1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */ 5 6 /* 7 * cloning flags: 8 */ 9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 17 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 27 28 /* 29 * Scheduling policies 30 */ 31 #define SCHED_NORMAL 0 32 #define SCHED_FIFO 1 33 #define SCHED_RR 2 34 #define SCHED_BATCH 3 35 36 #ifdef __KERNEL__ 37 38 struct sched_param { 39 int sched_priority; 40 }; 41 42 #include <asm/param.h> /* for HZ */ 43 44 #include <linux/capability.h> 45 #include <linux/threads.h> 46 #include <linux/kernel.h> 47 #include <linux/types.h> 48 #include <linux/timex.h> 49 #include <linux/jiffies.h> 50 #include <linux/rbtree.h> 51 #include <linux/thread_info.h> 52 #include <linux/cpumask.h> 53 #include <linux/errno.h> 54 #include <linux/nodemask.h> 55 56 #include <asm/system.h> 57 #include <asm/semaphore.h> 58 #include <asm/page.h> 59 #include <asm/ptrace.h> 60 #include <asm/mmu.h> 61 #include <asm/cputime.h> 62 63 #include <linux/smp.h> 64 #include <linux/sem.h> 65 #include <linux/signal.h> 66 #include <linux/securebits.h> 67 #include <linux/fs_struct.h> 68 #include <linux/compiler.h> 69 #include <linux/completion.h> 70 #include <linux/pid.h> 71 #include <linux/percpu.h> 72 #include <linux/topology.h> 73 #include <linux/seccomp.h> 74 #include <linux/rcupdate.h> 75 #include <linux/futex.h> 76 #include <linux/rtmutex.h> 77 78 #include <linux/time.h> 79 #include <linux/param.h> 80 #include <linux/resource.h> 81 #include <linux/timer.h> 82 #include <linux/hrtimer.h> 83 84 #include <asm/processor.h> 85 86 struct exec_domain; 87 struct futex_pi_state; 88 89 /* 90 * List of flags we want to share for kernel threads, 91 * if only because they are not used by them anyway. 92 */ 93 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 94 95 /* 96 * These are the constant used to fake the fixed-point load-average 97 * counting. Some notes: 98 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 99 * a load-average precision of 10 bits integer + 11 bits fractional 100 * - if you want to count load-averages more often, you need more 101 * precision, or rounding will get you. With 2-second counting freq, 102 * the EXP_n values would be 1981, 2034 and 2043 if still using only 103 * 11 bit fractions. 104 */ 105 extern unsigned long avenrun[]; /* Load averages */ 106 107 #define FSHIFT 11 /* nr of bits of precision */ 108 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 109 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */ 110 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 111 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 112 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 113 114 #define CALC_LOAD(load,exp,n) \ 115 load *= exp; \ 116 load += n*(FIXED_1-exp); \ 117 load >>= FSHIFT; 118 119 extern unsigned long total_forks; 120 extern int nr_threads; 121 extern int last_pid; 122 DECLARE_PER_CPU(unsigned long, process_counts); 123 extern int nr_processes(void); 124 extern unsigned long nr_running(void); 125 extern unsigned long nr_uninterruptible(void); 126 extern unsigned long nr_active(void); 127 extern unsigned long nr_iowait(void); 128 extern unsigned long weighted_cpuload(const int cpu); 129 130 131 /* 132 * Task state bitmask. NOTE! These bits are also 133 * encoded in fs/proc/array.c: get_task_state(). 134 * 135 * We have two separate sets of flags: task->state 136 * is about runnability, while task->exit_state are 137 * about the task exiting. Confusing, but this way 138 * modifying one set can't modify the other one by 139 * mistake. 140 */ 141 #define TASK_RUNNING 0 142 #define TASK_INTERRUPTIBLE 1 143 #define TASK_UNINTERRUPTIBLE 2 144 #define TASK_STOPPED 4 145 #define TASK_TRACED 8 146 /* in tsk->exit_state */ 147 #define EXIT_ZOMBIE 16 148 #define EXIT_DEAD 32 149 /* in tsk->state again */ 150 #define TASK_NONINTERACTIVE 64 151 152 #define __set_task_state(tsk, state_value) \ 153 do { (tsk)->state = (state_value); } while (0) 154 #define set_task_state(tsk, state_value) \ 155 set_mb((tsk)->state, (state_value)) 156 157 /* 158 * set_current_state() includes a barrier so that the write of current->state 159 * is correctly serialised wrt the caller's subsequent test of whether to 160 * actually sleep: 161 * 162 * set_current_state(TASK_UNINTERRUPTIBLE); 163 * if (do_i_need_to_sleep()) 164 * schedule(); 165 * 166 * If the caller does not need such serialisation then use __set_current_state() 167 */ 168 #define __set_current_state(state_value) \ 169 do { current->state = (state_value); } while (0) 170 #define set_current_state(state_value) \ 171 set_mb(current->state, (state_value)) 172 173 /* Task command name length */ 174 #define TASK_COMM_LEN 16 175 176 #include <linux/spinlock.h> 177 178 /* 179 * This serializes "schedule()" and also protects 180 * the run-queue from deletions/modifications (but 181 * _adding_ to the beginning of the run-queue has 182 * a separate lock). 183 */ 184 extern rwlock_t tasklist_lock; 185 extern spinlock_t mmlist_lock; 186 187 typedef struct task_struct task_t; 188 189 extern void sched_init(void); 190 extern void sched_init_smp(void); 191 extern void init_idle(task_t *idle, int cpu); 192 193 extern cpumask_t nohz_cpu_mask; 194 195 extern void show_state(void); 196 extern void show_regs(struct pt_regs *); 197 198 /* 199 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 200 * task), SP is the stack pointer of the first frame that should be shown in the back 201 * trace (or NULL if the entire call-chain of the task should be shown). 