1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 7 struct sched_param { 8 int sched_priority; 9 }; 10 11 #include <asm/param.h> /* for HZ */ 12 13 #include <linux/capability.h> 14 #include <linux/threads.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/timex.h> 18 #include <linux/jiffies.h> 19 #include <linux/plist.h> 20 #include <linux/rbtree.h> 21 #include <linux/thread_info.h> 22 #include <linux/cpumask.h> 23 #include <linux/errno.h> 24 #include <linux/nodemask.h> 25 #include <linux/mm_types.h> 26 #include <linux/preempt_mask.h> 27 28 #include <asm/page.h> 29 #include <asm/ptrace.h> 30 #include <asm/cputime.h> 31 32 #include <linux/smp.h> 33 #include <linux/sem.h> 34 #include <linux/signal.h> 35 #include <linux/compiler.h> 36 #include <linux/completion.h> 37 #include <linux/pid.h> 38 #include <linux/percpu.h> 39 #include <linux/topology.h> 40 #include <linux/proportions.h> 41 #include <linux/seccomp.h> 42 #include <linux/rcupdate.h> 43 #include <linux/rculist.h> 44 #include <linux/rtmutex.h> 45 46 #include <linux/time.h> 47 #include <linux/param.h> 48 #include <linux/resource.h> 49 #include <linux/timer.h> 50 #include <linux/hrtimer.h> 51 #include <linux/task_io_accounting.h> 52 #include <linux/latencytop.h> 53 #include <linux/cred.h> 54 #include <linux/llist.h> 55 #include <linux/uidgid.h> 56 #include <linux/gfp.h> 57 58 #include <asm/processor.h> 59 60 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 61 62 /* 63 * Extended scheduling parameters data structure. 64 * 65 * This is needed because the original struct sched_param can not be 66 * altered without introducing ABI issues with legacy applications 67 * (e.g., in sched_getparam()). 68 * 69 * However, the possibility of specifying more than just a priority for 70 * the tasks may be useful for a wide variety of application fields, e.g., 71 * multimedia, streaming, automation and control, and many others. 72 * 73 * This variant (sched_attr) is meant at describing a so-called 74 * sporadic time-constrained task. In such model a task is specified by: 75 * - the activation period or minimum instance inter-arrival time; 76 * - the maximum (or average, depending on the actual scheduling 77 * discipline) computation time of all instances, a.k.a. runtime; 78 * - the deadline (relative to the actual activation time) of each 79 * instance. 80 * Very briefly, a periodic (sporadic) task asks for the execution of 81 * some specific computation --which is typically called an instance-- 82 * (at most) every period. Moreover, each instance typically lasts no more 83 * than the runtime and must be completed by time instant t equal to 84 * the instance activation time + the deadline. 85 * 86 * This is reflected by the actual fields of the sched_attr structure: 87 * 88 * @size size of the structure, for fwd/bwd compat. 89 * 90 * @sched_policy task's scheduling policy 91 * @sched_flags for customizing the scheduler behaviour 92 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 93 * @sched_priority task's static priority (SCHED_FIFO/RR) 94 * @sched_deadline representative of the task's deadline 95 * @sched_runtime representative of the task's runtime 96 * @sched_period representative of the task's period 97 * 98 * Given this task model, there are a multiplicity of scheduling algorithms 99 * and policies, that can be used to ensure all the tasks will make their 100 * timing constraints. 101 * 102 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 103 * only user of this new interface. More information about the algorithm 104 * available in the scheduling class file or in Documentation/. 105 */ 106 struct sched_attr { 107 u32 size; 108 109 u32 sched_policy; 110 u64 sched_flags; 111 112 /* SCHED_NORMAL, SCHED_BATCH */ 113 s32 sched_nice; 114 115 /* SCHED_FIFO, SCHED_RR */ 116 u32 sched_priority; 117 118 /* SCHED_DEADLINE */ 119 u64 sched_runtime; 120 u64 sched_deadline; 121 u64 sched_period; 122 }; 123 124 struct exec_domain; 125 struct futex_pi_state; 126 struct robust_list_head; 127 struct bio_list; 128 struct fs_struct; 129 struct perf_event_context; 130 struct blk_plug; 131 struct filename; 132 133 /* 134 * List of flags we want to share for kernel threads, 135 * if only because they are not used by them anyway. 136 */ 137 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 138 139 /* 140 * These are the constant used to fake the fixed-point load-average 141 * counting. Some notes: 142 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 143 * a load-average precision of 10 bits integer + 11 bits fractional 144 * - if you want to count load-averages more often, you need more 145 * precision, or rounding will get you. With 2-second counting freq, 146 * the EXP_n values would be 1981, 2034 and 2043 if still using only 147 * 11 bit fractions. 148 */ 149 extern unsigned long avenrun[]; /* Load averages */ 150 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 151 152 #define FSHIFT 11 /* nr of bits of precision */ 153 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 154 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 155 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 156 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 157 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 158 159 #define CALC_LOAD(load,exp,n) \ 160 load *= exp; \ 161 load += n*(FIXED_1-exp); \ 162 load >>= FSHIFT; 163 164 extern unsigned long total_forks; 165 extern int nr_threads; 166 DECLARE_PER_CPU(unsigned long, process_counts); 167 extern int nr_processes(void); 168 extern unsigned long nr_running(void); 169 extern unsigned long nr_iowait(void); 170 extern unsigned long nr_iowait_cpu(int cpu); 171 extern unsigned long this_cpu_load(void); 172 173 174 extern void calc_global_load(unsigned long ticks); 175 extern void update_cpu_load_nohz(void); 176 177 extern unsigned long get_parent_ip(unsigned long addr); 178 179 extern void dump_cpu_task(int cpu); 180 181 struct seq_file; 182 struct cfs_rq; 183 struct task_group; 184 #ifdef CONFIG_SCHED_DEBUG 185 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 186 extern void proc_sched_set_task(struct task_struct *p); 187 extern void 188 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 189 #endif 190 191 /* 192 * Task state bitmask. NOTE! These bits are also 193 * encoded in fs/proc/array.c: get_task_state(). 194 * 195 * We have two separate sets of flags: task->state 196 * is about runnability, while task->exit_state are 197 * about the task exiting. Confusing, but this way 198 * modifying one set can't modify the other one by 199 * mistake. 200 */ 201 #define TASK_RUNNING 0 202 #define TASK_INTERRUPTIBLE 1 203 #define TASK_UNINTERRUPTIBLE 2 204 #define __TASK_STOPPED 4 205 #define __TASK_TRACED 8 206 /* in tsk->exit_state */ 207 #define EXIT_ZOMBIE 16 208 #define EXIT_DEAD 32 209 /* in tsk->state again */ 210 #define TASK_DEAD 64 211 #define TASK_WAKEKILL 128 212 #define TASK_WAKING 256 213 #define TASK_PARKED 512 214 #define TASK_STATE_MAX 1024 215 216 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 217 218 extern char ___assert_task_state[1 - 2*!!( 219 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 220 221 /* Convenience macros for the sake of set_task_state */ 222 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 223 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 224 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 225 226 /* Convenience macros for the sake of wake_up */ 227 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 228 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 229 230 /* get_task_state() */ 231 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 232 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 233 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 234 235 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 236 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 237 #define task_is_stopped_or_traced(task) \ 238 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 239 #define task_contributes_to_load(task) \ 240 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 241 (task->flags & PF_FROZEN) == 0) 242 243 #define __set_task_state(tsk, state_value) \ 244 do { (tsk)->state = (state_value); } while (0) 245 #define set_task_state(tsk, state_value) \ 246 set_mb((tsk)->state, (state_value)) 247 248 /* 249 * set_current_state() includes a barrier so that the write of current->state 250 * is correctly serialised wrt the caller's subsequent test of whether to 251 * actually sleep: 252 * 253 * set_current_state(TASK_UNINTERRUPTIBLE); 254 * if (do_i_need_to_sleep()) 255 * schedule(); 256 * 257 * If the caller does not need such serialisation then use __set_current_state() 258 */ 259 #define __set_current_state(state_value) \ 260 do { current->state = (state_value); } while (0) 261 #define set_current_state(state_value) \ 262 set_mb(current->state, (state_value)) 263 264 /* Task command name length */ 265 #define TASK_COMM_LEN 16 266 267 #include <linux/spinlock.h> 268 269 /* 270 * This serializes "schedule()" and also protects 271 * the run-queue from deletions/modifications (but 272 * _adding_ to the beginning of the run-queue has 273 * a separate lock). 274 */ 275 extern rwlock_t tasklist_lock; 276 extern spinlock_t mmlist_lock; 277 278 struct task_struct; 279 280 #ifdef CONFIG_PROVE_RCU 281 extern int lockdep_tasklist_lock_is_held(void); 282 #endif /* #ifdef CONFIG_PROVE_RCU */ 283 284 extern void sched_init(void); 285 extern void sched_init_smp(void); 286 extern asmlinkage void schedule_tail(struct task_struct *prev); 287 extern void init_idle(struct task_struct *idle, int cpu); 288 extern void init_idle_bootup_task(struct task_struct *idle); 289 290 extern int runqueue_is_locked(int cpu); 291 292 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 293 extern void nohz_balance_enter_idle(int cpu); 294 extern void set_cpu_sd_state_idle(void); 295 extern int get_nohz_timer_target(void); 296 #else 297 static inline void nohz_balance_enter_idle(int cpu) { } 298 static inline void set_cpu_sd_state_idle(void) { } 299 #endif 300 301 /* 302 * Only dump TASK_* tasks. (0 for all tasks) 303 */ 304 extern void show_state_filter(unsigned long state_filter); 305 306 static inline void show_state(void) 307 { 308 show_state_filter(0); 309 } 310 311 extern void show_regs(struct pt_regs *); 312 313 /* 314 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 315 * task), SP is the stack pointer of the first frame that should be shown in the back 316 * trace (or NULL if the entire call-chain of the task should be shown). 