1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt_mask.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 62 #include <asm/processor.h> 63 64 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 65 66 /* 67 * Extended scheduling parameters data structure. 68 * 69 * This is needed because the original struct sched_param can not be 70 * altered without introducing ABI issues with legacy applications 71 * (e.g., in sched_getparam()). 72 * 73 * However, the possibility of specifying more than just a priority for 74 * the tasks may be useful for a wide variety of application fields, e.g., 75 * multimedia, streaming, automation and control, and many others. 76 * 77 * This variant (sched_attr) is meant at describing a so-called 78 * sporadic time-constrained task. In such model a task is specified by: 79 * - the activation period or minimum instance inter-arrival time; 80 * - the maximum (or average, depending on the actual scheduling 81 * discipline) computation time of all instances, a.k.a. runtime; 82 * - the deadline (relative to the actual activation time) of each 83 * instance. 84 * Very briefly, a periodic (sporadic) task asks for the execution of 85 * some specific computation --which is typically called an instance-- 86 * (at most) every period. Moreover, each instance typically lasts no more 87 * than the runtime and must be completed by time instant t equal to 88 * the instance activation time + the deadline. 89 * 90 * This is reflected by the actual fields of the sched_attr structure: 91 * 92 * @size size of the structure, for fwd/bwd compat. 93 * 94 * @sched_policy task's scheduling policy 95 * @sched_flags for customizing the scheduler behaviour 96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 97 * @sched_priority task's static priority (SCHED_FIFO/RR) 98 * @sched_deadline representative of the task's deadline 99 * @sched_runtime representative of the task's runtime 100 * @sched_period representative of the task's period 101 * 102 * Given this task model, there are a multiplicity of scheduling algorithms 103 * and policies, that can be used to ensure all the tasks will make their 104 * timing constraints. 105 * 106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 107 * only user of this new interface. More information about the algorithm 108 * available in the scheduling class file or in Documentation/. 109 */ 110 struct sched_attr { 111 u32 size; 112 113 u32 sched_policy; 114 u64 sched_flags; 115 116 /* SCHED_NORMAL, SCHED_BATCH */ 117 s32 sched_nice; 118 119 /* SCHED_FIFO, SCHED_RR */ 120 u32 sched_priority; 121 122 /* SCHED_DEADLINE */ 123 u64 sched_runtime; 124 u64 sched_deadline; 125 u64 sched_period; 126 }; 127 128 struct exec_domain; 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 137 #define VMACACHE_BITS 2 138 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 139 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 140 141 /* 142 * These are the constant used to fake the fixed-point load-average 143 * counting. Some notes: 144 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 145 * a load-average precision of 10 bits integer + 11 bits fractional 146 * - if you want to count load-averages more often, you need more 147 * precision, or rounding will get you. With 2-second counting freq, 148 * the EXP_n values would be 1981, 2034 and 2043 if still using only 149 * 11 bit fractions. 150 */ 151 extern unsigned long avenrun[]; /* Load averages */ 152 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 153 154 #define FSHIFT 11 /* nr of bits of precision */ 155 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 156 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 157 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 158 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 159 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 160 161 #define CALC_LOAD(load,exp,n) \ 162 load *= exp; \ 163 load += n*(FIXED_1-exp); \ 164 load >>= FSHIFT; 165 166 extern unsigned long total_forks; 167 extern int nr_threads; 168 DECLARE_PER_CPU(unsigned long, process_counts); 169 extern int nr_processes(void); 170 extern unsigned long nr_running(void); 171 extern bool single_task_running(void); 172 extern unsigned long nr_iowait(void); 173 extern unsigned long nr_iowait_cpu(int cpu); 174 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 175 176 extern void calc_global_load(unsigned long ticks); 177 extern void update_cpu_load_nohz(void); 178 179 extern unsigned long get_parent_ip(unsigned long addr); 180 181 extern void dump_cpu_task(int cpu); 182 183 struct seq_file; 184 struct cfs_rq; 185 struct task_group; 186 #ifdef CONFIG_SCHED_DEBUG 187 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 188 extern void proc_sched_set_task(struct task_struct *p); 189 extern void 190 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 191 #endif 192 193 /* 194 * Task state bitmask. NOTE! These bits are also 195 * encoded in fs/proc/array.c: get_task_state(). 196 * 197 * We have two separate sets of flags: task->state 198 * is about runnability, while task->exit_state are 199 * about the task exiting. Confusing, but this way 200 * modifying one set can't modify the other one by 201 * mistake. 202 */ 203 #define TASK_RUNNING 0 204 #define TASK_INTERRUPTIBLE 1 205 #define TASK_UNINTERRUPTIBLE 2 206 #define __TASK_STOPPED 4 207 #define __TASK_TRACED 8 208 /* in tsk->exit_state */ 209 #define EXIT_DEAD 16 210 #define EXIT_ZOMBIE 32 211 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 212 /* in tsk->state again */ 213 #define TASK_DEAD 64 214 #define TASK_WAKEKILL 128 215 #define TASK_WAKING 256 216 #define TASK_PARKED 512 217 #define TASK_STATE_MAX 1024 218 219 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP" 220 221 extern char ___assert_task_state[1 - 2*!!( 222 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 223 224 /* Convenience macros for the sake of set_task_state */ 225 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 226 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 227 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 228 229 /* Convenience macros for the sake of wake_up */ 230 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 231 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 232 233 /* get_task_state() */ 234 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 235 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 236 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 237 238 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 239 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 240 #define task_is_stopped_or_traced(task) \ 241 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 242 #define task_contributes_to_load(task) \ 243 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 244 (task->flags & PF_FROZEN) == 0) 245 246 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 247 248 #define __set_task_state(tsk, state_value) \ 249 do { \ 250 (tsk)->task_state_change = _THIS_IP_; \ 251 (tsk)->state = (state_value); \ 252 } while (0) 253 #define set_task_state(tsk, state_value) \ 254 do { \ 255 (tsk)->task_state_change = _THIS_IP_; \ 256 set_mb((tsk)->state, (state_value)); \ 257 } while (0) 258 259 /* 260 * set_current_state() includes a barrier so that the write of current->state 261 * is correctly serialised wrt the caller's subsequent test of whether to 262 * actually sleep: 263 * 264 * set_current_state(TASK_UNINTERRUPTIBLE); 265 * if (do_i_need_to_sleep()) 266 * schedule(); 267 * 268 * If the caller does not need such serialisation then use __set_current_state() 269 */ 270 #define __set_current_state(state_value) \ 271 do { \ 272 current->task_state_change = _THIS_IP_; \ 273 current->state = (state_value); \ 274 } while (0) 275 #define set_current_state(state_value) \ 276 do { \ 277 current->task_state_change = _THIS_IP_; \ 278 set_mb(current->state, (state_value)); \ 279 } while (0) 280 281 #else 282 283 #define __set_task_state(tsk, state_value) \ 284 do { (tsk)->state = (state_value); } while (0) 285 #define set_task_state(tsk, state_value) \ 286 set_mb((tsk)->state, (state_value)) 287 288 /* 289 * set_current_state() includes a barrier so that the write of current->state 290 * is correctly serialised wrt the caller's subsequent test of whether to 291 * actually sleep: 292 * 293 * set_current_state(TASK_UNINTERRUPTIBLE); 294 * if (do_i_need_to_sleep()) 295 * schedule(); 296 * 297 * If the caller does not need such serialisation then use __set_current_state() 298 */ 299 #define __set_current_state(state_value) \ 300 do { current->state = (state_value); } while (0) 301 #define set_current_state(state_value) \ 302 set_mb(current->state, (state_value)) 303 304 #endif 305 306 /* Task command name length */ 307 #define TASK_COMM_LEN 16 308 309 #include <linux/spinlock.h> 310 311 /* 312 * This serializes "schedule()" and also protects 313 * the run-queue from deletions/modifications (but 314 * _adding_ to the beginning of the run-queue has 315 * a separate lock). 316 */ 317 extern rwlock_t tasklist_lock; 318 extern spinlock_t mmlist_lock; 319 320 struct task_struct; 321 322 #ifdef CONFIG_PROVE_RCU 323 extern int lockdep_tasklist_lock_is_held(void); 324 #endif /* #ifdef CONFIG_PROVE_RCU */ 325 326 extern void sched_init(void); 327 extern void sched_init_smp(void); 328 extern asmlinkage void schedule_tail(struct task_struct *prev); 329 extern void init_idle(struct task_struct *idle, int cpu); 330 extern void init_idle_bootup_task(struct task_struct *idle); 331 332 extern int runqueue_is_locked(int cpu); 333 334 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 335 extern void nohz_balance_enter_idle(int cpu); 336 extern void set_cpu_sd_state_idle(void); 337 extern int get_nohz_timer_target(int pinned); 338 #else 339 static inline void nohz_balance_enter_idle(int cpu) { } 340 static inline void set_cpu_sd_state_idle(void) { } 341 static inline int get_nohz_timer_target(int pinned) 342 { 343 return smp_processor_id(); 344 } 345 #endif 346 347 /* 348 * Only dump TASK_* tasks. (0 for all tasks) 349 */ 350 extern void show_state_filter(unsigned long state_filter); 351 352 static inline void show_state(void) 353 { 354 show_state_filter(0); 355 } 356 357 extern void show_regs(struct pt_regs *); 358 359 /* 360 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 361 * task), SP is the stack pointer of the first frame that should be shown in the back 362 * trace (or NULL if the entire call-chain of the task should be shown). 