202 */ 203 extern void show_stack(struct task_struct *task, unsigned long *sp); 204 205 void io_schedule(void); 206 long io_schedule_timeout(long timeout); 207 208 extern void cpu_init (void); 209 extern void trap_init(void); 210 extern void update_process_times(int user); 211 extern void scheduler_tick(void); 212 213 #ifdef CONFIG_DETECT_SOFTLOCKUP 214 extern void softlockup_tick(void); 215 extern void spawn_softlockup_task(void); 216 extern void touch_softlockup_watchdog(void); 217 #else 218 static inline void softlockup_tick(void) 219 { 220 } 221 static inline void spawn_softlockup_task(void) 222 { 223 } 224 static inline void touch_softlockup_watchdog(void) 225 { 226 } 227 #endif 228 229 230 /* Attach to any functions which should be ignored in wchan output. */ 231 #define __sched __attribute__((__section__(".sched.text"))) 232 /* Is this address in the __sched functions? */ 233 extern int in_sched_functions(unsigned long addr); 234 235 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 236 extern signed long FASTCALL(schedule_timeout(signed long timeout)); 237 extern signed long schedule_timeout_interruptible(signed long timeout); 238 extern signed long schedule_timeout_uninterruptible(signed long timeout); 239 asmlinkage void schedule(void); 240 241 struct namespace; 242 243 /* Maximum number of active map areas.. This is a random (large) number */ 244 #define DEFAULT_MAX_MAP_COUNT 65536 245 246 extern int sysctl_max_map_count; 247 248 #include <linux/aio.h> 249 250 extern unsigned long 251 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 252 unsigned long, unsigned long); 253 extern unsigned long 254 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 255 unsigned long len, unsigned long pgoff, 256 unsigned long flags); 257 extern void arch_unmap_area(struct mm_struct *, unsigned long); 258 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 259 260 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 261 /* 262 * The mm counters are not protected by its page_table_lock, 263 * so must be incremented atomically. 264 */ 265 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 266 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 267 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 268 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 269 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 270 typedef atomic_long_t mm_counter_t; 271 272 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 273 /* 274 * The mm counters are protected by its page_table_lock, 275 * so can be incremented directly. 276 */ 277 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 278 #define get_mm_counter(mm, member) ((mm)->_##member) 279 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 280 #define inc_mm_counter(mm, member) (mm)->_##member++ 281 #define dec_mm_counter(mm, member) (mm)->_##member-- 282 typedef unsigned long mm_counter_t; 283 284 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 285 286 #define get_mm_rss(mm) \ 287 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 288 #define update_hiwater_rss(mm) do { \ 289 unsigned long _rss = get_mm_rss(mm); \ 290 if ((mm)->hiwater_rss < _rss) \ 291 (mm)->hiwater_rss = _rss; \ 292 } while (0) 293 #define update_hiwater_vm(mm) do { \ 294 if ((mm)->hiwater_vm < (mm)->total_vm) \ 295 (mm)->hiwater_vm = (mm)->total_vm; \ 296 } while (0) 297 298 struct mm_struct { 299 struct vm_area_struct * mmap; /* list of VMAs */ 300 struct rb_root mm_rb; 301 struct vm_area_struct * mmap_cache; /* last find_vma result */ 302 unsigned long (*get_unmapped_area) (struct file *filp, 303 unsigned long addr, unsigned long len, 304 unsigned long pgoff, unsigned long flags); 305 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 306 unsigned long mmap_base; /* base of mmap area */ 307 unsigned long task_size; /* size of task vm space */ 308 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 309 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 310 pgd_t * pgd; 311 atomic_t mm_users; /* How many users with user space? */ 312 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 313 int map_count; /* number of VMAs */ 314 struct rw_semaphore mmap_sem; 315 spinlock_t page_table_lock; /* Protects page tables and some counters */ 316 317 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 318 * together off init_mm.mmlist, and are protected 319 * by mmlist_lock 320 */ 321 322 /* Special counters, in some configurations protected by the 323 * page_table_lock, in other configurations by being atomic. 324 */ 325 mm_counter_t _file_rss; 326 mm_counter_t _anon_rss; 327 328 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 329 unsigned long hiwater_vm; /* High-water virtual memory usage */ 330 331 unsigned long total_vm, locked_vm, shared_vm, exec_vm; 332 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; 333 unsigned long start_code, end_code, start_data, end_data; 334 unsigned long start_brk, brk, start_stack; 335 unsigned long arg_start, arg_end, env_start, env_end; 336 337 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 338 339 unsigned dumpable:2; 340 cpumask_t cpu_vm_mask; 341 342 /* Architecture-specific MM context */ 343 mm_context_t context; 344 345 /* Token based thrashing protection. */ 346 unsigned long swap_token_time; 347 char recent_pagein; 348 349 /* coredumping support */ 350 int core_waiters; 351 struct completion *core_startup_done, core_done; 352 353 /* aio bits */ 354 rwlock_t ioctx_list_lock; 355 struct kioctx *ioctx_list; 356 }; 357 358 struct sighand_struct { 359 atomic_t count; 360 struct k_sigaction action[_NSIG]; 361 spinlock_t siglock; 362 }; 363 364 struct pacct_struct { 365 int ac_flag; 366 long ac_exitcode; 367 unsigned long ac_mem; 368 cputime_t ac_utime, ac_stime; 369 unsigned long ac_minflt, ac_majflt; 370 }; 371 372 /* 373 * NOTE! "signal_struct" does not have it's own 374 * locking, because a shared signal_struct always 375 * implies a shared sighand_struct, so locking 376 * sighand_struct is always a proper superset of 377 * the locking of signal_struct. 378 */ 379 struct signal_struct { 380 atomic_t count; 381 atomic_t live; 382 383 wait_queue_head_t wait_chldexit; /* for wait4() */ 384 385 /* current thread group signal load-balancing target: */ 386 task_t *curr_target; 387 388 /* shared signal handling: */ 389 struct sigpending shared_pending; 390 391 /* thread group exit support */ 392 int group_exit_code; 393 /* overloaded: 394 * - notify group_exit_task when ->count is equal to notify_count 395 * - everyone except group_exit_task is stopped during signal delivery 396 * of fatal signals, group_exit_task processes the signal. 