317 */ 318 extern void show_stack(struct task_struct *task, unsigned long *sp); 319 320 void io_schedule(void); 321 long io_schedule_timeout(long timeout); 322 323 extern void cpu_init (void); 324 extern void trap_init(void); 325 extern void update_process_times(int user); 326 extern void scheduler_tick(void); 327 328 extern void sched_show_task(struct task_struct *p); 329 330 #ifdef CONFIG_LOCKUP_DETECTOR 331 extern void touch_softlockup_watchdog(void); 332 extern void touch_softlockup_watchdog_sync(void); 333 extern void touch_all_softlockup_watchdogs(void); 334 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 335 void __user *buffer, 336 size_t *lenp, loff_t *ppos); 337 extern unsigned int softlockup_panic; 338 void lockup_detector_init(void); 339 #else 340 static inline void touch_softlockup_watchdog(void) 341 { 342 } 343 static inline void touch_softlockup_watchdog_sync(void) 344 { 345 } 346 static inline void touch_all_softlockup_watchdogs(void) 347 { 348 } 349 static inline void lockup_detector_init(void) 350 { 351 } 352 #endif 353 354 #ifdef CONFIG_DETECT_HUNG_TASK 355 void reset_hung_task_detector(void); 356 #else 357 static inline void reset_hung_task_detector(void) 358 { 359 } 360 #endif 361 362 /* Attach to any functions which should be ignored in wchan output. */ 363 #define __sched __attribute__((__section__(".sched.text"))) 364 365 /* Linker adds these: start and end of __sched functions */ 366 extern char __sched_text_start[], __sched_text_end[]; 367 368 /* Is this address in the __sched functions? */ 369 extern int in_sched_functions(unsigned long addr); 370 371 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 372 extern signed long schedule_timeout(signed long timeout); 373 extern signed long schedule_timeout_interruptible(signed long timeout); 374 extern signed long schedule_timeout_killable(signed long timeout); 375 extern signed long schedule_timeout_uninterruptible(signed long timeout); 376 asmlinkage void schedule(void); 377 extern void schedule_preempt_disabled(void); 378 379 struct nsproxy; 380 struct user_namespace; 381 382 #ifdef CONFIG_MMU 383 extern void arch_pick_mmap_layout(struct mm_struct *mm); 384 extern unsigned long 385 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 386 unsigned long, unsigned long); 387 extern unsigned long 388 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 389 unsigned long len, unsigned long pgoff, 390 unsigned long flags); 391 #else 392 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 393 #endif 394 395 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 396 #define SUID_DUMP_USER 1 /* Dump as user of process */ 397 #define SUID_DUMP_ROOT 2 /* Dump as root */ 398 399 /* mm flags */ 400 401 /* for SUID_DUMP_* above */ 402 #define MMF_DUMPABLE_BITS 2 403 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 404 405 extern void set_dumpable(struct mm_struct *mm, int value); 406 /* 407 * This returns the actual value of the suid_dumpable flag. For things 408 * that are using this for checking for privilege transitions, it must 409 * test against SUID_DUMP_USER rather than treating it as a boolean 410 * value. 411 */ 412 static inline int __get_dumpable(unsigned long mm_flags) 413 { 414 return mm_flags & MMF_DUMPABLE_MASK; 415 } 416 417 static inline int get_dumpable(struct mm_struct *mm) 418 { 419 return __get_dumpable(mm->flags); 420 } 421 422 /* coredump filter bits */ 423 #define MMF_DUMP_ANON_PRIVATE 2 424 #define MMF_DUMP_ANON_SHARED 3 425 #define MMF_DUMP_MAPPED_PRIVATE 4 426 #define MMF_DUMP_MAPPED_SHARED 5 427 #define MMF_DUMP_ELF_HEADERS 6 428 #define MMF_DUMP_HUGETLB_PRIVATE 7 429 #define MMF_DUMP_HUGETLB_SHARED 8 430 431 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 432 #define MMF_DUMP_FILTER_BITS 7 433 #define MMF_DUMP_FILTER_MASK \ 434 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 435 #define MMF_DUMP_FILTER_DEFAULT \ 436 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 437 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 438 439 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 440 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 441 #else 442 # define MMF_DUMP_MASK_DEFAULT_ELF 0 443 #endif 444 /* leave room for more dump flags */ 445 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 446 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 447 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 448 449 #define MMF_HAS_UPROBES 19 /* has uprobes */ 450 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 451 452 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 453 454 struct sighand_struct { 455 atomic_t count; 456 struct k_sigaction action[_NSIG]; 457 spinlock_t siglock; 458 wait_queue_head_t signalfd_wqh; 459 }; 460 461 struct pacct_struct { 462 int ac_flag; 463 long ac_exitcode; 464 unsigned long ac_mem; 465 cputime_t ac_utime, ac_stime; 466 unsigned long ac_minflt, ac_majflt; 467 }; 468 469 struct cpu_itimer { 470 cputime_t expires; 471 cputime_t incr; 472 u32 error; 473 u32 incr_error; 474 }; 475 476 /** 477 * struct cputime - snaphsot of system and user cputime 478 * @utime: time spent in user mode 479 * @stime: time spent in system mode 480 * 481 * Gathers a generic snapshot of user and system time. 482 */ 483 struct cputime { 484 cputime_t utime; 485 cputime_t stime; 486 }; 487 488 /** 489 * struct task_cputime - collected CPU time counts 490 * @utime: time spent in user mode, in &cputime_t units 491 * @stime: time spent in kernel mode, in &cputime_t units 492 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 493 * 494 * This is an extension of struct cputime that includes the total runtime 495 * spent by the task from the scheduler point of view. 496 * 497 * As a result, this structure groups together three kinds of CPU time 498 * that are tracked for threads and thread groups. Most things considering 499 * CPU time want to group these counts together and treat all three 500 * of them in parallel. 501 */ 502 struct task_cputime { 503 cputime_t utime; 504 cputime_t stime; 505 unsigned long long sum_exec_runtime; 506 }; 507 /* Alternate field names when used to cache expirations. */ 508 #define prof_exp stime 509 #define virt_exp utime 510 #define sched_exp sum_exec_runtime 511 512 #define INIT_CPUTIME \ 513 (struct task_cputime) { \ 514 .utime = 0, \ 515 .stime = 0, \ 516 .sum_exec_runtime = 0, \ 517 } 518 519 #ifdef CONFIG_PREEMPT_COUNT 520 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 521 #else 522 #define PREEMPT_DISABLED PREEMPT_ENABLED 523 #endif 524 525 /* 526 * Disable preemption until the scheduler is running. 527 * Reset by start_kernel()->sched_init()->init_idle(). 528 * 529 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 530 * before the scheduler is active -- see should_resched(). 531 */ 532 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 533 534 /** 535 * struct thread_group_cputimer - thread group interval timer counts 536 * @cputime: thread group interval timers. 537 * @running: non-zero when there are timers running and 538 * @cputime receives updates. 539 * @lock: lock for fields in this struct. 540 * 541 * This structure contains the version of task_cputime, above, that is 542 * used for thread group CPU timer calculations. 543 */ 544 struct thread_group_cputimer { 545 struct task_cputime cputime; 546 int running; 547 raw_spinlock_t lock; 548 }; 549 550 #include <linux/rwsem.h> 551 struct autogroup; 552 553 /* 554 * NOTE! "signal_struct" does not have its own 555 * locking, because a shared signal_struct always 556 * implies a shared sighand_struct, so locking 557 * sighand_struct is always a proper superset of 558 * the locking of signal_struct. 559 */ 560 struct signal_struct { 561 atomic_t sigcnt; 562 atomic_t live; 563 int nr_threads; 564 struct list_head thread_head; 565 566 wait_queue_head_t wait_chldexit; /* for wait4() */ 567 568 /* current thread group signal load-balancing target: */ 569 struct task_struct *curr_target; 570 571 /* shared signal handling: */ 572 struct sigpending shared_pending; 573 574 /* thread group exit support */ 575 int group_exit_code; 576 /* overloaded: 577 * - notify group_exit_task when ->count is equal to notify_count 578 * - everyone except group_exit_task is stopped during signal delivery 579 * of fatal signals, group_exit_task processes the signal. 580 */ 581 int notify_count; 582 struct task_struct *group_exit_task; 583 584 /* thread group stop support, overloads group_exit_code too */ 585 int group_stop_count; 586 unsigned int flags; /* see SIGNAL_* flags below */ 587 588 /* 589 * PR_SET_CHILD_SUBREAPER marks a process, like a service 590 * manager, to re-parent orphan (double-forking) child processes 591 * to this process instead of 'init'. The service manager is 592 * able to receive SIGCHLD signals and is able to investigate 593 * the process until it calls wait(). All children of this 594 * process will inherit a flag if they should look for a 595 * child_subreaper process at exit. 596 */ 597 unsigned int is_child_subreaper:1; 598 unsigned int has_child_subreaper:1; 599 600 /* POSIX.1b Interval Timers */ 601 int posix_timer_id; 602 struct list_head posix_timers; 603 604 /* ITIMER_REAL timer for the process */ 605 struct hrtimer real_timer; 606 struct pid *leader_pid; 607 ktime_t it_real_incr; 608 609 /* 610 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 611 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 612 * values are defined to 0 and 1 respectively 613 */ 614 struct cpu_itimer it[2]; 615 616 /* 617 * Thread group totals for process CPU timers. 618 * See thread_group_cputimer(), et al, for details. 619 */ 620 struct thread_group_cputimer cputimer; 621 622 /* Earliest-expiration cache. */ 623 struct task_cputime cputime_expires; 624 625 struct list_head cpu_timers[3]; 626 627 struct pid *tty_old_pgrp; 628 629 /* boolean value for session group leader */ 630 int leader; 631 632 struct tty_struct *tty; /* NULL if no tty */ 633 634 #ifdef CONFIG_SCHED_AUTOGROUP 635 struct autogroup *autogroup; 636 #endif 637 /* 638 * Cumulative resource counters for dead threads in the group, 639 * and for reaped dead child processes forked by this group. 640 * Live threads maintain their own counters and add to these 641 * in __exit_signal, except for the group leader. 642 */ 643 cputime_t utime, stime, cutime, cstime; 644 cputime_t gtime; 645 cputime_t cgtime; 646 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 647 struct cputime prev_cputime; 648 #endif 649 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 650 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 651 unsigned long inblock, oublock, cinblock, coublock; 652 unsigned long maxrss, cmaxrss; 653 struct task_io_accounting ioac; 654 655 /* 656 * Cumulative ns of schedule CPU time fo dead threads in the 657 * group, not including a zombie group leader, (This only differs 658 * from jiffies_to_ns(utime + stime) if sched_clock uses something 659 * other than jiffies.) 660 */ 661 unsigned long long sum_sched_runtime; 662 663 /* 664 * We don't bother to synchronize most readers of this at all, 665 * because there is no reader checking a limit that actually needs 666 * to get both rlim_cur and rlim_max atomically, and either one 667 * alone is a single word that can safely be read normally. 668 * getrlimit/setrlimit use task_lock(current->group_leader) to 669 * protect this instead of the siglock, because they really 670 * have no need to disable irqs. 671 */ 672 struct rlimit rlim[RLIM_NLIMITS]; 673 674 #ifdef CONFIG_BSD_PROCESS_ACCT 675 struct pacct_struct pacct; /* per-process accounting information */ 676 #endif 677 #ifdef CONFIG_TASKSTATS 678 struct taskstats *stats; 679 #endif 680 #ifdef CONFIG_AUDIT 681 unsigned audit_tty; 682 unsigned audit_tty_log_passwd; 683 struct tty_audit_buf *tty_audit_buf; 684 #endif 685 #ifdef CONFIG_CGROUPS 686 /* 687 * group_rwsem prevents new tasks from entering the threadgroup and 688 * member tasks from exiting,a more specifically, setting of 689 * PF_EXITING. fork and exit paths are protected with this rwsem 690 * using threadgroup_change_begin/end(). Users which require 691 * threadgroup to remain stable should use threadgroup_[un]lock() 692 * which also takes care of exec path. Currently, cgroup is the 693 * only user. 694 */ 695 struct rw_semaphore group_rwsem; 696 #endif 697 698 oom_flags_t oom_flags; 699 short oom_score_adj; /* OOM kill score adjustment */ 700 short oom_score_adj_min; /* OOM kill score adjustment min value. 701 * Only settable by CAP_SYS_RESOURCE. */ 702 703 struct mutex cred_guard_mutex; /* guard against foreign influences on 704 * credential calculations 705 * (notably. ptrace) */ 706 }; 707 708 /* 709 * Bits in flags field of signal_struct. 