1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/kcov.h> 18 #include <linux/mutex.h> 19 #include <linux/plist.h> 20 #include <linux/hrtimer.h> 21 #include <linux/irqflags.h> 22 #include <linux/seccomp.h> 23 #include <linux/nodemask.h> 24 #include <linux/rcupdate.h> 25 #include <linux/refcount.h> 26 #include <linux/resource.h> 27 #include <linux/latencytop.h> 28 #include <linux/sched/prio.h> 29 #include <linux/sched/types.h> 30 #include <linux/signal_types.h> 31 #include <linux/mm_types_task.h> 32 #include <linux/task_io_accounting.h> 33 #include <linux/posix-timers.h> 34 #include <linux/rseq.h> 35 #include <linux/seqlock.h> 36 #include <linux/kcsan.h> 37 38 /* task_struct member predeclarations (sorted alphabetically): */ 39 struct audit_context; 40 struct backing_dev_info; 41 struct bio_list; 42 struct blk_plug; 43 struct capture_control; 44 struct cfs_rq; 45 struct fs_struct; 46 struct futex_pi_state; 47 struct io_context; 48 struct mempolicy; 49 struct nameidata; 50 struct nsproxy; 51 struct perf_event_context; 52 struct pid_namespace; 53 struct pipe_inode_info; 54 struct rcu_node; 55 struct reclaim_state; 56 struct robust_list_head; 57 struct root_domain; 58 struct rq; 59 struct sched_attr; 60 struct sched_param; 61 struct seq_file; 62 struct sighand_struct; 63 struct signal_struct; 64 struct task_delay_info; 65 struct task_group; 66 67 /* 68 * Task state bitmask. NOTE! These bits are also 69 * encoded in fs/proc/array.c: get_task_state(). 70 * 71 * We have two separate sets of flags: task->state 72 * is about runnability, while task->exit_state are 73 * about the task exiting. Confusing, but this way 74 * modifying one set can't modify the other one by 75 * mistake. 76 */ 77 78 /* Used in tsk->state: */ 79 #define TASK_RUNNING 0x0000 80 #define TASK_INTERRUPTIBLE 0x0001 81 #define TASK_UNINTERRUPTIBLE 0x0002 82 #define __TASK_STOPPED 0x0004 83 #define __TASK_TRACED 0x0008 84 /* Used in tsk->exit_state: */ 85 #define EXIT_DEAD 0x0010 86 #define EXIT_ZOMBIE 0x0020 87 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 88 /* Used in tsk->state again: */ 89 #define TASK_PARKED 0x0040 90 #define TASK_DEAD 0x0080 91 #define TASK_WAKEKILL 0x0100 92 #define TASK_WAKING 0x0200 93 #define TASK_NOLOAD 0x0400 94 #define TASK_NEW 0x0800 95 #define TASK_STATE_MAX 0x1000 96 97 /* Convenience macros for the sake of set_current_state: */ 98 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 99 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 100 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 101 102 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 103 104 /* Convenience macros for the sake of wake_up(): */ 105 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 106 107 /* get_task_state(): */ 108 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 109 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 110 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 111 TASK_PARKED) 112 113 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 114 115 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 116 117 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 118 119 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 120 121 /* 122 * Special states are those that do not use the normal wait-loop pattern. See 123 * the comment with set_special_state(). 124 */ 125 #define is_special_task_state(state) \ 126 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 127 128 #define __set_current_state(state_value) \ 129 do { \ 130 WARN_ON_ONCE(is_special_task_state(state_value));\ 131 current->task_state_change = _THIS_IP_; \ 132 current->state = (state_value); \ 133 } while (0) 134 135 #define set_current_state(state_value) \ 136 do { \ 137 WARN_ON_ONCE(is_special_task_state(state_value));\ 138 current->task_state_change = _THIS_IP_; \ 139 smp_store_mb(current->state, (state_value)); \ 140 } while (0) 141 142 #define set_special_state(state_value) \ 143 do { \ 144 unsigned long flags; /* may shadow */ \ 145 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 146 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 147 current->task_state_change = _THIS_IP_; \ 148 current->state = (state_value); \ 149 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 150 } while (0) 151 #else 152 /* 153 * set_current_state() includes a barrier so that the write of current->state 154 * is correctly serialised wrt the caller's subsequent test of whether to 155 * actually sleep: 156 * 157 * for (;;) { 158 * set_current_state(TASK_UNINTERRUPTIBLE); 159 * if (CONDITION) 160 * break; 161 * 162 * schedule(); 163 * } 164 * __set_current_state(TASK_RUNNING); 165 * 166 * If the caller does not need such serialisation (because, for instance, the 167 * CONDITION test and condition change and wakeup are under the same lock) then 168 * use __set_current_state(). 169 * 170 * The above is typically ordered against the wakeup, which does: 171 * 172 * CONDITION = 1; 173 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 174 * 175 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before 176 * accessing p->state. 177 * 178 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 179 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 180 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 181 * 182 * However, with slightly different timing the wakeup TASK_RUNNING store can 183 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 184 * a problem either because that will result in one extra go around the loop 185 * and our @cond test will save the day. 186 * 187 * Also see the comments of try_to_wake_up(). 188 */ 189 #define __set_current_state(state_value) \ 190 current->state = (state_value) 191 192 #define set_current_state(state_value) \ 193 smp_store_mb(current->state, (state_value)) 194 195 /* 196 * set_special_state() should be used for those states when the blocking task 197 * can not use the regular condition based wait-loop. In that case we must 198 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 199 * will not collide with our state change. 200 */ 201 #define set_special_state(state_value) \ 202 do { \ 203 unsigned long flags; /* may shadow */ \ 204 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 205 current->state = (state_value); \ 206 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 207 } while (0) 208 209 #endif 210 211 /* Task command name length: */ 212 #define TASK_COMM_LEN 16 213 214 extern void scheduler_tick(void); 215 216 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 217 218 extern long schedule_timeout(long timeout); 219 extern long schedule_timeout_interruptible(long timeout); 220 extern long schedule_timeout_killable(long timeout); 221 extern long schedule_timeout_uninterruptible(long timeout); 222 extern long schedule_timeout_idle(long timeout); 223 asmlinkage void schedule(void); 224 extern void schedule_preempt_disabled(void); 225 asmlinkage void preempt_schedule_irq(void); 226 227 extern int __must_check io_schedule_prepare(void); 228 extern void io_schedule_finish(int token); 229 extern long io_schedule_timeout(long timeout); 230 extern void io_schedule(void); 231 232 /** 233 * struct prev_cputime - snapshot of system and user cputime 234 * @utime: time spent in user mode 235 * @stime: time spent in system mode 236 * @lock: protects the above two fields 237 * 238 * Stores previous user/system time values such that we can guarantee 239 * monotonicity. 