397 */ 398 struct task_struct *group_exit_task; 399 int notify_count; 400 401 /* thread group stop support, overloads group_exit_code too */ 402 int group_stop_count; 403 unsigned int flags; /* see SIGNAL_* flags below */ 404 405 /* POSIX.1b Interval Timers */ 406 struct list_head posix_timers; 407 408 /* ITIMER_REAL timer for the process */ 409 struct hrtimer real_timer; 410 struct task_struct *tsk; 411 ktime_t it_real_incr; 412 413 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 414 cputime_t it_prof_expires, it_virt_expires; 415 cputime_t it_prof_incr, it_virt_incr; 416 417 /* job control IDs */ 418 pid_t pgrp; 419 pid_t tty_old_pgrp; 420 pid_t session; 421 /* boolean value for session group leader */ 422 int leader; 423 424 struct tty_struct *tty; /* NULL if no tty */ 425 426 /* 427 * Cumulative resource counters for dead threads in the group, 428 * and for reaped dead child processes forked by this group. 429 * Live threads maintain their own counters and add to these 430 * in __exit_signal, except for the group leader. 431 */ 432 cputime_t utime, stime, cutime, cstime; 433 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 434 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 435 436 /* 437 * Cumulative ns of scheduled CPU time for dead threads in the 438 * group, not including a zombie group leader. (This only differs 439 * from jiffies_to_ns(utime + stime) if sched_clock uses something 440 * other than jiffies.) 441 */ 442 unsigned long long sched_time; 443 444 /* 445 * We don't bother to synchronize most readers of this at all, 446 * because there is no reader checking a limit that actually needs 447 * to get both rlim_cur and rlim_max atomically, and either one 448 * alone is a single word that can safely be read normally. 449 * getrlimit/setrlimit use task_lock(current->group_leader) to 450 * protect this instead of the siglock, because they really 451 * have no need to disable irqs. 452 */ 453 struct rlimit rlim[RLIM_NLIMITS]; 454 455 struct list_head cpu_timers[3]; 456 457 /* keep the process-shared keyrings here so that they do the right 458 * thing in threads created with CLONE_THREAD */ 459 #ifdef CONFIG_KEYS 460 struct key *session_keyring; /* keyring inherited over fork */ 461 struct key *process_keyring; /* keyring private to this process */ 462 #endif 463 #ifdef CONFIG_BSD_PROCESS_ACCT 464 struct pacct_struct pacct; /* per-process accounting information */ 465 #endif 466 }; 467 468 /* Context switch must be unlocked if interrupts are to be enabled */ 469 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 470 # define __ARCH_WANT_UNLOCKED_CTXSW 471 #endif 472 473 /* 474 * Bits in flags field of signal_struct. 475 */ 476 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 477 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 478 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 479 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 480 481 482 /* 483 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 484 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 485 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 486 * values are inverted: lower p->prio value means higher priority. 487 * 488 * The MAX_USER_RT_PRIO value allows the actual maximum 489 * RT priority to be separate from the value exported to 490 * user-space. This allows kernel threads to set their 491 * priority to a value higher than any user task. Note: 492 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 493 */ 494 495 #define MAX_USER_RT_PRIO 100 496 #define MAX_RT_PRIO MAX_USER_RT_PRIO 497 498 #define MAX_PRIO (MAX_RT_PRIO + 40) 499 500 #define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO) 501 #define rt_task(p) rt_prio((p)->prio) 502 #define batch_task(p) (unlikely((p)->policy == SCHED_BATCH)) 503 #define has_rt_policy(p) \ 504 unlikely((p)->policy != SCHED_NORMAL && (p)->policy != SCHED_BATCH) 505 506 /* 507 * Some day this will be a full-fledged user tracking system.. 508 */ 509 struct user_struct { 510 atomic_t __count; /* reference count */ 511 atomic_t processes; /* How many processes does this user have? */ 512 atomic_t files; /* How many open files does this user have? */ 513 atomic_t sigpending; /* How many pending signals does this user have? */ 514 #ifdef CONFIG_INOTIFY_USER 515 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 516 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 517 #endif 518 /* protected by mq_lock */ 519 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 520 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 521 522 #ifdef CONFIG_KEYS 523 struct key *uid_keyring; /* UID specific keyring */ 524 struct key *session_keyring; /* UID's default session keyring */ 525 #endif 526 527 /* Hash table maintenance information */ 528 struct list_head uidhash_list; 529 uid_t uid; 530 }; 531 532 extern struct user_struct *find_user(uid_t); 533 534 extern struct user_struct root_user; 535 #define INIT_USER (&root_user) 536 537 typedef struct prio_array prio_array_t; 538 struct backing_dev_info; 539 struct reclaim_state; 540 541 #ifdef CONFIG_SCHEDSTATS 542 struct sched_info { 543 /* cumulative counters */ 544 unsigned long cpu_time, /* time spent on the cpu */ 545 run_delay, /* time spent waiting on a runqueue */ 546 pcnt; /* # of timeslices run on this cpu */ 547 548 /* timestamps */ 549 unsigned long last_arrival, /* when we last ran on a cpu */ 550 last_queued; /* when we were last queued to run */ 551 }; 552 553 extern struct file_operations proc_schedstat_operations; 554 #endif 555 556 enum idle_type 557 { 558 SCHED_IDLE, 559 NOT_IDLE, 560 NEWLY_IDLE, 561 MAX_IDLE_TYPES 562 }; 563 564 /* 565 * sched-domains (multiprocessor balancing) declarations: 566 */ 567 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ 568 569 #ifdef CONFIG_SMP 570 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 571 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 572 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 573 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 574 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 575 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 576 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 577 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 578 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 579 580 #define BALANCE_FOR_POWER ((sched_mc_power_savings || sched_smt_power_savings) \ 581 ? SD_POWERSAVINGS_BALANCE : 0) 582 583 584 struct sched_group { 585 struct sched_group *next; /* Must be a circular list */ 586 cpumask_t cpumask; 587 588 /* 589 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 590 * single CPU. This is read only (except for setup, hotplug CPU). 