363 */ 364 extern void show_stack(struct task_struct *task, unsigned long *sp); 365 366 extern void cpu_init (void); 367 extern void trap_init(void); 368 extern void update_process_times(int user); 369 extern void scheduler_tick(void); 370 371 extern void sched_show_task(struct task_struct *p); 372 373 #ifdef CONFIG_LOCKUP_DETECTOR 374 extern void touch_softlockup_watchdog(void); 375 extern void touch_softlockup_watchdog_sync(void); 376 extern void touch_all_softlockup_watchdogs(void); 377 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 378 void __user *buffer, 379 size_t *lenp, loff_t *ppos); 380 extern unsigned int softlockup_panic; 381 void lockup_detector_init(void); 382 #else 383 static inline void touch_softlockup_watchdog(void) 384 { 385 } 386 static inline void touch_softlockup_watchdog_sync(void) 387 { 388 } 389 static inline void touch_all_softlockup_watchdogs(void) 390 { 391 } 392 static inline void lockup_detector_init(void) 393 { 394 } 395 #endif 396 397 #ifdef CONFIG_DETECT_HUNG_TASK 398 void reset_hung_task_detector(void); 399 #else 400 static inline void reset_hung_task_detector(void) 401 { 402 } 403 #endif 404 405 /* Attach to any functions which should be ignored in wchan output. */ 406 #define __sched __attribute__((__section__(".sched.text"))) 407 408 /* Linker adds these: start and end of __sched functions */ 409 extern char __sched_text_start[], __sched_text_end[]; 410 411 /* Is this address in the __sched functions? */ 412 extern int in_sched_functions(unsigned long addr); 413 414 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 415 extern signed long schedule_timeout(signed long timeout); 416 extern signed long schedule_timeout_interruptible(signed long timeout); 417 extern signed long schedule_timeout_killable(signed long timeout); 418 extern signed long schedule_timeout_uninterruptible(signed long timeout); 419 asmlinkage void schedule(void); 420 extern void schedule_preempt_disabled(void); 421 422 extern long io_schedule_timeout(long timeout); 423 424 static inline void io_schedule(void) 425 { 426 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 427 } 428 429 struct nsproxy; 430 struct user_namespace; 431 432 #ifdef CONFIG_MMU 433 extern void arch_pick_mmap_layout(struct mm_struct *mm); 434 extern unsigned long 435 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 436 unsigned long, unsigned long); 437 extern unsigned long 438 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 439 unsigned long len, unsigned long pgoff, 440 unsigned long flags); 441 #else 442 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 443 #endif 444 445 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 446 #define SUID_DUMP_USER 1 /* Dump as user of process */ 447 #define SUID_DUMP_ROOT 2 /* Dump as root */ 448 449 /* mm flags */ 450 451 /* for SUID_DUMP_* above */ 452 #define MMF_DUMPABLE_BITS 2 453 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 454 455 extern void set_dumpable(struct mm_struct *mm, int value); 456 /* 457 * This returns the actual value of the suid_dumpable flag. For things 458 * that are using this for checking for privilege transitions, it must 459 * test against SUID_DUMP_USER rather than treating it as a boolean 460 * value. 461 */ 462 static inline int __get_dumpable(unsigned long mm_flags) 463 { 464 return mm_flags & MMF_DUMPABLE_MASK; 465 } 466 467 static inline int get_dumpable(struct mm_struct *mm) 468 { 469 return __get_dumpable(mm->flags); 470 } 471 472 /* coredump filter bits */ 473 #define MMF_DUMP_ANON_PRIVATE 2 474 #define MMF_DUMP_ANON_SHARED 3 475 #define MMF_DUMP_MAPPED_PRIVATE 4 476 #define MMF_DUMP_MAPPED_SHARED 5 477 #define MMF_DUMP_ELF_HEADERS 6 478 #define MMF_DUMP_HUGETLB_PRIVATE 7 479 #define MMF_DUMP_HUGETLB_SHARED 8 480 481 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 482 #define MMF_DUMP_FILTER_BITS 7 483 #define MMF_DUMP_FILTER_MASK \ 484 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 485 #define MMF_DUMP_FILTER_DEFAULT \ 486 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 487 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 488 489 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 490 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 491 #else 492 # define MMF_DUMP_MASK_DEFAULT_ELF 0 493 #endif 494 /* leave room for more dump flags */ 495 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 496 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 497 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 498 499 #define MMF_HAS_UPROBES 19 /* has uprobes */ 500 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 501 502 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 503 504 struct sighand_struct { 505 atomic_t count; 506 struct k_sigaction action[_NSIG]; 507 spinlock_t siglock; 508 wait_queue_head_t signalfd_wqh; 509 }; 510 511 struct pacct_struct { 512 int ac_flag; 513 long ac_exitcode; 514 unsigned long ac_mem; 515 cputime_t ac_utime, ac_stime; 516 unsigned long ac_minflt, ac_majflt; 517 }; 518 519 struct cpu_itimer { 520 cputime_t expires; 521 cputime_t incr; 522 u32 error; 523 u32 incr_error; 524 }; 525 526 /** 527 * struct cputime - snaphsot of system and user cputime 528 * @utime: time spent in user mode 529 * @stime: time spent in system mode 530 * 531 * Gathers a generic snapshot of user and system time. 532 */ 533 struct cputime { 534 cputime_t utime; 535 cputime_t stime; 536 }; 537 538 /** 539 * struct task_cputime - collected CPU time counts 540 * @utime: time spent in user mode, in &cputime_t units 541 * @stime: time spent in kernel mode, in &cputime_t units 542 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 543 * 544 * This is an extension of struct cputime that includes the total runtime 545 * spent by the task from the scheduler point of view. 546 * 547 * As a result, this structure groups together three kinds of CPU time 548 * that are tracked for threads and thread groups. Most things considering 549 * CPU time want to group these counts together and treat all three 550 * of them in parallel. 551 */ 552 struct task_cputime { 553 cputime_t utime; 554 cputime_t stime; 555 unsigned long long sum_exec_runtime; 556 }; 557 /* Alternate field names when used to cache expirations. */ 558 #define prof_exp stime 559 #define virt_exp utime 560 #define sched_exp sum_exec_runtime 561 562 #define INIT_CPUTIME \ 563 (struct task_cputime) { \ 564 .utime = 0, \ 565 .stime = 0, \ 566 .sum_exec_runtime = 0, \ 567 } 568 569 #ifdef CONFIG_PREEMPT_COUNT 570 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 571 #else 572 #define PREEMPT_DISABLED PREEMPT_ENABLED 573 #endif 574 575 /* 576 * Disable preemption until the scheduler is running. 577 * Reset by start_kernel()->sched_init()->init_idle(). 578 * 579 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 580 * before the scheduler is active -- see should_resched(). 581 */ 582 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 583 584 /** 585 * struct thread_group_cputimer - thread group interval timer counts 586 * @cputime: thread group interval timers. 587 * @running: non-zero when there are timers running and 588 * @cputime receives updates. 589 * @lock: lock for fields in this struct. 590 * 591 * This structure contains the version of task_cputime, above, that is 592 * used for thread group CPU timer calculations. 593 */ 594 struct thread_group_cputimer { 595 struct task_cputime cputime; 596 int running; 597 raw_spinlock_t lock; 598 }; 599 600 #include <linux/rwsem.h> 601 struct autogroup; 602 603 /* 604 * NOTE! "signal_struct" does not have its own 605 * locking, because a shared signal_struct always 606 * implies a shared sighand_struct, so locking 607 * sighand_struct is always a proper superset of 608 * the locking of signal_struct. 609 */ 610 struct signal_struct { 611 atomic_t sigcnt; 612 atomic_t live; 613 int nr_threads; 614 struct list_head thread_head; 615 616 wait_queue_head_t wait_chldexit; /* for wait4() */ 617 618 /* current thread group signal load-balancing target: */ 619 struct task_struct *curr_target; 620 621 /* shared signal handling: */ 622 struct sigpending shared_pending; 623 624 /* thread group exit support */ 625 int group_exit_code; 626 /* overloaded: 627 * - notify group_exit_task when ->count is equal to notify_count 628 * - everyone except group_exit_task is stopped during signal delivery 629 * of fatal signals, group_exit_task processes the signal. 630 */ 631 int notify_count; 632 struct task_struct *group_exit_task; 633 634 /* thread group stop support, overloads group_exit_code too */ 635 int group_stop_count; 636 unsigned int flags; /* see SIGNAL_* flags below */ 637 638 /* 639 * PR_SET_CHILD_SUBREAPER marks a process, like a service 640 * manager, to re-parent orphan (double-forking) child processes 641 * to this process instead of 'init'. The service manager is 642 * able to receive SIGCHLD signals and is able to investigate 643 * the process until it calls wait(). All children of this 644 * process will inherit a flag if they should look for a 645 * child_subreaper process at exit. 646 */ 647 unsigned int is_child_subreaper:1; 648 unsigned int has_child_subreaper:1; 649 650 /* POSIX.1b Interval Timers */ 651 int posix_timer_id; 652 struct list_head posix_timers; 653 654 /* ITIMER_REAL timer for the process */ 655 struct hrtimer real_timer; 656 struct pid *leader_pid; 657 ktime_t it_real_incr; 658 659 /* 660 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 661 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 662 * values are defined to 0 and 1 respectively 663 */ 664 struct cpu_itimer it[2]; 665 666 /* 667 * Thread group totals for process CPU timers. 668 * See thread_group_cputimer(), et al, for details. 669 */ 670 struct thread_group_cputimer cputimer; 671 672 /* Earliest-expiration cache. */ 673 struct task_cputime cputime_expires; 674 675 struct list_head cpu_timers[3]; 676 677 struct pid *tty_old_pgrp; 678 679 /* boolean value for session group leader */ 680 int leader; 681 682 struct tty_struct *tty; /* NULL if no tty */ 683 684 #ifdef CONFIG_SCHED_AUTOGROUP 685 struct autogroup *autogroup; 686 #endif 687 /* 688 * Cumulative resource counters for dead threads in the group, 689 * and for reaped dead child processes forked by this group. 690 * Live threads maintain their own counters and add to these 691 * in __exit_signal, except for the group leader. 692 */ 693 seqlock_t stats_lock; 694 cputime_t utime, stime, cutime, cstime; 695 cputime_t gtime; 696 cputime_t cgtime; 697 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 698 struct cputime prev_cputime; 699 #endif 700 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 701 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 702 unsigned long inblock, oublock, cinblock, coublock; 703 unsigned long maxrss, cmaxrss; 704 struct task_io_accounting ioac; 705 706 /* 707 * Cumulative ns of schedule CPU time fo dead threads in the 708 * group, not including a zombie group leader, (This only differs 709 * from jiffies_to_ns(utime + stime) if sched_clock uses something 710 * other than jiffies.) 711 */ 712 unsigned long long sum_sched_runtime; 713 714 /* 715 * We don't bother to synchronize most readers of this at all, 716 * because there is no reader checking a limit that actually needs 717 * to get both rlim_cur and rlim_max atomically, and either one 718 * alone is a single word that can safely be read normally. 719 * getrlimit/setrlimit use task_lock(current->group_leader) to 720 * protect this instead of the siglock, because they really 721 * have no need to disable irqs. 722 */ 723 struct rlimit rlim[RLIM_NLIMITS]; 724 725 #ifdef CONFIG_BSD_PROCESS_ACCT 726 struct pacct_struct pacct; /* per-process accounting information */ 727 #endif 728 #ifdef CONFIG_TASKSTATS 729 struct taskstats *stats; 730 #endif 731 #ifdef CONFIG_AUDIT 732 unsigned audit_tty; 733 unsigned audit_tty_log_passwd; 734 struct tty_audit_buf *tty_audit_buf; 735 #endif 736 #ifdef CONFIG_CGROUPS 737 /* 738 * group_rwsem prevents new tasks from entering the threadgroup and 739 * member tasks from exiting,a more specifically, setting of 740 * PF_EXITING. fork and exit paths are protected with this rwsem 741 * using threadgroup_change_begin/end(). Users which require 742 * threadgroup to remain stable should use threadgroup_[un]lock() 743 * which also takes care of exec path. Currently, cgroup is the 744 * only user. 745 */ 746 struct rw_semaphore group_rwsem; 747 #endif 748 749 oom_flags_t oom_flags; 750 short oom_score_adj; /* OOM kill score adjustment */ 751 short oom_score_adj_min; /* OOM kill score adjustment min value. 752 * Only settable by CAP_SYS_RESOURCE. */ 753 754 struct mutex cred_guard_mutex; /* guard against foreign influences on 755 * credential calculations 756 * (notably. ptrace) */ 757 }; 758 759 /* 760 * Bits in flags field of signal_struct. 761 */ 762 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 763 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 764 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 765 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 766 /* 767 * Pending notifications to parent. 768 */ 769 #define SIGNAL_CLD_STOPPED 0x00000010 770 #define SIGNAL_CLD_CONTINUED 0x00000020 771 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 772 773 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 774 775 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 776 static inline int signal_group_exit(const struct signal_struct *sig) 777 { 778 return (sig->flags & SIGNAL_GROUP_EXIT) || 779 (sig->group_exit_task != NULL); 780 } 781 782 /* 783 * Some day this will be a full-fledged user tracking system.. 