710 */ 711 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 712 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 713 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 714 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 715 /* 716 * Pending notifications to parent. 717 */ 718 #define SIGNAL_CLD_STOPPED 0x00000010 719 #define SIGNAL_CLD_CONTINUED 0x00000020 720 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 721 722 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 723 724 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 725 static inline int signal_group_exit(const struct signal_struct *sig) 726 { 727 return (sig->flags & SIGNAL_GROUP_EXIT) || 728 (sig->group_exit_task != NULL); 729 } 730 731 /* 732 * Some day this will be a full-fledged user tracking system.. 733 */ 734 struct user_struct { 735 atomic_t __count; /* reference count */ 736 atomic_t processes; /* How many processes does this user have? */ 737 atomic_t files; /* How many open files does this user have? */ 738 atomic_t sigpending; /* How many pending signals does this user have? */ 739 #ifdef CONFIG_INOTIFY_USER 740 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 741 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 742 #endif 743 #ifdef CONFIG_FANOTIFY 744 atomic_t fanotify_listeners; 745 #endif 746 #ifdef CONFIG_EPOLL 747 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 748 #endif 749 #ifdef CONFIG_POSIX_MQUEUE 750 /* protected by mq_lock */ 751 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 752 #endif 753 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 754 755 #ifdef CONFIG_KEYS 756 struct key *uid_keyring; /* UID specific keyring */ 757 struct key *session_keyring; /* UID's default session keyring */ 758 #endif 759 760 /* Hash table maintenance information */ 761 struct hlist_node uidhash_node; 762 kuid_t uid; 763 764 #ifdef CONFIG_PERF_EVENTS 765 atomic_long_t locked_vm; 766 #endif 767 }; 768 769 extern int uids_sysfs_init(void); 770 771 extern struct user_struct *find_user(kuid_t); 772 773 extern struct user_struct root_user; 774 #define INIT_USER (&root_user) 775 776 777 struct backing_dev_info; 778 struct reclaim_state; 779 780 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 781 struct sched_info { 782 /* cumulative counters */ 783 unsigned long pcount; /* # of times run on this cpu */ 784 unsigned long long run_delay; /* time spent waiting on a runqueue */ 785 786 /* timestamps */ 787 unsigned long long last_arrival,/* when we last ran on a cpu */ 788 last_queued; /* when we were last queued to run */ 789 }; 790 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 791 792 #ifdef CONFIG_TASK_DELAY_ACCT 793 struct task_delay_info { 794 spinlock_t lock; 795 unsigned int flags; /* Private per-task flags */ 796 797 /* For each stat XXX, add following, aligned appropriately 798 * 799 * struct timespec XXX_start, XXX_end; 800 * u64 XXX_delay; 801 * u32 XXX_count; 802 * 803 * Atomicity of updates to XXX_delay, XXX_count protected by 804 * single lock above (split into XXX_lock if contention is an issue). 805 */ 806 807 /* 808 * XXX_count is incremented on every XXX operation, the delay 809 * associated with the operation is added to XXX_delay. 810 * XXX_delay contains the accumulated delay time in nanoseconds. 811 */ 812 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 813 u64 blkio_delay; /* wait for sync block io completion */ 814 u64 swapin_delay; /* wait for swapin block io completion */ 815 u32 blkio_count; /* total count of the number of sync block */ 816 /* io operations performed */ 817 u32 swapin_count; /* total count of the number of swapin block */ 818 /* io operations performed */ 819 820 struct timespec freepages_start, freepages_end; 821 u64 freepages_delay; /* wait for memory reclaim */ 822 u32 freepages_count; /* total count of memory reclaim */ 823 }; 824 #endif /* CONFIG_TASK_DELAY_ACCT */ 825 826 static inline int sched_info_on(void) 827 { 828 #ifdef CONFIG_SCHEDSTATS 829 return 1; 830 #elif defined(CONFIG_TASK_DELAY_ACCT) 831 extern int delayacct_on; 832 return delayacct_on; 833 #else 834 return 0; 835 #endif 836 } 837 838 enum cpu_idle_type { 839 CPU_IDLE, 840 CPU_NOT_IDLE, 841 CPU_NEWLY_IDLE, 842 CPU_MAX_IDLE_TYPES 843 }; 844 845 /* 846 * Increase resolution of cpu_power calculations 847 */ 848 #define SCHED_POWER_SHIFT 10 849 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 850 851 /* 852 * sched-domains (multiprocessor balancing) declarations: 853 */ 854 #ifdef CONFIG_SMP 855 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 856 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 857 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 858 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 859 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 860 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 861 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 862 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 863 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 864 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 865 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 866 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 867 #define SD_NUMA 0x4000 /* cross-node balancing */ 868 869 extern int __weak arch_sd_sibiling_asym_packing(void); 870 871 struct sched_domain_attr { 872 int relax_domain_level; 873 }; 874 875 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 876 .relax_domain_level = -1, \ 877 } 878 879 extern int sched_domain_level_max; 880 881 struct sched_group; 882 883 struct sched_domain { 884 /* These fields must be setup */ 885 struct sched_domain *parent; /* top domain must be null terminated */ 886 struct sched_domain *child; /* bottom domain must be null terminated */ 887 struct sched_group *groups; /* the balancing groups of the domain */ 888 unsigned long min_interval; /* Minimum balance interval ms */ 889 unsigned long max_interval; /* Maximum balance interval ms */ 890 unsigned int busy_factor; /* less balancing by factor if busy */ 891 unsigned int imbalance_pct; /* No balance until over watermark */ 892 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 893 unsigned int busy_idx; 894 unsigned int idle_idx; 895 unsigned int newidle_idx; 896 unsigned int wake_idx; 897 unsigned int forkexec_idx; 898 unsigned int smt_gain; 899 900 int nohz_idle; /* NOHZ IDLE status */ 901 int flags; /* See SD_* */ 902 int level; 903 904 /* Runtime fields. */ 905 unsigned long last_balance; /* init to jiffies. units in jiffies */ 906 unsigned int balance_interval; /* initialise to 1. units in ms. */ 907 unsigned int nr_balance_failed; /* initialise to 0 */ 908 909 /* idle_balance() stats */ 910 u64 max_newidle_lb_cost; 911 unsigned long next_decay_max_lb_cost; 912 913 #ifdef CONFIG_SCHEDSTATS 914 /* load_balance() stats */ 915 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 916 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 917 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 918 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 919 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 920 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 921 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 922 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 923 924 /* Active load balancing */ 925 unsigned int alb_count; 926 unsigned int alb_failed; 927 unsigned int alb_pushed; 928 929 /* SD_BALANCE_EXEC stats */ 930 unsigned int sbe_count; 931 unsigned int sbe_balanced; 932 unsigned int sbe_pushed; 933 934 /* SD_BALANCE_FORK stats */ 935 unsigned int sbf_count; 936 unsigned int sbf_balanced; 937 unsigned int sbf_pushed; 938 939 /* try_to_wake_up() stats */ 940 unsigned int ttwu_wake_remote; 941 unsigned int ttwu_move_affine; 942 unsigned int ttwu_move_balance; 943 #endif 944 #ifdef CONFIG_SCHED_DEBUG 945 char *name; 946 #endif 947 union { 948 void *private; /* used during construction */ 949 struct rcu_head rcu; /* used during destruction */ 950 }; 951 952 unsigned int span_weight; 953 /* 954 * Span of all CPUs in this domain. 955 * 956 * NOTE: this field is variable length. (Allocated dynamically 957 * by attaching extra space to the end of the structure, 958 * depending on how many CPUs the kernel has booted up with) 959 */ 960 unsigned long span[0]; 961 }; 962 963 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 964 { 965 return to_cpumask(sd->span); 966 } 967 968 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 969 struct sched_domain_attr *dattr_new); 970 971 /* Allocate an array of sched domains, for partition_sched_domains(). */ 972 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 973 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 974 975 bool cpus_share_cache(int this_cpu, int that_cpu); 976 977 #else /* CONFIG_SMP */ 978 979 struct sched_domain_attr; 980 981 static inline void 982 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 983 struct sched_domain_attr *dattr_new) 984 { 985 } 986 987 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 988 { 989 return true; 990 } 991 992 #endif /* !CONFIG_SMP */ 993 994 995 struct io_context; /* See blkdev.h */ 996 997 998 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 999 extern void prefetch_stack(struct task_struct *t); 1000 #else 1001 static inline void prefetch_stack(struct task_struct *t) { } 1002 #endif 1003 1004 struct audit_context; /* See audit.c */ 1005 struct mempolicy; 1006 struct pipe_inode_info; 1007 struct uts_namespace; 1008 1009 struct load_weight { 1010 unsigned long weight; 1011 u32 inv_weight; 1012 }; 1013 1014 struct sched_avg { 1015 /* 1016 * These sums represent an infinite geometric series and so are bound 1017 * above by 1024/(1-y). Thus we only need a u32 to store them for all 1018 * choices of y < 1-2^(-32)*1024. 1019 */ 1020 u32 runnable_avg_sum, runnable_avg_period; 1021 u64 last_runnable_update; 1022 s64 decay_count; 1023 unsigned long load_avg_contrib; 1024 }; 1025 1026 #ifdef CONFIG_SCHEDSTATS 1027 struct sched_statistics { 1028 u64 wait_start; 1029 u64 wait_max; 1030 u64 wait_count; 1031 u64 wait_sum; 1032 u64 iowait_count; 1033 u64 iowait_sum; 1034 1035 u64 sleep_start; 1036 u64 sleep_max; 1037 s64 sum_sleep_runtime; 1038 1039 u64 block_start; 1040 u64 block_max; 1041 u64 exec_max; 1042 u64 slice_max; 1043 1044 u64 nr_migrations_cold; 1045 u64 nr_failed_migrations_affine; 1046 u64 nr_failed_migrations_running; 1047 u64 nr_failed_migrations_hot; 1048 u64 nr_forced_migrations; 1049 1050 u64 nr_wakeups; 1051 u64 nr_wakeups_sync; 1052 u64 nr_wakeups_migrate; 1053 u64 nr_wakeups_local; 1054 u64 nr_wakeups_remote; 1055 u64 nr_wakeups_affine; 1056 u64 nr_wakeups_affine_attempts; 1057 u64 nr_wakeups_passive; 1058 u64 nr_wakeups_idle; 1059 }; 1060 #endif 1061 1062 struct sched_entity { 1063 struct load_weight load; /* for load-balancing */ 1064 struct rb_node run_node; 1065 struct list_head group_node; 1066 unsigned int on_rq; 1067 1068 u64 exec_start; 1069 u64 sum_exec_runtime; 1070 u64 vruntime; 1071 u64 prev_sum_exec_runtime; 1072 1073 u64 nr_migrations; 1074 1075 #ifdef CONFIG_SCHEDSTATS 1076 struct sched_statistics statistics; 1077 #endif 1078 1079 #ifdef CONFIG_FAIR_GROUP_SCHED 1080 struct sched_entity *parent; 1081 /* rq on which this entity is (to be) queued: */ 1082 struct cfs_rq *cfs_rq; 1083 /* rq "owned" by this entity/group: */ 1084 struct cfs_rq *my_q; 1085 #endif 1086 1087 #ifdef CONFIG_SMP 1088 /* Per-entity load-tracking */ 1089 struct sched_avg avg; 1090 #endif 1091 }; 1092 1093 struct sched_rt_entity { 1094 struct list_head run_list; 1095 unsigned long timeout; 1096 unsigned long watchdog_stamp; 1097 unsigned int time_slice; 1098 1099 struct sched_rt_entity *back; 1100 #ifdef CONFIG_RT_GROUP_SCHED 1101 struct sched_rt_entity *parent; 1102 /* rq on which this entity is (to be) queued: */ 1103 struct rt_rq *rt_rq; 1104 /* rq "owned" by this entity/group: */ 1105 struct rt_rq *my_q; 1106 #endif 1107 }; 1108 1109 struct sched_dl_entity { 1110 struct rb_node rb_node; 1111 1112 /* 1113 * Original scheduling parameters. Copied here from sched_attr 1114 * during sched_setscheduler2(), they will remain the same until 1115 * the next sched_setscheduler2(). 