591 */ 592 unsigned long cpu_power; 593 }; 594 595 struct sched_domain { 596 /* These fields must be setup */ 597 struct sched_domain *parent; /* top domain must be null terminated */ 598 struct sched_group *groups; /* the balancing groups of the domain */ 599 cpumask_t span; /* span of all CPUs in this domain */ 600 unsigned long min_interval; /* Minimum balance interval ms */ 601 unsigned long max_interval; /* Maximum balance interval ms */ 602 unsigned int busy_factor; /* less balancing by factor if busy */ 603 unsigned int imbalance_pct; /* No balance until over watermark */ 604 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ 605 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 606 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */ 607 unsigned int busy_idx; 608 unsigned int idle_idx; 609 unsigned int newidle_idx; 610 unsigned int wake_idx; 611 unsigned int forkexec_idx; 612 int flags; /* See SD_* */ 613 614 /* Runtime fields. */ 615 unsigned long last_balance; /* init to jiffies. units in jiffies */ 616 unsigned int balance_interval; /* initialise to 1. units in ms. */ 617 unsigned int nr_balance_failed; /* initialise to 0 */ 618 619 #ifdef CONFIG_SCHEDSTATS 620 /* load_balance() stats */ 621 unsigned long lb_cnt[MAX_IDLE_TYPES]; 622 unsigned long lb_failed[MAX_IDLE_TYPES]; 623 unsigned long lb_balanced[MAX_IDLE_TYPES]; 624 unsigned long lb_imbalance[MAX_IDLE_TYPES]; 625 unsigned long lb_gained[MAX_IDLE_TYPES]; 626 unsigned long lb_hot_gained[MAX_IDLE_TYPES]; 627 unsigned long lb_nobusyg[MAX_IDLE_TYPES]; 628 unsigned long lb_nobusyq[MAX_IDLE_TYPES]; 629 630 /* Active load balancing */ 631 unsigned long alb_cnt; 632 unsigned long alb_failed; 633 unsigned long alb_pushed; 634 635 /* SD_BALANCE_EXEC stats */ 636 unsigned long sbe_cnt; 637 unsigned long sbe_balanced; 638 unsigned long sbe_pushed; 639 640 /* SD_BALANCE_FORK stats */ 641 unsigned long sbf_cnt; 642 unsigned long sbf_balanced; 643 unsigned long sbf_pushed; 644 645 /* try_to_wake_up() stats */ 646 unsigned long ttwu_wake_remote; 647 unsigned long ttwu_move_affine; 648 unsigned long ttwu_move_balance; 649 #endif 650 }; 651 652 extern int partition_sched_domains(cpumask_t *partition1, 653 cpumask_t *partition2); 654 655 /* 656 * Maximum cache size the migration-costs auto-tuning code will 657 * search from: 658 */ 659 extern unsigned int max_cache_size; 660 661 #endif /* CONFIG_SMP */ 662 663 664 struct io_context; /* See blkdev.h */ 665 void exit_io_context(void); 666 struct cpuset; 667 668 #define NGROUPS_SMALL 32 669 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 670 struct group_info { 671 int ngroups; 672 atomic_t usage; 673 gid_t small_block[NGROUPS_SMALL]; 674 int nblocks; 675 gid_t *blocks[0]; 676 }; 677 678 /* 679 * get_group_info() must be called with the owning task locked (via task_lock()) 680 * when task != current. The reason being that the vast majority of callers are 681 * looking at current->group_info, which can not be changed except by the 682 * current task. Changing current->group_info requires the task lock, too. 683 */ 684 #define get_group_info(group_info) do { \ 685 atomic_inc(&(group_info)->usage); \ 686 } while (0) 687 688 #define put_group_info(group_info) do { \ 689 if (atomic_dec_and_test(&(group_info)->usage)) \ 690 groups_free(group_info); \ 691 } while (0) 692 693 extern struct group_info *groups_alloc(int gidsetsize); 694 extern void groups_free(struct group_info *group_info); 695 extern int set_current_groups(struct group_info *group_info); 696 extern int groups_search(struct group_info *group_info, gid_t grp); 697 /* access the groups "array" with this macro */ 698 #define GROUP_AT(gi, i) \ 699 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 700 701 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 702 extern void prefetch_stack(struct task_struct*); 703 #else 704 static inline void prefetch_stack(struct task_struct *t) { } 705 #endif 706 707 struct audit_context; /* See audit.c */ 708 struct mempolicy; 709 struct pipe_inode_info; 710 711 enum sleep_type { 712 SLEEP_NORMAL, 713 SLEEP_NONINTERACTIVE, 714 SLEEP_INTERACTIVE, 715 SLEEP_INTERRUPTED, 716 }; 717 718 struct task_struct { 719 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 720 struct thread_info *thread_info; 721 atomic_t usage; 722 unsigned long flags; /* per process flags, defined below */ 723 unsigned long ptrace; 724 725 int lock_depth; /* BKL lock depth */ 726 727 #ifdef CONFIG_SMP 728 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 729 int oncpu; 730 #endif 731 #endif 732 int load_weight; /* for niceness load balancing purposes */ 733 int prio, static_prio, normal_prio; 734 struct list_head run_list; 735 prio_array_t *array; 736 737 unsigned short ioprio; 738 unsigned int btrace_seq; 739 740 unsigned long sleep_avg; 741 unsigned long long timestamp, last_ran; 742 unsigned long long sched_time; /* sched_clock time spent running */ 743 enum sleep_type sleep_type; 744 745 unsigned long policy; 746 cpumask_t cpus_allowed; 747 unsigned int time_slice, first_time_slice; 748 749 #ifdef CONFIG_SCHEDSTATS 750 struct sched_info sched_info; 751 #endif 752 753 struct list_head tasks; 754 /* 755 * ptrace_list/ptrace_children forms the list of my children 756 * that were stolen by a ptracer. 757 */ 758 struct list_head ptrace_children; 759 struct list_head ptrace_list; 760 761 struct mm_struct *mm, *active_mm; 762 763 /* task state */ 764 struct linux_binfmt *binfmt; 765 long exit_state; 766 int exit_code, exit_signal; 767 int pdeath_signal; /* The signal sent when the parent dies */ 768 /* ??? */ 769 unsigned long personality; 770 unsigned did_exec:1; 771 pid_t pid; 772 pid_t tgid; 773 /* 774 * pointers to (original) parent process, youngest child, younger sibling, 775 * older sibling, respectively. (p->father can be replaced with 776 * p->parent->pid) 777 */ 778 struct task_struct *real_parent; /* real parent process (when being debugged) */ 779 struct task_struct *parent; /* parent process */ 780 /* 781 * children/sibling forms the list of my children plus the 782 * tasks I'm ptracing. 