240 */ 241 struct prev_cputime { 242 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 243 u64 utime; 244 u64 stime; 245 raw_spinlock_t lock; 246 #endif 247 }; 248 249 enum vtime_state { 250 /* Task is sleeping or running in a CPU with VTIME inactive: */ 251 VTIME_INACTIVE = 0, 252 /* Task is idle */ 253 VTIME_IDLE, 254 /* Task runs in kernelspace in a CPU with VTIME active: */ 255 VTIME_SYS, 256 /* Task runs in userspace in a CPU with VTIME active: */ 257 VTIME_USER, 258 /* Task runs as guests in a CPU with VTIME active: */ 259 VTIME_GUEST, 260 }; 261 262 struct vtime { 263 seqcount_t seqcount; 264 unsigned long long starttime; 265 enum vtime_state state; 266 unsigned int cpu; 267 u64 utime; 268 u64 stime; 269 u64 gtime; 270 }; 271 272 /* 273 * Utilization clamp constraints. 274 * @UCLAMP_MIN: Minimum utilization 275 * @UCLAMP_MAX: Maximum utilization 276 * @UCLAMP_CNT: Utilization clamp constraints count 277 */ 278 enum uclamp_id { 279 UCLAMP_MIN = 0, 280 UCLAMP_MAX, 281 UCLAMP_CNT 282 }; 283 284 #ifdef CONFIG_SMP 285 extern struct root_domain def_root_domain; 286 extern struct mutex sched_domains_mutex; 287 #endif 288 289 struct sched_info { 290 #ifdef CONFIG_SCHED_INFO 291 /* Cumulative counters: */ 292 293 /* # of times we have run on this CPU: */ 294 unsigned long pcount; 295 296 /* Time spent waiting on a runqueue: */ 297 unsigned long long run_delay; 298 299 /* Timestamps: */ 300 301 /* When did we last run on a CPU? */ 302 unsigned long long last_arrival; 303 304 /* When were we last queued to run? */ 305 unsigned long long last_queued; 306 307 #endif /* CONFIG_SCHED_INFO */ 308 }; 309 310 /* 311 * Integer metrics need fixed point arithmetic, e.g., sched/fair 312 * has a few: load, load_avg, util_avg, freq, and capacity. 313 * 314 * We define a basic fixed point arithmetic range, and then formalize 315 * all these metrics based on that basic range. 316 */ 317 # define SCHED_FIXEDPOINT_SHIFT 10 318 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 319 320 /* Increase resolution of cpu_capacity calculations */ 321 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 322 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 323 324 struct load_weight { 325 unsigned long weight; 326 u32 inv_weight; 327 }; 328 329 /** 330 * struct util_est - Estimation utilization of FAIR tasks 331 * @enqueued: instantaneous estimated utilization of a task/cpu 332 * @ewma: the Exponential Weighted Moving Average (EWMA) 333 * utilization of a task 334 * 335 * Support data structure to track an Exponential Weighted Moving Average 336 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 337 * average each time a task completes an activation. Sample's weight is chosen 338 * so that the EWMA will be relatively insensitive to transient changes to the 339 * task's workload. 340 * 341 * The enqueued attribute has a slightly different meaning for tasks and cpus: 342 * - task: the task's util_avg at last task dequeue time 343 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 344 * Thus, the util_est.enqueued of a task represents the contribution on the 345 * estimated utilization of the CPU where that task is currently enqueued. 346 * 347 * Only for tasks we track a moving average of the past instantaneous 348 * estimated utilization. This allows to absorb sporadic drops in utilization 349 * of an otherwise almost periodic task. 350 */ 351 struct util_est { 352 unsigned int enqueued; 353 unsigned int ewma; 354 #define UTIL_EST_WEIGHT_SHIFT 2 355 } __attribute__((__aligned__(sizeof(u64)))); 356 357 /* 358 * The load/runnable/util_avg accumulates an infinite geometric series 359 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). 360 * 361 * [load_avg definition] 362 * 363 * load_avg = runnable% * scale_load_down(load) 364 * 365 * [runnable_avg definition] 366 * 367 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE 368 * 369 * [util_avg definition] 370 * 371 * util_avg = running% * SCHED_CAPACITY_SCALE 372 * 373 * where runnable% is the time ratio that a sched_entity is runnable and 374 * running% the time ratio that a sched_entity is running. 375 * 376 * For cfs_rq, they are the aggregated values of all runnable and blocked 377 * sched_entities. 378 * 379 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU 380 * capacity scaling. The scaling is done through the rq_clock_pelt that is used 381 * for computing those signals (see update_rq_clock_pelt()) 382 * 383 * N.B., the above ratios (runnable% and running%) themselves are in the 384 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 385 * to as large a range as necessary. This is for example reflected by 386 * util_avg's SCHED_CAPACITY_SCALE. 387 * 388 * [Overflow issue] 389 * 390 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 391 * with the highest load (=88761), always runnable on a single cfs_rq, 392 * and should not overflow as the number already hits PID_MAX_LIMIT. 393 * 394 * For all other cases (including 32-bit kernels), struct load_weight's 395 * weight will overflow first before we do, because: 396 * 397 * Max(load_avg) <= Max(load.weight) 398 * 399 * Then it is the load_weight's responsibility to consider overflow 400 * issues. 401 */ 402 struct sched_avg { 403 u64 last_update_time; 404 u64 load_sum; 405 u64 runnable_sum; 406 u32 util_sum; 407 u32 period_contrib; 408 unsigned long load_avg; 409 unsigned long runnable_avg; 410 unsigned long util_avg; 411 struct util_est util_est; 412 } ____cacheline_aligned; 413 414 struct sched_statistics { 415 #ifdef CONFIG_SCHEDSTATS 416 u64 wait_start; 417 u64 wait_max; 418 u64 wait_count; 419 u64 wait_sum; 420 u64 iowait_count; 421 u64 iowait_sum; 422 423 u64 sleep_start; 424 u64 sleep_max; 425 s64 sum_sleep_runtime; 426 427 u64 block_start; 428 u64 block_max; 429 u64 exec_max; 430 u64 slice_max; 431 432 u64 nr_migrations_cold; 433 u64 nr_failed_migrations_affine; 434 u64 nr_failed_migrations_running; 435 u64 nr_failed_migrations_hot; 436 u64 nr_forced_migrations; 437 438 u64 nr_wakeups; 439 u64 nr_wakeups_sync; 440 u64 nr_wakeups_migrate; 441 u64 nr_wakeups_local; 442 u64 nr_wakeups_remote; 443 u64 nr_wakeups_affine; 444 u64 nr_wakeups_affine_attempts; 445 u64 nr_wakeups_passive; 446 u64 nr_wakeups_idle; 447 #endif 448 }; 449 450 struct sched_entity { 451 /* For load-balancing: */ 452 struct load_weight load; 453 struct rb_node run_node; 454 struct list_head group_node; 455 unsigned int on_rq; 456 457 u64 exec_start; 458 u64 sum_exec_runtime; 459 u64 vruntime; 460 u64 prev_sum_exec_runtime; 461 462 u64 nr_migrations; 463 464 struct sched_statistics statistics; 465 466 #ifdef CONFIG_FAIR_GROUP_SCHED 467 int depth; 468 struct sched_entity *parent; 469 /* rq on which this entity is (to be) queued: */ 470 struct cfs_rq *cfs_rq; 471 /* rq "owned" by this entity/group: */ 472 struct cfs_rq *my_q; 473 /* cached value of my_q->h_nr_running */ 474 unsigned long runnable_weight; 475 #endif 476 477 #ifdef CONFIG_SMP 478 /* 479 * Per entity load average tracking. 480 * 481 * Put into separate cache line so it does not 482 * collide with read-mostly values above. 483 */ 484 struct sched_avg avg; 485 #endif 486 }; 487 488 struct sched_rt_entity { 489 struct list_head run_list; 490 unsigned long timeout; 491 unsigned long watchdog_stamp; 492 unsigned int time_slice; 493 unsigned short on_rq; 494 unsigned short on_list; 495 496 struct sched_rt_entity *back; 497 #ifdef CONFIG_RT_GROUP_SCHED 498 struct sched_rt_entity *parent; 499 /* rq on which this entity is (to be) queued: */ 500 struct rt_rq *rt_rq; 501 /* rq "owned" by this entity/group: */ 502 struct rt_rq *my_q; 503 #endif 504 } __randomize_layout; 505 506 struct sched_dl_entity { 507 struct rb_node rb_node; 508 509 /* 510 * Original scheduling parameters. Copied here from sched_attr 511 * during sched_setattr(), they will remain the same until 512 * the next sched_setattr(). 