784 */ 785 struct user_struct { 786 atomic_t __count; /* reference count */ 787 atomic_t processes; /* How many processes does this user have? */ 788 atomic_t sigpending; /* How many pending signals does this user have? */ 789 #ifdef CONFIG_INOTIFY_USER 790 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 791 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 792 #endif 793 #ifdef CONFIG_FANOTIFY 794 atomic_t fanotify_listeners; 795 #endif 796 #ifdef CONFIG_EPOLL 797 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 798 #endif 799 #ifdef CONFIG_POSIX_MQUEUE 800 /* protected by mq_lock */ 801 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 802 #endif 803 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 804 805 #ifdef CONFIG_KEYS 806 struct key *uid_keyring; /* UID specific keyring */ 807 struct key *session_keyring; /* UID's default session keyring */ 808 #endif 809 810 /* Hash table maintenance information */ 811 struct hlist_node uidhash_node; 812 kuid_t uid; 813 814 #ifdef CONFIG_PERF_EVENTS 815 atomic_long_t locked_vm; 816 #endif 817 }; 818 819 extern int uids_sysfs_init(void); 820 821 extern struct user_struct *find_user(kuid_t); 822 823 extern struct user_struct root_user; 824 #define INIT_USER (&root_user) 825 826 827 struct backing_dev_info; 828 struct reclaim_state; 829 830 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 831 struct sched_info { 832 /* cumulative counters */ 833 unsigned long pcount; /* # of times run on this cpu */ 834 unsigned long long run_delay; /* time spent waiting on a runqueue */ 835 836 /* timestamps */ 837 unsigned long long last_arrival,/* when we last ran on a cpu */ 838 last_queued; /* when we were last queued to run */ 839 }; 840 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 841 842 #ifdef CONFIG_TASK_DELAY_ACCT 843 struct task_delay_info { 844 spinlock_t lock; 845 unsigned int flags; /* Private per-task flags */ 846 847 /* For each stat XXX, add following, aligned appropriately 848 * 849 * struct timespec XXX_start, XXX_end; 850 * u64 XXX_delay; 851 * u32 XXX_count; 852 * 853 * Atomicity of updates to XXX_delay, XXX_count protected by 854 * single lock above (split into XXX_lock if contention is an issue). 855 */ 856 857 /* 858 * XXX_count is incremented on every XXX operation, the delay 859 * associated with the operation is added to XXX_delay. 860 * XXX_delay contains the accumulated delay time in nanoseconds. 861 */ 862 u64 blkio_start; /* Shared by blkio, swapin */ 863 u64 blkio_delay; /* wait for sync block io completion */ 864 u64 swapin_delay; /* wait for swapin block io completion */ 865 u32 blkio_count; /* total count of the number of sync block */ 866 /* io operations performed */ 867 u32 swapin_count; /* total count of the number of swapin block */ 868 /* io operations performed */ 869 870 u64 freepages_start; 871 u64 freepages_delay; /* wait for memory reclaim */ 872 u32 freepages_count; /* total count of memory reclaim */ 873 }; 874 #endif /* CONFIG_TASK_DELAY_ACCT */ 875 876 static inline int sched_info_on(void) 877 { 878 #ifdef CONFIG_SCHEDSTATS 879 return 1; 880 #elif defined(CONFIG_TASK_DELAY_ACCT) 881 extern int delayacct_on; 882 return delayacct_on; 883 #else 884 return 0; 885 #endif 886 } 887 888 enum cpu_idle_type { 889 CPU_IDLE, 890 CPU_NOT_IDLE, 891 CPU_NEWLY_IDLE, 892 CPU_MAX_IDLE_TYPES 893 }; 894 895 /* 896 * Increase resolution of cpu_capacity calculations 897 */ 898 #define SCHED_CAPACITY_SHIFT 10 899 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 900 901 /* 902 * sched-domains (multiprocessor balancing) declarations: 903 */ 904 #ifdef CONFIG_SMP 905 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 906 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 907 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 908 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 909 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 910 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 911 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 912 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 913 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 914 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 915 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 916 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 917 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 918 #define SD_NUMA 0x4000 /* cross-node balancing */ 919 920 #ifdef CONFIG_SCHED_SMT 921 static inline int cpu_smt_flags(void) 922 { 923 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 924 } 925 #endif 926 927 #ifdef CONFIG_SCHED_MC 928 static inline int cpu_core_flags(void) 929 { 930 return SD_SHARE_PKG_RESOURCES; 931 } 932 #endif 933 934 #ifdef CONFIG_NUMA 935 static inline int cpu_numa_flags(void) 936 { 937 return SD_NUMA; 938 } 939 #endif 940 941 struct sched_domain_attr { 942 int relax_domain_level; 943 }; 944 945 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 946 .relax_domain_level = -1, \ 947 } 948 949 extern int sched_domain_level_max; 950 951 struct sched_group; 952 953 struct sched_domain { 954 /* These fields must be setup */ 955 struct sched_domain *parent; /* top domain must be null terminated */ 956 struct sched_domain *child; /* bottom domain must be null terminated */ 957 struct sched_group *groups; /* the balancing groups of the domain */ 958 unsigned long min_interval; /* Minimum balance interval ms */ 959 unsigned long max_interval; /* Maximum balance interval ms */ 960 unsigned int busy_factor; /* less balancing by factor if busy */ 961 unsigned int imbalance_pct; /* No balance until over watermark */ 962 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 963 unsigned int busy_idx; 964 unsigned int idle_idx; 965 unsigned int newidle_idx; 966 unsigned int wake_idx; 967 unsigned int forkexec_idx; 968 unsigned int smt_gain; 969 970 int nohz_idle; /* NOHZ IDLE status */ 971 int flags; /* See SD_* */ 972 int level; 973 974 /* Runtime fields. */ 975 unsigned long last_balance; /* init to jiffies. units in jiffies */ 976 unsigned int balance_interval; /* initialise to 1. units in ms. */ 977 unsigned int nr_balance_failed; /* initialise to 0 */ 978 979 /* idle_balance() stats */ 980 u64 max_newidle_lb_cost; 981 unsigned long next_decay_max_lb_cost; 982 983 #ifdef CONFIG_SCHEDSTATS 984 /* load_balance() stats */ 985 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 986 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 987 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 988 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 989 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 990 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 991 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 992 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 993 994 /* Active load balancing */ 995 unsigned int alb_count; 996 unsigned int alb_failed; 997 unsigned int alb_pushed; 998 999 /* SD_BALANCE_EXEC stats */ 1000 unsigned int sbe_count; 1001 unsigned int sbe_balanced; 1002 unsigned int sbe_pushed; 1003 1004 /* SD_BALANCE_FORK stats */ 1005 unsigned int sbf_count; 1006 unsigned int sbf_balanced; 1007 unsigned int sbf_pushed; 1008 1009 /* try_to_wake_up() stats */ 1010 unsigned int ttwu_wake_remote; 1011 unsigned int ttwu_move_affine; 1012 unsigned int ttwu_move_balance; 1013 #endif 1014 #ifdef CONFIG_SCHED_DEBUG 1015 char *name; 1016 #endif 1017 union { 1018 void *private; /* used during construction */ 1019 struct rcu_head rcu; /* used during destruction */ 1020 }; 1021 1022 unsigned int span_weight; 1023 /* 1024 * Span of all CPUs in this domain. 1025 * 1026 * NOTE: this field is variable length. (Allocated dynamically 1027 * by attaching extra space to the end of the structure, 1028 * depending on how many CPUs the kernel has booted up with) 1029 */ 1030 unsigned long span[0]; 1031 }; 1032 1033 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1034 { 1035 return to_cpumask(sd->span); 1036 } 1037 1038 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1039 struct sched_domain_attr *dattr_new); 1040 1041 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1042 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1043 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1044 1045 bool cpus_share_cache(int this_cpu, int that_cpu); 1046 1047 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1048 typedef int (*sched_domain_flags_f)(void); 1049 1050 #define SDTL_OVERLAP 0x01 1051 1052 struct sd_data { 1053 struct sched_domain **__percpu sd; 1054 struct sched_group **__percpu sg; 1055 struct sched_group_capacity **__percpu sgc; 1056 }; 1057 1058 struct sched_domain_topology_level { 1059 sched_domain_mask_f mask; 1060 sched_domain_flags_f sd_flags; 1061 int flags; 1062 int numa_level; 1063 struct sd_data data; 1064 #ifdef CONFIG_SCHED_DEBUG 1065 char *name; 1066 #endif 1067 }; 1068 1069 extern struct sched_domain_topology_level *sched_domain_topology; 1070 1071 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1072 extern void wake_up_if_idle(int cpu); 1073 1074 #ifdef CONFIG_SCHED_DEBUG 1075 # define SD_INIT_NAME(type) .name = #type 1076 #else 1077 # define SD_INIT_NAME(type) 1078 #endif 1079 1080 #else /* CONFIG_SMP */ 1081 1082 struct sched_domain_attr; 1083 1084 static inline void 1085 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1086 struct sched_domain_attr *dattr_new) 1087 { 1088 } 1089 1090 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1091 { 1092 return true; 1093 } 1094 1095 #endif /* !CONFIG_SMP */ 1096 1097 1098 struct io_context; /* See blkdev.h */ 1099 1100 1101 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1102 extern void prefetch_stack(struct task_struct *t); 1103 #else 1104 static inline void prefetch_stack(struct task_struct *t) { } 1105 #endif 1106 1107 struct audit_context; /* See audit.c */ 1108 struct mempolicy; 1109 struct pipe_inode_info; 1110 struct uts_namespace; 1111 1112 struct load_weight { 1113 unsigned long weight; 1114 u32 inv_weight; 1115 }; 1116 1117 struct sched_avg { 1118 /* 1119 * These sums represent an infinite geometric series and so are bound 1120 * above by 1024/(1-y). Thus we only need a u32 to store them for all 1121 * choices of y < 1-2^(-32)*1024. 1122 */ 1123 u32 runnable_avg_sum, runnable_avg_period; 1124 u64 last_runnable_update; 1125 s64 decay_count; 1126 unsigned long load_avg_contrib; 1127 }; 1128 1129 #ifdef CONFIG_SCHEDSTATS 1130 struct sched_statistics { 1131 u64 wait_start; 1132 u64 wait_max; 1133 u64 wait_count; 1134 u64 wait_sum; 1135 u64 iowait_count; 1136 u64 iowait_sum; 1137 1138 u64 sleep_start; 1139 u64 sleep_max; 1140 s64 sum_sleep_runtime; 1141 1142 u64 block_start; 1143 u64 block_max; 1144 u64 exec_max; 1145 u64 slice_max; 1146 1147 u64 nr_migrations_cold; 1148 u64 nr_failed_migrations_affine; 1149 u64 nr_failed_migrations_running; 1150 u64 nr_failed_migrations_hot; 1151 u64 nr_forced_migrations; 1152 1153 u64 nr_wakeups; 1154 u64 nr_wakeups_sync; 1155 u64 nr_wakeups_migrate; 1156 u64 nr_wakeups_local; 1157 u64 nr_wakeups_remote; 1158 u64 nr_wakeups_affine; 1159 u64 nr_wakeups_affine_attempts; 1160 u64 nr_wakeups_passive; 1161 u64 nr_wakeups_idle; 1162 }; 1163 #endif 1164 1165 struct sched_entity { 1166 struct load_weight load; /* for load-balancing */ 1167 struct rb_node run_node; 1168 struct list_head group_node; 1169 unsigned int on_rq; 1170 1171 u64 exec_start; 1172 u64 sum_exec_runtime; 1173 u64 vruntime; 1174 u64 prev_sum_exec_runtime; 1175 1176 u64 nr_migrations; 1177 1178 #ifdef CONFIG_SCHEDSTATS 1179 struct sched_statistics statistics; 1180 #endif 1181 1182 #ifdef CONFIG_FAIR_GROUP_SCHED 1183 int depth; 1184 struct sched_entity *parent; 1185 /* rq on which this entity is (to be) queued: */ 1186 struct cfs_rq *cfs_rq; 1187 /* rq "owned" by this entity/group: */ 1188 struct cfs_rq *my_q; 1189 #endif 1190 1191 #ifdef CONFIG_SMP 1192 /* Per-entity load-tracking */ 1193 struct sched_avg avg; 1194 #endif 1195 }; 1196 1197 struct sched_rt_entity { 1198 struct list_head run_list; 1199 unsigned long timeout; 1200 unsigned long watchdog_stamp; 1201 unsigned int time_slice; 1202 1203 struct sched_rt_entity *back; 1204 #ifdef CONFIG_RT_GROUP_SCHED 1205 struct sched_rt_entity *parent; 1206 /* rq on which this entity is (to be) queued: */ 1207 struct rt_rq *rt_rq; 1208 /* rq "owned" by this entity/group: */ 1209 struct rt_rq *my_q; 1210 #endif 1211 }; 1212 1213 struct sched_dl_entity { 1214 struct rb_node rb_node; 1215 1216 /* 1217 * Original scheduling parameters. Copied here from sched_attr 1218 * during sched_setattr(), they will remain the same until 1219 * the next sched_setattr(). 