783 */ 784 struct list_head children; /* list of my children */ 785 struct list_head sibling; /* linkage in my parent's children list */ 786 struct task_struct *group_leader; /* threadgroup leader */ 787 788 /* PID/PID hash table linkage. */ 789 struct pid_link pids[PIDTYPE_MAX]; 790 struct list_head thread_group; 791 792 struct completion *vfork_done; /* for vfork() */ 793 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 794 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 795 796 unsigned long rt_priority; 797 cputime_t utime, stime; 798 unsigned long nvcsw, nivcsw; /* context switch counts */ 799 struct timespec start_time; 800 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 801 unsigned long min_flt, maj_flt; 802 803 cputime_t it_prof_expires, it_virt_expires; 804 unsigned long long it_sched_expires; 805 struct list_head cpu_timers[3]; 806 807 /* process credentials */ 808 uid_t uid,euid,suid,fsuid; 809 gid_t gid,egid,sgid,fsgid; 810 struct group_info *group_info; 811 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 812 unsigned keep_capabilities:1; 813 struct user_struct *user; 814 #ifdef CONFIG_KEYS 815 struct key *request_key_auth; /* assumed request_key authority */ 816 struct key *thread_keyring; /* keyring private to this thread */ 817 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 818 #endif 819 int oomkilladj; /* OOM kill score adjustment (bit shift). */ 820 char comm[TASK_COMM_LEN]; /* executable name excluding path 821 - access with [gs]et_task_comm (which lock 822 it with task_lock()) 823 - initialized normally by flush_old_exec */ 824 /* file system info */ 825 int link_count, total_link_count; 826 /* ipc stuff */ 827 struct sysv_sem sysvsem; 828 /* CPU-specific state of this task */ 829 struct thread_struct thread; 830 /* filesystem information */ 831 struct fs_struct *fs; 832 /* open file information */ 833 struct files_struct *files; 834 /* namespace */ 835 struct namespace *namespace; 836 /* signal handlers */ 837 struct signal_struct *signal; 838 struct sighand_struct *sighand; 839 840 sigset_t blocked, real_blocked; 841 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ 842 struct sigpending pending; 843 844 unsigned long sas_ss_sp; 845 size_t sas_ss_size; 846 int (*notifier)(void *priv); 847 void *notifier_data; 848 sigset_t *notifier_mask; 849 850 void *security; 851 struct audit_context *audit_context; 852 seccomp_t seccomp; 853 854 /* Thread group tracking */ 855 u32 parent_exec_id; 856 u32 self_exec_id; 857 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 858 spinlock_t alloc_lock; 859 860 /* Protection of the PI data structures: */ 861 spinlock_t pi_lock; 862 863 #ifdef CONFIG_RT_MUTEXES 864 /* PI waiters blocked on a rt_mutex held by this task */ 865 struct plist_head pi_waiters; 866 /* Deadlock detection and priority inheritance handling */ 867 struct rt_mutex_waiter *pi_blocked_on; 868 # ifdef CONFIG_DEBUG_RT_MUTEXES 869 spinlock_t held_list_lock; 870 struct list_head held_list_head; 871 # endif 872 #endif 873 874 #ifdef CONFIG_DEBUG_MUTEXES 875 /* mutex deadlock detection */ 876 struct mutex_waiter *blocked_on; 877 #endif 878 879 /* journalling filesystem info */ 880 void *journal_info; 881 882 /* VM state */ 883 struct reclaim_state *reclaim_state; 884 885 struct backing_dev_info *backing_dev_info; 886 887 struct io_context *io_context; 888 889 unsigned long ptrace_message; 890 siginfo_t *last_siginfo; /* For ptrace use. */ 891 /* 892 * current io wait handle: wait queue entry to use for io waits 893 * If this thread is processing aio, this points at the waitqueue 894 * inside the currently handled kiocb. It may be NULL (i.e. default 895 * to a stack based synchronous wait) if its doing sync IO. 896 */ 897 wait_queue_t *io_wait; 898 /* i/o counters(bytes read/written, #syscalls */ 899 u64 rchar, wchar, syscr, syscw; 900 #if defined(CONFIG_BSD_PROCESS_ACCT) 901 u64 acct_rss_mem1; /* accumulated rss usage */ 902 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 903 clock_t acct_stimexpd; /* clock_t-converted stime since last update */ 904 #endif 905 #ifdef CONFIG_NUMA 906 struct mempolicy *mempolicy; 907 short il_next; 908 #endif 909 #ifdef CONFIG_CPUSETS 910 struct cpuset *cpuset; 911 nodemask_t mems_allowed; 912 int cpuset_mems_generation; 913 int cpuset_mem_spread_rotor; 914 #endif 915 struct robust_list_head __user *robust_list; 916 #ifdef CONFIG_COMPAT 917 struct compat_robust_list_head __user *compat_robust_list; 918 #endif 919 struct list_head pi_state_list; 920 struct futex_pi_state *pi_state_cache; 921 922 atomic_t fs_excl; /* holding fs exclusive resources */ 923 struct rcu_head rcu; 924 925 /* 926 * cache last used pipe for splice 927 */ 928 struct pipe_inode_info *splice_pipe; 929 }; 930 931 static inline pid_t process_group(struct task_struct *tsk) 932 { 933 return tsk->signal->pgrp; 934 } 935 936 /** 937 * pid_alive - check that a task structure is not stale 938 * @p: Task structure to be checked. 939 * 940 * Test if a process is not yet dead (at most zombie state) 941 * If pid_alive fails, then pointers within the task structure 942 * can be stale and must not be dereferenced. 943 */ 944 static inline int pid_alive(struct task_struct *p) 945 { 946 return p->pids[PIDTYPE_PID].pid != NULL; 947 } 948 949 extern void free_task(struct task_struct *tsk); 950 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 951 952 extern void __put_task_struct(struct task_struct *t); 953 954 static inline void put_task_struct(struct task_struct *t) 955 { 956 if (atomic_dec_and_test(&t->usage)) 957 __put_task_struct(t); 958 } 959 960 /* 961 * Per process flags 962 */ 963 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 964 /* Not implemented yet, only for 486*/ 965 #define PF_STARTING 0x00000002 /* being created */ 966 #define PF_EXITING 0x00000004 /* getting shut down */ 967 #define PF_DEAD 0x00000008 /* Dead */ 968 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 969 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 970 #define PF_DUMPCORE 0x00000200 /* dumped core */ 971 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 972 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 973 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 974 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 