513 */ 514 u64 dl_runtime; /* Maximum runtime for each instance */ 515 u64 dl_deadline; /* Relative deadline of each instance */ 516 u64 dl_period; /* Separation of two instances (period) */ 517 u64 dl_bw; /* dl_runtime / dl_period */ 518 u64 dl_density; /* dl_runtime / dl_deadline */ 519 520 /* 521 * Actual scheduling parameters. Initialized with the values above, 522 * they are continuously updated during task execution. Note that 523 * the remaining runtime could be < 0 in case we are in overrun. 524 */ 525 s64 runtime; /* Remaining runtime for this instance */ 526 u64 deadline; /* Absolute deadline for this instance */ 527 unsigned int flags; /* Specifying the scheduler behaviour */ 528 529 /* 530 * Some bool flags: 531 * 532 * @dl_throttled tells if we exhausted the runtime. If so, the 533 * task has to wait for a replenishment to be performed at the 534 * next firing of dl_timer. 535 * 536 * @dl_boosted tells if we are boosted due to DI. If so we are 537 * outside bandwidth enforcement mechanism (but only until we 538 * exit the critical section); 539 * 540 * @dl_yielded tells if task gave up the CPU before consuming 541 * all its available runtime during the last job. 542 * 543 * @dl_non_contending tells if the task is inactive while still 544 * contributing to the active utilization. In other words, it 545 * indicates if the inactive timer has been armed and its handler 546 * has not been executed yet. This flag is useful to avoid race 547 * conditions between the inactive timer handler and the wakeup 548 * code. 549 * 550 * @dl_overrun tells if the task asked to be informed about runtime 551 * overruns. 552 */ 553 unsigned int dl_throttled : 1; 554 unsigned int dl_boosted : 1; 555 unsigned int dl_yielded : 1; 556 unsigned int dl_non_contending : 1; 557 unsigned int dl_overrun : 1; 558 559 /* 560 * Bandwidth enforcement timer. Each -deadline task has its 561 * own bandwidth to be enforced, thus we need one timer per task. 562 */ 563 struct hrtimer dl_timer; 564 565 /* 566 * Inactive timer, responsible for decreasing the active utilization 567 * at the "0-lag time". When a -deadline task blocks, it contributes 568 * to GRUB's active utilization until the "0-lag time", hence a 569 * timer is needed to decrease the active utilization at the correct 570 * time. 571 */ 572 struct hrtimer inactive_timer; 573 }; 574 575 #ifdef CONFIG_UCLAMP_TASK 576 /* Number of utilization clamp buckets (shorter alias) */ 577 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 578 579 /* 580 * Utilization clamp for a scheduling entity 581 * @value: clamp value "assigned" to a se 582 * @bucket_id: bucket index corresponding to the "assigned" value 583 * @active: the se is currently refcounted in a rq's bucket 584 * @user_defined: the requested clamp value comes from user-space 585 * 586 * The bucket_id is the index of the clamp bucket matching the clamp value 587 * which is pre-computed and stored to avoid expensive integer divisions from 588 * the fast path. 589 * 590 * The active bit is set whenever a task has got an "effective" value assigned, 591 * which can be different from the clamp value "requested" from user-space. 592 * This allows to know a task is refcounted in the rq's bucket corresponding 593 * to the "effective" bucket_id. 594 * 595 * The user_defined bit is set whenever a task has got a task-specific clamp 596 * value requested from userspace, i.e. the system defaults apply to this task 597 * just as a restriction. This allows to relax default clamps when a less 598 * restrictive task-specific value has been requested, thus allowing to 599 * implement a "nice" semantic. For example, a task running with a 20% 600 * default boost can still drop its own boosting to 0%. 601 */ 602 struct uclamp_se { 603 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 604 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 605 unsigned int active : 1; 606 unsigned int user_defined : 1; 607 }; 608 #endif /* CONFIG_UCLAMP_TASK */ 609 610 union rcu_special { 611 struct { 612 u8 blocked; 613 u8 need_qs; 614 u8 exp_hint; /* Hint for performance. */ 615 u8 need_mb; /* Readers need smp_mb(). */ 616 } b; /* Bits. */ 617 u32 s; /* Set of bits. */ 618 }; 619 620 enum perf_event_task_context { 621 perf_invalid_context = -1, 622 perf_hw_context = 0, 623 perf_sw_context, 624 perf_nr_task_contexts, 625 }; 626 627 struct wake_q_node { 628 struct wake_q_node *next; 629 }; 630 631 struct task_struct { 632 #ifdef CONFIG_THREAD_INFO_IN_TASK 633 /* 634 * For reasons of header soup (see current_thread_info()), this 635 * must be the first element of task_struct. 636 */ 637 struct thread_info thread_info; 638 #endif 639 /* -1 unrunnable, 0 runnable, >0 stopped: */ 640 volatile long state; 641 642 /* 643 * This begins the randomizable portion of task_struct. Only 644 * scheduling-critical items should be added above here. 645 */ 646 randomized_struct_fields_start 647 648 void *stack; 649 refcount_t usage; 650 /* Per task flags (PF_*), defined further below: */ 651 unsigned int flags; 652 unsigned int ptrace; 653 654 #ifdef CONFIG_SMP 655 int on_cpu; 656 struct __call_single_node wake_entry; 657 #ifdef CONFIG_THREAD_INFO_IN_TASK 658 /* Current CPU: */ 659 unsigned int cpu; 660 #endif 661 unsigned int wakee_flips; 662 unsigned long wakee_flip_decay_ts; 663 struct task_struct *last_wakee; 664 665 /* 666 * recent_used_cpu is initially set as the last CPU used by a task 667 * that wakes affine another task. Waker/wakee relationships can 668 * push tasks around a CPU where each wakeup moves to the next one. 669 * Tracking a recently used CPU allows a quick search for a recently 670 * used CPU that may be idle. 671 */ 672 int recent_used_cpu; 673 int wake_cpu; 674 #endif 675 int on_rq; 676 677 int prio; 678 int static_prio; 679 int normal_prio; 680 unsigned int rt_priority; 681 682 const struct sched_class *sched_class; 683 struct sched_entity se; 684 struct sched_rt_entity rt; 685 #ifdef CONFIG_CGROUP_SCHED 686 struct task_group *sched_task_group; 687 #endif 688 struct sched_dl_entity dl; 689 690 #ifdef CONFIG_UCLAMP_TASK 691 /* 692 * Clamp values requested for a scheduling entity. 693 * Must be updated with task_rq_lock() held. 694 */ 695 struct uclamp_se uclamp_req[UCLAMP_CNT]; 696 /* 697 * Effective clamp values used for a scheduling entity. 698 * Must be updated with task_rq_lock() held. 699 */ 700 struct uclamp_se uclamp[UCLAMP_CNT]; 701 #endif 702 703 #ifdef CONFIG_PREEMPT_NOTIFIERS 704 /* List of struct preempt_notifier: */ 705 struct hlist_head preempt_notifiers; 706 #endif 707 708 #ifdef CONFIG_BLK_DEV_IO_TRACE 709 unsigned int btrace_seq; 710 #endif 711 712 unsigned int policy; 713 int nr_cpus_allowed; 714 const cpumask_t *cpus_ptr; 715 cpumask_t cpus_mask; 716 717 #ifdef CONFIG_PREEMPT_RCU 718 int rcu_read_lock_nesting; 719 union rcu_special rcu_read_unlock_special; 720 struct list_head rcu_node_entry; 721 struct rcu_node *rcu_blocked_node; 722 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 723 724 #ifdef CONFIG_TASKS_RCU 725 unsigned long rcu_tasks_nvcsw; 726 u8 rcu_tasks_holdout; 727 u8 rcu_tasks_idx; 728 int rcu_tasks_idle_cpu; 729 struct list_head rcu_tasks_holdout_list; 730 #endif /* #ifdef CONFIG_TASKS_RCU */ 731 732 #ifdef CONFIG_TASKS_TRACE_RCU 733 int trc_reader_nesting; 734 int trc_ipi_to_cpu; 735 union rcu_special trc_reader_special; 736 bool trc_reader_checked; 737 struct list_head trc_holdout_list; 738 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 739 740 struct sched_info sched_info; 741 742 struct list_head tasks; 743 #ifdef CONFIG_SMP 744 struct plist_node pushable_tasks; 745 struct rb_node pushable_dl_tasks; 746 #endif 747 748 struct mm_struct *mm; 749 struct mm_struct *active_mm; 750 751 /* Per-thread vma caching: */ 752 struct vmacache vmacache; 753 754 #ifdef SPLIT_RSS_COUNTING 755 struct task_rss_stat