1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 7 struct sched_param { 8 int sched_priority; 9 }; 10 11 #include <asm/param.h> /* for HZ */ 12 13 #include <linux/capability.h> 14 #include <linux/threads.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/timex.h> 18 #include <linux/jiffies.h> 19 #include <linux/rbtree.h> 20 #include <linux/thread_info.h> 21 #include <linux/cpumask.h> 22 #include <linux/errno.h> 23 #include <linux/nodemask.h> 24 #include <linux/mm_types.h> 25 26 #include <asm/page.h> 27 #include <asm/ptrace.h> 28 #include <asm/cputime.h> 29 30 #include <linux/smp.h> 31 #include <linux/sem.h> 32 #include <linux/signal.h> 33 #include <linux/compiler.h> 34 #include <linux/completion.h> 35 #include <linux/pid.h> 36 #include <linux/percpu.h> 37 #include <linux/topology.h> 38 #include <linux/proportions.h> 39 #include <linux/seccomp.h> 40 #include <linux/rcupdate.h> 41 #include <linux/rculist.h> 42 #include <linux/rtmutex.h> 43 44 #include <linux/time.h> 45 #include <linux/param.h> 46 #include <linux/resource.h> 47 #include <linux/timer.h> 48 #include <linux/hrtimer.h> 49 #include <linux/task_io_accounting.h> 50 #include <linux/latencytop.h> 51 #include <linux/cred.h> 52 #include <linux/llist.h> 53 #include <linux/uidgid.h> 54 #include <linux/gfp.h> 55 56 #include <asm/processor.h> 57 58 struct exec_domain; 59 struct futex_pi_state; 60 struct robust_list_head; 61 struct bio_list; 62 struct fs_struct; 63 struct perf_event_context; 64 struct blk_plug; 65 66 /* 67 * List of flags we want to share for kernel threads, 68 * if only because they are not used by them anyway. 69 */ 70 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 71 72 /* 73 * These are the constant used to fake the fixed-point load-average 74 * counting. Some notes: 75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 76 * a load-average precision of 10 bits integer + 11 bits fractional 77 * - if you want to count load-averages more often, you need more 78 * precision, or rounding will get you. With 2-second counting freq, 79 * the EXP_n values would be 1981, 2034 and 2043 if still using only 80 * 11 bit fractions. 81 */ 82 extern unsigned long avenrun[]; /* Load averages */ 83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 84 85 #define FSHIFT 11 /* nr of bits of precision */ 86 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 87 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 88 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 89 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 90 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 91 92 #define CALC_LOAD(load,exp,n) \ 93 load *= exp; \ 94 load += n*(FIXED_1-exp); \ 95 load >>= FSHIFT; 96 97 extern unsigned long total_forks; 98 extern int nr_threads; 99 DECLARE_PER_CPU(unsigned long, process_counts); 100 extern int nr_processes(void); 101 extern unsigned long nr_running(void); 102 extern unsigned long nr_iowait(void); 103 extern unsigned long nr_iowait_cpu(int cpu); 104 extern unsigned long this_cpu_load(void); 105 106 107 extern void calc_global_load(unsigned long ticks); 108 extern void update_cpu_load_nohz(void); 109 110 extern unsigned long get_parent_ip(unsigned long addr); 111 112 extern void dump_cpu_task(int cpu); 113 114 struct seq_file; 115 struct cfs_rq; 116 struct task_group; 117 #ifdef CONFIG_SCHED_DEBUG 118 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 119 extern void proc_sched_set_task(struct task_struct *p); 120 extern void 121 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 122 #endif 123 124 /* 125 * Task state bitmask. NOTE! These bits are also 126 * encoded in fs/proc/array.c: get_task_state(). 127 * 128 * We have two separate sets of flags: task->state 129 * is about runnability, while task->exit_state are 130 * about the task exiting. Confusing, but this way 131 * modifying one set can't modify the other one by 132 * mistake. 133 */ 134 #define TASK_RUNNING 0 135 #define TASK_INTERRUPTIBLE 1 136 #define TASK_UNINTERRUPTIBLE 2 137 #define __TASK_STOPPED 4 138 #define __TASK_TRACED 8 139 /* in tsk->exit_state */ 140 #define EXIT_ZOMBIE 16 141 #define EXIT_DEAD 32 142 /* in tsk->state again */ 143 #define TASK_DEAD 64 144 #define TASK_WAKEKILL 128 145 #define TASK_WAKING 256 146 #define TASK_PARKED 512 147 #define TASK_STATE_MAX 1024 148 149 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 150 151 extern char ___assert_task_state[1 - 2*!!( 152 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 153 154 /* Convenience macros for the sake of set_task_state */ 155 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 156 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 157 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 158 159 /* Convenience macros for the sake of wake_up */ 160 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 161 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 162 163 /* get_task_state() */ 164 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 165 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 166 __TASK_TRACED) 167 168 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 169 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 170 #define task_is_dead(task) ((task)->exit_state != 0) 171 #define task_is_stopped_or_traced(task) \ 172 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 173 #define task_contributes_to_load(task) \ 174 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 175 (task->flags & PF_FROZEN) == 0) 176 177 #define __set_task_state(tsk, state_value) \ 178 do { (tsk)->state = (state_value); } while (0) 179 #define set_task_state(tsk, state_value) \ 180 set_mb((tsk)->state, (state_value)) 181 182 /* 183 * set_current_state() includes a barrier so that the write of current->state 184 * is correctly serialised wrt the caller's subsequent test of whether to 185 * actually sleep: 186 * 187 * set_current_state(TASK_UNINTERRUPTIBLE); 188 * if (do_i_need_to_sleep()) 189 * schedule(); 190 * 191 * If the caller does not need such serialisation then use __set_current_state() 192 */ 193 #define __set_current_state(state_value) \ 194 do { current->state = (state_value); } while (0) 195 #define set_current_state(state_value) \ 196 set_mb(current->state, (state_value)) 197 198 /* Task command name length */ 199 #define TASK_COMM_LEN 16 200 201 #include <linux/spinlock.h> 202 203 /* 204 * This serializes "schedule()" and also protects 205 * the run-queue from deletions/modifications (but 206 * _adding_ to the beginning of the run-queue has 207 * a separate lock). 208 */ 209 extern rwlock_t tasklist_lock; 210 extern spinlock_t mmlist_lock; 211 212 struct task_struct; 213 214 #ifdef CONFIG_PROVE_RCU 215 extern int lockdep_tasklist_lock_is_held(void); 216 #endif /* #ifdef CONFIG_PROVE_RCU */ 217 218 extern void sched_init(void); 219 extern void sched_init_smp(void); 220 extern asmlinkage void schedule_tail(struct task_struct *prev); 221 extern void init_idle(struct task_struct *idle, int cpu); 222 extern void init_idle_bootup_task(struct task_struct *idle); 223 224 extern int runqueue_is_locked(int cpu); 225 226 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 227 extern void nohz_balance_enter_idle(int cpu); 228 extern void set_cpu_sd_state_idle(void); 229 extern int get_nohz_timer_target(void); 230 #else 231 static inline void nohz_balance_enter_idle(int cpu) { } 232 static inline void set_cpu_sd_state_idle(void) { } 233 #endif 234 235 /* 236 * Only dump TASK_* tasks. (0 for all tasks) 237 */ 238 extern void show_state_filter(unsigned long state_filter); 239 240 static inline void show_state(void) 241 { 242 show_state_filter(0); 243 } 244 245 extern void show_regs(struct pt_regs *); 246 247 /* 248 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 249 * task), SP is the stack pointer of the first frame that should be shown in the back 250 * trace (or NULL if the entire call-chain of the task should be shown). 251 */ 252 extern void show_stack(struct task_struct *task, unsigned long *sp); 253 254 void io_schedule(void); 255 long io_schedule_timeout(long timeout); 256 257 extern void cpu_init (void); 258 extern void trap_init(void); 259 extern void update_process_times(int user); 260 extern void scheduler_tick(void); 261 262 extern void sched_show_task(struct task_struct *p); 263 264 #ifdef CONFIG_LOCKUP_DETECTOR 265 extern void touch_softlockup_watchdog(void); 266 extern void touch_softlockup_watchdog_sync(void); 267 extern void touch_all_softlockup_watchdogs(void); 268 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 269 void __user *buffer, 270 size_t *lenp, loff_t *ppos); 271 extern unsigned int softlockup_panic; 272 void lockup_detector_init(void); 273 #else 274 static inline void touch_softlockup_watchdog(void) 275 { 276 } 277 static inline void touch_softlockup_watchdog_sync(void) 278 { 279 } 280 static inline void touch_all_softlockup_watchdogs(void) 281 { 282 } 283 static inline void lockup_detector_init(void) 284 { 285 } 286 #endif 287 288 /* Attach to any functions which should be ignored in wchan output. */ 289 #define __sched __attribute__((__section__(".sched.text"))) 290 291 /* Linker adds these: start and end of __sched functions */ 292 extern char __sched_text_start[], __sched_text_end[]; 293 294 /* Is this address in the __sched functions? */ 295 extern int in_sched_functions(unsigned long addr); 296 297 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 298 extern signed long schedule_timeout(signed long timeout); 299 extern signed long schedule_timeout_interruptible(signed long timeout); 300 extern signed long schedule_timeout_killable(signed long timeout); 301 extern signed long schedule_timeout_uninterruptible(signed long timeout); 302 asmlinkage void schedule(void); 303 extern void schedule_preempt_disabled(void); 304 305 struct nsproxy; 306 struct user_namespace; 307 308 #ifdef CONFIG_MMU 309 extern void arch_pick_mmap_layout(struct mm_struct *mm); 310 extern unsigned long 311 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 312 unsigned long, unsigned long); 313 extern unsigned long 314 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 315 unsigned long len, unsigned long pgoff, 316 unsigned long flags); 317 #else 318 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 319 #endif 320 321 322 extern void set_dumpable(struct mm_struct *mm, int value); 323 extern int get_dumpable(struct mm_struct *mm); 324 325 /* mm