1220 */ 1221 u64 dl_runtime; /* maximum runtime for each instance */ 1222 u64 dl_deadline; /* relative deadline of each instance */ 1223 u64 dl_period; /* separation of two instances (period) */ 1224 u64 dl_bw; /* dl_runtime / dl_deadline */ 1225 1226 /* 1227 * Actual scheduling parameters. Initialized with the values above, 1228 * they are continously updated during task execution. Note that 1229 * the remaining runtime could be < 0 in case we are in overrun. 1230 */ 1231 s64 runtime; /* remaining runtime for this instance */ 1232 u64 deadline; /* absolute deadline for this instance */ 1233 unsigned int flags; /* specifying the scheduler behaviour */ 1234 1235 /* 1236 * Some bool flags: 1237 * 1238 * @dl_throttled tells if we exhausted the runtime. If so, the 1239 * task has to wait for a replenishment to be performed at the 1240 * next firing of dl_timer. 1241 * 1242 * @dl_new tells if a new instance arrived. If so we must 1243 * start executing it with full runtime and reset its absolute 1244 * deadline; 1245 * 1246 * @dl_boosted tells if we are boosted due to DI. If so we are 1247 * outside bandwidth enforcement mechanism (but only until we 1248 * exit the critical section); 1249 * 1250 * @dl_yielded tells if task gave up the cpu before consuming 1251 * all its available runtime during the last job. 1252 */ 1253 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1254 1255 /* 1256 * Bandwidth enforcement timer. Each -deadline task has its 1257 * own bandwidth to be enforced, thus we need one timer per task. 1258 */ 1259 struct hrtimer dl_timer; 1260 }; 1261 1262 union rcu_special { 1263 struct { 1264 bool blocked; 1265 bool need_qs; 1266 } b; 1267 short s; 1268 }; 1269 struct rcu_node; 1270 1271 enum perf_event_task_context { 1272 perf_invalid_context = -1, 1273 perf_hw_context = 0, 1274 perf_sw_context, 1275 perf_nr_task_contexts, 1276 }; 1277 1278 struct task_struct { 1279 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1280 void *stack; 1281 atomic_t usage; 1282 unsigned int flags; /* per process flags, defined below */ 1283 unsigned int ptrace; 1284 1285 #ifdef CONFIG_SMP 1286 struct llist_node wake_entry; 1287 int on_cpu; 1288 struct task_struct *last_wakee; 1289 unsigned long wakee_flips; 1290 unsigned long wakee_flip_decay_ts; 1291 1292 int wake_cpu; 1293 #endif 1294 int on_rq; 1295 1296 int prio, static_prio, normal_prio; 1297 unsigned int rt_priority; 1298 const struct sched_class *sched_class; 1299 struct sched_entity se; 1300 struct sched_rt_entity rt; 1301 #ifdef CONFIG_CGROUP_SCHED 1302 struct task_group *sched_task_group; 1303 #endif 1304 struct sched_dl_entity dl; 1305 1306 #ifdef CONFIG_PREEMPT_NOTIFIERS 1307 /* list of struct preempt_notifier: */ 1308 struct hlist_head preempt_notifiers; 1309 #endif 1310 1311 #ifdef CONFIG_BLK_DEV_IO_TRACE 1312 unsigned int btrace_seq; 1313 #endif 1314 1315 unsigned int policy; 1316 int nr_cpus_allowed; 1317 cpumask_t cpus_allowed; 1318 1319 #ifdef CONFIG_PREEMPT_RCU 1320 int rcu_read_lock_nesting; 1321 union rcu_special rcu_read_unlock_special; 1322 struct list_head rcu_node_entry; 1323 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1324 #ifdef CONFIG_PREEMPT_RCU 1325 struct rcu_node *rcu_blocked_node; 1326 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1327 #ifdef CONFIG_TASKS_RCU 1328 unsigned long rcu_tasks_nvcsw; 1329 bool rcu_tasks_holdout; 1330 struct list_head rcu_tasks_holdout_list; 1331 int rcu_tasks_idle_cpu; 1332 #endif /* #ifdef CONFIG_TASKS_RCU */ 1333 1334 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1335 struct sched_info sched_info; 1336 #endif 1337 1338 struct list_head tasks; 1339 #ifdef CONFIG_SMP 1340 struct plist_node pushable_tasks; 1341 struct rb_node pushable_dl_tasks; 1342 #endif 1343 1344 struct mm_struct *mm, *active_mm; 1345 #ifdef CONFIG_COMPAT_BRK 1346 unsigned brk_randomized:1; 1347 #endif 1348 /* per-thread vma caching */ 1349 u32 vmacache_seqnum; 1350 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1351 #if defined(SPLIT_RSS_COUNTING) 1352 struct task_rss_stat rss_stat; 1353 #endif 1354 /* task state */ 1355 int exit_state; 1356 int exit_code, exit_signal; 1357 int pdeath_signal; /* The signal sent when the parent dies */ 1358 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1359 1360 /* Used for emulating ABI behavior of previous Linux versions */ 1361 unsigned int personality; 1362 1363 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1364 * execve */ 1365 unsigned in_iowait:1; 1366 1367 /* Revert to default priority/policy when forking */ 1368 unsigned sched_reset_on_fork:1; 1369 unsigned sched_contributes_to_load:1; 1370 1371 #ifdef CONFIG_MEMCG_KMEM 1372 unsigned memcg_kmem_skip_account:1; 1373 #endif 1374 1375 unsigned long atomic_flags; /* Flags needing atomic access. */ 1376 1377 struct restart_block restart_block; 1378 1379 pid_t pid; 1380 pid_t tgid; 1381 1382 #ifdef CONFIG_CC_STACKPROTECTOR 1383 /* Canary value for the -fstack-protector gcc feature */ 1384 unsigned long stack_canary; 1385 #endif 1386 /* 1387 * pointers to (original) parent process, youngest child, younger sibling, 1388 * older sibling, respectively. (p->father can be replaced with 1389 * p->real_parent->pid) 1390 */ 1391 struct task_struct __rcu *real_parent; /* real parent process */ 1392 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1393 /* 1394 * children/sibling forms the list of my natural children 1395 */ 1396 struct list_head children; /* list of my children */ 1397 struct list_head sibling; /* linkage in my parent's children list */ 1398 struct task_struct *group_leader; /* threadgroup leader */ 1399 1400 /* 1401 * ptraced is the list of tasks this task is using ptrace on. 1402 * This includes both natural children and PTRACE_ATTACH targets. 1403 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1404 */ 1405 struct list_head ptraced; 1406 struct list_head ptrace_entry; 1407 1408 /* PID/PID hash table linkage. */ 1409 struct pid_link pids[PIDTYPE_MAX]; 1410 struct list_head thread_group; 1411 struct list_head thread_node; 1412 1413 struct completion *vfork_done; /* for vfork() */ 1414 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1415 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1416 1417 cputime_t utime, stime, utimescaled, stimescaled; 1418 cputime_t gtime; 1419 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1420 struct cputime prev_cputime; 1421 #endif 1422 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1423 seqlock_t vtime_seqlock; 1424 unsigned long long vtime_snap; 1425 enum { 1426 VTIME_SLEEPING = 0, 1427 VTIME_USER, 1428 VTIME_SYS, 1429 } vtime_snap_whence; 1430 #endif 1431 unsigned long nvcsw, nivcsw; /* context switch counts */ 1432 u64 start_time; /* monotonic time in nsec */ 1433 u64 real_start_time; /* boot based time in nsec */ 1434 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1435 unsigned long min_flt, maj_flt; 1436 1437 struct task_cputime cputime_expires; 1438 struct list_head cpu_timers[3]; 1439 1440 /* process credentials */ 1441 const struct cred __rcu *real_cred; /* objective and real subjective task 1442 * credentials (COW) */ 1443 const struct cred __rcu *cred; /* effective (overridable) subjective task 1444 * credentials (COW) */ 1445 char comm[TASK_COMM_LEN]; /* executable name excluding path 1446 - access with [gs]et_task_comm (which lock 1447 it with task_lock()) 1448 - initialized normally by setup_new_exec */ 1449 /* file system info */ 1450 int link_count, total_link_count; 1451 #ifdef CONFIG_SYSVIPC 1452 /* ipc stuff */ 1453 struct sysv_sem sysvsem; 1454 struct sysv_shm sysvshm; 1455 #endif 1456 #ifdef CONFIG_DETECT_HUNG_TASK 1457 /* hung task detection */ 1458 unsigned long last_switch_count; 1459 #endif 1460 /* CPU-specific state of this task */ 1461 struct thread_struct thread; 1462 /* filesystem information */ 1463 struct fs_struct *fs; 1464 /* open file information */ 1465 struct files_struct *files; 1466 /* namespaces */ 1467 struct nsproxy *nsproxy; 1468 /* signal handlers */ 1469 struct signal_struct *signal; 1470 struct sighand_struct *sighand; 1471 1472 sigset_t blocked, real_blocked; 1473 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1474 struct sigpending pending; 1475 1476 unsigned long sas_ss_sp; 1477 size_t sas_ss_size; 1478 int (*notifier)(void *priv); 1479 void *notifier_data; 1480 sigset_t *notifier_mask; 1481 struct callback_head *task_works; 1482 1483 struct audit_context *audit_context; 1484 #ifdef CONFIG_AUDITSYSCALL 1485 kuid_t loginuid; 1486 unsigned int sessionid; 1487 #endif 1488 struct seccomp seccomp; 1489 1490 /* Thread group tracking */ 1491 u32 parent_exec_id; 1492 u32 self_exec_id; 1493 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1494 * mempolicy */ 1495 spinlock_t alloc_lock; 1496 1497 /* Protection of the PI data structures: */ 1498 raw_spinlock_t pi_lock; 1499 1500 #ifdef CONFIG_RT_MUTEXES 1501 /* PI waiters blocked on a rt_mutex held by this task */ 1502 struct rb_root pi_waiters; 1503 struct rb_node *pi_waiters_leftmost; 1504 /* Deadlock detection and priority inheritance handling */ 1505 struct rt_mutex_waiter *pi_blocked_on; 1506 #endif 1507 1508 #ifdef CONFIG_DEBUG_MUTEXES 1509 /* mutex deadlock detection */ 1510 struct mutex_waiter *blocked_on; 1511 #endif 1512 #ifdef CONFIG_TRACE_IRQFLAGS 1513 unsigned int irq_events; 1514 unsigned long hardirq_enable_ip; 1515 unsigned long hardirq_disable_ip; 1516 unsigned int hardirq_enable_event; 1517 unsigned int hardirq_disable_event; 1518 int hardirqs_enabled; 1519 int hardirq_context; 1520 unsigned long softirq_disable_ip; 1521 unsigned long softirq_enable_ip; 1522 unsigned int softirq_disable_event; 1523 unsigned int softirq_enable_event; 1524 int softirqs_enabled; 1525 int softirq_context; 1526 #endif 1527 #ifdef CONFIG_LOCKDEP 1528 # define MAX_LOCK_DEPTH 48UL 1529 u64 curr_chain_key; 1530 int lockdep_depth; 1531 unsigned int lockdep_recursion; 1532 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1533 gfp_t lockdep_reclaim_gfp; 1534 #endif 1535 1536 /* journalling filesystem info */ 1537 void *journal_info; 1538 1539 /* stacked block device info */ 1540 struct bio_list *bio_list; 1541 1542 #ifdef CONFIG_BLOCK 1543 /* stack plugging */ 1544 struct blk_plug *plug; 1545 #endif 1546 1547 /* VM state */ 1548 struct reclaim_state *reclaim_state; 1549 1550 struct backing_dev_info *backing_dev_info; 1551 1552 struct io_context *io_context; 1553 1554 unsigned long ptrace_message; 1555 siginfo_t *last_siginfo; /* For ptrace use. */ 1556 struct task_io_accounting ioac; 1557 #if defined(CONFIG_TASK_XACCT) 1558 u64 acct_rss_mem1; /* accumulated rss usage */ 1559 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1560 cputime_t acct_timexpd; /* stime + utime since last update */ 1561 #endif 1562 #ifdef CONFIG_CPUSETS 1563 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1564 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1565 int cpuset_mem_spread_rotor; 1566 int cpuset_slab_spread_rotor; 1567 #endif 1568 #ifdef CONFIG_CGROUPS 1569 /* Control Group info protected by css_set_lock */ 1570 struct css_set __rcu *cgroups; 1571 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1572 struct list_head cg_list; 1573 #endif 1574 #ifdef CONFIG_FUTEX 1575 struct robust_list_head __user *robust_list; 1576 #ifdef CONFIG_COMPAT 1577 struct compat_robust_list_head __user *compat_robust_list; 1578 #endif 1579 struct list_head pi_state_list; 1580 struct futex_pi_state *pi_state_cache; 1581 #endif 1582 #ifdef CONFIG_PERF_EVENTS 1583 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1584 struct mutex perf_event_mutex; 1585 struct list_head perf_event_list; 1586 #endif 1587 #ifdef CONFIG_DEBUG_PREEMPT 1588 unsigned long preempt_disable_ip; 1589 #endif 1590 #ifdef CONFIG_NUMA 1591 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1592 short il_next; 1593 short pref_node_fork; 1594 #endif 1595 #ifdef CONFIG_NUMA_BALANCING 1596 int numa_scan_seq; 1597 unsigned int numa_scan_period; 1598 unsigned int numa_scan_period_max; 1599 int numa_preferred_nid; 1600 unsigned long numa_migrate_retry; 1601 u64 node_stamp; /* migration stamp */ 1602 u64 last_task_numa_placement; 1603 u64 last_sum_exec_runtime; 1604 struct callback_head numa_work; 1605 1606 struct list_head numa_entry; 1607 struct numa_group *numa_group; 1608 1609 /* 1610 * numa_faults is an array split into four regions: 1611 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1612 * in this precise order. 