rss_stat; 756 #endif 757 int exit_state; 758 int exit_code; 759 int exit_signal; 760 /* The signal sent when the parent dies: */ 761 int pdeath_signal; 762 /* JOBCTL_*, siglock protected: */ 763 unsigned long jobctl; 764 765 /* Used for emulating ABI behavior of previous Linux versions: */ 766 unsigned int personality; 767 768 /* Scheduler bits, serialized by scheduler locks: */ 769 unsigned sched_reset_on_fork:1; 770 unsigned sched_contributes_to_load:1; 771 unsigned sched_migrated:1; 772 unsigned sched_remote_wakeup:1; 773 #ifdef CONFIG_PSI 774 unsigned sched_psi_wake_requeue:1; 775 #endif 776 777 /* Force alignment to the next boundary: */ 778 unsigned :0; 779 780 /* Unserialized, strictly 'current' */ 781 782 /* Bit to tell LSMs we're in execve(): */ 783 unsigned in_execve:1; 784 unsigned in_iowait:1; 785 #ifndef TIF_RESTORE_SIGMASK 786 unsigned restore_sigmask:1; 787 #endif 788 #ifdef CONFIG_MEMCG 789 unsigned in_user_fault:1; 790 #endif 791 #ifdef CONFIG_COMPAT_BRK 792 unsigned brk_randomized:1; 793 #endif 794 #ifdef CONFIG_CGROUPS 795 /* disallow userland-initiated cgroup migration */ 796 unsigned no_cgroup_migration:1; 797 /* task is frozen/stopped (used by the cgroup freezer) */ 798 unsigned frozen:1; 799 #endif 800 #ifdef CONFIG_BLK_CGROUP 801 unsigned use_memdelay:1; 802 #endif 803 #ifdef CONFIG_PSI 804 /* Stalled due to lack of memory */ 805 unsigned in_memstall:1; 806 #endif 807 808 unsigned long atomic_flags; /* Flags requiring atomic access. */ 809 810 struct restart_block restart_block; 811 812 pid_t pid; 813 pid_t tgid; 814 815 #ifdef CONFIG_STACKPROTECTOR 816 /* Canary value for the -fstack-protector GCC feature: */ 817 unsigned long stack_canary; 818 #endif 819 /* 820 * Pointers to the (original) parent process, youngest child, younger sibling, 821 * older sibling, respectively. (p->father can be replaced with 822 * p->real_parent->pid) 823 */ 824 825 /* Real parent process: */ 826 struct task_struct __rcu *real_parent; 827 828 /* Recipient of SIGCHLD, wait4() reports: */ 829 struct task_struct __rcu *parent; 830 831 /* 832 * Children/sibling form the list of natural children: 833 */ 834 struct list_head children; 835 struct list_head sibling; 836 struct task_struct *group_leader; 837 838 /* 839 * 'ptraced' is the list of tasks this task is using ptrace() on. 840 * 841 * This includes both natural children and PTRACE_ATTACH targets. 842 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 843 */ 844 struct list_head ptraced; 845 struct list_head ptrace_entry; 846 847 /* PID/PID hash table linkage. */ 848 struct pid *thread_pid; 849 struct hlist_node pid_links[PIDTYPE_MAX]; 850 struct list_head thread_group; 851 struct list_head thread_node; 852 853 struct completion *vfork_done; 854 855 /* CLONE_CHILD_SETTID: */ 856 int __user *set_child_tid; 857 858 /* CLONE_CHILD_CLEARTID: */ 859 int __user *clear_child_tid; 860 861 u64 utime; 862 u64 stime; 863 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 864 u64 utimescaled; 865 u64 stimescaled; 866 #endif 867 u64 gtime; 868 struct prev_cputime prev_cputime; 869 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 870 struct vtime vtime; 871 #endif 872 873 #ifdef CONFIG_NO_HZ_FULL 874 atomic_t tick_dep_mask; 875 #endif 876 /* Context switch counts: */ 877 unsigned long nvcsw; 878 unsigned long nivcsw; 879 880 /* Monotonic time in nsecs: */ 881 u64 start_time; 882 883 /* Boot based time in nsecs: */ 884 u64 start_boottime; 885 886 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 887 unsigned long min_flt; 888 unsigned long maj_flt; 889 890 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 891 struct posix_cputimers posix_cputimers; 892 893 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 894 struct posix_cputimers_work posix_cputimers_work; 895 #endif 896 897 /* Process credentials: */ 898 899 /* Tracer's credentials at attach: */ 900 const struct cred __rcu *ptracer_cred; 901 902 /* Objective and real subjective task credentials (COW): */ 903 const struct cred __rcu *real_cred; 904 905 /* Effective (overridable) subjective task credentials (COW): */ 906 const struct cred __rcu *cred; 907 908 #ifdef CONFIG_KEYS 909 /* Cached requested key. */ 910 struct key *cached_requested_key; 911 #endif 912 913 /* 914 * executable name, excluding path. 915 * 916 * - normally initialized setup_new_exec() 917 * - access it with [gs]et_task_comm() 918 * - lock it with task_lock() 919 */ 920 char comm[TASK_COMM_LEN]; 921 922 struct nameidata *nameidata; 923 924 #ifdef CONFIG_SYSVIPC 925 struct sysv_sem sysvsem; 926 struct sysv_shm sysvshm; 927 #endif 928 #ifdef CONFIG_DETECT_HUNG_TASK 929 unsigned long last_switch_count; 930 unsigned long last_switch_time; 931 #endif 932 /* Filesystem information: */ 933 struct fs_struct *fs; 934 935 /* Open file information: */ 936 struct files_struct *files; 937 938 /* Namespaces: */ 939 struct nsproxy *nsproxy; 940 941 /* Signal handlers: */ 942 struct signal_struct *signal; 943 struct sighand_struct __rcu *sighand; 944 sigset_t blocked; 945 sigset_t real_blocked; 946 /* Restored if set_restore_sigmask() was used: */ 947 sigset_t saved_sigmask; 948 struct sigpending pending; 949 unsigned long sas_ss_sp; 950 size_t sas_ss_size; 951 unsigned int sas_ss_flags; 952 953 struct callback_head *task_works; 954 955 #ifdef CONFIG_AUDIT 956 #ifdef CONFIG_AUDITSYSCALL 957 struct audit_context *audit_context; 958 #endif 959 kuid_t loginuid; 960 unsigned int sessionid; 961 #endif 962 struct seccomp seccomp; 963 964 /* Thread group tracking: */ 965 u64 parent_exec_id; 966 u64 self_exec_id; 967 968 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 969 spinlock_t alloc_lock; 970 971 /* Protection of the PI data structures: */ 972 raw_spinlock_t pi_lock; 973 974 struct wake_q_node wake_q; 975 976 #ifdef CONFIG_RT_MUTEXES 977 /* PI waiters blocked on a rt_mutex held by this task: */ 978 struct rb_root_cached pi_waiters; 979 /* Updated under owner's pi_lock and rq lock */ 980 struct task_struct *pi_top_task; 981 /* Deadlock detection and priority inheritance handling: */ 982 struct rt_mutex_waiter *pi_blocked_on; 983 #endif 984 985 #ifdef CONFIG_DEBUG_MUTEXES 986 /* Mutex deadlock detection: */ 987 struct mutex_waiter *blocked_on; 988 #endif 989 990 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 991 int non_block_count; 992 #endif 993 994 #ifdef CONFIG_TRACE_IRQFLAGS 995 struct irqtrace_events irqtrace; 996 unsigned int hardirq_threaded; 997 u64 hardirq_chain_key; 998 int softirqs_enabled; 999 int softirq_context; 1000 int irq_config; 1001 #endif 1002 1003 #ifdef CONFIG_LOCKDEP 1004 # define MAX_LOCK_DEPTH 48UL 1005 u64 curr_chain_key; 1006 int lockdep_depth; 1007 unsigned int lockdep_recursion; 1008 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1009 #endif 1010 1011 #ifdef CONFIG_UBSAN 1012 unsigned int in_ubsan; 1013 #endif 1014 1015 /* Journalling filesystem info: */ 1016 void *journal_info; 1017 1018 /* Stacked block device info: */ 1019 struct bio_list *bio_list; 1020 1021 #ifdef CONFIG_BLOCK 1022 /* Stack plugging: */ 1023 struct blk_plug *plug; 1024 #endif 1025 1026 /* VM state: */ 1027 struct reclaim_state *reclaim_state; 1028 1029 struct backing_dev_info *backing_dev_info; 1030 1031 struct io_context *io_context; 1032 1033 #ifdef CONFIG_COMPACTION 1034 struct capture_control *capture_control; 1035 #endif 1036 /* Ptrace state: */ 1037 unsigned long ptrace_message; 1038 kernel_siginfo_t *last_siginfo; 1039 1040 struct task_io_accounting ioac; 1041 #ifdef CONFIG_PSI 1042 /* Pressure stall state */ 1043 unsigned int psi_flags; 1044 #endif 1045 #ifdef CONFIG_TASK_XACCT 1046 /* Accumulated RSS usage: */ 1047 u64 acct_rss_mem1; 1048 /* Accumulated virtual memory usage: */ 1049 