flags */ 326 /* dumpable bits */ 327 #define MMF_DUMPABLE 0 /* core dump is permitted */ 328 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 329 330 #define MMF_DUMPABLE_BITS 2 331 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 332 333 /* coredump filter bits */ 334 #define MMF_DUMP_ANON_PRIVATE 2 335 #define MMF_DUMP_ANON_SHARED 3 336 #define MMF_DUMP_MAPPED_PRIVATE 4 337 #define MMF_DUMP_MAPPED_SHARED 5 338 #define MMF_DUMP_ELF_HEADERS 6 339 #define MMF_DUMP_HUGETLB_PRIVATE 7 340 #define MMF_DUMP_HUGETLB_SHARED 8 341 342 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 343 #define MMF_DUMP_FILTER_BITS 7 344 #define MMF_DUMP_FILTER_MASK \ 345 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 346 #define MMF_DUMP_FILTER_DEFAULT \ 347 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 348 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 349 350 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 351 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 352 #else 353 # define MMF_DUMP_MASK_DEFAULT_ELF 0 354 #endif 355 /* leave room for more dump flags */ 356 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 357 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 358 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 359 360 #define MMF_HAS_UPROBES 19 /* has uprobes */ 361 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 362 363 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 364 365 struct sighand_struct { 366 atomic_t count; 367 struct k_sigaction action[_NSIG]; 368 spinlock_t siglock; 369 wait_queue_head_t signalfd_wqh; 370 }; 371 372 struct pacct_struct { 373 int ac_flag; 374 long ac_exitcode; 375 unsigned long ac_mem; 376 cputime_t ac_utime, ac_stime; 377 unsigned long ac_minflt, ac_majflt; 378 }; 379 380 struct cpu_itimer { 381 cputime_t expires; 382 cputime_t incr; 383 u32 error; 384 u32 incr_error; 385 }; 386 387 /** 388 * struct cputime - snaphsot of system and user cputime 389 * @utime: time spent in user mode 390 * @stime: time spent in system mode 391 * 392 * Gathers a generic snapshot of user and system time. 393 */ 394 struct cputime { 395 cputime_t utime; 396 cputime_t stime; 397 }; 398 399 /** 400 * struct task_cputime - collected CPU time counts 401 * @utime: time spent in user mode, in &cputime_t units 402 * @stime: time spent in kernel mode, in &cputime_t units 403 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 404 * 405 * This is an extension of struct cputime that includes the total runtime 406 * spent by the task from the scheduler point of view. 407 * 408 * As a result, this structure groups together three kinds of CPU time 409 * that are tracked for threads and thread groups. Most things considering 410 * CPU time want to group these counts together and treat all three 411 * of them in parallel. 412 */ 413 struct task_cputime { 414 cputime_t utime; 415 cputime_t stime; 416 unsigned long long sum_exec_runtime; 417 }; 418 /* Alternate field names when used to cache expirations. */ 419 #define prof_exp stime 420 #define virt_exp utime 421 #define sched_exp sum_exec_runtime 422 423 #define INIT_CPUTIME \ 424 (struct task_cputime) { \ 425 .utime = 0, \ 426 .stime = 0, \ 427 .sum_exec_runtime = 0, \ 428 } 429 430 /* 431 * Disable preemption until the scheduler is running. 432 * Reset by start_kernel()->sched_init()->init_idle(). 433 * 434 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 435 * before the scheduler is active -- see should_resched(). 436 */ 437 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 438 439 /** 440 * struct thread_group_cputimer - thread group interval timer counts 441 * @cputime: thread group interval timers. 442 * @running: non-zero when there are timers running and 443 * @cputime receives updates. 444 * @lock: lock for fields in this struct. 445 * 446 * This structure contains the version of task_cputime, above, that is 447 * used for thread group CPU timer calculations. 448 */ 449 struct thread_group_cputimer { 450 struct task_cputime cputime; 451 int running; 452 raw_spinlock_t lock; 453 }; 454 455 #include <linux/rwsem.h> 456 struct autogroup; 457 458 /* 459 * NOTE! "signal_struct" does not have its own 460 * locking, because a shared signal_struct always 461 * implies a shared sighand_struct, so locking 462 * sighand_struct is always a proper superset of 463 * the locking of signal_struct. 464 */ 465 struct signal_struct { 466 atomic_t sigcnt; 467 atomic_t live; 468 int nr_threads; 469 470 wait_queue_head_t wait_chldexit; /* for wait4() */ 471 472 /* current thread group signal load-balancing target: */ 473 struct task_struct *curr_target; 474 475 /* shared signal handling: */ 476 struct sigpending shared_pending; 477 478 /* thread group exit support */ 479 int group_exit_code; 480 /* overloaded: 481 * - notify group_exit_task when ->count is equal to notify_count 482 * - everyone except group_exit_task is stopped during signal delivery 483 * of fatal signals, group_exit_task processes the signal. 484 */ 485 int notify_count; 486 struct task_struct *group_exit_task; 487 488 /* thread group stop support, overloads group_exit_code too */ 489 int group_stop_count; 490 unsigned int flags; /* see SIGNAL_* flags below */ 491 492 /* 493 * PR_SET_CHILD_SUBREAPER marks a process, like a service 494 * manager, to re-parent orphan (double-forking) child processes 495 * to this process instead of 'init'. The service manager is 496 * able to receive SIGCHLD signals and is able to investigate 497 * the process until it calls wait(). All children of this 498 * process will inherit a flag if they should look for a 499 * child_subreaper process at exit. 500 */ 501 unsigned int is_child_subreaper:1; 502 unsigned int has_child_subreaper:1; 503 504 /* POSIX.1b Interval Timers */ 505 int posix_timer_id; 506 struct list_head posix_timers; 507 508 /* ITIMER_REAL timer for the process */ 509 struct hrtimer real_timer; 510 struct pid *leader_pid; 511 ktime_t it_real_incr; 512 513 /* 514 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 515 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 516 * values are defined to 0 and 1 respectively 517 */ 518 struct cpu_itimer it[2]; 519 520 /* 521 * Thread group totals for process CPU timers. 522 * See thread_group_cputimer(), et al, for details. 523 */ 524 struct thread_group_cputimer cputimer; 525 526 /* Earliest-expiration cache. */ 527 struct task_cputime cputime_expires; 528 529 struct list_head cpu_timers[3]; 530 531 struct pid *tty_old_pgrp; 532 533 /* boolean value for session group leader */ 534 int leader; 535 536 struct tty_struct *tty; /* NULL if no tty */ 537 538 #ifdef CONFIG_SCHED_AUTOGROUP 539 struct autogroup *autogroup; 540 #endif 541 /* 542 * Cumulative resource counters for dead threads in the group, 543 * and for reaped dead child processes forked by this group. 544 * Live threads maintain their own counters and add to these 545 * in __exit_signal, except for the group leader. 546 */ 547 cputime_t utime, stime, cutime, cstime; 548 cputime_t gtime; 549 cputime_t cgtime; 550 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 551 struct cputime prev_cputime; 552 #endif 553 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 554 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 555 unsigned long inblock, oublock, cinblock, coublock; 556 unsigned long maxrss, cmaxrss; 557 struct task_io_accounting ioac; 558 559 /* 560 * Cumulative ns of schedule CPU time fo dead threads in the 561 * group, not including a zombie group leader, (This only differs 562 * from jiffies_to_ns(utime + stime) if sched_clock uses something 563 * other than jiffies.) 564 */ 565 unsigned long long sum_sched_runtime; 566 567 /* 568 * We don't bother to synchronize most readers of this at all, 569 * because there is no reader checking a limit that actually needs 570 * to get both rlim_cur and rlim_max atomically, and either one 571 * alone is a single word that can safely be read normally. 572 * getrlimit/setrlimit use task_lock(current->group_leader) to 573 * protect this instead of the siglock, because they really 574 * have no need to disable irqs. 575 */ 576 struct rlimit rlim[RLIM_NLIMITS]; 577 578 #ifdef CONFIG_BSD_PROCESS_ACCT 579 struct pacct_struct pacct; /* per-process accounting information */ 580 #endif 581 #ifdef CONFIG_TASKSTATS 582 struct taskstats *stats; 583 #endif 584 #ifdef CONFIG_AUDIT 585 unsigned audit_tty; 586 unsigned audit_tty_log_passwd; 587 struct tty_audit_buf *tty_audit_buf; 588 #endif 589 #ifdef CONFIG_CGROUPS 590 /* 591 * group_rwsem prevents new tasks from entering the threadgroup and 592 * member tasks from exiting,a more specifically, setting of 593 * PF_EXITING. fork and exit paths are protected with this rwsem 594 * using threadgroup_change_begin/end(). Users which require 595 * threadgroup to remain stable should use threadgroup_[un]lock() 596 * which also takes care of exec path. Currently, cgroup is the 597 * only user. 598 */ 599 struct rw_semaphore group_rwsem; 600 #endif 601 602 oom_flags_t oom_flags; 603 short oom_score_adj; /* OOM kill score adjustment */ 604 short oom_score_adj_min; /* OOM kill score adjustment min value. 605 * Only settable by CAP_SYS_RESOURCE. */ 606 607 struct mutex cred_guard_mutex; /* guard against foreign influences on 608 * credential calculations 609 * (notably. ptrace) */ 610 }; 611 612 /* 613 * Bits in flags field of signal_struct. 614 */ 615 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 616 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 617 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 618 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 619 /* 620 * Pending notifications to parent. 621 */ 622 #define SIGNAL_CLD_STOPPED 0x00000010 623 #define SIGNAL_CLD_CONTINUED 0x00000020 624 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 625 626 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 627 628 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 629 static inline int signal_group_exit(const struct signal_struct *sig) 630 { 631 return (sig->flags & SIGNAL_GROUP_EXIT) || 632 (sig->group_exit_task != NULL); 633 } 634 635 /* 636 * Some day this will be a full-fledged user tracking system.. 