975 #define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */ 976 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 977 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 978 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 979 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 980 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 981 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 982 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */ 983 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 984 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 985 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 986 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 987 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 988 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 989 990 /* 991 * Only the _current_ task can read/write to tsk->flags, but other 992 * tasks can access tsk->flags in readonly mode for example 993 * with tsk_used_math (like during threaded core dumping). 994 * There is however an exception to this rule during ptrace 995 * or during fork: the ptracer task is allowed to write to the 996 * child->flags of its traced child (same goes for fork, the parent 997 * can write to the child->flags), because we're guaranteed the 998 * child is not running and in turn not changing child->flags 999 * at the same time the parent does it. 1000 */ 1001 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1002 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1003 #define clear_used_math() clear_stopped_child_used_math(current) 1004 #define set_used_math() set_stopped_child_used_math(current) 1005 #define conditional_stopped_child_used_math(condition, child) \ 1006 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1007 #define conditional_used_math(condition) \ 1008 conditional_stopped_child_used_math(condition, current) 1009 #define copy_to_stopped_child_used_math(child) \ 1010 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1011 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1012 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1013 #define used_math() tsk_used_math(current) 1014 1015 #ifdef CONFIG_SMP 1016 extern int set_cpus_allowed(task_t *p, cpumask_t new_mask); 1017 #else 1018 static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask) 1019 { 1020 if (!cpu_isset(0, new_mask)) 1021 return -EINVAL; 1022 return 0; 1023 } 1024 #endif 1025 1026 extern unsigned long long sched_clock(void); 1027 extern unsigned long long current_sched_time(const task_t *current_task); 1028 1029 /* sched_exec is called by processes performing an exec */ 1030 #ifdef CONFIG_SMP 1031 extern void sched_exec(void); 1032 #else 1033 #define sched_exec() {} 1034 #endif 1035 1036 #ifdef CONFIG_HOTPLUG_CPU 1037 extern void idle_task_exit(void); 1038 #else 1039 static inline void idle_task_exit(void) {} 1040 #endif 1041 1042 extern void sched_idle_next(void); 1043 1044 #ifdef CONFIG_RT_MUTEXES 1045 extern int rt_mutex_getprio(task_t *p); 1046 extern void rt_mutex_setprio(task_t *p, int prio); 1047 extern void rt_mutex_adjust_pi(task_t *p); 1048 #else 1049 static inline int rt_mutex_getprio(task_t *p) 1050 { 1051 return p->normal_prio; 1052 } 1053 # define rt_mutex_adjust_pi(p) do { } while (0) 1054 #endif 1055 1056 extern void set_user_nice(task_t *p, long nice); 1057 extern int task_prio(const task_t *p); 1058 extern int task_nice(const task_t *p); 1059 extern int can_nice(const task_t *p, const int nice); 1060 extern int task_curr(const task_t *p); 1061 extern int idle_cpu(int cpu); 1062 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1063 extern task_t *idle_task(int cpu); 1064 extern task_t *curr_task(int cpu); 1065 extern void set_curr_task(int cpu, task_t *p); 1066 1067 void yield(void); 1068 1069 /* 1070 * The default (Linux) execution domain. 1071 */ 1072 extern struct exec_domain default_exec_domain; 1073 1074 union thread_union { 1075 struct thread_info thread_info; 1076 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1077 }; 1078 1079 #ifndef __HAVE_ARCH_KSTACK_END 1080 static inline int kstack_end(void *addr) 1081 { 1082 /* Reliable end of stack detection: 1083 * Some APM bios versions misalign the stack 1084 */ 1085 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1086 } 1087 #endif 1088 1089 extern union thread_union init_thread_union; 1090 extern struct task_struct init_task; 1091 1092 extern struct mm_struct init_mm; 1093 1094 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) 1095 extern struct task_struct *find_task_by_pid_type(int type, int pid); 1096 extern void set_special_pids(pid_t session, pid_t pgrp); 1097 extern void __set_special_pids(pid_t session, pid_t pgrp); 1098 1099 /* per-UID process charging. */ 1100 extern struct user_struct * alloc_uid(uid_t); 1101 static inline struct user_struct *get_uid(struct user_struct *u) 1102 { 1103 atomic_inc(&u->__count); 1104 return u; 1105 } 1106 extern void free_uid(struct user_struct *); 1107 extern void switch_uid(struct user_struct *); 1108 1109 #include <asm/current.h> 1110 1111 extern void do_timer(struct pt_regs *); 1112 1113 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 1114 extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 1115 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 1116 unsigned long clone_flags)); 1117 #ifdef CONFIG_SMP 1118 extern void kick_process(struct task_struct *tsk); 1119 #else 1120 static inline void kick_process(struct task_struct *tsk) { } 1121 #endif 1122 extern void FASTCALL(sched_fork(task_t * p, int clone_flags)); 1123 extern void FASTCALL(sched_exit(task_t * p)); 1124 1125 extern int in_group_p(gid_t); 1126 extern int in_egroup_p(gid_t); 1127 1128 extern void proc_caches_init(void); 1129 extern void flush_signals(struct task_struct *); 1130 extern void flush_signal_handlers(struct task_struct *, int force_default); 1131 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1132 1133 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1134 { 1135 unsigned long flags; 1136 int ret; 1137 1138 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1139 ret = dequeue_signal(tsk, mask, info); 1140 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1141 1142 