u64 acct_vm_mem1; 1050 /* stime + utime since last update: */ 1051 u64 acct_timexpd; 1052 #endif 1053 #ifdef CONFIG_CPUSETS 1054 /* Protected by ->alloc_lock: */ 1055 nodemask_t mems_allowed; 1056 /* Seqence number to catch updates: */ 1057 seqcount_spinlock_t mems_allowed_seq; 1058 int cpuset_mem_spread_rotor; 1059 int cpuset_slab_spread_rotor; 1060 #endif 1061 #ifdef CONFIG_CGROUPS 1062 /* Control Group info protected by css_set_lock: */ 1063 struct css_set __rcu *cgroups; 1064 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1065 struct list_head cg_list; 1066 #endif 1067 #ifdef CONFIG_X86_CPU_RESCTRL 1068 u32 closid; 1069 u32 rmid; 1070 #endif 1071 #ifdef CONFIG_FUTEX 1072 struct robust_list_head __user *robust_list; 1073 #ifdef CONFIG_COMPAT 1074 struct compat_robust_list_head __user *compat_robust_list; 1075 #endif 1076 struct list_head pi_state_list; 1077 struct futex_pi_state *pi_state_cache; 1078 struct mutex futex_exit_mutex; 1079 unsigned int futex_state; 1080 #endif 1081 #ifdef CONFIG_PERF_EVENTS 1082 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1083 struct mutex perf_event_mutex; 1084 struct list_head perf_event_list; 1085 #endif 1086 #ifdef CONFIG_DEBUG_PREEMPT 1087 unsigned long preempt_disable_ip; 1088 #endif 1089 #ifdef CONFIG_NUMA 1090 /* Protected by alloc_lock: */ 1091 struct mempolicy *mempolicy; 1092 short il_prev; 1093 short pref_node_fork; 1094 #endif 1095 #ifdef CONFIG_NUMA_BALANCING 1096 int numa_scan_seq; 1097 unsigned int numa_scan_period; 1098 unsigned int numa_scan_period_max; 1099 int numa_preferred_nid; 1100 unsigned long numa_migrate_retry; 1101 /* Migration stamp: */ 1102 u64 node_stamp; 1103 u64 last_task_numa_placement; 1104 u64 last_sum_exec_runtime; 1105 struct callback_head numa_work; 1106 1107 /* 1108 * This pointer is only modified for current in syscall and 1109 * pagefault context (and for tasks being destroyed), so it can be read 1110 * from any of the following contexts: 1111 * - RCU read-side critical section 1112 * - current->numa_group from everywhere 1113 * - task's runqueue locked, task not running 1114 */ 1115 struct numa_group __rcu *numa_group; 1116 1117 /* 1118 * numa_faults is an array split into four regions: 1119 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1120 * in this precise order. 1121 * 1122 * faults_memory: Exponential decaying average of faults on a per-node 1123 * basis. Scheduling placement decisions are made based on these 1124 * counts. The values remain static for the duration of a PTE scan. 1125 * faults_cpu: Track the nodes the process was running on when a NUMA 1126 * hinting fault was incurred. 1127 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1128 * during the current scan window. When the scan completes, the counts 1129 * in faults_memory and faults_cpu decay and these values are copied. 1130 */ 1131 unsigned long *numa_faults; 1132 unsigned long total_numa_faults; 1133 1134 /* 1135 * numa_faults_locality tracks if faults recorded during the last 1136 * scan window were remote/local or failed to migrate. The task scan 1137 * period is adapted based on the locality of the faults with different 1138 * weights depending on whether they were shared or private faults 1139 */ 1140 unsigned long numa_faults_locality[3]; 1141 1142 unsigned long numa_pages_migrated; 1143 #endif /* CONFIG_NUMA_BALANCING */ 1144 1145 #ifdef CONFIG_RSEQ 1146 struct rseq __user *rseq; 1147 u32 rseq_sig; 1148 /* 1149 * RmW on rseq_event_mask must be performed atomically 1150 * with respect to preemption. 1151 */ 1152 unsigned long rseq_event_mask; 1153 #endif 1154 1155 struct tlbflush_unmap_batch tlb_ubc; 1156 1157 union { 1158 refcount_t rcu_users; 1159 struct rcu_head rcu; 1160 }; 1161 1162 /* Cache last used pipe for splice(): */ 1163 struct pipe_inode_info *splice_pipe; 1164 1165 struct page_frag task_frag; 1166 1167 #ifdef CONFIG_TASK_DELAY_ACCT 1168 struct task_delay_info *delays; 1169 #endif 1170 1171 #ifdef CONFIG_FAULT_INJECTION 1172 int make_it_fail; 1173 unsigned int fail_nth; 1174 #endif 1175 /* 1176 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1177 * balance_dirty_pages() for a dirty throttling pause: 1178 */ 1179 int nr_dirtied; 1180 int nr_dirtied_pause; 1181 /* Start of a write-and-pause period: */ 1182 unsigned long dirty_paused_when; 1183 1184 #ifdef CONFIG_LATENCYTOP 1185 int latency_record_count; 1186 struct latency_record latency_record[LT_SAVECOUNT]; 1187 #endif 1188 /* 1189 * Time slack values; these are used to round up poll() and 1190 * select() etc timeout values. These are in nanoseconds. 1191 */ 1192 u64 timer_slack_ns; 1193 u64 default_timer_slack_ns; 1194 1195 #ifdef CONFIG_KASAN 1196 unsigned int kasan_depth; 1197 #endif 1198 1199 #ifdef CONFIG_KCSAN 1200 struct kcsan_ctx kcsan_ctx; 1201 #ifdef CONFIG_TRACE_IRQFLAGS 1202 struct irqtrace_events kcsan_save_irqtrace; 1203 #endif 1204 #endif 1205 1206 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1207 /* Index of current stored address in ret_stack: */ 1208 int curr_ret_stack; 1209 int curr_ret_depth; 1210 1211 /* Stack of return addresses for return function tracing: */ 1212 struct ftrace_ret_stack *ret_stack; 1213 1214 /* Timestamp for last schedule: */ 1215 unsigned long long ftrace_timestamp; 1216 1217 /* 1218 * Number of functions that haven't been traced 1219 * because of depth overrun: 1220 */ 1221 atomic_t trace_overrun; 1222 1223 /* Pause tracing: */ 1224 atomic_t tracing_graph_pause; 1225 #endif 1226 1227 #ifdef CONFIG_TRACING 1228 /* State flags for use by tracers: */ 1229 unsigned long trace; 1230 1231 /* Bitmask and counter of trace recursion: */ 1232 unsigned long trace_recursion; 1233 #endif /* CONFIG_TRACING */ 1234 1235 #ifdef CONFIG_KCOV 1236 /* See kernel/kcov.c for more details. */ 1237 1238 /* Coverage collection mode enabled for this task (0 if disabled): */ 1239 unsigned int kcov_mode; 1240 1241 /* Size of the kcov_area: */ 1242 unsigned int kcov_size; 1243 1244 /* Buffer for coverage collection: */ 1245 void *kcov_area; 1246 1247 /* KCOV descriptor wired with this task or NULL: */ 1248 struct kcov *kcov; 1249 1250 /* KCOV common handle for remote coverage collection: */ 1251 u64 kcov_handle; 1252 1253 /* KCOV sequence number: */ 1254 int kcov_sequence; 1255 1256 /* Collect coverage from softirq context: */ 1257 unsigned int kcov_softirq; 1258 #endif 1259 1260 #ifdef CONFIG_MEMCG 1261 struct mem_cgroup *memcg_in_oom; 1262 gfp_t memcg_oom_gfp_mask; 1263 int memcg_oom_order; 1264 1265 /* Number of pages to reclaim on returning to userland: */ 1266 unsigned int memcg_nr_pages_over_high; 1267 1268 /* Used by memcontrol for targeted memcg charge: */ 1269 struct mem_cgroup *active_memcg; 1270 #endif 1271 1272 #ifdef CONFIG_BLK_CGROUP 1273 struct request_queue *throttle_queue; 1274 #endif 1275 1276 #ifdef CONFIG_UPROBES 1277 struct uprobe_task *utask; 1278 #endif 1279 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1280 unsigned int sequential_io; 1281 unsigned int sequential_io_avg; 1282 #endif 1283 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1284 unsigned long task_state_change; 1285 #endif 1286 int pagefault_disabled; 1287 #ifdef CONFIG_MMU 1288 struct task_struct *oom_reaper_list; 1289 #endif 1290 #ifdef CONFIG_VMAP_STACK 1291 struct vm_struct *stack_vm_area; 1292 #endif 1293 #ifdef CONFIG_THREAD_INFO_IN_TASK 1294 /* A live task holds one reference: */ 1295 refcount_t stack_refcount; 1296 #endif 1297 #ifdef CONFIG_LIVEPATCH 1298 int patch_state; 1299 #endif 1300 #ifdef CONFIG_SECURITY 1301 /* Used by LSM modules for access restriction: */ 1302 void *security; 1303 #endif 1304 1305 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1306 unsigned long lowest_stack; 1307 unsigned long prev_lowest_stack; 1308 #endif 1309 1310 #ifdef CONFIG_X86_MCE 1311 u64 mce_addr; 1312 __u64 mce_ripv : 1, 1313 mce_whole_page : 1, 1314 __mce_reserved : 62; 1315 struct callback_head mce_kill_me; 1316 #endif 1317 1318 /* 1319 * New fields for task_struct should be added above here, so that 1320 * they are included in the randomized portion of task_struct. 