637 */ 638 struct user_struct { 639 atomic_t __count; /* reference count */ 640 atomic_t processes; /* How many processes does this user have? */ 641 atomic_t files; /* How many open files does this user have? */ 642 atomic_t sigpending; /* How many pending signals does this user have? */ 643 #ifdef CONFIG_INOTIFY_USER 644 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 645 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 646 #endif 647 #ifdef CONFIG_FANOTIFY 648 atomic_t fanotify_listeners; 649 #endif 650 #ifdef CONFIG_EPOLL 651 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 652 #endif 653 #ifdef CONFIG_POSIX_MQUEUE 654 /* protected by mq_lock */ 655 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 656 #endif 657 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 658 659 #ifdef CONFIG_KEYS 660 struct key *uid_keyring; /* UID specific keyring */ 661 struct key *session_keyring; /* UID's default session keyring */ 662 #endif 663 664 /* Hash table maintenance information */ 665 struct hlist_node uidhash_node; 666 kuid_t uid; 667 668 #ifdef CONFIG_PERF_EVENTS 669 atomic_long_t locked_vm; 670 #endif 671 }; 672 673 extern int uids_sysfs_init(void); 674 675 extern struct user_struct *find_user(kuid_t); 676 677 extern struct user_struct root_user; 678 #define INIT_USER (&root_user) 679 680 681 struct backing_dev_info; 682 struct reclaim_state; 683 684 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 685 struct sched_info { 686 /* cumulative counters */ 687 unsigned long pcount; /* # of times run on this cpu */ 688 unsigned long long run_delay; /* time spent waiting on a runqueue */ 689 690 /* timestamps */ 691 unsigned long long last_arrival,/* when we last ran on a cpu */ 692 last_queued; /* when we were last queued to run */ 693 }; 694 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 695 696 #ifdef CONFIG_TASK_DELAY_ACCT 697 struct task_delay_info { 698 spinlock_t lock; 699 unsigned int flags; /* Private per-task flags */ 700 701 /* For each stat XXX, add following, aligned appropriately 702 * 703 * struct timespec XXX_start, XXX_end; 704 * u64 XXX_delay; 705 * u32 XXX_count; 706 * 707 * Atomicity of updates to XXX_delay, XXX_count protected by 708 * single lock above (split into XXX_lock if contention is an issue). 709 */ 710 711 /* 712 * XXX_count is incremented on every XXX operation, the delay 713 * associated with the operation is added to XXX_delay. 714 * XXX_delay contains the accumulated delay time in nanoseconds. 715 */ 716 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 717 u64 blkio_delay; /* wait for sync block io completion */ 718 u64 swapin_delay; /* wait for swapin block io completion */ 719 u32 blkio_count; /* total count of the number of sync block */ 720 /* io operations performed */ 721 u32 swapin_count; /* total count of the number of swapin block */ 722 /* io operations performed */ 723 724 struct timespec freepages_start, freepages_end; 725 u64 freepages_delay; /* wait for memory reclaim */ 726 u32 freepages_count; /* total count of memory reclaim */ 727 }; 728 #endif /* CONFIG_TASK_DELAY_ACCT */ 729 730 static inline int sched_info_on(void) 731 { 732 #ifdef CONFIG_SCHEDSTATS 733 return 1; 734 #elif defined(CONFIG_TASK_DELAY_ACCT) 735 extern int delayacct_on; 736 return delayacct_on; 737 #else 738 return 0; 739 #endif 740 } 741 742 enum cpu_idle_type { 743 CPU_IDLE, 744 CPU_NOT_IDLE, 745 CPU_NEWLY_IDLE, 746 CPU_MAX_IDLE_TYPES 747 }; 748 749 /* 750 * Increase resolution of cpu_power calculations 751 */ 752 #define SCHED_POWER_SHIFT 10 753 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 754 755 /* 756 * sched-domains (multiprocessor balancing) declarations: 757 */ 758 #ifdef CONFIG_SMP 759 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 760 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 761 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 762 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 763 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 764 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 765 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 766 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 767 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 768 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 769 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 770 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 771 772 extern int __weak arch_sd_sibiling_asym_packing(void); 773 774 struct sched_domain_attr { 775 int relax_domain_level; 776 }; 777 778 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 779 .relax_domain_level = -1, \ 780 } 781 782 extern int sched_domain_level_max; 783 784 struct sched_group; 785 786 struct sched_domain { 787 /* These fields must be setup */ 788 struct sched_domain *parent; /* top domain must be null terminated */ 789 struct sched_domain *child; /* bottom domain must be null terminated */ 790 struct sched_group *groups; /* the balancing groups of the domain */ 791 unsigned long min_interval; /* Minimum balance interval ms */ 792 unsigned long max_interval; /* Maximum balance interval ms */ 793 unsigned int busy_factor; /* less balancing by factor if busy */ 794 unsigned int imbalance_pct; /* No balance until over watermark */ 795 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 796 unsigned int busy_idx; 797 unsigned int idle_idx; 798 unsigned int newidle_idx; 799 unsigned int wake_idx; 800 unsigned int forkexec_idx; 801 unsigned int smt_gain; 802 803 int nohz_idle; /* NOHZ IDLE status */ 804 int flags; /* See SD_* */ 805 int level; 806 807 /* Runtime fields. */ 808 unsigned long last_balance; /* init to jiffies. units in jiffies */ 809 unsigned int balance_interval; /* initialise to 1. units in ms. */ 810 unsigned int nr_balance_failed; /* initialise to 0 */ 811 812 u64 last_update; 813 814 #ifdef CONFIG_SCHEDSTATS 815 /* load_balance() stats */ 816 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 817 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 818 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 819 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 820 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 821 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 822 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 823 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 824 825 /* Active load balancing */ 826 unsigned int alb_count; 827 unsigned int alb_failed; 828 unsigned int alb_pushed; 829 830 /* SD_BALANCE_EXEC stats */ 831 unsigned int sbe_count; 832 unsigned int sbe_balanced; 833 unsigned int sbe_pushed; 834 835 /* SD_BALANCE_FORK stats */ 836 unsigned int sbf_count; 837 unsigned int sbf_balanced; 838 unsigned int sbf_pushed; 839 840 /* try_to_wake_up() stats */ 841 unsigned int ttwu_wake_remote; 842 unsigned int ttwu_move_affine; 843 unsigned int ttwu_move_balance; 844 #endif 845 #ifdef CONFIG_SCHED_DEBUG 846 char *name; 847 #endif 848 union { 849 void *private; /* used during construction */ 850 struct rcu_head rcu; /* used during destruction */ 851 }; 852 853 unsigned int span_weight; 854 /* 855 * Span of all CPUs in this domain. 856 * 857 * NOTE: this field is variable length. (Allocated dynamically 858 * by attaching extra space to the end of the structure, 859 * depending on how many CPUs the kernel has booted up with) 860 */ 861 unsigned long span[0]; 862 }; 863 864 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 865 { 866 return to_cpumask(sd->span); 867 } 868 869 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 870 struct sched_domain_attr *dattr_new); 871 872 /* Allocate an array of sched domains, for partition_sched_domains(). */ 873 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 874 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 875 876 bool cpus_share_cache(int this_cpu, int that_cpu); 877 878 #else /* CONFIG_SMP */ 879 880 struct sched_domain_attr; 881 882 static inline void 883 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 884 struct sched_domain_attr *dattr_new) 885 { 886 } 887 888 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 889 { 890 return true; 891 } 892 893 #endif /* !CONFIG_SMP */ 894 895 896 struct io_context; /* See blkdev.h */ 897 898 899 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 900 extern void prefetch_stack(struct task_struct *t); 901 #else 902 static inline void prefetch_stack(struct task_struct *t) { } 903 #endif 904 905 struct audit_context; /* See audit.c */ 906 struct mempolicy; 907 struct pipe_inode_info; 908 struct uts_namespace; 909 910 struct load_weight { 911 unsigned long weight, inv_weight; 912 }; 913 914 struct sched_avg { 915 /* 916 * These sums represent an infinite geometric series and so are bound 917 * above by 1024/(1-y). Thus we only need a u32 to store them for all 918 * choices of y < 1-2^(-32)*1024. 919 */ 920 u32 runnable_avg_sum, runnable_avg_period; 921 u64 last_runnable_update; 922 s64 decay_count; 923 unsigned long load_avg_contrib; 924 }; 925 926 #ifdef CONFIG_SCHEDSTATS 927 struct sched_statistics { 928 u64 wait_start; 929 u64 wait_max; 930 u64 wait_count; 931 u64 wait_sum; 932 u64 iowait_count; 933 u64 iowait_sum; 934 935 u64 sleep_start; 936 u64 sleep_max; 937 s64 sum_sleep_runtime; 938 939 u64 block_start; 940 u64 block_max; 941 u64 exec_max; 942 u64 slice_max; 943 944 u64 nr_migrations_cold; 945 u64 nr_failed_migrations_affine; 946 u64 nr_failed_migrations_running; 947 u64 nr_failed_migrations_hot; 948 u64 nr_forced_migrations; 949 950 u64 nr_wakeups; 951 u64 nr_wakeups_sync; 952 u64 nr_wakeups_migrate; 953 u64 nr_wakeups_local; 954 u64 nr_wakeups_remote; 955 u64 nr_wakeups_affine; 956 u64 nr_wakeups_affine_attempts; 957 u64 nr_wakeups_passive; 958 u64 nr_wakeups_idle; 959 }; 960 #endif 961 962 struct sched_entity { 963 struct load_weight load; /* for load-balancing */ 964 struct rb_node run_node; 965 struct list_head group_node; 966 unsigned int on_rq; 967 968 u64 exec_start; 969 u64 sum_exec_runtime; 970 u64 vruntime; 971 u64 prev_sum_exec_runtime; 972 973 u64 nr_migrations; 974 975 #ifdef CONFIG_SCHEDSTATS 976 struct sched_statistics statistics; 977 #endif 978 979 #ifdef CONFIG_FAIR_GROUP_SCHED 980 struct sched_entity *parent; 981 /* rq on which this entity is (to be) queued: */ 982 struct cfs_rq *cfs_rq; 983 /* rq "owned" by this entity/group: */ 984 struct cfs_rq *my_q; 985 #endif 986 987 #ifdef CONFIG_SMP 988 /* Per-entity load-tracking */ 989 struct sched_avg avg; 990 #endif 991 }; 992 993 struct sched_rt_entity { 994 struct list_head run_list; 995 unsigned long timeout; 996 unsigned long watchdog_stamp; 997 unsigned