1613 * 1614 * faults_memory: Exponential decaying average of faults on a per-node 1615 * basis. Scheduling placement decisions are made based on these 1616 * counts. The values remain static for the duration of a PTE scan. 1617 * faults_cpu: Track the nodes the process was running on when a NUMA 1618 * hinting fault was incurred. 1619 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1620 * during the current scan window. When the scan completes, the counts 1621 * in faults_memory and faults_cpu decay and these values are copied. 1622 */ 1623 unsigned long *numa_faults; 1624 unsigned long total_numa_faults; 1625 1626 /* 1627 * numa_faults_locality tracks if faults recorded during the last 1628 * scan window were remote/local. The task scan period is adapted 1629 * based on the locality of the faults with different weights 1630 * depending on whether they were shared or private faults 1631 */ 1632 unsigned long numa_faults_locality[2]; 1633 1634 unsigned long numa_pages_migrated; 1635 #endif /* CONFIG_NUMA_BALANCING */ 1636 1637 struct rcu_head rcu; 1638 1639 /* 1640 * cache last used pipe for splice 1641 */ 1642 struct pipe_inode_info *splice_pipe; 1643 1644 struct page_frag task_frag; 1645 1646 #ifdef CONFIG_TASK_DELAY_ACCT 1647 struct task_delay_info *delays; 1648 #endif 1649 #ifdef CONFIG_FAULT_INJECTION 1650 int make_it_fail; 1651 #endif 1652 /* 1653 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1654 * balance_dirty_pages() for some dirty throttling pause 1655 */ 1656 int nr_dirtied; 1657 int nr_dirtied_pause; 1658 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1659 1660 #ifdef CONFIG_LATENCYTOP 1661 int latency_record_count; 1662 struct latency_record latency_record[LT_SAVECOUNT]; 1663 #endif 1664 /* 1665 * time slack values; these are used to round up poll() and 1666 * select() etc timeout values. These are in nanoseconds. 1667 */ 1668 unsigned long timer_slack_ns; 1669 unsigned long default_timer_slack_ns; 1670 1671 #ifdef CONFIG_KASAN 1672 unsigned int kasan_depth; 1673 #endif 1674 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1675 /* Index of current stored address in ret_stack */ 1676 int curr_ret_stack; 1677 /* Stack of return addresses for return function tracing */ 1678 struct ftrace_ret_stack *ret_stack; 1679 /* time stamp for last schedule */ 1680 unsigned long long ftrace_timestamp; 1681 /* 1682 * Number of functions that haven't been traced 1683 * because of depth overrun. 1684 */ 1685 atomic_t trace_overrun; 1686 /* Pause for the tracing */ 1687 atomic_t tracing_graph_pause; 1688 #endif 1689 #ifdef CONFIG_TRACING 1690 /* state flags for use by tracers */ 1691 unsigned long trace; 1692 /* bitmask and counter of trace recursion */ 1693 unsigned long trace_recursion; 1694 #endif /* CONFIG_TRACING */ 1695 #ifdef CONFIG_MEMCG 1696 struct memcg_oom_info { 1697 struct mem_cgroup *memcg; 1698 gfp_t gfp_mask; 1699 int order; 1700 unsigned int may_oom:1; 1701 } memcg_oom; 1702 #endif 1703 #ifdef CONFIG_UPROBES 1704 struct uprobe_task *utask; 1705 #endif 1706 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1707 unsigned int sequential_io; 1708 unsigned int sequential_io_avg; 1709 #endif 1710 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1711 unsigned long task_state_change; 1712 #endif 1713 }; 1714 1715 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1716 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1717 1718 #define TNF_MIGRATED 0x01 1719 #define TNF_NO_GROUP 0x02 1720 #define TNF_SHARED 0x04 1721 #define TNF_FAULT_LOCAL 0x08 1722 1723 #ifdef CONFIG_NUMA_BALANCING 1724 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1725 extern pid_t task_numa_group_id(struct task_struct *p); 1726 extern void set_numabalancing_state(bool enabled); 1727 extern void task_numa_free(struct task_struct *p); 1728 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1729 int src_nid, int dst_cpu); 1730 #else 1731 static inline void task_numa_fault(int last_node, int node, int pages, 1732 int flags) 1733 { 1734 } 1735 static inline pid_t task_numa_group_id(struct task_struct *p) 1736 { 1737 return 0; 1738 } 1739 static inline void set_numabalancing_state(bool enabled) 1740 { 1741 } 1742 static inline void task_numa_free(struct task_struct *p) 1743 { 1744 } 1745 static inline bool should_numa_migrate_memory(struct task_struct *p, 1746 struct page *page, int src_nid, int dst_cpu) 1747 { 1748 return true; 1749 } 1750 #endif 1751 1752 static inline struct pid *task_pid(struct task_struct *task) 1753 { 1754 return task->pids[PIDTYPE_PID].pid; 1755 } 1756 1757 static inline struct pid *task_tgid(struct task_struct *task) 1758 { 1759 return task->group_leader->pids[PIDTYPE_PID].pid; 1760 } 1761 1762 /* 1763 * Without tasklist or rcu lock it is not safe to dereference 1764 * the result of task_pgrp/task_session even if task == current, 1765 * we can race with another thread doing sys_setsid/sys_setpgid. 1766 */ 1767 static inline struct pid *task_pgrp(struct task_struct *task) 1768 { 1769 return task->group_leader->pids[PIDTYPE_PGID].pid; 1770 } 1771 1772 static inline struct pid *task_session(struct task_struct *task) 1773 { 1774 return task->group_leader->pids[PIDTYPE_SID].pid; 1775 } 1776 1777 struct pid_namespace; 1778 1779 /* 1780 * the helpers to get the task's different pids as they are seen 1781 * from various namespaces 1782 * 1783 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1784 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1785 * current. 1786 * task_xid_nr_ns() : id seen from the ns specified; 1787 * 1788 * set_task_vxid() : assigns a virtual id to a task; 1789 * 1790 * see also pid_nr() etc in include/linux/pid.h 1791 */ 1792 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1793 struct pid_namespace *ns); 1794 1795 static inline pid_t task_pid_nr(struct task_struct *tsk) 1796 { 1797 return tsk->pid; 1798 } 1799 1800 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1801 struct pid_namespace *ns) 1802 { 1803 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1804 } 1805 1806 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1807 { 1808 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1809 } 1810 1811 1812 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1813 { 1814 return tsk->tgid; 1815 } 1816 1817 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1818 1819 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1820 { 1821 return pid_vnr(task_tgid(tsk)); 1822 } 1823 1824 1825 static inline int pid_alive(const struct task_struct *p); 1826 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1827 { 1828 pid_t pid = 0; 1829 1830 rcu_read_lock(); 1831 if (pid_alive(tsk)) 1832 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1833 rcu_read_unlock(); 1834 1835 return pid; 1836 } 1837 1838 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1839 { 1840 return task_ppid_nr_ns(tsk, &init_pid_ns); 1841 } 1842 1843 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1844 struct pid_namespace *ns) 1845 { 1846 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1847 } 1848 1849 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1850 { 1851 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1852 } 1853 1854 1855 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1856 struct pid_namespace *ns) 1857 { 1858 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1859 } 1860 1861 static inline pid_t task_session_vnr(struct task_struct *tsk) 1862 { 1863 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1864 } 1865 1866 /* obsolete, do not use */ 1867 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1868 { 1869 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1870 } 1871 1872 /** 1873 * pid_alive - check that a task structure is not stale 1874 * @p: Task structure to be checked. 1875 * 1876 * Test if a process is not yet dead (at most zombie state) 1877 * If pid_alive fails, then pointers within the task structure 1878 * can be stale and must not be dereferenced. 1879 * 1880 * Return: 1 if the process is alive. 0 otherwise. 1881 */ 1882 static inline int pid_alive(const struct task_struct *p) 1883 { 1884 return p->pids[PIDTYPE_PID].pid != NULL; 1885 } 1886 1887 /** 1888 * is_global_init - check if a task structure is init 1889 * @tsk: Task structure to be checked. 1890 * 1891 * Check if a task structure is the first user space task the kernel created. 1892 * 1893 * Return: 1 if the task structure is init. 0 otherwise. 1894 */ 1895 static inline int is_global_init(struct task_struct *tsk) 1896 { 1897 return tsk->pid == 1; 1898 } 1899 1900 extern struct pid *cad_pid; 1901 1902 extern void free_task(struct task_struct *tsk); 1903 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1904 1905 extern void __put_task_struct(struct task_struct *t); 1906 1907 static inline void put_task_struct(struct task_struct *t) 1908 { 1909 if (atomic_dec_and_test(&t->usage)) 1910 __put_task_struct(t); 1911 } 1912 1913 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1914 extern void task_cputime(struct task_struct *t, 1915 cputime_t *utime, cputime_t *stime); 1916 extern void task_cputime_scaled(struct task_struct *t, 1917 cputime_t *utimescaled, cputime_t *stimescaled); 1918 extern cputime_t task_gtime(struct task_struct *t); 1919 #else 1920 static inline void task_cputime(struct task_struct *t, 1921 cputime_t *utime, cputime_t *stime) 1922 { 1923 if (utime) 1924 *utime = t->utime; 1925 if (stime) 1926 *stime = t->stime; 1927 } 1928 1929 static inline void task_cputime_scaled(struct task_struct *t, 1930 cputime_t *utimescaled, 1931 cputime_t *stimescaled) 1932 { 1933 if (utimescaled) 1934 *utimescaled = t->utimescaled; 1935 if (stimescaled) 1936 *stimescaled = t->stimescaled; 1937 } 1938 1939 static inline cputime_t task_gtime(struct task_struct *t) 1940 { 1941 return t->gtime; 1942 } 1943 #endif 1944 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1945 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1946 1947 /* 1948 * Per process flags 1949 */ 1950 #define PF_EXITING 0x00000004 /* getting shut down */ 1951 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1952 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1953 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1954 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1955 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1956 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1957 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1958 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1959 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1960 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1961 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1962 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1963 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1964 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1965 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1966 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1967 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1968 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1969 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1970 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1971 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1972 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1973 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1974 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1975 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1976 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 1977 1978 /* 1979 * Only the _current_ task can read/write to tsk->flags, but other 1980 * tasks can access tsk->flags in readonly mode for example 1981 * with tsk_used_math (like during threaded core dumping). 