1321 */ 1322 randomized_struct_fields_end 1323 1324 /* CPU-specific state of this task: */ 1325 struct thread_struct thread; 1326 1327 /* 1328 * WARNING: on x86, 'thread_struct' contains a variable-sized 1329 * structure. It *MUST* be at the end of 'task_struct'. 1330 * 1331 * Do not put anything below here! 1332 */ 1333 }; 1334 1335 static inline struct pid *task_pid(struct task_struct *task) 1336 { 1337 return task->thread_pid; 1338 } 1339 1340 /* 1341 * the helpers to get the task's different pids as they are seen 1342 * from various namespaces 1343 * 1344 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1345 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1346 * current. 1347 * task_xid_nr_ns() : id seen from the ns specified; 1348 * 1349 * see also pid_nr() etc in include/linux/pid.h 1350 */ 1351 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1352 1353 static inline pid_t task_pid_nr(struct task_struct *tsk) 1354 { 1355 return tsk->pid; 1356 } 1357 1358 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1359 { 1360 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1361 } 1362 1363 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1364 { 1365 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1366 } 1367 1368 1369 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1370 { 1371 return tsk->tgid; 1372 } 1373 1374 /** 1375 * pid_alive - check that a task structure is not stale 1376 * @p: Task structure to be checked. 1377 * 1378 * Test if a process is not yet dead (at most zombie state) 1379 * If pid_alive fails, then pointers within the task structure 1380 * can be stale and must not be dereferenced. 1381 * 1382 * Return: 1 if the process is alive. 0 otherwise. 1383 */ 1384 static inline int pid_alive(const struct task_struct *p) 1385 { 1386 return p->thread_pid != NULL; 1387 } 1388 1389 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1390 { 1391 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1392 } 1393 1394 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1395 { 1396 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1397 } 1398 1399 1400 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1401 { 1402 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1403 } 1404 1405 static inline pid_t task_session_vnr(struct task_struct *tsk) 1406 { 1407 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1408 } 1409 1410 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1411 { 1412 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1413 } 1414 1415 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1416 { 1417 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1418 } 1419 1420 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1421 { 1422 pid_t pid = 0; 1423 1424 rcu_read_lock(); 1425 if (pid_alive(tsk)) 1426 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1427 rcu_read_unlock(); 1428 1429 return pid; 1430 } 1431 1432 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1433 { 1434 return task_ppid_nr_ns(tsk, &init_pid_ns); 1435 } 1436 1437 /* Obsolete, do not use: */ 1438 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1439 { 1440 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1441 } 1442 1443 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1444 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1445 1446 static inline unsigned int task_state_index(struct task_struct *tsk) 1447 { 1448 unsigned int tsk_state = READ_ONCE(tsk->state); 1449 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1450 1451 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1452 1453 if (tsk_state == TASK_IDLE) 1454 state = TASK_REPORT_IDLE; 1455 1456 return fls(state); 1457 } 1458 1459 static inline char task_index_to_char(unsigned int state) 1460 { 1461 static const char state_char[] = "RSDTtXZPI"; 1462 1463 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1464 1465 return state_char[state]; 1466 } 1467 1468 static inline char task_state_to_char(struct task_struct *tsk) 1469 { 1470 return task_index_to_char(task_state_index(tsk)); 1471 } 1472 1473 /** 1474 * is_global_init - check if a task structure is init. Since init 1475 * is free to have sub-threads we need to check tgid. 1476 * @tsk: Task structure to be checked. 1477 * 1478 * Check if a task structure is the first user space task the kernel created. 1479 * 1480 * Return: 1 if the task structure is init. 0 otherwise. 1481 */ 1482 static inline int is_global_init(struct task_struct *tsk) 1483 { 1484 return task_tgid_nr(tsk) == 1; 1485 } 1486 1487 extern struct pid *cad_pid; 1488 1489 /* 1490 * Per process flags 1491 */ 1492 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1493 #define PF_EXITING 0x00000004 /* Getting shut down */ 1494 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1495 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1496 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1497 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1498 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1499 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1500 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1501 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1502 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1503 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1504 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1505 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1506 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1507 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1508 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1509 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1510 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, 1511 * I am cleaning dirty pages from some other bdi. */ 1512 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1513 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1514 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1515 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1516 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1517 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ 1518 #define PF_IO_WORKER 0x20000000 /* Task is an IO worker */ 1519 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1520 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1521 1522 /* 1523 * Only the _current_ task can read/write to tsk->flags, but other 1524 * tasks can access tsk->flags in readonly mode for example 1525 * with tsk_used_math (like during threaded core dumping). 