int time_slice; 998 999 struct sched_rt_entity *back; 1000 #ifdef CONFIG_RT_GROUP_SCHED 1001 struct sched_rt_entity *parent; 1002 /* rq on which this entity is (to be) queued: */ 1003 struct rt_rq *rt_rq; 1004 /* rq "owned" by this entity/group: */ 1005 struct rt_rq *my_q; 1006 #endif 1007 }; 1008 1009 1010 struct rcu_node; 1011 1012 enum perf_event_task_context { 1013 perf_invalid_context = -1, 1014 perf_hw_context = 0, 1015 perf_sw_context, 1016 perf_nr_task_contexts, 1017 }; 1018 1019 struct task_struct { 1020 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1021 void *stack; 1022 atomic_t usage; 1023 unsigned int flags; /* per process flags, defined below */ 1024 unsigned int ptrace; 1025 1026 #ifdef CONFIG_SMP 1027 struct llist_node wake_entry; 1028 int on_cpu; 1029 struct task_struct *last_wakee; 1030 unsigned long wakee_flips; 1031 unsigned long wakee_flip_decay_ts; 1032 #endif 1033 int on_rq; 1034 1035 int prio, static_prio, normal_prio; 1036 unsigned int rt_priority; 1037 const struct sched_class *sched_class; 1038 struct sched_entity se; 1039 struct sched_rt_entity rt; 1040 #ifdef CONFIG_CGROUP_SCHED 1041 struct task_group *sched_task_group; 1042 #endif 1043 1044 #ifdef CONFIG_PREEMPT_NOTIFIERS 1045 /* list of struct preempt_notifier: */ 1046 struct hlist_head preempt_notifiers; 1047 #endif 1048 1049 /* 1050 * fpu_counter contains the number of consecutive context switches 1051 * that the FPU is used. If this is over a threshold, the lazy fpu 1052 * saving becomes unlazy to save the trap. This is an unsigned char 1053 * so that after 256 times the counter wraps and the behavior turns 1054 * lazy again; this to deal with bursty apps that only use FPU for 1055 * a short time 1056 */ 1057 unsigned char fpu_counter; 1058 #ifdef CONFIG_BLK_DEV_IO_TRACE 1059 unsigned int btrace_seq; 1060 #endif 1061 1062 unsigned int policy; 1063 int nr_cpus_allowed; 1064 cpumask_t cpus_allowed; 1065 1066 #ifdef CONFIG_PREEMPT_RCU 1067 int rcu_read_lock_nesting; 1068 char rcu_read_unlock_special; 1069 struct list_head rcu_node_entry; 1070 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1071 #ifdef CONFIG_TREE_PREEMPT_RCU 1072 struct rcu_node *rcu_blocked_node; 1073 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1074 #ifdef CONFIG_RCU_BOOST 1075 struct rt_mutex *rcu_boost_mutex; 1076 #endif /* #ifdef CONFIG_RCU_BOOST */ 1077 1078 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1079 struct sched_info sched_info; 1080 #endif 1081 1082 struct list_head tasks; 1083 #ifdef CONFIG_SMP 1084 struct plist_node pushable_tasks; 1085 #endif 1086 1087 struct mm_struct *mm, *active_mm; 1088 #ifdef CONFIG_COMPAT_BRK 1089 unsigned brk_randomized:1; 1090 #endif 1091 #if defined(SPLIT_RSS_COUNTING) 1092 struct task_rss_stat rss_stat; 1093 #endif 1094 /* task state */ 1095 int exit_state; 1096 int exit_code, exit_signal; 1097 int pdeath_signal; /* The signal sent when the parent dies */ 1098 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1099 1100 /* Used for emulating ABI behavior of previous Linux versions */ 1101 unsigned int personality; 1102 1103 unsigned did_exec:1; 1104 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1105 * execve */ 1106 unsigned in_iowait:1; 1107 1108 /* task may not gain privileges */ 1109 unsigned no_new_privs:1; 1110 1111 /* Revert to default priority/policy when forking */ 1112 unsigned sched_reset_on_fork:1; 1113 unsigned sched_contributes_to_load:1; 1114 1115 pid_t pid; 1116 pid_t tgid; 1117 1118 #ifdef CONFIG_CC_STACKPROTECTOR 1119 /* Canary value for the -fstack-protector gcc feature */ 1120 unsigned long stack_canary; 1121 #endif 1122 /* 1123 * pointers to (original) parent process, youngest child, younger sibling, 1124 * older sibling, respectively. (p->father can be replaced with 1125 * p->real_parent->pid) 1126 */ 1127 struct task_struct __rcu *real_parent; /* real parent process */ 1128 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1129 /* 1130 * children/sibling forms the list of my natural children 1131 */ 1132 struct list_head children; /* list of my children */ 1133 struct list_head sibling; /* linkage in my parent's children list */ 1134 struct task_struct *group_leader; /* threadgroup leader */ 1135 1136 /* 1137 * ptraced is the list of tasks this task is using ptrace on. 1138 * This includes both natural children and PTRACE_ATTACH targets. 1139 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1140 */ 1141 struct list_head ptraced; 1142 struct list_head ptrace_entry; 1143 1144 /* PID/PID hash table linkage. */ 1145 struct pid_link pids[PIDTYPE_MAX]; 1146 struct list_head thread_group; 1147 1148 struct completion *vfork_done; /* for vfork() */ 1149 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1150 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1151 1152 cputime_t utime, stime, utimescaled, stimescaled; 1153 cputime_t gtime; 1154 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1155 struct cputime prev_cputime; 1156 #endif 1157 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1158 seqlock_t vtime_seqlock; 1159 unsigned long long vtime_snap; 1160 enum { 1161 VTIME_SLEEPING = 0, 1162 VTIME_USER, 1163 VTIME_SYS, 1164 } vtime_snap_whence; 1165 #endif 1166 unsigned long nvcsw, nivcsw; /* context switch counts */ 1167 struct timespec start_time; /* monotonic time */ 1168 struct timespec real_start_time; /* boot based time */ 1169 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1170 unsigned long min_flt, maj_flt; 1171 1172 struct task_cputime cputime_expires; 1173 struct list_head cpu_timers[3]; 1174 1175 /* process credentials */ 1176 const struct cred __rcu *real_cred; /* objective and real subjective task 1177 * credentials (COW) */ 1178 const struct cred __rcu *cred; /* effective (overridable) subjective task 1179 * credentials (COW) */ 1180 char comm[TASK_COMM_LEN]; /* executable name excluding path 1181 - access with [gs]et_task_comm (which lock 1182 it with task_lock()) 1183 - initialized normally by setup_new_exec */ 1184 /* file system info */ 1185 int link_count, total_link_count; 1186 #ifdef CONFIG_SYSVIPC 1187 /* ipc stuff */ 1188 struct sysv_sem sysvsem; 1189 #endif 1190 #ifdef CONFIG_DETECT_HUNG_TASK 1191 /* hung task detection */ 1192 unsigned long last_switch_count; 1193 #endif 1194 /* CPU-specific state of this task */ 1195 struct thread_struct thread; 1196 /* filesystem information */ 1197 struct fs_struct *fs; 1198 /* open file information */ 1199 struct files_struct *files; 1200 /* namespaces */ 1201 struct nsproxy *nsproxy; 1202 /* signal handlers */ 1203 struct signal_struct *signal; 1204 struct sighand_struct *sighand; 1205 1206 sigset_t blocked, real_blocked; 1207 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1208 struct sigpending pending; 1209 1210 unsigned long sas_ss_sp; 1211 size_t sas_ss_size; 1212 int (*notifier)(void *priv); 1213 void *notifier_data; 1214 sigset_t *notifier_mask; 1215 struct callback_head *task_works; 1216 1217 struct audit_context *audit_context; 1218 #ifdef CONFIG_AUDITSYSCALL 1219 kuid_t loginuid; 1220 unsigned int sessionid; 1221 #endif 1222 struct seccomp seccomp; 1223 1224 /* Thread group tracking */ 1225 u32 parent_exec_id; 1226 u32 self_exec_id; 1227 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1228 * mempolicy */ 1229 spinlock_t alloc_lock; 1230 1231 /* Protection of the PI data structures: */ 1232 raw_spinlock_t pi_lock; 1233 1234 #ifdef CONFIG_RT_MUTEXES 1235 /* PI waiters blocked on a rt_mutex held by this task */ 1236 struct plist_head pi_waiters; 1237 /* Deadlock detection and priority inheritance handling */ 1238 struct rt_mutex_waiter *pi_blocked_on; 1239 #endif 1240 1241 #ifdef CONFIG_DEBUG_MUTEXES 1242 /* mutex deadlock detection */ 1243 struct mutex_waiter *blocked_on; 1244 #endif 1245 #ifdef CONFIG_TRACE_IRQFLAGS 1246 unsigned int irq_events; 1247 unsigned long hardirq_enable_ip; 1248 unsigned long hardirq_disable_ip; 1249 unsigned int hardirq_enable_event; 1250 unsigned int hardirq_disable_event; 1251 int hardirqs_enabled; 1252 int hardirq_context; 1253 unsigned long softirq_disable_ip; 1254 unsigned long softirq_enable_ip; 1255 unsigned int softirq_disable_event; 1256 unsigned int softirq_enable_event; 1257 int softirqs_enabled; 1258 int softirq_context; 1259 #endif 1260 #ifdef CONFIG_LOCKDEP 1261 # define MAX_LOCK_DEPTH 48UL 1262 u64 curr_chain_key; 1263 int lockdep_depth; 1264 unsigned int lockdep_recursion; 1265 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1266 gfp_t lockdep_reclaim_gfp; 1267 #endif 1268 1269 /* journalling filesystem info */ 1270 void *journal_info; 1271 1272 /* stacked block device info */ 1273 struct bio_list *bio_list; 1274 1275 #ifdef CONFIG_BLOCK 1276 /* stack plugging */ 1277 struct blk_plug *plug; 1278 #endif 1279 1280 /* VM state */ 1281 struct reclaim_state *reclaim_state; 1282 1283 struct backing_dev_info *backing_dev_info; 1284 1285 struct io_context *io_context; 1286 1287 unsigned long ptrace_message; 1288 siginfo_t *last_siginfo; /* For ptrace use. */ 1289 struct task_io_accounting ioac; 1290 #if defined(CONFIG_TASK_XACCT) 1291 u64 acct_rss_mem1; /* accumulated rss usage */ 1292 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1293 cputime_t acct_timexpd; /* stime + utime since last update */ 1294 #endif 1295 #ifdef CONFIG_CPUSETS 1296 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1297 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1298 int cpuset_mem_spread_rotor; 1299 int cpuset_slab_spread_rotor; 1300 #endif 1301 #ifdef CONFIG_CGROUPS 1302 /* Control Group info protected by css_set_lock */ 1303 struct css_set __rcu *cgroups; 1304 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1305 struct list_head cg_list; 1306 #endif 1307 #ifdef CONFIG_FUTEX 1308 struct robust_list_head __user *robust_list; 1309 #ifdef CONFIG_COMPAT 1310 struct compat_robust_list_head __user *compat_robust_list; 1311 #endif 1312 struct list_head pi_state_list; 1313 struct futex_pi_state *pi_state_cache; 1314 #endif 1315 #ifdef CONFIG_PERF_EVENTS 1316 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1317 struct mutex perf_event_mutex; 1318 struct list_head perf_event_list; 1319 #endif 1320 #ifdef CONFIG_NUMA 1321 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1322 short il_next; 1323 short pref_node_fork; 1324 #endif 1325 #ifdef CONFIG_NUMA_BALANCING 1326 int numa_scan_seq; 1327 int numa_migrate_seq; 1328 unsigned int numa_scan_period; 1329 u64 node_stamp; /* migration stamp */ 1330 struct callback_head numa_work; 1331 #endif /* CONFIG_NUMA_BALANCING */ 1332 1333 struct rcu_head rcu; 1334 1335 /* 1336 * cache last used pipe for splice 1337 */ 1338 struct pipe_inode_info *splice_pipe; 1339 1340 struct page_frag task_frag; 1341 1342 #ifdef CONFIG_TASK_DELAY_ACCT 1343 struct task_delay_info *delays; 1344 #endif 1345 #ifdef CONFIG_FAULT_INJECTION 1346 int make_it_fail; 1347 #endif 1348 /* 1349 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1350 * balance_dirty_pages() for some dirty throttling pause 1351 */ 1352 int nr_dirtied; 1353 int nr_dirtied_pause; 1354 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1355 1356 #ifdef CONFIG_LATENCYTOP 1357 int latency_record_count; 1358 struct latency_record latency_record[LT_SAVECOUNT]; 1359 #endif 1360 /* 1361 * time slack values; these are used to round up poll() and 1362 * select() etc timeout values. These are in nanoseconds. 