1982 * There is however an exception to this rule during ptrace 1983 * or during fork: the ptracer task is allowed to write to the 1984 * child->flags of its traced child (same goes for fork, the parent 1985 * can write to the child->flags), because we're guaranteed the 1986 * child is not running and in turn not changing child->flags 1987 * at the same time the parent does it. 1988 */ 1989 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1990 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1991 #define clear_used_math() clear_stopped_child_used_math(current) 1992 #define set_used_math() set_stopped_child_used_math(current) 1993 #define conditional_stopped_child_used_math(condition, child) \ 1994 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1995 #define conditional_used_math(condition) \ 1996 conditional_stopped_child_used_math(condition, current) 1997 #define copy_to_stopped_child_used_math(child) \ 1998 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1999 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2000 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2001 #define used_math() tsk_used_math(current) 2002 2003 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2004 * __GFP_FS is also cleared as it implies __GFP_IO. 2005 */ 2006 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2007 { 2008 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2009 flags &= ~(__GFP_IO | __GFP_FS); 2010 return flags; 2011 } 2012 2013 static inline unsigned int memalloc_noio_save(void) 2014 { 2015 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2016 current->flags |= PF_MEMALLOC_NOIO; 2017 return flags; 2018 } 2019 2020 static inline void memalloc_noio_restore(unsigned int flags) 2021 { 2022 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2023 } 2024 2025 /* Per-process atomic flags. */ 2026 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2027 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2028 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2029 2030 2031 #define TASK_PFA_TEST(name, func) \ 2032 static inline bool task_##func(struct task_struct *p) \ 2033 { return test_bit(PFA_##name, &p->atomic_flags); } 2034 #define TASK_PFA_SET(name, func) \ 2035 static inline void task_set_##func(struct task_struct *p) \ 2036 { set_bit(PFA_##name, &p->atomic_flags); } 2037 #define TASK_PFA_CLEAR(name, func) \ 2038 static inline void task_clear_##func(struct task_struct *p) \ 2039 { clear_bit(PFA_##name, &p->atomic_flags); } 2040 2041 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2042 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2043 2044 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2045 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2046 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2047 2048 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2049 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2050 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2051 2052 /* 2053 * task->jobctl flags 2054 */ 2055 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2056 2057 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2058 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2059 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2060 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2061 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2062 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2063 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2064 2065 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 2066 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 2067 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 2068 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 2069 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 2070 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 2071 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 2072 2073 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2074 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2075 2076 extern bool task_set_jobctl_pending(struct task_struct *task, 2077 unsigned int mask); 2078 extern void task_clear_jobctl_trapping(struct task_struct *task); 2079 extern void task_clear_jobctl_pending(struct task_struct *task, 2080 unsigned int mask); 2081 2082 static inline void rcu_copy_process(struct task_struct *p) 2083 { 2084 #ifdef CONFIG_PREEMPT_RCU 2085 p->rcu_read_lock_nesting = 0; 2086 p->rcu_read_unlock_special.s = 0; 2087 p->rcu_blocked_node = NULL; 2088 INIT_LIST_HEAD(&p->rcu_node_entry); 2089 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2090 #ifdef CONFIG_TASKS_RCU 2091 p->rcu_tasks_holdout = false; 2092 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2093 p->rcu_tasks_idle_cpu = -1; 2094 #endif /* #ifdef CONFIG_TASKS_RCU */ 2095 } 2096 2097 static inline void tsk_restore_flags(struct task_struct *task, 2098 unsigned long orig_flags, unsigned long flags) 2099 { 2100 task->flags &= ~flags; 2101 task->flags |= orig_flags & flags; 2102 } 2103 2104 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2105 const struct cpumask *trial); 2106 extern int task_can_attach(struct task_struct *p, 2107 const struct cpumask *cs_cpus_allowed); 2108 #ifdef CONFIG_SMP 2109 extern void do_set_cpus_allowed(struct task_struct *p, 2110 const struct cpumask *new_mask); 2111 2112 extern int set_cpus_allowed_ptr(struct task_struct *p, 2113 const struct cpumask *new_mask); 2114 #else 2115 static inline void do_set_cpus_allowed(struct task_struct *p, 2116 const struct cpumask *new_mask) 2117 { 2118 } 2119 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2120 const struct cpumask *new_mask) 2121 { 2122 if (!cpumask_test_cpu(0, new_mask)) 2123 return -EINVAL; 2124 return 0; 2125 } 2126 #endif 2127 2128 #ifdef CONFIG_NO_HZ_COMMON 2129 void calc_load_enter_idle(void); 2130 void calc_load_exit_idle(void); 2131 #else 2132 static inline void calc_load_enter_idle(void) { } 2133 static inline void calc_load_exit_idle(void) { } 2134 #endif /* CONFIG_NO_HZ_COMMON */ 2135 2136 #ifndef CONFIG_CPUMASK_OFFSTACK 2137 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 2138 { 2139 return set_cpus_allowed_ptr(p, &new_mask); 2140 } 2141 #endif 2142 2143 /* 2144 * Do not use outside of architecture code which knows its limitations. 2145 * 2146 * sched_clock() has no promise of monotonicity or bounded drift between 2147 * CPUs, use (which you should not) requires disabling IRQs. 2148 * 2149 * Please use one of the three interfaces below. 2150 */ 2151 extern unsigned long long notrace sched_clock(void); 2152 /* 2153 * See the comment in kernel/sched/clock.c 2154 */ 2155 extern u64 cpu_clock(int cpu); 2156 extern u64 local_clock(void); 2157 extern u64 running_clock(void); 2158 extern u64 sched_clock_cpu(int cpu); 2159 2160 2161 extern void sched_clock_init(void); 2162 2163 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2164 static inline void sched_clock_tick(void) 2165 { 2166 } 2167 2168 static inline void sched_clock_idle_sleep_event(void) 2169 { 2170 } 2171 2172 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2173 { 2174 } 2175 #else 2176 /* 2177 * Architectures can set this to 1 if they have specified 2178 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2179 * but then during bootup it turns out that sched_clock() 2180 * is reliable after all: 2181 */ 2182 extern int sched_clock_stable(void); 2183 extern void set_sched_clock_stable(void); 2184 extern void clear_sched_clock_stable(void); 2185 2186 extern void sched_clock_tick(void); 2187 extern void sched_clock_idle_sleep_event(void); 2188 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2189 #endif 2190 2191 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2192 /* 2193 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2194 * The reason for this explicit opt-in is not to have perf penalty with 2195 * slow sched_clocks. 2196 */ 2197 extern void enable_sched_clock_irqtime(void); 2198 extern void disable_sched_clock_irqtime(void); 2199 #else 2200 static inline void enable_sched_clock_irqtime(void) {} 2201 static inline void disable_sched_clock_irqtime(void) {} 2202 #endif 2203 2204 extern unsigned long long 2205 task_sched_runtime(struct task_struct *task); 2206 2207 /* sched_exec is called by processes performing an exec */ 2208 #ifdef CONFIG_SMP 2209 extern void sched_exec(void); 2210 #else 2211 #define sched_exec() {} 2212 #endif 2213 2214 extern void sched_clock_idle_sleep_event(void); 2215 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2216 2217 #ifdef CONFIG_HOTPLUG_CPU 2218 extern void idle_task_exit(void); 2219 #else 2220 static inline void idle_task_exit(void) {} 2221 #endif 2222 2223 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2224 extern void wake_up_nohz_cpu(int cpu); 2225 #else 2226 static inline void wake_up_nohz_cpu(int cpu) { } 2227 #endif 2228 2229 #ifdef CONFIG_NO_HZ_FULL 2230 extern bool sched_can_stop_tick(void); 2231 extern u64 scheduler_tick_max_deferment(void); 2232 #else 2233 static inline bool sched_can_stop_tick(void) { return false; } 2234 #endif 2235 2236 #ifdef CONFIG_SCHED_AUTOGROUP 2237 extern void sched_autogroup_create_attach(struct task_struct *p); 2238 extern void sched_autogroup_detach(struct task_struct *p); 2239 extern void sched_autogroup_fork(struct signal_struct *sig); 2240 extern void sched_autogroup_exit(struct signal_struct *sig); 2241 #ifdef CONFIG_PROC_FS 2242 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2243 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2244 #endif 2245 #else 2246 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2247 static inline void sched_autogroup_detach(struct task_struct *p) { } 2248 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2249 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2250 #endif 2251 2252 extern int yield_to(struct task_struct *p, bool preempt); 2253 extern void set_user_nice(struct task_struct *p, long nice); 2254 extern int task_prio(const struct task_struct *p); 2255 /** 2256 * task_nice - return the nice value of a given task. 2257 * @p: the task in question. 2258 * 2259 * Return: The nice value [ -20 ... 0 ... 19 ]. 2260 */ 2261 static inline int task_nice(const struct task_struct *p) 2262 { 2263 return PRIO_TO_NICE((p)->static_prio); 2264 } 2265 extern int can_nice(const struct task_struct *p, const int nice); 2266 extern int task_curr(const struct task_struct *p); 2267 extern int idle_cpu(int cpu); 2268 extern int sched_setscheduler(struct task_struct *, int, 2269 const struct sched_param *); 2270 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2271 const struct sched_param *); 2272 extern int sched_setattr(struct task_struct *, 2273 const struct sched_attr *); 2274 extern struct task_struct *idle_task(int cpu); 2275 /** 2276 * is_idle_task - is the specified task an idle task? 2277 * @p: the task in question. 2278 * 2279 * Return: 1 if @p is an idle task. 0 otherwise. 2280 */ 2281 static inline bool is_idle_task(const struct task_struct *p) 2282 { 2283 return p->pid == 0; 2284 } 2285 extern struct task_struct *curr_task(int cpu); 2286 extern void set_curr_task(int cpu, struct task_struct *p); 2287 2288 void yield(void); 2289 2290 /* 2291 * The default (Linux) execution domain. 