1116 */ 1117 u64 dl_runtime; /* maximum runtime for each instance */ 1118 u64 dl_deadline; /* relative deadline of each instance */ 1119 u64 dl_period; /* separation of two instances (period) */ 1120 u64 dl_bw; /* dl_runtime / dl_deadline */ 1121 1122 /* 1123 * Actual scheduling parameters. Initialized with the values above, 1124 * they are continously updated during task execution. Note that 1125 * the remaining runtime could be < 0 in case we are in overrun. 1126 */ 1127 s64 runtime; /* remaining runtime for this instance */ 1128 u64 deadline; /* absolute deadline for this instance */ 1129 unsigned int flags; /* specifying the scheduler behaviour */ 1130 1131 /* 1132 * Some bool flags: 1133 * 1134 * @dl_throttled tells if we exhausted the runtime. If so, the 1135 * task has to wait for a replenishment to be performed at the 1136 * next firing of dl_timer. 1137 * 1138 * @dl_new tells if a new instance arrived. If so we must 1139 * start executing it with full runtime and reset its absolute 1140 * deadline; 1141 * 1142 * @dl_boosted tells if we are boosted due to DI. If so we are 1143 * outside bandwidth enforcement mechanism (but only until we 1144 * exit the critical section). 1145 */ 1146 int dl_throttled, dl_new, dl_boosted; 1147 1148 /* 1149 * Bandwidth enforcement timer. Each -deadline task has its 1150 * own bandwidth to be enforced, thus we need one timer per task. 1151 */ 1152 struct hrtimer dl_timer; 1153 }; 1154 1155 struct rcu_node; 1156 1157 enum perf_event_task_context { 1158 perf_invalid_context = -1, 1159 perf_hw_context = 0, 1160 perf_sw_context, 1161 perf_nr_task_contexts, 1162 }; 1163 1164 struct task_struct { 1165 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1166 void *stack; 1167 atomic_t usage; 1168 unsigned int flags; /* per process flags, defined below */ 1169 unsigned int ptrace; 1170 1171 #ifdef CONFIG_SMP 1172 struct llist_node wake_entry; 1173 int on_cpu; 1174 struct task_struct *last_wakee; 1175 unsigned long wakee_flips; 1176 unsigned long wakee_flip_decay_ts; 1177 1178 int wake_cpu; 1179 #endif 1180 int on_rq; 1181 1182 int prio, static_prio, normal_prio; 1183 unsigned int rt_priority; 1184 const struct sched_class *sched_class; 1185 struct sched_entity se; 1186 struct sched_rt_entity rt; 1187 #ifdef CONFIG_CGROUP_SCHED 1188 struct task_group *sched_task_group; 1189 #endif 1190 struct sched_dl_entity dl; 1191 1192 #ifdef CONFIG_PREEMPT_NOTIFIERS 1193 /* list of struct preempt_notifier: */ 1194 struct hlist_head preempt_notifiers; 1195 #endif 1196 1197 #ifdef CONFIG_BLK_DEV_IO_TRACE 1198 unsigned int btrace_seq; 1199 #endif 1200 1201 unsigned int policy; 1202 int nr_cpus_allowed; 1203 cpumask_t cpus_allowed; 1204 1205 #ifdef CONFIG_PREEMPT_RCU 1206 int rcu_read_lock_nesting; 1207 char rcu_read_unlock_special; 1208 struct list_head rcu_node_entry; 1209 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1210 #ifdef CONFIG_TREE_PREEMPT_RCU 1211 struct rcu_node *rcu_blocked_node; 1212 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1213 #ifdef CONFIG_RCU_BOOST 1214 struct rt_mutex *rcu_boost_mutex; 1215 #endif /* #ifdef CONFIG_RCU_BOOST */ 1216 1217 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1218 struct sched_info sched_info; 1219 #endif 1220 1221 struct list_head tasks; 1222 #ifdef CONFIG_SMP 1223 struct plist_node pushable_tasks; 1224 struct rb_node pushable_dl_tasks; 1225 #endif 1226 1227 struct mm_struct *mm, *active_mm; 1228 #ifdef CONFIG_COMPAT_BRK 1229 unsigned brk_randomized:1; 1230 #endif 1231 #if defined(SPLIT_RSS_COUNTING) 1232 struct task_rss_stat rss_stat; 1233 #endif 1234 /* task state */ 1235 int exit_state; 1236 int exit_code, exit_signal; 1237 int pdeath_signal; /* The signal sent when the parent dies */ 1238 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1239 1240 /* Used for emulating ABI behavior of previous Linux versions */ 1241 unsigned int personality; 1242 1243 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1244 * execve */ 1245 unsigned in_iowait:1; 1246 1247 /* task may not gain privileges */ 1248 unsigned no_new_privs:1; 1249 1250 /* Revert to default priority/policy when forking */ 1251 unsigned sched_reset_on_fork:1; 1252 unsigned sched_contributes_to_load:1; 1253 1254 pid_t pid; 1255 pid_t tgid; 1256 1257 #ifdef CONFIG_CC_STACKPROTECTOR 1258 /* Canary value for the -fstack-protector gcc feature */ 1259 unsigned long stack_canary; 1260 #endif 1261 /* 1262 * pointers to (original) parent process, youngest child, younger sibling, 1263 * older sibling, respectively. (p->father can be replaced with 1264 * p->real_parent->pid) 1265 */ 1266 struct task_struct __rcu *real_parent; /* real parent process */ 1267 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1268 /* 1269 * children/sibling forms the list of my natural children 1270 */ 1271 struct list_head children; /* list of my children */ 1272 struct list_head sibling; /* linkage in my parent's children list */ 1273 struct task_struct *group_leader; /* threadgroup leader */ 1274 1275 /* 1276 * ptraced is the list of tasks this task is using ptrace on. 1277 * This includes both natural children and PTRACE_ATTACH targets. 1278 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1279 */ 1280 struct list_head ptraced; 1281 struct list_head ptrace_entry; 1282 1283 /* PID/PID hash table linkage. */ 1284 struct pid_link pids[PIDTYPE_MAX]; 1285 struct list_head thread_group; 1286 struct list_head thread_node; 1287 1288 struct completion *vfork_done; /* for vfork() */ 1289 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1290 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1291 1292 cputime_t utime, stime, utimescaled, stimescaled; 1293 cputime_t gtime; 1294 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1295 struct cputime prev_cputime; 1296 #endif 1297 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1298 seqlock_t vtime_seqlock; 1299 unsigned long long vtime_snap; 1300 enum { 1301 VTIME_SLEEPING = 0, 1302 VTIME_USER, 1303 VTIME_SYS, 1304 } vtime_snap_whence; 1305 #endif 1306 unsigned long nvcsw, nivcsw; /* context switch counts */ 1307 struct timespec start_time; /* monotonic time */ 1308 struct timespec real_start_time; /* boot based time */ 1309 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1310 unsigned long min_flt, maj_flt; 1311 1312 struct task_cputime cputime_expires; 1313 struct list_head cpu_timers[3]; 1314 1315 /* process credentials */ 1316 const struct cred __rcu *real_cred; /* objective and real subjective task 1317 * credentials (COW) */ 1318 const struct cred __rcu *cred; /* effective (overridable) subjective task 1319 * credentials (COW) */ 1320 char comm[TASK_COMM_LEN]; /* executable name excluding path 1321 - access with [gs]et_task_comm (which lock 1322 it with task_lock()) 1323 - initialized normally by setup_new_exec */ 1324 /* file system info */ 1325 int link_count, total_link_count; 1326 #ifdef CONFIG_SYSVIPC 1327 /* ipc stuff */ 1328 struct sysv_sem sysvsem; 1329 #endif 1330 #ifdef CONFIG_DETECT_HUNG_TASK 1331 /* hung task detection */ 1332 unsigned long last_switch_count; 1333 #endif 1334 /* CPU-specific state of this task */ 1335 struct thread_struct thread; 1336 /* filesystem information */ 1337 struct fs_struct *fs; 1338 /* open file information */ 1339 struct files_struct *files; 1340 /* namespaces */ 1341 struct nsproxy *nsproxy; 1342 /* signal handlers */ 1343 struct signal_struct *signal; 1344 struct sighand_struct *sighand; 1345 1346 sigset_t blocked, real_blocked; 1347 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1348 struct sigpending pending; 1349 1350 unsigned long sas_ss_sp; 1351 size_t sas_ss_size; 1352 int (*notifier)(void *priv); 1353 void *notifier_data; 1354 sigset_t *notifier_mask; 1355 struct callback_head *task_works; 1356 1357 struct audit_context *audit_context; 1358 #ifdef CONFIG_AUDITSYSCALL 1359 kuid_t loginuid; 1360 unsigned int sessionid; 1361 #endif 1362 struct seccomp seccomp; 1363 1364 /* Thread group tracking */ 1365 u32 parent_exec_id; 1366 u32 self_exec_id; 1367 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1368 * mempolicy */ 1369 spinlock_t alloc_lock; 1370 1371 /* Protection of the PI data structures: */ 1372 raw_spinlock_t pi_lock; 1373 1374 #ifdef CONFIG_RT_MUTEXES 1375 /* PI waiters blocked on a rt_mutex held by this task */ 1376 struct rb_root pi_waiters; 1377 struct rb_node *pi_waiters_leftmost; 1378 /* Deadlock detection and priority inheritance handling */ 1379 struct rt_mutex_waiter *pi_blocked_on; 1380 /* Top pi_waiters task */ 1381 struct task_struct *pi_top_task; 1382 #endif 1383 1384 #ifdef CONFIG_DEBUG_MUTEXES 1385 /* mutex deadlock detection */ 1386 struct mutex_waiter *blocked_on; 1387 #endif 1388 #ifdef CONFIG_TRACE_IRQFLAGS 1389 unsigned int irq_events; 1390 unsigned long hardirq_enable_ip; 1391 unsigned long hardirq_disable_ip; 1392 unsigned int hardirq_enable_event; 1393 unsigned int hardirq_disable_event; 1394 int hardirqs_enabled; 1395 int hardirq_context; 1396 unsigned long softirq_disable_ip; 1397 unsigned long softirq_enable_ip; 1398 unsigned int softirq_disable_event; 1399 unsigned int softirq_enable_event; 1400 int softirqs_enabled; 1401 int softirq_context; 1402 #endif 1403 #ifdef CONFIG_LOCKDEP 1404 # define MAX_LOCK_DEPTH 48UL 1405 u64 curr_chain_key; 1406 int lockdep_depth; 1407 unsigned int lockdep_recursion; 1408 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1409 gfp_t lockdep_reclaim_gfp; 1410 #endif 1411 1412 /* journalling filesystem info */ 1413 void *journal_info; 1414 1415 /* stacked block device info */ 1416 struct bio_list *bio_list; 1417 1418 #ifdef CONFIG_BLOCK 1419 /* stack plugging */ 1420 struct blk_plug *plug; 1421 #endif 1422 1423 /* VM state */ 1424 struct reclaim_state *reclaim_state; 1425 1426 struct backing_dev_info *backing_dev_info; 1427 1428 struct io_context *io_context; 1429 1430 unsigned long ptrace_message; 1431 siginfo_t *last_siginfo; /* For ptrace use. */ 1432 struct task_io_accounting ioac; 1433 #if defined(CONFIG_TASK_XACCT) 1434 u64 acct_rss_mem1; /* accumulated rss usage */ 1435 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1436 cputime_t acct_timexpd; /* stime + utime since last update */ 1437 #endif 1438 #ifdef CONFIG_CPUSETS 1439 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1440 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1441 int cpuset_mem_spread_rotor; 1442 int cpuset_slab_spread_rotor; 1443 #endif 1444 #ifdef CONFIG_CGROUPS 1445 /* Control Group info protected by css_set_lock */ 1446 struct css_set __rcu *cgroups; 1447 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1448 struct list_head cg_list; 1449 #endif 1450 #ifdef CONFIG_FUTEX 1451 struct robust_list_head __user *robust_list; 1452 #ifdef CONFIG_COMPAT 1453 struct compat_robust_list_head __user *compat_robust_list; 1454 #endif 1455 struct list_head pi_state_list; 1456 struct futex_pi_state *pi_state_cache; 1457 #endif 1458 #ifdef CONFIG_PERF_EVENTS 1459 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1460 struct mutex perf_event_mutex; 1461 struct list_head perf_event_list; 1462 #endif 1463 #ifdef CONFIG_NUMA 1464 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1465 short il_next; 1466 short pref_node_fork; 1467 #endif 1468 #ifdef CONFIG_NUMA_BALANCING 1469 int numa_scan_seq; 1470 unsigned int numa_scan_period; 1471 unsigned int numa_scan_period_max; 1472 int numa_preferred_nid; 1473 int numa_migrate_deferred; 1474 unsigned long numa_migrate_retry; 1475 u64 node_stamp; /* migration stamp */ 1476 struct callback_head numa_work; 1477 1478 struct list_head numa_entry; 1479 struct numa_group *numa_group; 1480 1481 /* 1482 * Exponential decaying average of faults on a per-node basis. 