1363 */ 1364 unsigned long timer_slack_ns; 1365 unsigned long default_timer_slack_ns; 1366 1367 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1368 /* Index of current stored address in ret_stack */ 1369 int curr_ret_stack; 1370 /* Stack of return addresses for return function tracing */ 1371 struct ftrace_ret_stack *ret_stack; 1372 /* time stamp for last schedule */ 1373 unsigned long long ftrace_timestamp; 1374 /* 1375 * Number of functions that haven't been traced 1376 * because of depth overrun. 1377 */ 1378 atomic_t trace_overrun; 1379 /* Pause for the tracing */ 1380 atomic_t tracing_graph_pause; 1381 #endif 1382 #ifdef CONFIG_TRACING 1383 /* state flags for use by tracers */ 1384 unsigned long trace; 1385 /* bitmask and counter of trace recursion */ 1386 unsigned long trace_recursion; 1387 #endif /* CONFIG_TRACING */ 1388 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1389 struct memcg_batch_info { 1390 int do_batch; /* incremented when batch uncharge started */ 1391 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1392 unsigned long nr_pages; /* uncharged usage */ 1393 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1394 } memcg_batch; 1395 unsigned int memcg_kmem_skip_account; 1396 #endif 1397 #ifdef CONFIG_UPROBES 1398 struct uprobe_task *utask; 1399 #endif 1400 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1401 unsigned int sequential_io; 1402 unsigned int sequential_io_avg; 1403 #endif 1404 }; 1405 1406 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1407 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1408 1409 #ifdef CONFIG_NUMA_BALANCING 1410 extern void task_numa_fault(int node, int pages, bool migrated); 1411 extern void set_numabalancing_state(bool enabled); 1412 #else 1413 static inline void task_numa_fault(int node, int pages, bool migrated) 1414 { 1415 } 1416 static inline void set_numabalancing_state(bool enabled) 1417 { 1418 } 1419 #endif 1420 1421 static inline struct pid *task_pid(struct task_struct *task) 1422 { 1423 return task->pids[PIDTYPE_PID].pid; 1424 } 1425 1426 static inline struct pid *task_tgid(struct task_struct *task) 1427 { 1428 return task->group_leader->pids[PIDTYPE_PID].pid; 1429 } 1430 1431 /* 1432 * Without tasklist or rcu lock it is not safe to dereference 1433 * the result of task_pgrp/task_session even if task == current, 1434 * we can race with another thread doing sys_setsid/sys_setpgid. 1435 */ 1436 static inline struct pid *task_pgrp(struct task_struct *task) 1437 { 1438 return task->group_leader->pids[PIDTYPE_PGID].pid; 1439 } 1440 1441 static inline struct pid *task_session(struct task_struct *task) 1442 { 1443 return task->group_leader->pids[PIDTYPE_SID].pid; 1444 } 1445 1446 struct pid_namespace; 1447 1448 /* 1449 * the helpers to get the task's different pids as they are seen 1450 * from various namespaces 1451 * 1452 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1453 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1454 * current. 1455 * task_xid_nr_ns() : id seen from the ns specified; 1456 * 1457 * set_task_vxid() : assigns a virtual id to a task; 1458 * 1459 * see also pid_nr() etc in include/linux/pid.h 1460 */ 1461 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1462 struct pid_namespace *ns); 1463 1464 static inline pid_t task_pid_nr(struct task_struct *tsk) 1465 { 1466 return tsk->pid; 1467 } 1468 1469 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1470 struct pid_namespace *ns) 1471 { 1472 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1473 } 1474 1475 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1476 { 1477 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1478 } 1479 1480 1481 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1482 { 1483 return tsk->tgid; 1484 } 1485 1486 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1487 1488 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1489 { 1490 return pid_vnr(task_tgid(tsk)); 1491 } 1492 1493 1494 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1495 struct pid_namespace *ns) 1496 { 1497 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1498 } 1499 1500 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1501 { 1502 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1503 } 1504 1505 1506 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1507 struct pid_namespace *ns) 1508 { 1509 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1510 } 1511 1512 static inline pid_t task_session_vnr(struct task_struct *tsk) 1513 { 1514 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1515 } 1516 1517 /* obsolete, do not use */ 1518 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1519 { 1520 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1521 } 1522 1523 /** 1524 * pid_alive - check that a task structure is not stale 1525 * @p: Task structure to be checked. 1526 * 1527 * Test if a process is not yet dead (at most zombie state) 1528 * If pid_alive fails, then pointers within the task structure 1529 * can be stale and must not be dereferenced. 1530 * 1531 * Return: 1 if the process is alive. 0 otherwise. 1532 */ 1533 static inline int pid_alive(struct task_struct *p) 1534 { 1535 return p->pids[PIDTYPE_PID].pid != NULL; 1536 } 1537 1538 /** 1539 * is_global_init - check if a task structure is init 1540 * @tsk: Task structure to be checked. 1541 * 1542 * Check if a task structure is the first user space task the kernel created. 1543 * 1544 * Return: 1 if the task structure is init. 0 otherwise. 1545 */ 1546 static inline int is_global_init(struct task_struct *tsk) 1547 { 1548 return tsk->pid == 1; 1549 } 1550 1551 extern struct pid *cad_pid; 1552 1553 extern void free_task(struct task_struct *tsk); 1554 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1555 1556 extern void __put_task_struct(struct task_struct *t); 1557 1558 static inline void put_task_struct(struct task_struct *t) 1559 { 1560 if (atomic_dec_and_test(&t->usage)) 1561 __put_task_struct(t); 1562 } 1563 1564 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1565 extern void task_cputime(struct task_struct *t, 1566 cputime_t *utime, cputime_t *stime); 1567 extern void task_cputime_scaled(struct task_struct *t, 1568 cputime_t *utimescaled, cputime_t *stimescaled); 1569 extern cputime_t task_gtime(struct task_struct *t); 1570 #else 1571 static inline void task_cputime(struct task_struct *t, 1572 cputime_t *utime, cputime_t *stime) 1573 { 1574 if (utime) 1575 *utime = t->utime; 1576 if (stime) 1577 *stime = t->stime; 1578 } 1579 1580 static inline void task_cputime_scaled(struct task_struct *t, 1581 cputime_t *utimescaled, 1582 cputime_t *stimescaled) 1583 { 1584 if (utimescaled) 1585 *utimescaled = t->utimescaled; 1586 if (stimescaled) 1587 *stimescaled = t->stimescaled; 1588 } 1589 1590 static inline cputime_t task_gtime(struct task_struct *t) 1591 { 1592 return t->gtime; 1593 } 1594 #endif 1595 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1596 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1597 1598 /* 1599 * Per process flags 1600 */ 1601 #define PF_EXITING 0x00000004 /* getting shut down */ 1602 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1603 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1604 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1605 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1606 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1607 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1608 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1609 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1610 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1611 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1612 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1613 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1614 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1615 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1616 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1617 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1618 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1619 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1620 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1621 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1622 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1623 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1624 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1625 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1626 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1627 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1628 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1629 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1630 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 1631 1632 /* 1633 * Only the _current_ task can read/write to tsk->flags, but other 1634 * tasks can access tsk->flags in readonly mode for example 1635 * with tsk_used_math (like during threaded core dumping). 