2292 */ 2293 extern struct exec_domain default_exec_domain; 2294 2295 union thread_union { 2296 struct thread_info thread_info; 2297 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2298 }; 2299 2300 #ifndef __HAVE_ARCH_KSTACK_END 2301 static inline int kstack_end(void *addr) 2302 { 2303 /* Reliable end of stack detection: 2304 * Some APM bios versions misalign the stack 2305 */ 2306 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2307 } 2308 #endif 2309 2310 extern union thread_union init_thread_union; 2311 extern struct task_struct init_task; 2312 2313 extern struct mm_struct init_mm; 2314 2315 extern struct pid_namespace init_pid_ns; 2316 2317 /* 2318 * find a task by one of its numerical ids 2319 * 2320 * find_task_by_pid_ns(): 2321 * finds a task by its pid in the specified namespace 2322 * find_task_by_vpid(): 2323 * finds a task by its virtual pid 2324 * 2325 * see also find_vpid() etc in include/linux/pid.h 2326 */ 2327 2328 extern struct task_struct *find_task_by_vpid(pid_t nr); 2329 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2330 struct pid_namespace *ns); 2331 2332 /* per-UID process charging. */ 2333 extern struct user_struct * alloc_uid(kuid_t); 2334 static inline struct user_struct *get_uid(struct user_struct *u) 2335 { 2336 atomic_inc(&u->__count); 2337 return u; 2338 } 2339 extern void free_uid(struct user_struct *); 2340 2341 #include <asm/current.h> 2342 2343 extern void xtime_update(unsigned long ticks); 2344 2345 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2346 extern int wake_up_process(struct task_struct *tsk); 2347 extern void wake_up_new_task(struct task_struct *tsk); 2348 #ifdef CONFIG_SMP 2349 extern void kick_process(struct task_struct *tsk); 2350 #else 2351 static inline void kick_process(struct task_struct *tsk) { } 2352 #endif 2353 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2354 extern void sched_dead(struct task_struct *p); 2355 2356 extern void proc_caches_init(void); 2357 extern void flush_signals(struct task_struct *); 2358 extern void __flush_signals(struct task_struct *); 2359 extern void ignore_signals(struct task_struct *); 2360 extern void flush_signal_handlers(struct task_struct *, int force_default); 2361 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2362 2363 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2364 { 2365 unsigned long flags; 2366 int ret; 2367 2368 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2369 ret = dequeue_signal(tsk, mask, info); 2370 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2371 2372 return ret; 2373 } 2374 2375 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2376 sigset_t *mask); 2377 extern void unblock_all_signals(void); 2378 extern void release_task(struct task_struct * p); 2379 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2380 extern int force_sigsegv(int, struct task_struct *); 2381 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2382 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2383 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2384 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2385 const struct cred *, u32); 2386 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2387 extern int kill_pid(struct pid *pid, int sig, int priv); 2388 extern int kill_proc_info(int, struct siginfo *, pid_t); 2389 extern __must_check bool do_notify_parent(struct task_struct *, int); 2390 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2391 extern void force_sig(int, struct task_struct *); 2392 extern int send_sig(int, struct task_struct *, int); 2393 extern int zap_other_threads(struct task_struct *p); 2394 extern struct sigqueue *sigqueue_alloc(void); 2395 extern void sigqueue_free(struct sigqueue *); 2396 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2397 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2398 2399 static inline void restore_saved_sigmask(void) 2400 { 2401 if (test_and_clear_restore_sigmask()) 2402 __set_current_blocked(¤t->saved_sigmask); 2403 } 2404 2405 static inline sigset_t *sigmask_to_save(void) 2406 { 2407 sigset_t *res = ¤t->blocked; 2408 if (unlikely(test_restore_sigmask())) 2409 res = ¤t->saved_sigmask; 2410 return res; 2411 } 2412 2413 static inline int kill_cad_pid(int sig, int priv) 2414 { 2415 return kill_pid(cad_pid, sig, priv); 2416 } 2417 2418 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2419 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2420 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2421 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2422 2423 /* 2424 * True if we are on the alternate signal stack. 2425 */ 2426 static inline int on_sig_stack(unsigned long sp) 2427 { 2428 #ifdef CONFIG_STACK_GROWSUP 2429 return sp >= current->sas_ss_sp && 2430 sp - current->sas_ss_sp < current->sas_ss_size; 2431 #else 2432 return sp > current->sas_ss_sp && 2433 sp - current->sas_ss_sp <= current->sas_ss_size; 2434 #endif 2435 } 2436 2437 static inline int sas_ss_flags(unsigned long sp) 2438 { 2439 if (!current->sas_ss_size) 2440 return SS_DISABLE; 2441 2442 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2443 } 2444 2445 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2446 { 2447 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2448 #ifdef CONFIG_STACK_GROWSUP 2449 return current->sas_ss_sp; 2450 #else 2451 return current->sas_ss_sp + current->sas_ss_size; 2452 #endif 2453 return sp; 2454 } 2455 2456 /* 2457 * Routines for handling mm_structs 2458 */ 2459 extern struct mm_struct * mm_alloc(void); 2460 2461 /* mmdrop drops the mm and the page tables */ 2462 extern void __mmdrop(struct mm_struct *); 2463 static inline void mmdrop(struct mm_struct * mm) 2464 { 2465 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2466 __mmdrop(mm); 2467 } 2468 2469 /* mmput gets rid of the mappings and all user-space */ 2470 extern void mmput(struct mm_struct *); 2471 /* Grab a reference to a task's mm, if it is not already going away */ 2472 extern struct mm_struct *get_task_mm(struct task_struct *task); 2473 /* 2474 * Grab a reference to a task's mm, if it is not already going away 2475 * and ptrace_may_access with the mode parameter passed to it 2476 * succeeds. 2477 */ 2478 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2479 /* Remove the current tasks stale references to the old mm_struct */ 2480 extern void mm_release(struct task_struct *, struct mm_struct *); 2481 2482 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2483 struct task_struct *); 2484 extern void flush_thread(void); 2485 extern void exit_thread(void); 2486 2487 extern void exit_files(struct task_struct *); 2488 extern void __cleanup_sighand(struct sighand_struct *); 2489 2490 extern void exit_itimers(struct signal_struct *); 2491 extern void flush_itimer_signals(void); 2492 2493 extern void do_group_exit(int); 2494 2495 extern int do_execve(struct filename *, 2496 const char __user * const __user *, 2497 const char __user * const __user *); 2498 extern int do_execveat(int, struct filename *, 2499 const char __user * const __user *, 2500 const char __user * const __user *, 2501 int); 2502 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2503 struct task_struct *fork_idle(int); 2504 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2505 2506 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2507 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2508 { 2509 __set_task_comm(tsk, from, false); 2510 } 2511 extern char *get_task_comm(char *to, struct task_struct *tsk); 2512 2513 #ifdef CONFIG_SMP 2514 void scheduler_ipi(void); 2515 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2516 #else 2517 static inline void scheduler_ipi(void) { } 2518 static inline unsigned long wait_task_inactive(struct task_struct *p, 2519 long match_state) 2520 { 2521 return 1; 2522 } 2523 #endif 2524 2525 #define next_task(p) \ 2526 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2527 2528 #define for_each_process(p) \ 2529 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2530 2531 extern bool current_is_single_threaded(void); 2532 2533 /* 2534 * Careful: do_each_thread/while_each_thread is a double loop so 2535 * 'break' will not work as expected - use goto instead. 2536 */ 2537 #define do_each_thread(g, t) \ 2538 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2539 2540 #define while_each_thread(g, t) \ 2541 while ((t = next_thread(t)) != g) 2542 2543 #define __for_each_thread(signal, t) \ 2544 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2545 2546 #define for_each_thread(p, t) \ 2547 __for_each_thread((p)->signal, t) 2548 2549 /* Careful: this is a double loop, 'break' won't work as expected. */ 2550 #define for_each_process_thread(p, t) \ 2551 for_each_process(p) for_each_thread(p, t) 2552 2553 static inline int get_nr_threads(struct task_struct *tsk) 2554 { 2555 return tsk->signal->nr_threads; 2556 } 2557 2558 static inline bool thread_group_leader(struct task_struct *p) 2559 { 2560 return p->exit_signal >= 0; 2561 } 2562 2563 /* Do to the insanities of de_thread it is possible for a process 2564 * to have the pid of the thread group leader without actually being 2565 * the thread group leader. For iteration through the pids in proc 2566 * all we care about is that we have a task with the appropriate 2567 * pid, we don't actually care if we have the right task. 2568 */ 2569 static inline bool has_group_leader_pid(struct task_struct *p) 2570 { 2571 return task_pid(p) == p->signal->leader_pid; 2572 } 2573 2574 static inline 2575 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2576 { 2577 return p1->signal == p2->signal; 2578 } 2579 2580 static inline struct task_struct *next_thread(const struct task_struct *p) 2581 { 2582 return list_entry_rcu(p->thread_group.next, 2583 struct task_struct, thread_group); 2584 } 2585 2586 static inline int thread_group_empty(struct task_struct *p) 2587 { 2588 return list_empty(&p->thread_group); 2589 } 2590 2591 #define delay_group_leader(p) \ 2592 (thread_group_leader(p) && !thread_group_empty(p)) 2593 2594 /* 2595 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2596 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2597 * pins the final release of task.io_context. Also protects ->cpuset and 2598 * ->cgroup.subsys[]. And ->vfork_done. 2599 * 2600 * Nests both inside and outside of read_lock(&tasklist_lock). 2601 * It must not be nested with write_lock_irq(&tasklist_lock), 2602 * neither inside nor outside. 2603 */ 2604 static inline void task_lock(struct task_struct *p) 2605 { 2606 spin_lock(&p->alloc_lock); 2607 } 2608 2609 static inline void task_unlock(struct task_struct *p) 2610 { 2611 spin_unlock(&p->alloc_lock); 2612 } 2613 2614 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2615 unsigned long *flags); 2616 2617 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2618 unsigned long *flags) 2619 { 2620 struct sighand_struct *ret; 2621 2622 ret = __lock_task_sighand(tsk, flags); 2623 (void)__cond_lock(&tsk->sighand->siglock, ret); 2624 return ret; 2625 } 2626 2627 static inline void unlock_task_sighand(struct task_struct *tsk, 2628 unsigned long *flags) 2629 { 2630 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2631 } 2632 2633 #ifdef CONFIG_CGROUPS 2634 static inline void threadgroup_change_begin(struct task_struct *tsk) 2635 { 2636 down_read(&tsk->signal->group_rwsem); 2637 } 2638 static inline void threadgroup_change_end(struct task_struct *tsk) 2639 { 2640 up_read(&tsk->signal->group_rwsem); 2641 } 2642 2643 /** 2644 * threadgroup_lock - lock threadgroup 2645 * @tsk: member task of the threadgroup to lock 2646 * 2647 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2648 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2649 * change ->group_leader/pid. This is useful for cases where the threadgroup 2650 * needs to stay stable across blockable operations. 