1483 * Scheduling placement decisions are made based on the these counts. 1484 * The values remain static for the duration of a PTE scan 1485 */ 1486 unsigned long *numa_faults; 1487 unsigned long total_numa_faults; 1488 1489 /* 1490 * numa_faults_buffer records faults per node during the current 1491 * scan window. When the scan completes, the counts in numa_faults 1492 * decay and these values are copied. 1493 */ 1494 unsigned long *numa_faults_buffer; 1495 1496 /* 1497 * numa_faults_locality tracks if faults recorded during the last 1498 * scan window were remote/local. The task scan period is adapted 1499 * based on the locality of the faults with different weights 1500 * depending on whether they were shared or private faults 1501 */ 1502 unsigned long numa_faults_locality[2]; 1503 1504 unsigned long numa_pages_migrated; 1505 #endif /* CONFIG_NUMA_BALANCING */ 1506 1507 struct rcu_head rcu; 1508 1509 /* 1510 * cache last used pipe for splice 1511 */ 1512 struct pipe_inode_info *splice_pipe; 1513 1514 struct page_frag task_frag; 1515 1516 #ifdef CONFIG_TASK_DELAY_ACCT 1517 struct task_delay_info *delays; 1518 #endif 1519 #ifdef CONFIG_FAULT_INJECTION 1520 int make_it_fail; 1521 #endif 1522 /* 1523 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1524 * balance_dirty_pages() for some dirty throttling pause 1525 */ 1526 int nr_dirtied; 1527 int nr_dirtied_pause; 1528 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1529 1530 #ifdef CONFIG_LATENCYTOP 1531 int latency_record_count; 1532 struct latency_record latency_record[LT_SAVECOUNT]; 1533 #endif 1534 /* 1535 * time slack values; these are used to round up poll() and 1536 * select() etc timeout values. These are in nanoseconds. 1537 */ 1538 unsigned long timer_slack_ns; 1539 unsigned long default_timer_slack_ns; 1540 1541 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1542 /* Index of current stored address in ret_stack */ 1543 int curr_ret_stack; 1544 /* Stack of return addresses for return function tracing */ 1545 struct ftrace_ret_stack *ret_stack; 1546 /* time stamp for last schedule */ 1547 unsigned long long ftrace_timestamp; 1548 /* 1549 * Number of functions that haven't been traced 1550 * because of depth overrun. 1551 */ 1552 atomic_t trace_overrun; 1553 /* Pause for the tracing */ 1554 atomic_t tracing_graph_pause; 1555 #endif 1556 #ifdef CONFIG_TRACING 1557 /* state flags for use by tracers */ 1558 unsigned long trace; 1559 /* bitmask and counter of trace recursion */ 1560 unsigned long trace_recursion; 1561 #endif /* CONFIG_TRACING */ 1562 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1563 struct memcg_batch_info { 1564 int do_batch; /* incremented when batch uncharge started */ 1565 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1566 unsigned long nr_pages; /* uncharged usage */ 1567 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1568 } memcg_batch; 1569 unsigned int memcg_kmem_skip_account; 1570 struct memcg_oom_info { 1571 struct mem_cgroup *memcg; 1572 gfp_t gfp_mask; 1573 int order; 1574 unsigned int may_oom:1; 1575 } memcg_oom; 1576 #endif 1577 #ifdef CONFIG_UPROBES 1578 struct uprobe_task *utask; 1579 #endif 1580 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1581 unsigned int sequential_io; 1582 unsigned int sequential_io_avg; 1583 #endif 1584 }; 1585 1586 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1587 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1588 1589 #define TNF_MIGRATED 0x01 1590 #define TNF_NO_GROUP 0x02 1591 #define TNF_SHARED 0x04 1592 #define TNF_FAULT_LOCAL 0x08 1593 1594 #ifdef CONFIG_NUMA_BALANCING 1595 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1596 extern pid_t task_numa_group_id(struct task_struct *p); 1597 extern void set_numabalancing_state(bool enabled); 1598 extern void task_numa_free(struct task_struct *p); 1599 1600 extern unsigned int sysctl_numa_balancing_migrate_deferred; 1601 #else 1602 static inline void task_numa_fault(int last_node, int node, int pages, 1603 int flags) 1604 { 1605 } 1606 static inline pid_t task_numa_group_id(struct task_struct *p) 1607 { 1608 return 0; 1609 } 1610 static inline void set_numabalancing_state(bool enabled) 1611 { 1612 } 1613 static inline void task_numa_free(struct task_struct *p) 1614 { 1615 } 1616 #endif 1617 1618 static inline struct pid *task_pid(struct task_struct *task) 1619 { 1620 return task->pids[PIDTYPE_PID].pid; 1621 } 1622 1623 static inline struct pid *task_tgid(struct task_struct *task) 1624 { 1625 return task->group_leader->pids[PIDTYPE_PID].pid; 1626 } 1627 1628 /* 1629 * Without tasklist or rcu lock it is not safe to dereference 1630 * the result of task_pgrp/task_session even if task == current, 1631 * we can race with another thread doing sys_setsid/sys_setpgid. 1632 */ 1633 static inline struct pid *task_pgrp(struct task_struct *task) 1634 { 1635 return task->group_leader->pids[PIDTYPE_PGID].pid; 1636 } 1637 1638 static inline struct pid *task_session(struct task_struct *task) 1639 { 1640 return task->group_leader->pids[PIDTYPE_SID].pid; 1641 } 1642 1643 struct pid_namespace; 1644 1645 /* 1646 * the helpers to get the task's different pids as they are seen 1647 * from various namespaces 1648 * 1649 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1650 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1651 * current. 1652 * task_xid_nr_ns() : id seen from the ns specified; 1653 * 1654 * set_task_vxid() : assigns a virtual id to a task; 1655 * 1656 * see also pid_nr() etc in include/linux/pid.h 1657 */ 1658 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1659 struct pid_namespace *ns); 1660 1661 static inline pid_t task_pid_nr(struct task_struct *tsk) 1662 { 1663 return tsk->pid; 1664 } 1665 1666 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1667 struct pid_namespace *ns) 1668 { 1669 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1670 } 1671 1672 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1673 { 1674 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1675 } 1676 1677 1678 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1679 { 1680 return tsk->tgid; 1681 } 1682 1683 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1684 1685 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1686 { 1687 return pid_vnr(task_tgid(tsk)); 1688 } 1689 1690 1691 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1692 struct pid_namespace *ns) 1693 { 1694 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1695 } 1696 1697 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1698 { 1699 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1700 } 1701 1702 1703 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1704 struct pid_namespace *ns) 1705 { 1706 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1707 } 1708 1709 static inline pid_t task_session_vnr(struct task_struct *tsk) 1710 { 1711 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1712 } 1713 1714 /* obsolete, do not use */ 1715 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1716 { 1717 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1718 } 1719 1720 /** 1721 * pid_alive - check that a task structure is not stale 1722 * @p: Task structure to be checked. 1723 * 1724 * Test if a process is not yet dead (at most zombie state) 1725 * If pid_alive fails, then pointers within the task structure 1726 * can be stale and must not be dereferenced. 1727 * 1728 * Return: 1 if the process is alive. 0 otherwise. 1729 */ 1730 static inline int pid_alive(struct task_struct *p) 1731 { 1732 return p->pids[PIDTYPE_PID].pid != NULL; 1733 } 1734 1735 /** 1736 * is_global_init - check if a task structure is init 1737 * @tsk: Task structure to be checked. 1738 * 1739 * Check if a task structure is the first user space task the kernel created. 1740 * 1741 * Return: 1 if the task structure is init. 0 otherwise. 1742 */ 1743 static inline int is_global_init(struct task_struct *tsk) 1744 { 1745 return tsk->pid == 1; 1746 } 1747 1748 extern struct pid *cad_pid; 1749 1750 extern void free_task(struct task_struct *tsk); 1751 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1752 1753 extern void __put_task_struct(struct task_struct *t); 1754 1755 static inline void put_task_struct(struct task_struct *t) 1756 { 1757 if (atomic_dec_and_test(&t->usage)) 1758 __put_task_struct(t); 1759 } 1760 1761 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1762 extern void task_cputime(struct task_struct *t, 1763 cputime_t *utime, cputime_t *stime); 1764 extern void task_cputime_scaled(struct task_struct *t, 1765 cputime_t *utimescaled, cputime_t *stimescaled); 1766 extern cputime_t task_gtime(struct task_struct *t); 1767 #else 1768 static inline void task_cputime(struct task_struct *t, 1769 cputime_t *utime, cputime_t *stime) 1770 { 1771 if (utime) 1772 *utime = t->utime; 1773 if (stime) 1774 *stime = t->stime; 1775 } 1776 1777 static inline void task_cputime_scaled(struct task_struct *t, 1778 cputime_t *utimescaled, 1779 cputime_t *stimescaled) 1780 { 1781 if (utimescaled) 1782 *utimescaled = t->utimescaled; 1783 if (stimescaled) 1784 *stimescaled = t->stimescaled; 1785 } 1786 1787 static inline cputime_t task_gtime(struct task_struct *t) 1788 { 1789 return t->gtime; 1790 } 1791 #endif 1792 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1793 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1794 1795 /* 1796 * Per process flags 1797 */ 1798 #define PF_EXITING 0x00000004 /* getting shut down */ 1799 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1800 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1801 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1802 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1803 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1804 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1805 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1806 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1807 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1808 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1809 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1810 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1811 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1812 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1813 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1814 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1815 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1816 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1817 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1818 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1819 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1820 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1821 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1822 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1823 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1824 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1825 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1826 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1827 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 1828 1829 /* 1830 * Only the _current_ task can read/write to tsk->flags, but other 1831 * tasks can access tsk->flags in readonly mode for example 1832 * with tsk_used_math (like during threaded core dumping). 