1636 * There is however an exception to this rule during ptrace 1637 * or during fork: the ptracer task is allowed to write to the 1638 * child->flags of its traced child (same goes for fork, the parent 1639 * can write to the child->flags), because we're guaranteed the 1640 * child is not running and in turn not changing child->flags 1641 * at the same time the parent does it. 1642 */ 1643 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1644 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1645 #define clear_used_math() clear_stopped_child_used_math(current) 1646 #define set_used_math() set_stopped_child_used_math(current) 1647 #define conditional_stopped_child_used_math(condition, child) \ 1648 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1649 #define conditional_used_math(condition) \ 1650 conditional_stopped_child_used_math(condition, current) 1651 #define copy_to_stopped_child_used_math(child) \ 1652 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1653 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1654 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1655 #define used_math() tsk_used_math(current) 1656 1657 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */ 1658 static inline gfp_t memalloc_noio_flags(gfp_t flags) 1659 { 1660 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 1661 flags &= ~__GFP_IO; 1662 return flags; 1663 } 1664 1665 static inline unsigned int memalloc_noio_save(void) 1666 { 1667 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 1668 current->flags |= PF_MEMALLOC_NOIO; 1669 return flags; 1670 } 1671 1672 static inline void memalloc_noio_restore(unsigned int flags) 1673 { 1674 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 1675 } 1676 1677 /* 1678 * task->jobctl flags 1679 */ 1680 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1681 1682 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1683 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1684 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1685 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1686 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1687 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1688 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1689 1690 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1691 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1692 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1693 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1694 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1695 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1696 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1697 1698 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1699 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1700 1701 extern bool task_set_jobctl_pending(struct task_struct *task, 1702 unsigned int mask); 1703 extern void task_clear_jobctl_trapping(struct task_struct *task); 1704 extern void task_clear_jobctl_pending(struct task_struct *task, 1705 unsigned int mask); 1706 1707 #ifdef CONFIG_PREEMPT_RCU 1708 1709 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1710 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1711 1712 static inline void rcu_copy_process(struct task_struct *p) 1713 { 1714 p->rcu_read_lock_nesting = 0; 1715 p->rcu_read_unlock_special = 0; 1716 #ifdef CONFIG_TREE_PREEMPT_RCU 1717 p->rcu_blocked_node = NULL; 1718 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1719 #ifdef CONFIG_RCU_BOOST 1720 p->rcu_boost_mutex = NULL; 1721 #endif /* #ifdef CONFIG_RCU_BOOST */ 1722 INIT_LIST_HEAD(&p->rcu_node_entry); 1723 } 1724 1725 #else 1726 1727 static inline void rcu_copy_process(struct task_struct *p) 1728 { 1729 } 1730 1731 #endif 1732 1733 static inline void tsk_restore_flags(struct task_struct *task, 1734 unsigned long orig_flags, unsigned long flags) 1735 { 1736 task->flags &= ~flags; 1737 task->flags |= orig_flags & flags; 1738 } 1739 1740 #ifdef CONFIG_SMP 1741 extern void do_set_cpus_allowed(struct task_struct *p, 1742 const struct cpumask *new_mask); 1743 1744 extern int set_cpus_allowed_ptr(struct task_struct *p, 1745 const struct cpumask *new_mask); 1746 #else 1747 static inline void do_set_cpus_allowed(struct task_struct *p, 1748 const struct cpumask *new_mask) 1749 { 1750 } 1751 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1752 const struct cpumask *new_mask) 1753 { 1754 if (!cpumask_test_cpu(0, new_mask)) 1755 return -EINVAL; 1756 return 0; 1757 } 1758 #endif 1759 1760 #ifdef CONFIG_NO_HZ_COMMON 1761 void calc_load_enter_idle(void); 1762 void calc_load_exit_idle(void); 1763 #else 1764 static inline void calc_load_enter_idle(void) { } 1765 static inline void calc_load_exit_idle(void) { } 1766 #endif /* CONFIG_NO_HZ_COMMON */ 1767 1768 #ifndef CONFIG_CPUMASK_OFFSTACK 1769 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1770 { 1771 return set_cpus_allowed_ptr(p, &new_mask); 1772 } 1773 #endif 1774 1775 /* 1776 * Do not use outside of architecture code which knows its limitations. 1777 * 1778 * sched_clock() has no promise of monotonicity or bounded drift between 1779 * CPUs, use (which you should not) requires disabling IRQs. 1780 * 1781 * Please use one of the three interfaces below. 1782 */ 1783 extern unsigned long long notrace sched_clock(void); 1784 /* 1785 * See the comment in kernel/sched/clock.c 1786 */ 1787 extern u64 cpu_clock(int cpu); 1788 extern u64 local_clock(void); 1789 extern u64 sched_clock_cpu(int cpu); 1790 1791 1792 extern void sched_clock_init(void); 1793 1794 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1795 static inline void sched_clock_tick(void) 1796 { 1797 } 1798 1799 static inline void sched_clock_idle_sleep_event(void) 1800 { 1801 } 1802 1803 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1804 { 1805 } 1806 #else 1807 /* 1808 * Architectures can set this to 1 if they have specified 1809 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1810 * but then during bootup it turns out that sched_clock() 1811 * is reliable after all: 1812 */ 1813 extern int sched_clock_stable; 1814 1815 extern void sched_clock_tick(void); 1816 extern void sched_clock_idle_sleep_event(void); 1817 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1818 #endif 1819 1820 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1821 /* 1822 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1823 * The reason for this explicit opt-in is not to have perf penalty with 1824 * slow sched_clocks. 1825 */ 1826 extern void enable_sched_clock_irqtime(void); 1827 extern void disable_sched_clock_irqtime(void); 1828 #else 1829 static inline void enable_sched_clock_irqtime(void) {} 1830 static inline void disable_sched_clock_irqtime(void) {} 1831 #endif 1832 1833 extern unsigned long long 1834 task_sched_runtime(struct task_struct *task); 1835 1836 /* sched_exec is called by processes performing an exec */ 1837 #ifdef CONFIG_SMP 1838 extern void sched_exec(void); 1839 #else 1840 #define sched_exec() {} 1841 #endif 1842 1843 extern void sched_clock_idle_sleep_event(void); 1844 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1845 1846 #ifdef CONFIG_HOTPLUG_CPU 1847 extern void idle_task_exit(void); 1848 #else 1849 static inline void idle_task_exit(void) {} 1850 #endif 1851 1852 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 1853 extern void wake_up_nohz_cpu(int cpu); 1854 #else 1855 static inline void wake_up_nohz_cpu(int cpu) { } 1856 #endif 1857 1858 #ifdef CONFIG_NO_HZ_FULL 1859 extern bool sched_can_stop_tick(void); 1860 extern u64 scheduler_tick_max_deferment(void); 1861 #else 1862 static inline bool sched_can_stop_tick(void) { return false; } 1863 #endif 1864 1865 #ifdef CONFIG_SCHED_AUTOGROUP 1866 extern void sched_autogroup_create_attach(struct task_struct *p); 1867 extern void sched_autogroup_detach(struct task_struct *p); 1868 extern void sched_autogroup_fork(struct signal_struct *sig); 1869 extern void sched_autogroup_exit(struct signal_struct *sig); 1870 #ifdef CONFIG_PROC_FS 1871 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 1872 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 1873 #endif 1874 #else 1875 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 1876 static inline void sched_autogroup_detach(struct task_struct *p) { } 1877 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 1878 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 1879 #endif 1880 1881 extern bool yield_to(struct task_struct *p, bool preempt); 1882 extern void set_user_nice(struct task_struct *p, long nice); 1883 extern int task_prio(const struct task_struct *p); 1884 extern int task_nice(const struct task_struct *p); 1885 extern int can_nice(const struct task_struct *p, const int nice); 1886 extern int task_curr(const struct task_struct *p); 1887 extern int idle_cpu(int cpu); 1888 extern int sched_setscheduler(struct task_struct *, int, 1889 const struct sched_param *); 1890 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1891 const struct sched_param *); 1892 extern struct task_struct *idle_task(int cpu); 1893 /** 1894 * is_idle_task - is the specified task an idle task? 1895 * @p: the task in question. 1896 * 1897 * Return: 1 if @p is an idle task. 0 otherwise. 1898 */ 1899 static inline bool is_idle_task(const struct task_struct *p) 1900 { 1901 return p->pid == 0; 1902 } 1903 extern struct task_struct *curr_task(int cpu); 1904 extern void set_curr_task(int cpu, struct task_struct *p); 1905 1906 void yield(void); 1907 1908 /* 1909 * The default (Linux) execution domain. 