076 1077 extern task_t * FASTCALL(next_thread(const task_t *p)); 1078 1079 #define thread_group_leader(p) (p->pid == p->tgid) 1080 1081 static inline int thread_group_empty(task_t *p) 1082 { 1083 return list_empty(&p->pids[PIDTYPE_TGID].pid_list); 1084 } 1085 1086 #define delay_group_leader(p) \ 1087 (thread_group_leader(p) && !thread_group_empty(p)) 1088 1089 extern void unhash_process(struct task_struct *p); 1090 1091 /* 1092 * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring 1093 * subscriptions and synchronises with wait4(). Also used in procfs. 1094 * 1095 * Nests both inside and outside of read_lock(&tasklist_lock). 1096 * It must not be nested with write_lock_irq(&tasklist_lock), 1097 * neither inside nor outside. 1098 */ 1099 static inline void task_lock(struct task_struct *p) 1100 { 1101 spin_lock(&p->alloc_lock); 1102 } 1103 1104 static inline void task_unlock(struct task_struct *p) 1105 { 1106 spin_unlock(&p->alloc_lock); 1107 } 1108 1109 /* set thread flags in other task's structures 1110 * - see asm/thread_info.h for TIF_xxxx flags available 1111 */ 1112 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1113 { 1114 set_ti_thread_flag(tsk->thread_info,flag); 1115 } 1116 1117 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1118 { 1119 clear_ti_thread_flag(tsk->thread_info,flag); 1120 } 1121 1122 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1123 { 1124 return test_and_set_ti_thread_flag(tsk->thread_info,flag); 1125 } 1126 1127 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1128 { 1129 return test_and_clear_ti_thread_flag(tsk->thread_info,flag); 1130 } 1131 1132 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1133 { 1134 return test_ti_thread_flag(tsk->thread_info,flag); 1135 } 1136 1137 static inline void set_tsk_need_resched(struct task_struct *tsk) 1138 { 1139 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1140 } 1141 1142 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1143 { 1144 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1145 } 1146 1147 static inline int signal_pending(struct task_struct *p) 1148 { 1149 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1150 } 1151 1152 static inline int need_resched(void) 1153 { 1154 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1155 } 1156 1157 /* 1158 * cond_resched() and cond_resched_lock(): latency reduction via 1159 * explicit rescheduling in places that are safe. The return 1160 * value indicates whether a reschedule was done in fact. 1161 * cond_resched_lock() will drop the spinlock before scheduling, 1162 * cond_resched_softirq() will enable bhs before scheduling. 1163 */ 1164 extern int cond_resched(void); 1165 extern int cond_resched_lock(spinlock_t * lock); 1166 extern int cond_resched_softirq(void); 1167 1168 /* 1169 * Does a critical section need to be broken due to another 1170 * task waiting?: 1171 */ 1172 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1173 # define need_lockbreak(lock) ((lock)->break_lock) 1174 #else 1175 # define need_lockbreak(lock) 0 1176 #endif 1177 1178 /* 1179 * Does a critical section need to be broken due to another 1180 * task waiting or preemption being signalled: 1181 */ 1182 static inline int lock_need_resched(spinlock_t *lock) 1183 { 1184 if (need_lockbreak(lock) || need_resched()) 1185 return 1; 1186 return 0; 1187 } 1188 1189 /* Reevaluate whether the task has signals pending delivery. 1190 This is required every time the blocked sigset_t changes. 1191 callers must hold sighand->siglock. */ 1192 1193 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); 1194 extern void recalc_sigpending(void); 1195 1196 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1197 1198 /* 1199 * Wrappers for p->thread_info->cpu access. No-op on UP. 1200 */ 1201 #ifdef CONFIG_SMP 1202 1203 static inline unsigned int task_cpu(const struct task_struct *p) 1204 { 1205 return p->thread_info->cpu; 1206 } 1207 1208 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1209 { 1210 p->thread_info->cpu = cpu; 1211 } 1212 1213 #else 1214 1215 static inline unsigned int task_cpu(const struct task_struct *p) 1216 { 1217 return 0; 1218 } 1219 1220 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1221 { 1222 } 1223 1224 #endif /* CONFIG_SMP */ 1225 1226 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1227 extern void arch_pick_mmap_layout(struct mm_struct *mm); 1228 #else 1229 static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1230 { 1231 mm->mmap_base = TASK_UNMAPPED_BASE; 1232 mm->get_unmapped_area = arch_get_unmapped_area; 1233 mm->unmap_area = arch_unmap_area; 1234 } 1235 #endif 1236 1237 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1238 extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1239 1240 #ifdef CONFIG_MAGIC_SYSRQ 1241 1242 extern void normalize_rt_tasks(void); 1243 1244 #endif 1245 1246 /* try_to_freeze 1247 * 1248 * Checks whether we need to enter the refrigerator 1249 * and returns 1 if we did so. 1250 */ 1251 #ifdef CONFIG_PM 1252 extern void refrigerator(unsigned long); 1253 extern int freeze_processes(void); 1254 extern void thaw_processes(void); 1255 1256 static inline int try_to_freeze(unsigned long refrigerator_flags) 1257 { 1258 if (unlikely(current->flags & PF_FREEZE)) { 1259 refrigerator(refrigerator_flags); 1260 return 1; 1261 } else 1262 return 0; 1263 } 1264 #else 1265 static inline void refrigerator(unsigned long flag) {} 1266 static inline int freeze_processes(void) { BUG(); return 0; } 1267 static inline void thaw_processes(void) {} 1268 1269 static inline int try_to_freeze(unsigned long refrigerator_flags) 1270 { 1271 return 0; 1272 } 1273 #endif /* CONFIG_PM */ 1274 #endif /* __KERNEL__ */ 1275 1276 #endif 1277