1833 * There is however an exception to this rule during ptrace 1834 * or during fork: the ptracer task is allowed to write to the 1835 * child->flags of its traced child (same goes for fork, the parent 1836 * can write to the child->flags), because we're guaranteed the 1837 * child is not running and in turn not changing child->flags 1838 * at the same time the parent does it. 1839 */ 1840 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1841 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1842 #define clear_used_math() clear_stopped_child_used_math(current) 1843 #define set_used_math() set_stopped_child_used_math(current) 1844 #define conditional_stopped_child_used_math(condition, child) \ 1845 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1846 #define conditional_used_math(condition) \ 1847 conditional_stopped_child_used_math(condition, current) 1848 #define copy_to_stopped_child_used_math(child) \ 1849 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1850 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1851 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1852 #define used_math() tsk_used_math(current) 1853 1854 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */ 1855 static inline gfp_t memalloc_noio_flags(gfp_t flags) 1856 { 1857 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 1858 flags &= ~__GFP_IO; 1859 return flags; 1860 } 1861 1862 static inline unsigned int memalloc_noio_save(void) 1863 { 1864 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 1865 current->flags |= PF_MEMALLOC_NOIO; 1866 return flags; 1867 } 1868 1869 static inline void memalloc_noio_restore(unsigned int flags) 1870 { 1871 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 1872 } 1873 1874 /* 1875 * task->jobctl flags 1876 */ 1877 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1878 1879 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1880 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1881 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1882 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1883 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1884 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1885 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1886 1887 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1888 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1889 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1890 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1891 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1892 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1893 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1894 1895 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1896 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1897 1898 extern bool task_set_jobctl_pending(struct task_struct *task, 1899 unsigned int mask); 1900 extern void task_clear_jobctl_trapping(struct task_struct *task); 1901 extern void task_clear_jobctl_pending(struct task_struct *task, 1902 unsigned int mask); 1903 1904 #ifdef CONFIG_PREEMPT_RCU 1905 1906 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1907 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1908 1909 static inline void rcu_copy_process(struct task_struct *p) 1910 { 1911 p->rcu_read_lock_nesting = 0; 1912 p->rcu_read_unlock_special = 0; 1913 #ifdef CONFIG_TREE_PREEMPT_RCU 1914 p->rcu_blocked_node = NULL; 1915 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1916 #ifdef CONFIG_RCU_BOOST 1917 p->rcu_boost_mutex = NULL; 1918 #endif /* #ifdef CONFIG_RCU_BOOST */ 1919 INIT_LIST_HEAD(&p->rcu_node_entry); 1920 } 1921 1922 #else 1923 1924 static inline void rcu_copy_process(struct task_struct *p) 1925 { 1926 } 1927 1928 #endif 1929 1930 static inline void tsk_restore_flags(struct task_struct *task, 1931 unsigned long orig_flags, unsigned long flags) 1932 { 1933 task->flags &= ~flags; 1934 task->flags |= orig_flags & flags; 1935 } 1936 1937 #ifdef CONFIG_SMP 1938 extern void do_set_cpus_allowed(struct task_struct *p, 1939 const struct cpumask *new_mask); 1940 1941 extern int set_cpus_allowed_ptr(struct task_struct *p, 1942 const struct cpumask *new_mask); 1943 #else 1944 static inline void do_set_cpus_allowed(struct task_struct *p, 1945 const struct cpumask *new_mask) 1946 { 1947 } 1948 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1949 const struct cpumask *new_mask) 1950 { 1951 if (!cpumask_test_cpu(0, new_mask)) 1952 return -EINVAL; 1953 return 0; 1954 } 1955 #endif 1956 1957 #ifdef CONFIG_NO_HZ_COMMON 1958 void calc_load_enter_idle(void); 1959 void calc_load_exit_idle(void); 1960 #else 1961 static inline void calc_load_enter_idle(void) { } 1962 static inline void calc_load_exit_idle(void) { } 1963 #endif /* CONFIG_NO_HZ_COMMON */ 1964 1965 #ifndef CONFIG_CPUMASK_OFFSTACK 1966 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1967 { 1968 return set_cpus_allowed_ptr(p, &new_mask); 1969 } 1970 #endif 1971 1972 /* 1973 * Do not use outside of architecture code which knows its limitations. 1974 * 1975 * sched_clock() has no promise of monotonicity or bounded drift between 1976 * CPUs, use (which you should not) requires disabling IRQs. 1977 * 1978 * Please use one of the three interfaces below. 1979 */ 1980 extern unsigned long long notrace sched_clock(void); 1981 /* 1982 * See the comment in kernel/sched/clock.c 1983 */ 1984 extern u64 cpu_clock(int cpu); 1985 extern u64 local_clock(void); 1986 extern u64 sched_clock_cpu(int cpu); 1987 1988 1989 extern void sched_clock_init(void); 1990 1991 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1992 static inline void sched_clock_tick(void) 1993 { 1994 } 1995 1996 static inline void sched_clock_idle_sleep_event(void) 1997 { 1998 } 1999 2000 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2001 { 2002 } 2003 #else 2004 /* 2005 * Architectures can set this to 1 if they have specified 2006 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2007 * but then during bootup it turns out that sched_clock() 2008 * is reliable after all: 2009 */ 2010 extern int sched_clock_stable(void); 2011 extern void set_sched_clock_stable(void); 2012 extern void clear_sched_clock_stable(void); 2013 2014 extern void sched_clock_tick(void); 2015 extern void sched_clock_idle_sleep_event(void); 2016 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2017 #endif 2018 2019 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2020 /* 2021 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2022 * The reason for this explicit opt-in is not to have perf penalty with 2023 * slow sched_clocks. 2024 */ 2025 extern void enable_sched_clock_irqtime(void); 2026 extern void disable_sched_clock_irqtime(void); 2027 #else 2028 static inline void enable_sched_clock_irqtime(void) {} 2029 static inline void disable_sched_clock_irqtime(void) {} 2030 #endif 2031 2032 extern unsigned long long 2033 task_sched_runtime(struct task_struct *task); 2034 2035 /* sched_exec is called by processes performing an exec */ 2036 #ifdef CONFIG_SMP 2037 extern void sched_exec(void); 2038 #else 2039 #define sched_exec() {} 2040 #endif 2041 2042 extern void sched_clock_idle_sleep_event(void); 2043 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2044 2045 #ifdef CONFIG_HOTPLUG_CPU 2046 extern void idle_task_exit(void); 2047 #else 2048 static inline void idle_task_exit(void) {} 2049 #endif 2050 2051 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2052 extern void wake_up_nohz_cpu(int cpu); 2053 #else 2054 static inline void wake_up_nohz_cpu(int cpu) { } 2055 #endif 2056 2057 #ifdef CONFIG_NO_HZ_FULL 2058 extern bool sched_can_stop_tick(void); 2059 extern u64 scheduler_tick_max_deferment(void); 2060 #else 2061 static inline bool sched_can_stop_tick(void) { return false; } 2062 #endif 2063 2064 #ifdef CONFIG_SCHED_AUTOGROUP 2065 extern void sched_autogroup_create_attach(struct task_struct *p); 2066 extern void sched_autogroup_detach(struct task_struct *p); 2067 extern void sched_autogroup_fork(struct signal_struct *sig); 2068 extern void sched_autogroup_exit(struct signal_struct *sig); 2069 #ifdef CONFIG_PROC_FS 2070 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2071 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2072 #endif 2073 #else 2074 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2075 static inline void sched_autogroup_detach(struct task_struct *p) { } 2076 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2077 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2078 #endif 2079 2080 extern bool yield_to(struct task_struct *p, bool preempt); 2081 extern void set_user_nice(struct task_struct *p, long nice); 2082 extern int task_prio(const struct task_struct *p); 2083 extern int task_nice(const struct task_struct *p); 2084 extern int can_nice(const struct task_struct *p, const int nice); 2085 extern int task_curr(const struct task_struct *p); 2086 extern int idle_cpu(int cpu); 2087 extern int sched_setscheduler(struct task_struct *, int, 2088 const struct sched_param *); 2089 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2090 const struct sched_param *); 2091 extern int sched_setattr(struct task_struct *, 2092 const struct sched_attr *); 2093 extern struct task_struct *idle_task(int cpu); 2094 /** 2095 * is_idle_task - is the specified task an idle task? 2096 * @p: the task in question. 2097 * 2098 * Return: 1 if @p is an idle task. 0 otherwise. 2099 */ 2100 static inline bool is_idle_task(const struct task_struct *p) 2101 { 2102 return p->pid == 0; 2103 } 2104 extern struct task_struct *curr_task(int cpu); 2105 extern void set_curr_task(int cpu, struct task_struct *p); 2106 2107 void yield(void); 2108 2109 /* 2110 * The default (Linux) execution domain. 