return ret; 1143 } 1144 1145 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1146 sigset_t *mask); 1147 extern void unblock_all_signals(void); 1148 extern void release_task(struct task_struct * p); 1149 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1150 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 1151 extern int force_sigsegv(int, struct task_struct *); 1152 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1153 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp); 1154 extern int kill_pg_info(int, struct siginfo *, pid_t); 1155 extern int kill_proc_info(int, struct siginfo *, pid_t); 1156 extern int kill_proc_info_as_uid(int, struct siginfo *, pid_t, uid_t, uid_t, u32); 1157 extern void do_notify_parent(struct task_struct *, int); 1158 extern void force_sig(int, struct task_struct *); 1159 extern void force_sig_specific(int, struct task_struct *); 1160 extern int send_sig(int, struct task_struct *, int); 1161 extern void zap_other_threads(struct task_struct *p); 1162 extern int kill_pg(pid_t, int, int); 1163 extern int kill_proc(pid_t, int, int); 1164 extern struct sigqueue *sigqueue_alloc(void); 1165 extern void sigqueue_free(struct sigqueue *); 1166 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1167 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1168 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1169 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1170 1171 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 1172 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 1173 #define SEND_SIG_PRIV ((struct siginfo *) 1) 1174 #define SEND_SIG_FORCED ((struct siginfo *) 2) 1175 1176 static inline int is_si_special(const struct siginfo *info) 1177 { 1178 return info <= SEND_SIG_FORCED; 1179 } 1180 1181 /* True if we are on the alternate signal stack. */ 1182 1183 static inline int on_sig_stack(unsigned long sp) 1184 { 1185 return (sp - current->sas_ss_sp < current->sas_ss_size); 1186 } 1187 1188 static inline int sas_ss_flags(unsigned long sp) 1189 { 1190 return (current->sas_ss_size == 0 ? SS_DISABLE 1191 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1192 } 1193 1194 /* 1195 * Routines for handling mm_structs 1196 */ 1197 extern struct mm_struct * mm_alloc(void); 1198 1199 /* mmdrop drops the mm and the page tables */ 1200 extern void FASTCALL(__mmdrop(struct mm_struct *)); 1201 static inline void mmdrop(struct mm_struct * mm) 1202 { 1203 if (atomic_dec_and_test(&mm->mm_count)) 1204 __mmdrop(mm); 1205 } 1206 1207 /* mmput gets rid of the mappings and all user-space */ 1208 extern void mmput(struct mm_struct *); 1209 /* Grab a reference to a task's mm, if it is not already going away */ 1210 extern struct mm_struct *get_task_mm(struct task_struct *task); 1211 /* Remove the current tasks stale references to the old mm_struct */ 1212 extern void mm_release(struct task_struct *, struct mm_struct *); 1213 1214 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1215 extern void flush_thread(void); 1216 extern void exit_thread(void); 1217 1218 extern void exit_files(struct task_struct *); 1219 extern void __cleanup_signal(struct signal_struct *); 1220 extern void __cleanup_sighand(struct sighand_struct *); 1221 extern void exit_itimers(struct signal_struct *); 1222 1223 extern NORET_TYPE void do_group_exit(int); 1224 1225 extern void daemonize(const char *, ...); 1226 extern int allow_signal(int); 1227 extern int disallow_signal(int); 1228 extern task_t *child_reaper; 1229 1230 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1231 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1232 task_t *fork_idle(int); 1233 1234 extern void set_task_comm(struct task_struct *tsk, char *from); 1235 extern void get_task_comm(char *to, struct task_struct *tsk); 1236 1237 #ifdef CONFIG_SMP 1238 extern void wait_task_inactive(task_t * p); 1239 #else 1240 #define wait_task_inactive(p) do { } while (0) 1241 #endif 1242 1243 #define remove_parent(p) list_del_init(&(p)->sibling) 1244 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) 1245 1246 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1247 1248 #define for_each_process(p) \ 1249 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1250 1251 /* 1252 * Careful: do_each_thread/while_each_thread is a double loop so 1253 * 'break' will not work as expected - use goto instead. 1254 */ 1255 #define do_each_thread(g, t) \ 1256 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1257 1258 #define while_each_thread(g, t) \ 1259 while ((t = next_thread(t)) != g) 1260 1261 /* de_thread depends on thread_group_leader not being a pid based check */ 1262 #define thread_group_leader(p) (p == p->group_leader) 1263 1264 static inline task_t *next_thread(const task_t *p) 1265 { 1266 return list_entry(rcu_dereference(p->thread_group.next), 1267 task_t, thread_group); 1268 } 1269 1270 static inline int thread_group_empty(task_t *p) 1271 { 1272 return list_empty(&p->thread_group); 1273 } 1274 1275 #define delay_group_leader(p) \ 1276 (thread_group_leader(p) && !thread_group_empty(p)) 1277 1278 /* 1279 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1280 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1281 * pins the final release of task.io_context. Also protects ->cpuset. 1282 * 1283 * Nests both inside and outside of read_lock(&tasklist_lock). 1284 * It must not be nested with write_lock_irq(&tasklist_lock), 1285 * neither inside nor outside. 