1526 * There is however an exception to this rule during ptrace 1527 * or during fork: the ptracer task is allowed to write to the 1528 * child->flags of its traced child (same goes for fork, the parent 1529 * can write to the child->flags), because we're guaranteed the 1530 * child is not running and in turn not changing child->flags 1531 * at the same time the parent does it. 1532 */ 1533 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1534 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1535 #define clear_used_math() clear_stopped_child_used_math(current) 1536 #define set_used_math() set_stopped_child_used_math(current) 1537 1538 #define conditional_stopped_child_used_math(condition, child) \ 1539 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1540 1541 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1542 1543 #define copy_to_stopped_child_used_math(child) \ 1544 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1545 1546 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1547 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1548 #define used_math() tsk_used_math(current) 1549 1550 static inline bool is_percpu_thread(void) 1551 { 1552 #ifdef CONFIG_SMP 1553 return (current->flags & PF_NO_SETAFFINITY) && 1554 (current->nr_cpus_allowed == 1); 1555 #else 1556 return true; 1557 #endif 1558 } 1559 1560 /* Per-process atomic flags. */ 1561 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1562 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1563 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1564 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1565 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1566 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1567 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1568 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1569 1570 #define TASK_PFA_TEST(name, func) \ 1571 static inline bool task_##func(struct task_struct *p) \ 1572 { return test_bit(PFA_##name, &p->atomic_flags); } 1573 1574 #define TASK_PFA_SET(name, func) \ 1575 static inline void task_set_##func(struct task_struct *p) \ 1576 { set_bit(PFA_##name, &p->atomic_flags); } 1577 1578 #define TASK_PFA_CLEAR(name, func) \ 1579 static inline void task_clear_##func(struct task_struct *p) \ 1580 { clear_bit(PFA_##name, &p->atomic_flags); } 1581 1582 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1583 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1584 1585 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1586 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1587 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1588 1589 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1590 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1591 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1592 1593 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1594 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1595 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1596 1597 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1598 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1599 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1600 1601 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1602 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1603 1604 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1605 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1606 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1607 1608 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1609 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1610 1611 static inline void 1612 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1613 { 1614 current->flags &= ~flags; 1615 current->flags |= orig_flags & flags; 1616 } 1617 1618 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1619 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1620 #ifdef CONFIG_SMP 1621 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1622 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1623 #else 1624 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1625 { 1626 } 1627 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1628 { 1629 if (!cpumask_test_cpu(0, new_mask)) 1630 return -EINVAL; 1631 return 0; 1632 } 1633 #endif 1634 1635 extern int yield_to(struct task_struct *p, bool preempt); 1636 extern void set_user_nice(struct task_struct *p, long nice); 1637 extern int task_prio(const struct task_struct *p); 1638 1639 /** 1640 * task_nice - return the nice value of a given task. 1641 * @p: the task in question. 1642 * 1643 * Return: The nice value [ -20 ... 0 ... 19 ]. 1644 */ 1645 static inline int task_nice(const struct task_struct *p) 1646 { 1647 return PRIO_TO_NICE((p)->static_prio); 1648 } 1649 1650 extern int can_nice(const struct task_struct *p, const int nice); 1651 extern int task_curr(const struct task_struct *p); 1652 extern int idle_cpu(int cpu); 1653 extern int available_idle_cpu(int cpu); 1654 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1655 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1656 extern void sched_set_fifo(struct task_struct *p); 1657 extern void sched_set_fifo_low(struct task_struct *p); 1658 extern void sched_set_normal(struct task_struct *p, int nice); 1659 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1660 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1661 extern struct task_struct *idle_task(int cpu); 1662 1663 /** 1664 * is_idle_task - is the specified task an idle task? 1665 * @p: the task in question. 1666 * 1667 * Return: 1 if @p is an idle task. 0 otherwise. 1668 */ 1669 static __always_inline bool is_idle_task(const struct task_struct *p) 1670 { 1671 return !!(p->flags & PF_IDLE); 1672 } 1673 1674 extern struct task_struct *curr_task(int cpu); 1675 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1676 1677 void yield(void); 1678 1679 union thread_union { 1680 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1681 struct task_struct task; 1682 #endif 1683 #ifndef CONFIG_THREAD_INFO_IN_TASK 1684 struct thread_info thread_info; 1685 #endif 1686 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1687 }; 1688 1689 #ifndef CONFIG_THREAD_INFO_IN_TASK 1690 extern struct thread_info init_thread_info; 1691 #endif 1692 1693 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1694 1695 #ifdef CONFIG_THREAD_INFO_IN_TASK 1696 static inline struct thread_info *task_thread_info(struct task_struct *task) 1697 { 1698 return &task->thread_info; 1699 } 1700 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1701 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1702 #endif 1703 1704 /* 1705 * find a task by one of its numerical ids 1706 * 1707 * find_task_by_pid_ns(): 1708 * finds a task by its pid in the specified namespace 1709 * find_task_by_vpid(): 1710 * finds a task by its virtual pid 1711 * 1712 * see also find_vpid() etc in include/linux/pid.h 1713 */ 1714 1715 extern struct task_struct *find_task_by_vpid(pid_t nr); 1716 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1717 1718 /* 1719 * find a task by its virtual pid and get the task struct 1720 */ 1721 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1722 1723 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1724 extern int wake_up_process(struct task_struct *tsk); 1725 extern void wake_up_new_task(struct task_struct *tsk); 1726 1727 #ifdef CONFIG_SMP 1728 extern void kick_process(struct task_struct *tsk); 1729 #else 1730 static inline void kick_process(struct task_struct *tsk) { } 1731 #endif 1732 1733 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1734 1735 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1736 { 1737 __set_task_comm(tsk, from, false); 1738 } 1739 1740 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1741 #define get_task_comm(buf, tsk) ({ \ 1742 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1743 __get_task_comm(buf, sizeof(buf), tsk); \ 1744 }) 1745 1746 #ifdef CONFIG_SMP 1747 static __always_inline void scheduler_ipi(void) 1748 { 1749 /* 1750 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1751 * TIF_NEED_RESCHED remotely (for the first time) will also send 1752 * this IPI. 1753 */ 1754 preempt_fold_need_resched(); 1755 } 1756 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1757 #else 1758 static inline void scheduler_ipi(void) { } 1759 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1760 { 1761 return 1; 1762 } 1763 #endif 1764 1765 /* 1766 * Set thread flags in other task's structures. 