1910 */ 1911 extern struct exec_domain default_exec_domain; 1912 1913 union thread_union { 1914 struct thread_info thread_info; 1915 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1916 }; 1917 1918 #ifndef __HAVE_ARCH_KSTACK_END 1919 static inline int kstack_end(void *addr) 1920 { 1921 /* Reliable end of stack detection: 1922 * Some APM bios versions misalign the stack 1923 */ 1924 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1925 } 1926 #endif 1927 1928 extern union thread_union init_thread_union; 1929 extern struct task_struct init_task; 1930 1931 extern struct mm_struct init_mm; 1932 1933 extern struct pid_namespace init_pid_ns; 1934 1935 /* 1936 * find a task by one of its numerical ids 1937 * 1938 * find_task_by_pid_ns(): 1939 * finds a task by its pid in the specified namespace 1940 * find_task_by_vpid(): 1941 * finds a task by its virtual pid 1942 * 1943 * see also find_vpid() etc in include/linux/pid.h 1944 */ 1945 1946 extern struct task_struct *find_task_by_vpid(pid_t nr); 1947 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1948 struct pid_namespace *ns); 1949 1950 /* per-UID process charging. */ 1951 extern struct user_struct * alloc_uid(kuid_t); 1952 static inline struct user_struct *get_uid(struct user_struct *u) 1953 { 1954 atomic_inc(&u->__count); 1955 return u; 1956 } 1957 extern void free_uid(struct user_struct *); 1958 1959 #include <asm/current.h> 1960 1961 extern void xtime_update(unsigned long ticks); 1962 1963 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1964 extern int wake_up_process(struct task_struct *tsk); 1965 extern void wake_up_new_task(struct task_struct *tsk); 1966 #ifdef CONFIG_SMP 1967 extern void kick_process(struct task_struct *tsk); 1968 #else 1969 static inline void kick_process(struct task_struct *tsk) { } 1970 #endif 1971 extern void sched_fork(struct task_struct *p); 1972 extern void sched_dead(struct task_struct *p); 1973 1974 extern void proc_caches_init(void); 1975 extern void flush_signals(struct task_struct *); 1976 extern void __flush_signals(struct task_struct *); 1977 extern void ignore_signals(struct task_struct *); 1978 extern void flush_signal_handlers(struct task_struct *, int force_default); 1979 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1980 1981 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1982 { 1983 unsigned long flags; 1984 int ret; 1985 1986 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1987 ret = dequeue_signal(tsk, mask, info); 1988 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1989 1990 return ret; 1991 } 1992 1993 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1994 sigset_t *mask); 1995 extern void unblock_all_signals(void); 1996 extern void release_task(struct task_struct * p); 1997 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1998 extern int force_sigsegv(int, struct task_struct *); 1999 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2000 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2001 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2002 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2003 const struct cred *, u32); 2004 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2005 extern int kill_pid(struct pid *pid, int sig, int priv); 2006 extern int kill_proc_info(int, struct siginfo *, pid_t); 2007 extern __must_check bool do_notify_parent(struct task_struct *, int); 2008 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2009 extern void force_sig(int, struct task_struct *); 2010 extern int send_sig(int, struct task_struct *, int); 2011 extern int zap_other_threads(struct task_struct *p); 2012 extern struct sigqueue *sigqueue_alloc(void); 2013 extern void sigqueue_free(struct sigqueue *); 2014 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2015 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2016 2017 static inline void restore_saved_sigmask(void) 2018 { 2019 if (test_and_clear_restore_sigmask()) 2020 __set_current_blocked(¤t->saved_sigmask); 2021 } 2022 2023 static inline sigset_t *sigmask_to_save(void) 2024 { 2025 sigset_t *res = ¤t->blocked; 2026 if (unlikely(test_restore_sigmask())) 2027 res = ¤t->saved_sigmask; 2028 return res; 2029 } 2030 2031 static inline int kill_cad_pid(int sig, int priv) 2032 { 2033 return kill_pid(cad_pid, sig, priv); 2034 } 2035 2036 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2037 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2038 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2039 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2040 2041 /* 2042 * True if we are on the alternate signal stack. 2043 */ 2044 static inline int on_sig_stack(unsigned long sp) 2045 { 2046 #ifdef CONFIG_STACK_GROWSUP 2047 return sp >= current->sas_ss_sp && 2048 sp - current->sas_ss_sp < current->sas_ss_size; 2049 #else 2050 return sp > current->sas_ss_sp && 2051 sp - current->sas_ss_sp <= current->sas_ss_size; 2052 #endif 2053 } 2054 2055 static inline int sas_ss_flags(unsigned long sp) 2056 { 2057 return (current->sas_ss_size == 0 ? SS_DISABLE 2058 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2059 } 2060 2061 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2062 { 2063 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2064 #ifdef CONFIG_STACK_GROWSUP 2065 return current->sas_ss_sp; 2066 #else 2067 return current->sas_ss_sp + current->sas_ss_size; 2068 #endif 2069 return sp; 2070 } 2071 2072 /* 2073 * Routines for handling mm_structs 2074 */ 2075 extern struct mm_struct * mm_alloc(void); 2076 2077 /* mmdrop drops the mm and the page tables */ 2078 extern void __mmdrop(struct mm_struct *); 2079 static inline void mmdrop(struct mm_struct * mm) 2080 { 2081 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2082 __mmdrop(mm); 2083 } 2084 2085 /* mmput gets rid of the mappings and all user-space */ 2086 extern void mmput(struct mm_struct *); 2087 /* Grab a reference to a task's mm, if it is not already going away */ 2088 extern struct mm_struct *get_task_mm(struct task_struct *task); 2089 /* 2090 * Grab a reference to a task's mm, if it is not already going away 2091 * and ptrace_may_access with the mode parameter passed to it 2092 * succeeds. 2093 */ 2094 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2095 /* Remove the current tasks stale references to the old mm_struct */ 2096 extern void mm_release(struct task_struct *, struct mm_struct *); 2097 /* Allocate a new mm structure and copy contents from tsk->mm */ 2098 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2099 2100 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2101 struct task_struct *); 2102 extern void flush_thread(void); 2103 extern void exit_thread(void); 2104 2105 extern void exit_files(struct task_struct *); 2106 extern void __cleanup_sighand(struct sighand_struct *); 2107 2108 extern void exit_itimers(struct signal_struct *); 2109 extern void flush_itimer_signals(void); 2110 2111 extern void do_group_exit(int); 2112 2113 extern int allow_signal(int); 2114 extern int disallow_signal(int); 2115 2116 extern int do_execve(const char *, 2117 const char __user * const __user *, 2118 const char __user * const __user *); 2119 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2120 struct task_struct *fork_idle(int); 2121 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2122 2123 extern void set_task_comm(struct task_struct *tsk, char *from); 2124 extern char *get_task_comm(char *to, struct task_struct *tsk); 2125 2126 #ifdef CONFIG_SMP 2127 void scheduler_ipi(void); 2128 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2129 #else 2130 static inline void scheduler_ipi(void) { } 2131 static inline unsigned long wait_task_inactive(struct task_struct *p, 2132 long match_state) 2133 { 2134 return 1; 2135 } 2136 #endif 2137 2138 #define next_task(p) \ 2139 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2140 2141 #define for_each_process(p) \ 2142 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2143 2144 extern bool current_is_single_threaded(void); 2145 2146 /* 2147 * Careful: do_each_thread/while_each_thread is a double loop so 2148 * 'break' will not work as expected - use goto instead. 2149 */ 2150 #define do_each_thread(g, t) \ 2151 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2152 2153 #define while_each_thread(g, t) \ 2154 while ((t = next_thread(t)) != g) 2155 2156 static inline int get_nr_threads(struct task_struct *tsk) 2157 { 2158 return tsk->signal->nr_threads; 2159 } 2160 2161 static inline bool thread_group_leader(struct task_struct *p) 2162 { 2163 return p->exit_signal >= 0; 2164 } 2165 2166 /* Do to the insanities of de_thread it is possible for a process 2167 * to have the pid of the thread group leader without actually being 2168 * the thread group leader. For iteration through the pids in proc 2169 * all we care about is that we have a task with the appropriate 2170 * pid, we don't actually care if we have the right task. 2171 */ 2172 static inline int has_group_leader_pid(struct task_struct *p) 2173 { 2174 return p->pid == p->tgid; 2175 } 2176 2177 static inline 2178 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2179 { 2180 return p1->tgid == p2->tgid; 2181 } 2182 2183 static inline struct task_struct *next_thread(const struct task_struct *p) 2184 { 2185 return list_entry_rcu(p->thread_group.next, 2186 struct task_struct, thread_group); 2187 } 2188 2189 static inline int thread_group_empty(struct task_struct *p) 2190 { 2191 return list_empty(&p->thread_group); 2192 } 2193 2194 #define delay_group_leader(p) \ 2195 (thread_group_leader(p) && !thread_group_empty(p)) 2196 2197 /* 2198 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2199 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2200 * pins the final release of task.io_context. Also protects ->cpuset and 2201 * ->cgroup.subsys[]. And ->vfork_done. 2202 * 2203 * Nests both inside and outside of read_lock(&tasklist_lock). 2204 * It must not be nested with write_lock_irq(&tasklist_lock), 2205 * neither inside nor outside. 2206 */ 2207 static inline void task_lock(struct task_struct *p) 2208 { 2209 spin_lock(&p->alloc_lock); 2210 } 2211 2212 static inline void task_unlock(struct task_struct *p) 2213 { 2214 spin_unlock(&p->alloc_lock); 2215 } 2216 2217 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2218 unsigned long *flags); 2219 2220 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2221 unsigned long *flags) 2222 { 2223 struct sighand_struct *ret; 2224 2225 ret = __lock_task_sighand(tsk, flags); 2226 (void)__cond_lock(&tsk->sighand->siglock, ret); 2227 return ret; 2228 } 2229 2230 static inline void unlock_task_sighand(struct task_struct *tsk, 2231 unsigned long *flags) 2232 { 2233 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2234 } 2235 2236 #ifdef CONFIG_CGROUPS 2237 static inline void threadgroup_change_begin(struct task_struct *tsk) 2238 { 2239 down_read(&tsk->signal->group_rwsem); 2240 } 2241 static inline void threadgroup_change_end(struct task_struct *tsk) 2242 { 2243 up_read(&tsk->signal->group_rwsem); 2244 } 2245 2246 /** 2247 * threadgroup_lock - lock threadgroup 2248 * @tsk: member task of the threadgroup to lock 2249 * 2250 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2251 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2252 * change ->group_leader/pid. This is useful for cases where the threadgroup 2253 * needs to stay stable across blockable operations. 2254 * 2255 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2256 * synchronization. While held, no new task will be added to threadgroup 2257 * and no existing live task will have its PF_EXITING set. 2258 * 2259 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2260 * sub-thread becomes a new leader. 