2111 */ 2112 extern struct exec_domain default_exec_domain; 2113 2114 union thread_union { 2115 struct thread_info thread_info; 2116 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2117 }; 2118 2119 #ifndef __HAVE_ARCH_KSTACK_END 2120 static inline int kstack_end(void *addr) 2121 { 2122 /* Reliable end of stack detection: 2123 * Some APM bios versions misalign the stack 2124 */ 2125 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2126 } 2127 #endif 2128 2129 extern union thread_union init_thread_union; 2130 extern struct task_struct init_task; 2131 2132 extern struct mm_struct init_mm; 2133 2134 extern struct pid_namespace init_pid_ns; 2135 2136 /* 2137 * find a task by one of its numerical ids 2138 * 2139 * find_task_by_pid_ns(): 2140 * finds a task by its pid in the specified namespace 2141 * find_task_by_vpid(): 2142 * finds a task by its virtual pid 2143 * 2144 * see also find_vpid() etc in include/linux/pid.h 2145 */ 2146 2147 extern struct task_struct *find_task_by_vpid(pid_t nr); 2148 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2149 struct pid_namespace *ns); 2150 2151 /* per-UID process charging. */ 2152 extern struct user_struct * alloc_uid(kuid_t); 2153 static inline struct user_struct *get_uid(struct user_struct *u) 2154 { 2155 atomic_inc(&u->__count); 2156 return u; 2157 } 2158 extern void free_uid(struct user_struct *); 2159 2160 #include <asm/current.h> 2161 2162 extern void xtime_update(unsigned long ticks); 2163 2164 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2165 extern int wake_up_process(struct task_struct *tsk); 2166 extern void wake_up_new_task(struct task_struct *tsk); 2167 #ifdef CONFIG_SMP 2168 extern void kick_process(struct task_struct *tsk); 2169 #else 2170 static inline void kick_process(struct task_struct *tsk) { } 2171 #endif 2172 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2173 extern void sched_dead(struct task_struct *p); 2174 2175 extern void proc_caches_init(void); 2176 extern void flush_signals(struct task_struct *); 2177 extern void __flush_signals(struct task_struct *); 2178 extern void ignore_signals(struct task_struct *); 2179 extern void flush_signal_handlers(struct task_struct *, int force_default); 2180 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2181 2182 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2183 { 2184 unsigned long flags; 2185 int ret; 2186 2187 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2188 ret = dequeue_signal(tsk, mask, info); 2189 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2190 2191 return ret; 2192 } 2193 2194 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2195 sigset_t *mask); 2196 extern void unblock_all_signals(void); 2197 extern void release_task(struct task_struct * p); 2198 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2199 extern int force_sigsegv(int, struct task_struct *); 2200 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2201 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2202 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2203 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2204 const struct cred *, u32); 2205 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2206 extern int kill_pid(struct pid *pid, int sig, int priv); 2207 extern int kill_proc_info(int, struct siginfo *, pid_t); 2208 extern __must_check bool do_notify_parent(struct task_struct *, int); 2209 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2210 extern void force_sig(int, struct task_struct *); 2211 extern int send_sig(int, struct task_struct *, int); 2212 extern int zap_other_threads(struct task_struct *p); 2213 extern struct sigqueue *sigqueue_alloc(void); 2214 extern void sigqueue_free(struct sigqueue *); 2215 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2216 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2217 2218 static inline void restore_saved_sigmask(void) 2219 { 2220 if (test_and_clear_restore_sigmask()) 2221 __set_current_blocked(¤t->saved_sigmask); 2222 } 2223 2224 static inline sigset_t *sigmask_to_save(void) 2225 { 2226 sigset_t *res = ¤t->blocked; 2227 if (unlikely(test_restore_sigmask())) 2228 res = ¤t->saved_sigmask; 2229 return res; 2230 } 2231 2232 static inline int kill_cad_pid(int sig, int priv) 2233 { 2234 return kill_pid(cad_pid, sig, priv); 2235 } 2236 2237 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2238 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2239 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2240 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2241 2242 /* 2243 * True if we are on the alternate signal stack. 2244 */ 2245 static inline int on_sig_stack(unsigned long sp) 2246 { 2247 #ifdef CONFIG_STACK_GROWSUP 2248 return sp >= current->sas_ss_sp && 2249 sp - current->sas_ss_sp < current->sas_ss_size; 2250 #else 2251 return sp > current->sas_ss_sp && 2252 sp - current->sas_ss_sp <= current->sas_ss_size; 2253 #endif 2254 } 2255 2256 static inline int sas_ss_flags(unsigned long sp) 2257 { 2258 return (current->sas_ss_size == 0 ? SS_DISABLE 2259 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2260 } 2261 2262 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2263 { 2264 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2265 #ifdef CONFIG_STACK_GROWSUP 2266 return current->sas_ss_sp; 2267 #else 2268 return current->sas_ss_sp + current->sas_ss_size; 2269 #endif 2270 return sp; 2271 } 2272 2273 /* 2274 * Routines for handling mm_structs 2275 */ 2276 extern struct mm_struct * mm_alloc(void); 2277 2278 /* mmdrop drops the mm and the page tables */ 2279 extern void __mmdrop(struct mm_struct *); 2280 static inline void mmdrop(struct mm_struct * mm) 2281 { 2282 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2283 __mmdrop(mm); 2284 } 2285 2286 /* mmput gets rid of the mappings and all user-space */ 2287 extern void mmput(struct mm_struct *); 2288 /* Grab a reference to a task's mm, if it is not already going away */ 2289 extern struct mm_struct *get_task_mm(struct task_struct *task); 2290 /* 2291 * Grab a reference to a task's mm, if it is not already going away 2292 * and ptrace_may_access with the mode parameter passed to it 2293 * succeeds. 2294 */ 2295 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2296 /* Remove the current tasks stale references to the old mm_struct */ 2297 extern void mm_release(struct task_struct *, struct mm_struct *); 2298 2299 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2300 struct task_struct *); 2301 extern void flush_thread(void); 2302 extern void exit_thread(void); 2303 2304 extern void exit_files(struct task_struct *); 2305 extern void __cleanup_sighand(struct sighand_struct *); 2306 2307 extern void exit_itimers(struct signal_struct *); 2308 extern void flush_itimer_signals(void); 2309 2310 extern void do_group_exit(int); 2311 2312 extern int allow_signal(int); 2313 extern int disallow_signal(int); 2314 2315 extern int do_execve(struct filename *, 2316 const char __user * const __user *, 2317 const char __user * const __user *); 2318 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2319 struct task_struct *fork_idle(int); 2320 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2321 2322 extern void set_task_comm(struct task_struct *tsk, char *from); 2323 extern char *get_task_comm(char *to, struct task_struct *tsk); 2324 2325 #ifdef CONFIG_SMP 2326 void scheduler_ipi(void); 2327 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2328 #else 2329 static inline void scheduler_ipi(void) { } 2330 static inline unsigned long wait_task_inactive(struct task_struct *p, 2331 long match_state) 2332 { 2333 return 1; 2334 } 2335 #endif 2336 2337 #define next_task(p) \ 2338 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2339 2340 #define for_each_process(p) \ 2341 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2342 2343 extern bool current_is_single_threaded(void); 2344 2345 /* 2346 * Careful: do_each_thread/while_each_thread is a double loop so 2347 * 'break' will not work as expected - use goto instead. 2348 */ 2349 #define do_each_thread(g, t) \ 2350 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2351 2352 #define while_each_thread(g, t) \ 2353 while ((t = next_thread(t)) != g) 2354 2355 #define __for_each_thread(signal, t) \ 2356 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2357 2358 #define for_each_thread(p, t) \ 2359 __for_each_thread((p)->signal, t) 2360 2361 /* Careful: this is a double loop, 'break' won't work as expected. */ 2362 #define for_each_process_thread(p, t) \ 2363 for_each_process(p) for_each_thread(p, t) 2364 2365 static inline int get_nr_threads(struct task_struct *tsk) 2366 { 2367 return tsk->signal->nr_threads; 2368 } 2369 2370 static inline bool thread_group_leader(struct task_struct *p) 2371 { 2372 return p->exit_signal >= 0; 2373 } 2374 2375 /* Do to the insanities of de_thread it is possible for a process 2376 * to have the pid of the thread group leader without actually being 2377 * the thread group leader. For iteration through the pids in proc 2378 * all we care about is that we have a task with the appropriate 2379 * pid, we don't actually care if we have the right task. 2380 */ 2381 static inline bool has_group_leader_pid(struct task_struct *p) 2382 { 2383 return task_pid(p) == p->signal->leader_pid; 2384 } 2385 2386 static inline 2387 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2388 { 2389 return p1->signal == p2->signal; 2390 } 2391 2392 static inline struct task_struct *next_thread(const struct task_struct *p) 2393 { 2394 return list_entry_rcu(p->thread_group.next, 2395 struct task_struct, thread_group); 2396 } 2397 2398 static inline int thread_group_empty(struct task_struct *p) 2399 { 2400 return list_empty(&p->thread_group); 2401 } 2402 2403 #define delay_group_leader(p) \ 2404 (thread_group_leader(p) && !thread_group_empty(p)) 2405 2406 /* 2407 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2408 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2409 * pins the final release of task.io_context. Also protects ->cpuset and 2410 * ->cgroup.subsys[]. And ->vfork_done. 2411 * 2412 * Nests both inside and outside of read_lock(&tasklist_lock). 2413 * It must not be nested with write_lock_irq(&tasklist_lock), 2414 * neither inside nor outside. 2415 */ 2416 static inline void task_lock(struct task_struct *p) 2417 { 2418 spin_lock(&p->alloc_lock); 2419 } 2420 2421 static inline void task_unlock(struct task_struct *p) 2422 { 2423 spin_unlock(&p->alloc_lock); 2424 } 2425 2426 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2427 unsigned long *flags); 2428 2429 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2430 unsigned long *flags) 2431 { 2432 struct sighand_struct *ret; 2433 2434 ret = __lock_task_sighand(tsk, flags); 2435 (void)__cond_lock(&tsk->sighand->siglock, ret); 2436 return ret; 2437 } 2438 2439 static inline void unlock_task_sighand(struct task_struct *tsk, 2440 unsigned long *flags) 2441 { 2442 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2443 } 2444 2445 #ifdef CONFIG_CGROUPS 2446 static inline void threadgroup_change_begin(struct task_struct *tsk) 2447 { 2448 down_read(&tsk->signal->group_rwsem); 2449 } 2450 static inline void threadgroup_change_end(struct task_struct *tsk) 2451 { 2452 up_read(&tsk->signal->group_rwsem); 2453 } 2454 2455 /** 2456 * threadgroup_lock - lock threadgroup 2457 * @tsk: member task of the threadgroup to lock 2458 * 2459 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2460 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2461 * change ->group_leader/pid. This is useful for cases where the threadgroup 2462 * needs to stay stable across blockable operations. 2463 * 2464 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2465 * synchronization. While held, no new task will be added to threadgroup 2466 * and no existing live task will have its PF_EXITING set. 2467 * 2468 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2469 * sub-thread becomes a new leader. 2470 */ 2471 static inline void threadgroup_lock(struct task_struct *tsk) 2472 { 2473 down_write(&tsk->signal->group_rwsem); 2474 } 2475 2476 /** 2477 * threadgroup_unlock - unlock threadgroup 2478 * @tsk: member task of the threadgroup to unlock 2479 * 2480 * Reverse threadgroup_lock(). 