1767 * See asm/thread_info.h for TIF_xxxx flags available: 1768 */ 1769 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1770 { 1771 set_ti_thread_flag(task_thread_info(tsk), flag); 1772 } 1773 1774 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1775 { 1776 clear_ti_thread_flag(task_thread_info(tsk), flag); 1777 } 1778 1779 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1780 bool value) 1781 { 1782 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1783 } 1784 1785 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1786 { 1787 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1788 } 1789 1790 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1791 { 1792 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1793 } 1794 1795 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1796 { 1797 return test_ti_thread_flag(task_thread_info(tsk), flag); 1798 } 1799 1800 static inline void set_tsk_need_resched(struct task_struct *tsk) 1801 { 1802 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1803 } 1804 1805 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1806 { 1807 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1808 } 1809 1810 static inline int test_tsk_need_resched(struct task_struct *tsk) 1811 { 1812 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1813 } 1814 1815 /* 1816 * cond_resched() and cond_resched_lock(): latency reduction via 1817 * explicit rescheduling in places that are safe. The return 1818 * value indicates whether a reschedule was done in fact. 1819 * cond_resched_lock() will drop the spinlock before scheduling, 1820 */ 1821 #ifndef CONFIG_PREEMPTION 1822 extern int _cond_resched(void); 1823 #else 1824 static inline int _cond_resched(void) { return 0; } 1825 #endif 1826 1827 #define cond_resched() ({ \ 1828 ___might_sleep(__FILE__, __LINE__, 0); \ 1829 _cond_resched(); \ 1830 }) 1831 1832 extern int __cond_resched_lock(spinlock_t *lock); 1833 1834 #define cond_resched_lock(lock) ({ \ 1835 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1836 __cond_resched_lock(lock); \ 1837 }) 1838 1839 static inline void cond_resched_rcu(void) 1840 { 1841 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1842 rcu_read_unlock(); 1843 cond_resched(); 1844 rcu_read_lock(); 1845 #endif 1846 } 1847 1848 /* 1849 * Does a critical section need to be broken due to another 1850 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 1851 * but a general need for low latency) 1852 */ 1853 static inline int spin_needbreak(spinlock_t *lock) 1854 { 1855 #ifdef CONFIG_PREEMPTION 1856 return spin_is_contended(lock); 1857 #else 1858 return 0; 1859 #endif 1860 } 1861 1862 static __always_inline bool need_resched(void) 1863 { 1864 return unlikely(tif_need_resched()); 1865 } 1866 1867 /* 1868 * Wrappers for p->thread_info->cpu access. No-op on UP. 1869 */ 1870 #ifdef CONFIG_SMP 1871 1872 static inline unsigned int task_cpu(const struct task_struct *p) 1873 { 1874 #ifdef CONFIG_THREAD_INFO_IN_TASK 1875 return READ_ONCE(p->cpu); 1876 #else 1877 return READ_ONCE(task_thread_info(p)->cpu); 1878 #endif 1879 } 1880 1881 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1882 1883 #else 1884 1885 static inline unsigned int task_cpu(const struct task_struct *p) 1886 { 1887 return 0; 1888 } 1889 1890 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1891 { 1892 } 1893 1894 #endif /* CONFIG_SMP */ 1895 1896 /* 1897 * In order to reduce various lock holder preemption latencies provide an 1898 * interface to see if a vCPU is currently running or not. 1899 * 1900 * This allows us to terminate optimistic spin loops and block, analogous to 1901 * the native optimistic spin heuristic of testing if the lock owner task is 1902 * running or not. 1903 */ 1904 #ifndef vcpu_is_preempted 1905 static inline bool vcpu_is_preempted(int cpu) 1906 { 1907 return false; 1908 } 1909 #endif 1910 1911 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1912 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1913 1914 #ifndef TASK_SIZE_OF 1915 #define TASK_SIZE_OF(tsk) TASK_SIZE 1916 #endif 1917 1918 #ifdef CONFIG_RSEQ 1919 1920 /* 1921 * Map the event mask on the user-space ABI enum rseq_cs_flags 1922 * for direct mask checks. 1923 */ 1924 enum rseq_event_mask_bits { 1925 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1926 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1927 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1928 }; 1929 1930 enum rseq_event_mask { 1931 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1932 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1933 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1934 }; 1935 1936 static inline void rseq_set_notify_resume(struct task_struct *t) 1937 { 1938 if (t->rseq) 1939 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1940 } 1941 1942 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1943 1944 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1945 struct pt_regs *regs) 1946 { 1947 if (current->rseq) 1948 __rseq_handle_notify_resume(ksig, regs); 1949 } 1950 1951 static inline void rseq_signal_deliver(struct ksignal *ksig, 1952 struct pt_regs *regs) 1953 { 1954 preempt_disable(); 1955 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 1956 preempt_enable(); 1957 rseq_handle_notify_resume(ksig, regs); 1958 } 1959 1960 /* rseq_preempt() requires preemption to be disabled. */ 1961 static inline void rseq_preempt(struct task_struct *t) 1962 { 1963 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1964 rseq_set_notify_resume(t); 1965 } 1966 1967 /* rseq_migrate() requires preemption to be disabled. */ 1968 static inline void rseq_migrate(struct task_struct *t) 1969 { 1970 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1971 rseq_set_notify_resume(t); 1972 } 1973 1974 /* 1975 * If parent process has a registered restartable sequences area, the 1976 * child inherits. Unregister rseq for a clone with CLONE_VM set. 1977 */ 1978 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1979 { 1980 if (clone_flags & CLONE_VM) { 1981 t->rseq = NULL; 1982 t->rseq_sig = 0; 1983 t->rseq_event_mask = 0; 1984 } else { 1985 t->rseq = current->rseq; 1986 t->rseq_sig = current->rseq_sig; 1987 t->rseq_event_mask = current->rseq_event_mask; 1988 } 1989 } 1990 1991 static inline void rseq_execve(struct task_struct *t) 1992 { 1993 t->rseq = NULL; 1994 t->rseq_sig = 0; 1995 t->rseq_event_mask = 0; 1996 } 1997 1998 #else 1999 2000 static inline void rseq_set_notify_resume(struct task_struct *t) 2001 { 2002 } 2003 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 2004 struct pt_regs *regs) 2005 { 2006 } 2007 static inline void rseq_signal_deliver(struct ksignal *ksig, 2008 struct pt_regs *regs) 2009 { 2010 } 2011 static inline void rseq_preempt(struct task_struct *t) 2012 { 2013 } 2014 static inline void rseq_migrate(struct task_struct *t) 2015 { 2016 } 2017 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2018 { 2019 } 2020 static inline void rseq_execve(struct task_struct *t) 2021 { 2022 } 2023 2024 #endif 2025 2026 #ifdef CONFIG_DEBUG_RSEQ 2027 2028 void rseq_syscall(struct pt_regs *regs); 2029 2030 #else 2031 2032 static inline void rseq_syscall(struct pt_regs *regs) 2033 { 2034 } 2035 2036 #endif 2037 2038 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 2039 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 2040 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 2041 2042 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 2043 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 2044 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 2045 2046 int sched_trace_rq_cpu(struct rq *rq); 2047 int sched_trace_rq_nr_running(struct rq *rq); 2048 2049 const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 2050 2051 #endif 2052