2261 */ 2262 static inline void threadgroup_lock(struct task_struct *tsk) 2263 { 2264 down_write(&tsk->signal->group_rwsem); 2265 } 2266 2267 /** 2268 * threadgroup_unlock - unlock threadgroup 2269 * @tsk: member task of the threadgroup to unlock 2270 * 2271 * Reverse threadgroup_lock(). 2272 */ 2273 static inline void threadgroup_unlock(struct task_struct *tsk) 2274 { 2275 up_write(&tsk->signal->group_rwsem); 2276 } 2277 #else 2278 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2279 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2280 static inline void threadgroup_lock(struct task_struct *tsk) {} 2281 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2282 #endif 2283 2284 #ifndef __HAVE_THREAD_FUNCTIONS 2285 2286 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2287 #define task_stack_page(task) ((task)->stack) 2288 2289 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2290 { 2291 *task_thread_info(p) = *task_thread_info(org); 2292 task_thread_info(p)->task = p; 2293 } 2294 2295 static inline unsigned long *end_of_stack(struct task_struct *p) 2296 { 2297 return (unsigned long *)(task_thread_info(p) + 1); 2298 } 2299 2300 #endif 2301 2302 static inline int object_is_on_stack(void *obj) 2303 { 2304 void *stack = task_stack_page(current); 2305 2306 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2307 } 2308 2309 extern void thread_info_cache_init(void); 2310 2311 #ifdef CONFIG_DEBUG_STACK_USAGE 2312 static inline unsigned long stack_not_used(struct task_struct *p) 2313 { 2314 unsigned long *n = end_of_stack(p); 2315 2316 do { /* Skip over canary */ 2317 n++; 2318 } while (!*n); 2319 2320 return (unsigned long)n - (unsigned long)end_of_stack(p); 2321 } 2322 #endif 2323 2324 /* set thread flags in other task's structures 2325 * - see asm/thread_info.h for TIF_xxxx flags available 2326 */ 2327 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2328 { 2329 set_ti_thread_flag(task_thread_info(tsk), flag); 2330 } 2331 2332 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2333 { 2334 clear_ti_thread_flag(task_thread_info(tsk), flag); 2335 } 2336 2337 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2338 { 2339 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2340 } 2341 2342 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2343 { 2344 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2345 } 2346 2347 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2348 { 2349 return test_ti_thread_flag(task_thread_info(tsk), flag); 2350 } 2351 2352 static inline void set_tsk_need_resched(struct task_struct *tsk) 2353 { 2354 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2355 } 2356 2357 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2358 { 2359 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2360 } 2361 2362 static inline int test_tsk_need_resched(struct task_struct *tsk) 2363 { 2364 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2365 } 2366 2367 static inline int restart_syscall(void) 2368 { 2369 set_tsk_thread_flag(current, TIF_SIGPENDING); 2370 return -ERESTARTNOINTR; 2371 } 2372 2373 static inline int signal_pending(struct task_struct *p) 2374 { 2375 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2376 } 2377 2378 static inline int __fatal_signal_pending(struct task_struct *p) 2379 { 2380 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2381 } 2382 2383 static inline int fatal_signal_pending(struct task_struct *p) 2384 { 2385 return signal_pending(p) && __fatal_signal_pending(p); 2386 } 2387 2388 static inline int signal_pending_state(long state, struct task_struct *p) 2389 { 2390 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2391 return 0; 2392 if (!signal_pending(p)) 2393 return 0; 2394 2395 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2396 } 2397 2398 static inline int need_resched(void) 2399 { 2400 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2401 } 2402 2403 /* 2404 * cond_resched() and cond_resched_lock(): latency reduction via 2405 * explicit rescheduling in places that are safe. The return 2406 * value indicates whether a reschedule was done in fact. 2407 * cond_resched_lock() will drop the spinlock before scheduling, 2408 * cond_resched_softirq() will enable bhs before scheduling. 2409 */ 2410 extern int _cond_resched(void); 2411 2412 #define cond_resched() ({ \ 2413 __might_sleep(__FILE__, __LINE__, 0); \ 2414 _cond_resched(); \ 2415 }) 2416 2417 extern int __cond_resched_lock(spinlock_t *lock); 2418 2419 #ifdef CONFIG_PREEMPT_COUNT 2420 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2421 #else 2422 #define PREEMPT_LOCK_OFFSET 0 2423 #endif 2424 2425 #define cond_resched_lock(lock) ({ \ 2426 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2427 __cond_resched_lock(lock); \ 2428 }) 2429 2430 extern int __cond_resched_softirq(void); 2431 2432 #define cond_resched_softirq() ({ \ 2433 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2434 __cond_resched_softirq(); \ 2435 }) 2436 2437 static inline void cond_resched_rcu(void) 2438 { 2439 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2440 rcu_read_unlock(); 2441 cond_resched(); 2442 rcu_read_lock(); 2443 #endif 2444 } 2445 2446 /* 2447 * Does a critical section need to be broken due to another 2448 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2449 * but a general need for low latency) 2450 */ 2451 static inline int spin_needbreak(spinlock_t *lock) 2452 { 2453 #ifdef CONFIG_PREEMPT 2454 return spin_is_contended(lock); 2455 #else 2456 return 0; 2457 #endif 2458 } 2459 2460 /* 2461 * Idle thread specific functions to determine the need_resched 2462 * polling state. We have two versions, one based on TS_POLLING in 2463 * thread_info.status and one based on TIF_POLLING_NRFLAG in 2464 * thread_info.flags 2465 */ 2466 #ifdef TS_POLLING 2467 static inline int tsk_is_polling(struct task_struct *p) 2468 { 2469 return task_thread_info(p)->status & TS_POLLING; 2470 } 2471 static inline void current_set_polling(void) 2472 { 2473 current_thread_info()->status |= TS_POLLING; 2474 } 2475 2476 static inline void current_clr_polling(void) 2477 { 2478 current_thread_info()->status &= ~TS_POLLING; 2479 smp_mb__after_clear_bit(); 2480 } 2481 #elif defined(TIF_POLLING_NRFLAG) 2482 static inline int tsk_is_polling(struct task_struct *p) 2483 { 2484 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2485 } 2486 static inline void current_set_polling(void) 2487 { 2488 set_thread_flag(TIF_POLLING_NRFLAG); 2489 } 2490 2491 static inline void current_clr_polling(void) 2492 { 2493 clear_thread_flag(TIF_POLLING_NRFLAG); 2494 } 2495 #else 2496 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2497 static inline void current_set_polling(void) { } 2498 static inline void current_clr_polling(void) { } 2499 #endif 2500 2501 /* 2502 * Thread group CPU time accounting. 2503 */ 2504 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2505 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2506 2507 static inline void thread_group_cputime_init(struct signal_struct *sig) 2508 { 2509 raw_spin_lock_init(&sig->cputimer.lock); 2510 } 2511 2512 /* 2513 * Reevaluate whether the task has signals pending delivery. 2514 * Wake the task if so. 2515 * This is required every time the blocked sigset_t changes. 2516 * callers must hold sighand->siglock. 2517 */ 2518 extern void recalc_sigpending_and_wake(struct task_struct *t); 2519 extern void recalc_sigpending(void); 2520 2521 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2522 2523 static inline void signal_wake_up(struct task_struct *t, bool resume) 2524 { 2525 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2526 } 2527 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2528 { 2529 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2530 } 2531 2532 /* 2533 * Wrappers for p->thread_info->cpu access. No-op on UP. 2534 */ 2535 #ifdef CONFIG_SMP 2536 2537 static inline unsigned int task_cpu(const struct task_struct *p) 2538 { 2539 return task_thread_info(p)->cpu; 2540 } 2541 2542 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2543 2544 #else 2545 2546 static inline unsigned int task_cpu(const struct task_struct *p) 2547 { 2548 return 0; 2549 } 2550 2551 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2552 { 2553 } 2554 2555 #endif /* CONFIG_SMP */ 2556 2557 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2558 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2559 2560 #ifdef CONFIG_CGROUP_SCHED 2561 extern struct task_group root_task_group; 2562 #endif /* CONFIG_CGROUP_SCHED */ 2563 2564 extern int task_can_switch_user(struct user_struct *up, 2565 struct task_struct *tsk); 2566 2567 #ifdef CONFIG_TASK_XACCT 2568 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2569 { 2570 tsk->ioac.rchar += amt; 2571 } 2572 2573 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2574 { 2575 tsk->ioac.wchar += amt; 2576 } 2577 2578 static inline void inc_syscr(struct task_struct *tsk) 2579 { 2580 tsk->ioac.syscr++; 2581 } 2582 2583 static inline void inc_syscw(struct task_struct *tsk) 2584 { 2585 tsk->ioac.syscw++; 2586 } 2587 #else 2588 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2589 { 2590 } 2591 2592 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2593 { 2594 } 2595 2596 static inline void inc_syscr(struct task_struct *tsk) 2597 { 2598 } 2599 2600 static inline void inc_syscw(struct task_struct *tsk) 2601 { 2602 } 2603 #endif 2604 2605 #ifndef TASK_SIZE_OF 2606 #define TASK_SIZE_OF(tsk) TASK_SIZE 2607 #endif 2608 2609 #ifdef CONFIG_MM_OWNER 2610 extern void mm_update_next_owner(struct mm_struct *mm); 2611 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2612 #else 2613 static inline void mm_update_next_owner(struct mm_struct *mm) 2614 { 2615 } 2616 2617 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2618 { 2619 } 2620 #endif /* CONFIG_MM_OWNER */ 2621 2622 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2623 unsigned int limit) 2624 { 2625 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2626 } 2627 2628 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2629 unsigned int limit) 2630 { 2631 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2632 } 2633 2634 static inline unsigned long rlimit(unsigned int limit) 2635 { 2636 return task_rlimit(current, limit); 2637 } 2638 2639 static inline unsigned long rlimit_max(unsigned int limit) 2640 { 2641 return task_rlimit_max(current, limit); 2642 } 2643 2644 #endif 2645