2481 */ 2482 static inline void threadgroup_unlock(struct task_struct *tsk) 2483 { 2484 up_write(&tsk->signal->group_rwsem); 2485 } 2486 #else 2487 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2488 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2489 static inline void threadgroup_lock(struct task_struct *tsk) {} 2490 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2491 #endif 2492 2493 #ifndef __HAVE_THREAD_FUNCTIONS 2494 2495 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2496 #define task_stack_page(task) ((task)->stack) 2497 2498 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2499 { 2500 *task_thread_info(p) = *task_thread_info(org); 2501 task_thread_info(p)->task = p; 2502 } 2503 2504 static inline unsigned long *end_of_stack(struct task_struct *p) 2505 { 2506 return (unsigned long *)(task_thread_info(p) + 1); 2507 } 2508 2509 #endif 2510 2511 static inline int object_is_on_stack(void *obj) 2512 { 2513 void *stack = task_stack_page(current); 2514 2515 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2516 } 2517 2518 extern void thread_info_cache_init(void); 2519 2520 #ifdef CONFIG_DEBUG_STACK_USAGE 2521 static inline unsigned long stack_not_used(struct task_struct *p) 2522 { 2523 unsigned long *n = end_of_stack(p); 2524 2525 do { /* Skip over canary */ 2526 n++; 2527 } while (!*n); 2528 2529 return (unsigned long)n - (unsigned long)end_of_stack(p); 2530 } 2531 #endif 2532 2533 /* set thread flags in other task's structures 2534 * - see asm/thread_info.h for TIF_xxxx flags available 2535 */ 2536 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2537 { 2538 set_ti_thread_flag(task_thread_info(tsk), flag); 2539 } 2540 2541 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2542 { 2543 clear_ti_thread_flag(task_thread_info(tsk), flag); 2544 } 2545 2546 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2547 { 2548 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2549 } 2550 2551 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2552 { 2553 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2554 } 2555 2556 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2557 { 2558 return test_ti_thread_flag(task_thread_info(tsk), flag); 2559 } 2560 2561 static inline void set_tsk_need_resched(struct task_struct *tsk) 2562 { 2563 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2564 } 2565 2566 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2567 { 2568 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2569 } 2570 2571 static inline int test_tsk_need_resched(struct task_struct *tsk) 2572 { 2573 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2574 } 2575 2576 static inline int restart_syscall(void) 2577 { 2578 set_tsk_thread_flag(current, TIF_SIGPENDING); 2579 return -ERESTARTNOINTR; 2580 } 2581 2582 static inline int signal_pending(struct task_struct *p) 2583 { 2584 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2585 } 2586 2587 static inline int __fatal_signal_pending(struct task_struct *p) 2588 { 2589 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2590 } 2591 2592 static inline int fatal_signal_pending(struct task_struct *p) 2593 { 2594 return signal_pending(p) && __fatal_signal_pending(p); 2595 } 2596 2597 static inline int signal_pending_state(long state, struct task_struct *p) 2598 { 2599 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2600 return 0; 2601 if (!signal_pending(p)) 2602 return 0; 2603 2604 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2605 } 2606 2607 /* 2608 * cond_resched() and cond_resched_lock(): latency reduction via 2609 * explicit rescheduling in places that are safe. The return 2610 * value indicates whether a reschedule was done in fact. 2611 * cond_resched_lock() will drop the spinlock before scheduling, 2612 * cond_resched_softirq() will enable bhs before scheduling. 2613 */ 2614 extern int _cond_resched(void); 2615 2616 #define cond_resched() ({ \ 2617 __might_sleep(__FILE__, __LINE__, 0); \ 2618 _cond_resched(); \ 2619 }) 2620 2621 extern int __cond_resched_lock(spinlock_t *lock); 2622 2623 #ifdef CONFIG_PREEMPT_COUNT 2624 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2625 #else 2626 #define PREEMPT_LOCK_OFFSET 0 2627 #endif 2628 2629 #define cond_resched_lock(lock) ({ \ 2630 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2631 __cond_resched_lock(lock); \ 2632 }) 2633 2634 extern int __cond_resched_softirq(void); 2635 2636 #define cond_resched_softirq() ({ \ 2637 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2638 __cond_resched_softirq(); \ 2639 }) 2640 2641 static inline void cond_resched_rcu(void) 2642 { 2643 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2644 rcu_read_unlock(); 2645 cond_resched(); 2646 rcu_read_lock(); 2647 #endif 2648 } 2649 2650 /* 2651 * Does a critical section need to be broken due to another 2652 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2653 * but a general need for low latency) 2654 */ 2655 static inline int spin_needbreak(spinlock_t *lock) 2656 { 2657 #ifdef CONFIG_PREEMPT 2658 return spin_is_contended(lock); 2659 #else 2660 return 0; 2661 #endif 2662 } 2663 2664 /* 2665 * Idle thread specific functions to determine the need_resched 2666 * polling state. We have two versions, one based on TS_POLLING in 2667 * thread_info.status and one based on TIF_POLLING_NRFLAG in 2668 * thread_info.flags 2669 */ 2670 #ifdef TS_POLLING 2671 static inline int tsk_is_polling(struct task_struct *p) 2672 { 2673 return task_thread_info(p)->status & TS_POLLING; 2674 } 2675 static inline void __current_set_polling(void) 2676 { 2677 current_thread_info()->status |= TS_POLLING; 2678 } 2679 2680 static inline bool __must_check current_set_polling_and_test(void) 2681 { 2682 __current_set_polling(); 2683 2684 /* 2685 * Polling state must be visible before we test NEED_RESCHED, 2686 * paired by resched_task() 2687 */ 2688 smp_mb(); 2689 2690 return unlikely(tif_need_resched()); 2691 } 2692 2693 static inline void __current_clr_polling(void) 2694 { 2695 current_thread_info()->status &= ~TS_POLLING; 2696 } 2697 2698 static inline bool __must_check current_clr_polling_and_test(void) 2699 { 2700 __current_clr_polling(); 2701 2702 /* 2703 * Polling state must be visible before we test NEED_RESCHED, 2704 * paired by resched_task() 2705 */ 2706 smp_mb(); 2707 2708 return unlikely(tif_need_resched()); 2709 } 2710 #elif defined(TIF_POLLING_NRFLAG) 2711 static inline int tsk_is_polling(struct task_struct *p) 2712 { 2713 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2714 } 2715 2716 static inline void __current_set_polling(void) 2717 { 2718 set_thread_flag(TIF_POLLING_NRFLAG); 2719 } 2720 2721 static inline bool __must_check current_set_polling_and_test(void) 2722 { 2723 __current_set_polling(); 2724 2725 /* 2726 * Polling state must be visible before we test NEED_RESCHED, 2727 * paired by resched_task() 2728 * 2729 * XXX: assumes set/clear bit are identical barrier wise. 2730 */ 2731 smp_mb__after_clear_bit(); 2732 2733 return unlikely(tif_need_resched()); 2734 } 2735 2736 static inline void __current_clr_polling(void) 2737 { 2738 clear_thread_flag(TIF_POLLING_NRFLAG); 2739 } 2740 2741 static inline bool __must_check current_clr_polling_and_test(void) 2742 { 2743 __current_clr_polling(); 2744 2745 /* 2746 * Polling state must be visible before we test NEED_RESCHED, 2747 * paired by resched_task() 2748 */ 2749 smp_mb__after_clear_bit(); 2750 2751 return unlikely(tif_need_resched()); 2752 } 2753 2754 #else 2755 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2756 static inline void __current_set_polling(void) { } 2757 static inline void __current_clr_polling(void) { } 2758 2759 static inline bool __must_check current_set_polling_and_test(void) 2760 { 2761 return unlikely(tif_need_resched()); 2762 } 2763 static inline bool __must_check current_clr_polling_and_test(void) 2764 { 2765 return unlikely(tif_need_resched()); 2766 } 2767 #endif 2768 2769 static inline void current_clr_polling(void) 2770 { 2771 __current_clr_polling(); 2772 2773 /* 2774 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 2775 * Once the bit is cleared, we'll get IPIs with every new 2776 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 2777 * fold. 2778 */ 2779 smp_mb(); /* paired with resched_task() */ 2780 2781 preempt_fold_need_resched(); 2782 } 2783 2784 static __always_inline bool need_resched(void) 2785 { 2786 return unlikely(tif_need_resched()); 2787 } 2788 2789 /* 2790 * Thread group CPU time accounting. 2791 */ 2792 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2793 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2794 2795 static inline void thread_group_cputime_init(struct signal_struct *sig) 2796 { 2797 raw_spin_lock_init(&sig->cputimer.lock); 2798 } 2799 2800 /* 2801 * Reevaluate whether the task has signals pending delivery. 2802 * Wake the task if so. 2803 * This is required every time the blocked sigset_t changes. 2804 * callers must hold sighand->siglock. 2805 */ 2806 extern void recalc_sigpending_and_wake(struct task_struct *t); 2807 extern void recalc_sigpending(void); 2808 2809 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2810 2811 static inline void signal_wake_up(struct task_struct *t, bool resume) 2812 { 2813 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2814 } 2815 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2816 { 2817 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2818 } 2819 2820 /* 2821 * Wrappers for p->thread_info->cpu access. No-op on UP. 2822 */ 2823 #ifdef CONFIG_SMP 2824 2825 static inline unsigned int task_cpu(const struct task_struct *p) 2826 { 2827 return task_thread_info(p)->cpu; 2828 } 2829 2830 static inline int task_node(const struct task_struct *p) 2831 { 2832 return cpu_to_node(task_cpu(p)); 2833 } 2834 2835 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2836 2837 #else 2838 2839 static inline unsigned int task_cpu(const struct task_struct *p) 2840 { 2841 return 0; 2842 } 2843 2844 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2845 { 2846 } 2847 2848 #endif /* CONFIG_SMP */ 2849 2850 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2851 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2852 2853 #ifdef CONFIG_CGROUP_SCHED 2854 extern struct task_group root_task_group; 2855 #endif /* CONFIG_CGROUP_SCHED */ 2856 2857 extern int task_can_switch_user(struct user_struct *up, 2858 struct task_struct *tsk); 2859 2860 #ifdef CONFIG_TASK_XACCT 2861 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2862 { 2863 tsk->ioac.rchar += amt; 2864 } 2865 2866 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2867 { 2868 tsk->ioac.wchar += amt; 2869 } 2870 2871 static inline void inc_syscr(struct task_struct *tsk) 2872 { 2873 tsk->ioac.syscr++; 2874 } 2875 2876 static inline void inc_syscw(struct task_struct *tsk) 2877 { 2878 tsk->ioac.syscw++; 2879 } 2880 #else 2881 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2882 { 2883 } 2884 2885 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2886 { 2887 } 2888 2889 static inline void inc_syscr(struct task_struct *tsk) 2890 { 2891 } 2892 2893 static inline void inc_syscw(struct task_struct *tsk) 2894 { 2895 } 2896 #endif 2897 2898 #ifndef TASK_SIZE_OF 2899 #define TASK_SIZE_OF(tsk) TASK_SIZE 2900 #endif 2901 2902 #ifdef CONFIG_MM_OWNER 2903 extern void mm_update_next_owner(struct mm_struct *mm); 2904 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2905 #else 2906 static inline void mm_update_next_owner(struct mm_struct *mm) 2907 { 2908 } 2909 2910 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2911 { 2912 } 2913 #endif /* CONFIG_MM_OWNER */ 2914 2915 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2916 unsigned int limit) 2917 { 2918 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2919 } 2920 2921 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2922 unsigned int limit) 2923 { 2924 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2925 } 2926 2927 static inline unsigned long rlimit(unsigned int limit) 2928 { 2929 return task_rlimit(current, limit); 2930 } 2931 2932 static inline unsigned long rlimit_max(unsigned int limit) 2933 { 2934 return task_rlimit_max(current, limit); 2935 } 2936 2937 #endif 2938