2651 * 2652 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2653 * synchronization. While held, no new task will be added to threadgroup 2654 * and no existing live task will have its PF_EXITING set. 2655 * 2656 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2657 * sub-thread becomes a new leader. 2658 */ 2659 static inline void threadgroup_lock(struct task_struct *tsk) 2660 { 2661 down_write(&tsk->signal->group_rwsem); 2662 } 2663 2664 /** 2665 * threadgroup_unlock - unlock threadgroup 2666 * @tsk: member task of the threadgroup to unlock 2667 * 2668 * Reverse threadgroup_lock(). 2669 */ 2670 static inline void threadgroup_unlock(struct task_struct *tsk) 2671 { 2672 up_write(&tsk->signal->group_rwsem); 2673 } 2674 #else 2675 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2676 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2677 static inline void threadgroup_lock(struct task_struct *tsk) {} 2678 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2679 #endif 2680 2681 #ifndef __HAVE_THREAD_FUNCTIONS 2682 2683 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2684 #define task_stack_page(task) ((task)->stack) 2685 2686 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2687 { 2688 *task_thread_info(p) = *task_thread_info(org); 2689 task_thread_info(p)->task = p; 2690 } 2691 2692 /* 2693 * Return the address of the last usable long on the stack. 2694 * 2695 * When the stack grows down, this is just above the thread 2696 * info struct. Going any lower will corrupt the threadinfo. 2697 * 2698 * When the stack grows up, this is the highest address. 2699 * Beyond that position, we corrupt data on the next page. 2700 */ 2701 static inline unsigned long *end_of_stack(struct task_struct *p) 2702 { 2703 #ifdef CONFIG_STACK_GROWSUP 2704 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2705 #else 2706 return (unsigned long *)(task_thread_info(p) + 1); 2707 #endif 2708 } 2709 2710 #endif 2711 #define task_stack_end_corrupted(task) \ 2712 (*(end_of_stack(task)) != STACK_END_MAGIC) 2713 2714 static inline int object_is_on_stack(void *obj) 2715 { 2716 void *stack = task_stack_page(current); 2717 2718 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2719 } 2720 2721 extern void thread_info_cache_init(void); 2722 2723 #ifdef CONFIG_DEBUG_STACK_USAGE 2724 static inline unsigned long stack_not_used(struct task_struct *p) 2725 { 2726 unsigned long *n = end_of_stack(p); 2727 2728 do { /* Skip over canary */ 2729 n++; 2730 } while (!*n); 2731 2732 return (unsigned long)n - (unsigned long)end_of_stack(p); 2733 } 2734 #endif 2735 extern void set_task_stack_end_magic(struct task_struct *tsk); 2736 2737 /* set thread flags in other task's structures 2738 * - see asm/thread_info.h for TIF_xxxx flags available 2739 */ 2740 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2741 { 2742 set_ti_thread_flag(task_thread_info(tsk), flag); 2743 } 2744 2745 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2746 { 2747 clear_ti_thread_flag(task_thread_info(tsk), flag); 2748 } 2749 2750 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2751 { 2752 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2753 } 2754 2755 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2756 { 2757 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2758 } 2759 2760 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2761 { 2762 return test_ti_thread_flag(task_thread_info(tsk), flag); 2763 } 2764 2765 static inline void set_tsk_need_resched(struct task_struct *tsk) 2766 { 2767 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2768 } 2769 2770 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2771 { 2772 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2773 } 2774 2775 static inline int test_tsk_need_resched(struct task_struct *tsk) 2776 { 2777 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2778 } 2779 2780 static inline int restart_syscall(void) 2781 { 2782 set_tsk_thread_flag(current, TIF_SIGPENDING); 2783 return -ERESTARTNOINTR; 2784 } 2785 2786 static inline int signal_pending(struct task_struct *p) 2787 { 2788 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2789 } 2790 2791 static inline int __fatal_signal_pending(struct task_struct *p) 2792 { 2793 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2794 } 2795 2796 static inline int fatal_signal_pending(struct task_struct *p) 2797 { 2798 return signal_pending(p) && __fatal_signal_pending(p); 2799 } 2800 2801 static inline int signal_pending_state(long state, struct task_struct *p) 2802 { 2803 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2804 return 0; 2805 if (!signal_pending(p)) 2806 return 0; 2807 2808 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2809 } 2810 2811 /* 2812 * cond_resched() and cond_resched_lock(): latency reduction via 2813 * explicit rescheduling in places that are safe. The return 2814 * value indicates whether a reschedule was done in fact. 2815 * cond_resched_lock() will drop the spinlock before scheduling, 2816 * cond_resched_softirq() will enable bhs before scheduling. 2817 */ 2818 extern int _cond_resched(void); 2819 2820 #define cond_resched() ({ \ 2821 ___might_sleep(__FILE__, __LINE__, 0); \ 2822 _cond_resched(); \ 2823 }) 2824 2825 extern int __cond_resched_lock(spinlock_t *lock); 2826 2827 #ifdef CONFIG_PREEMPT_COUNT 2828 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2829 #else 2830 #define PREEMPT_LOCK_OFFSET 0 2831 #endif 2832 2833 #define cond_resched_lock(lock) ({ \ 2834 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2835 __cond_resched_lock(lock); \ 2836 }) 2837 2838 extern int __cond_resched_softirq(void); 2839 2840 #define cond_resched_softirq() ({ \ 2841 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2842 __cond_resched_softirq(); \ 2843 }) 2844 2845 static inline void cond_resched_rcu(void) 2846 { 2847 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2848 rcu_read_unlock(); 2849 cond_resched(); 2850 rcu_read_lock(); 2851 #endif 2852 } 2853 2854 /* 2855 * Does a critical section need to be broken due to another 2856 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2857 * but a general need for low latency) 2858 */ 2859 static inline int spin_needbreak(spinlock_t *lock) 2860 { 2861 #ifdef CONFIG_PREEMPT 2862 return spin_is_contended(lock); 2863 #else 2864 return 0; 2865 #endif 2866 } 2867 2868 /* 2869 * Idle thread specific functions to determine the need_resched 2870 * polling state. 2871 */ 2872 #ifdef TIF_POLLING_NRFLAG 2873 static inline int tsk_is_polling(struct task_struct *p) 2874 { 2875 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2876 } 2877 2878 static inline void __current_set_polling(void) 2879 { 2880 set_thread_flag(TIF_POLLING_NRFLAG); 2881 } 2882 2883 static inline bool __must_check current_set_polling_and_test(void) 2884 { 2885 __current_set_polling(); 2886 2887 /* 2888 * Polling state must be visible before we test NEED_RESCHED, 2889 * paired by resched_curr() 2890 */ 2891 smp_mb__after_atomic(); 2892 2893 return unlikely(tif_need_resched()); 2894 } 2895 2896 static inline void __current_clr_polling(void) 2897 { 2898 clear_thread_flag(TIF_POLLING_NRFLAG); 2899 } 2900 2901 static inline bool __must_check current_clr_polling_and_test(void) 2902 { 2903 __current_clr_polling(); 2904 2905 /* 2906 * Polling state must be visible before we test NEED_RESCHED, 2907 * paired by resched_curr() 2908 */ 2909 smp_mb__after_atomic(); 2910 2911 return unlikely(tif_need_resched()); 2912 } 2913 2914 #else 2915 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2916 static inline void __current_set_polling(void) { } 2917 static inline void __current_clr_polling(void) { } 2918 2919 static inline bool __must_check current_set_polling_and_test(void) 2920 { 2921 return unlikely(tif_need_resched()); 2922 } 2923 static inline bool __must_check current_clr_polling_and_test(void) 2924 { 2925 return unlikely(tif_need_resched()); 2926 } 2927 #endif 2928 2929 static inline void current_clr_polling(void) 2930 { 2931 __current_clr_polling(); 2932 2933 /* 2934 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 2935 * Once the bit is cleared, we'll get IPIs with every new 2936 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 2937 * fold. 2938 */ 2939 smp_mb(); /* paired with resched_curr() */ 2940 2941 preempt_fold_need_resched(); 2942 } 2943 2944 static __always_inline bool need_resched(void) 2945 { 2946 return unlikely(tif_need_resched()); 2947 } 2948 2949 /* 2950 * Thread group CPU time accounting. 2951 */ 2952 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2953 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2954 2955 static inline void thread_group_cputime_init(struct signal_struct *sig) 2956 { 2957 raw_spin_lock_init(&sig->cputimer.lock); 2958 } 2959 2960 /* 2961 * Reevaluate whether the task has signals pending delivery. 2962 * Wake the task if so. 2963 * This is required every time the blocked sigset_t changes. 2964 * callers must hold sighand->siglock. 2965 */ 2966 extern void recalc_sigpending_and_wake(struct task_struct *t); 2967 extern void recalc_sigpending(void); 2968 2969 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2970 2971 static inline void signal_wake_up(struct task_struct *t, bool resume) 2972 { 2973 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2974 } 2975 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2976 { 2977 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2978 } 2979 2980 /* 2981 * Wrappers for p->thread_info->cpu access. No-op on UP. 2982 */ 2983 #ifdef CONFIG_SMP 2984 2985 static inline unsigned int task_cpu(const struct task_struct *p) 2986 { 2987 return task_thread_info(p)->cpu; 2988 } 2989 2990 static inline int task_node(const struct task_struct *p) 2991 { 2992 return cpu_to_node(task_cpu(p)); 2993 } 2994 2995 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2996 2997 #else 2998 2999 static inline unsigned int task_cpu(const struct task_struct *p) 3000 { 3001 return 0; 3002 } 3003 3004 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3005 { 3006 } 3007 3008 #endif /* CONFIG_SMP */ 3009 3010 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3011 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3012 3013 #ifdef CONFIG_CGROUP_SCHED 3014 extern struct task_group root_task_group; 3015 #endif /* CONFIG_CGROUP_SCHED */ 3016 3017 extern int task_can_switch_user(struct user_struct *up, 3018 struct task_struct *tsk); 3019 3020 #ifdef CONFIG_TASK_XACCT 3021 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3022 { 3023 tsk->ioac.rchar += amt; 3024 } 3025 3026 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3027 { 3028 tsk->ioac.wchar += amt; 3029 } 3030 3031 static inline void inc_syscr(struct task_struct *tsk) 3032 { 3033 tsk->ioac.syscr++; 3034 } 3035 3036 static inline void inc_syscw(struct task_struct *tsk) 3037 { 3038 tsk->ioac.syscw++; 3039 } 3040 #else 3041 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3042 { 3043 } 3044 3045 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3046 { 3047 } 3048 3049 static inline void inc_syscr(struct task_struct *tsk) 3050 { 3051 } 3052 3053 static inline void inc_syscw(struct task_struct *tsk) 3054 { 3055 } 3056 #endif 3057 3058 #ifndef TASK_SIZE_OF 3059 #define TASK_SIZE_OF(tsk) TASK_SIZE 3060 #endif 3061 3062 #ifdef CONFIG_MEMCG 3063 extern void mm_update_next_owner(struct mm_struct *mm); 3064 #else 3065 static inline void mm_update_next_owner(struct mm_struct *mm) 3066 { 3067 } 3068 #endif /* CONFIG_MEMCG */ 3069 3070 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3071 unsigned int limit) 3072 { 3073 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 3074 } 3075 3076 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3077 unsigned int limit) 3078 { 3079 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 3080 } 3081 3082 static inline unsigned long rlimit(unsigned int limit) 3083 { 3084 return task_rlimit(current, limit); 3085 } 3086 3087 static inline unsigned long rlimit_max(unsigned int limit) 3088 { 3089 return task_rlimit_max(current, limit); 3090 } 3091 3092 #endif 3093