1286 */ 1287 static inline void task_lock(struct task_struct *p) 1288 { 1289 spin_lock(&p->alloc_lock); 1290 } 1291 1292 static inline void task_unlock(struct task_struct *p) 1293 { 1294 spin_unlock(&p->alloc_lock); 1295 } 1296 1297 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1298 unsigned long *flags); 1299 1300 static inline void unlock_task_sighand(struct task_struct *tsk, 1301 unsigned long *flags) 1302 { 1303 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1304 } 1305 1306 #ifndef __HAVE_THREAD_FUNCTIONS 1307 1308 #define task_thread_info(task) (task)->thread_info 1309 #define task_stack_page(task) ((void*)((task)->thread_info)) 1310 1311 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1312 { 1313 *task_thread_info(p) = *task_thread_info(org); 1314 task_thread_info(p)->task = p; 1315 } 1316 1317 static inline unsigned long *end_of_stack(struct task_struct *p) 1318 { 1319 return (unsigned long *)(p->thread_info + 1); 1320 } 1321 1322 #endif 1323 1324 /* set thread flags in other task's structures 1325 * - see asm/thread_info.h for TIF_xxxx flags available 1326 */ 1327 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1328 { 1329 set_ti_thread_flag(task_thread_info(tsk), flag); 1330 } 1331 1332 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1333 { 1334 clear_ti_thread_flag(task_thread_info(tsk), flag); 1335 } 1336 1337 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1338 { 1339 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1340 } 1341 1342 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1343 { 1344 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1345 } 1346 1347 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1348 { 1349 return test_ti_thread_flag(task_thread_info(tsk), flag); 1350 } 1351 1352 static inline void set_tsk_need_resched(struct task_struct *tsk) 1353 { 1354 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1355 } 1356 1357 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1358 { 1359 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1360 } 1361 1362 static inline int signal_pending(struct task_struct *p) 1363 { 1364 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1365 } 1366 1367 static inline int need_resched(void) 1368 { 1369 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1370 } 1371 1372 /* 1373 * cond_resched() and cond_resched_lock(): latency reduction via 1374 * explicit rescheduling in places that are safe. The return 1375 * value indicates whether a reschedule was done in fact. 1376 * cond_resched_lock() will drop the spinlock before scheduling, 1377 * cond_resched_softirq() will enable bhs before scheduling. 1378 */ 1379 extern int cond_resched(void); 1380 extern int cond_resched_lock(spinlock_t * lock); 1381 extern int cond_resched_softirq(void); 1382 1383 /* 1384 * Does a critical section need to be broken due to another 1385 * task waiting?: 1386 */ 1387 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1388 # define need_lockbreak(lock) ((lock)->break_lock) 1389 #else 1390 # define need_lockbreak(lock) 0 1391 #endif 1392 1393 /* 1394 * Does a critical section need to be broken due to another 1395 * task waiting or preemption being signalled: 1396 */ 1397 static inline int lock_need_resched(spinlock_t *lock) 1398 { 1399 if (need_lockbreak(lock) || need_resched()) 1400 return 1; 1401 return 0; 1402 } 1403 1404 /* Reevaluate whether the task has signals pending delivery. 1405 This is required every time the blocked sigset_t changes. 1406 callers must hold sighand->siglock. */ 1407 1408 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); 1409 extern void recalc_sigpending(void); 1410 1411 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1412 1413 /* 1414 * Wrappers for p->thread_info->cpu access. No-op on UP. 1415 */ 1416 #ifdef CONFIG_SMP 1417 1418 static inline unsigned int task_cpu(const struct task_struct *p) 1419 { 1420 return task_thread_info(p)->cpu; 1421 } 1422 1423 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1424 { 1425 task_thread_info(p)->cpu = cpu; 1426 } 1427 1428 #else 1429 1430 static inline unsigned int task_cpu(const struct task_struct *p) 1431 { 1432 return 0; 1433 } 1434 1435 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1436 { 1437 } 1438 1439 #endif /* CONFIG_SMP */ 1440 1441 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1442 extern void arch_pick_mmap_layout(struct mm_struct *mm); 1443 #else 1444 static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1445 { 1446 mm->mmap_base = TASK_UNMAPPED_BASE; 1447 mm->get_unmapped_area = arch_get_unmapped_area; 1448 mm->unmap_area = arch_unmap_area; 1449 } 1450 #endif 1451 1452 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1453 extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1454 1455 #include <linux/sysdev.h> 1456 extern int sched_mc_power_savings, sched_smt_power_savings; 1457 extern struct sysdev_attribute attr_sched_mc_power_savings, attr_sched_smt_power_savings; 1458 extern int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls); 1459 1460 extern void normalize_rt_tasks(void); 1461 1462 #ifdef CONFIG_PM 1463 /* 1464 * Check if a process has been frozen 1465 */ 1466 static inline int frozen(struct task_struct *p) 1467 { 1468 return p->flags & PF_FROZEN; 1469 } 1470 1471 /* 1472 * Check if there is a request to freeze a process 1473 */ 1474 static inline int freezing(struct task_struct *p) 1475 { 1476 return p->flags & PF_FREEZE; 1477 } 1478 1479 /* 1480 * Request that a process be frozen 1481 * FIXME: SMP problem. We may not modify other process' flags! 1482 */ 1483 static inline void freeze(struct task_struct *p) 1484 { 1485 p->flags |= PF_FREEZE; 1486 } 1487 1488 /* 1489 * Wake up a frozen process 1490 */ 1491 static inline int thaw_process(struct task_struct *p) 1492 { 1493 if (frozen(p)) { 1494 p->flags &= ~PF_FROZEN; 1495 wake_up_process(p); 1496 return 1; 1497 } 1498 return 0; 1499 } 1500 1501 /* 1502 * freezing is complete, mark process as frozen 1503 */ 1504 static inline void frozen_process(struct task_struct *p) 1505 { 1506 p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN; 1507 } 1508 1509 extern void refrigerator(void); 1510 extern int freeze_processes(void); 1511 extern void thaw_processes(void); 1512 1513 static inline int try_to_freeze(void) 1514 { 1515 if (freezing(current)) { 1516 refrigerator(); 1517 return 1; 1518 } else 1519 return 0; 1520 } 1521 #else 1522 static inline int frozen(struct task_struct *p) { return 0; } 1523 static inline int freezing(struct task_struct *p) { return 0; } 1524 static inline void freeze(struct task_struct *p) { BUG(); } 1525 static inline int thaw_process(struct task_struct *p) { return 1; } 1526 static inline void frozen_process(struct task_struct *p) { BUG(); } 1527 1528 static inline void refrigerator(void) {} 1529 static inline int freeze_processes(void) { BUG(); return 0; } 1530 static inline void thaw_processes(void) {} 1531 1532 static inline int try_to_freeze(void) { return 0; } 1533 1534 #endif /* CONFIG_PM */ 1535 #endif /* __KERNEL__ */ 1536 1537 #endif 1538