xref: /linux/include/linux/sched.h (revision 4d7696f1b05f4aeb586c74868fe3da2731daca4b)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 
7 struct sched_param {
8 	int sched_priority;
9 };
10 
11 #include <asm/param.h>	/* for HZ */
12 
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25 
26 #include <asm/page.h>
27 #include <asm/ptrace.h>
28 #include <asm/cputime.h>
29 
30 #include <linux/smp.h>
31 #include <linux/sem.h>
32 #include <linux/signal.h>
33 #include <linux/compiler.h>
34 #include <linux/completion.h>
35 #include <linux/pid.h>
36 #include <linux/percpu.h>
37 #include <linux/topology.h>
38 #include <linux/proportions.h>
39 #include <linux/seccomp.h>
40 #include <linux/rcupdate.h>
41 #include <linux/rculist.h>
42 #include <linux/rtmutex.h>
43 
44 #include <linux/time.h>
45 #include <linux/param.h>
46 #include <linux/resource.h>
47 #include <linux/timer.h>
48 #include <linux/hrtimer.h>
49 #include <linux/task_io_accounting.h>
50 #include <linux/latencytop.h>
51 #include <linux/cred.h>
52 #include <linux/llist.h>
53 #include <linux/uidgid.h>
54 #include <linux/gfp.h>
55 
56 #include <asm/processor.h>
57 
58 struct exec_domain;
59 struct futex_pi_state;
60 struct robust_list_head;
61 struct bio_list;
62 struct fs_struct;
63 struct perf_event_context;
64 struct blk_plug;
65 
66 /*
67  * List of flags we want to share for kernel threads,
68  * if only because they are not used by them anyway.
69  */
70 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71 
72 /*
73  * These are the constant used to fake the fixed-point load-average
74  * counting. Some notes:
75  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
76  *    a load-average precision of 10 bits integer + 11 bits fractional
77  *  - if you want to count load-averages more often, you need more
78  *    precision, or rounding will get you. With 2-second counting freq,
79  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
80  *    11 bit fractions.
81  */
82 extern unsigned long avenrun[];		/* Load averages */
83 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84 
85 #define FSHIFT		11		/* nr of bits of precision */
86 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
87 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
88 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
89 #define EXP_5		2014		/* 1/exp(5sec/5min) */
90 #define EXP_15		2037		/* 1/exp(5sec/15min) */
91 
92 #define CALC_LOAD(load,exp,n) \
93 	load *= exp; \
94 	load += n*(FIXED_1-exp); \
95 	load >>= FSHIFT;
96 
97 extern unsigned long total_forks;
98 extern int nr_threads;
99 DECLARE_PER_CPU(unsigned long, process_counts);
100 extern int nr_processes(void);
101 extern unsigned long nr_running(void);
102 extern unsigned long nr_iowait(void);
103 extern unsigned long nr_iowait_cpu(int cpu);
104 extern unsigned long this_cpu_load(void);
105 
106 
107 extern void calc_global_load(unsigned long ticks);
108 extern void update_cpu_load_nohz(void);
109 
110 extern unsigned long get_parent_ip(unsigned long addr);
111 
112 extern void dump_cpu_task(int cpu);
113 
114 struct seq_file;
115 struct cfs_rq;
116 struct task_group;
117 #ifdef CONFIG_SCHED_DEBUG
118 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
119 extern void proc_sched_set_task(struct task_struct *p);
120 extern void
121 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
122 #endif
123 
124 /*
125  * Task state bitmask. NOTE! These bits are also
126  * encoded in fs/proc/array.c: get_task_state().
127  *
128  * We have two separate sets of flags: task->state
129  * is about runnability, while task->exit_state are
130  * about the task exiting. Confusing, but this way
131  * modifying one set can't modify the other one by
132  * mistake.
133  */
134 #define TASK_RUNNING		0
135 #define TASK_INTERRUPTIBLE	1
136 #define TASK_UNINTERRUPTIBLE	2
137 #define __TASK_STOPPED		4
138 #define __TASK_TRACED		8
139 /* in tsk->exit_state */
140 #define EXIT_ZOMBIE		16
141 #define EXIT_DEAD		32
142 /* in tsk->state again */
143 #define TASK_DEAD		64
144 #define TASK_WAKEKILL		128
145 #define TASK_WAKING		256
146 #define TASK_PARKED		512
147 #define TASK_STATE_MAX		1024
148 
149 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
150 
151 extern char ___assert_task_state[1 - 2*!!(
152 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
153 
154 /* Convenience macros for the sake of set_task_state */
155 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
156 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
157 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
158 
159 /* Convenience macros for the sake of wake_up */
160 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
161 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
162 
163 /* get_task_state() */
164 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
165 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
166 				 __TASK_TRACED)
167 
168 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
169 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
170 #define task_is_dead(task)	((task)->exit_state != 0)
171 #define task_is_stopped_or_traced(task)	\
172 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
173 #define task_contributes_to_load(task)	\
174 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
175 				 (task->flags & PF_FROZEN) == 0)
176 
177 #define __set_task_state(tsk, state_value)		\
178 	do { (tsk)->state = (state_value); } while (0)
179 #define set_task_state(tsk, state_value)		\
180 	set_mb((tsk)->state, (state_value))
181 
182 /*
183  * set_current_state() includes a barrier so that the write of current->state
184  * is correctly serialised wrt the caller's subsequent test of whether to
185  * actually sleep:
186  *
187  *	set_current_state(TASK_UNINTERRUPTIBLE);
188  *	if (do_i_need_to_sleep())
189  *		schedule();
190  *
191  * If the caller does not need such serialisation then use __set_current_state()
192  */
193 #define __set_current_state(state_value)			\
194 	do { current->state = (state_value); } while (0)
195 #define set_current_state(state_value)		\
196 	set_mb(current->state, (state_value))
197 
198 /* Task command name length */
199 #define TASK_COMM_LEN 16
200 
201 #include <linux/spinlock.h>
202 
203 /*
204  * This serializes "schedule()" and also protects
205  * the run-queue from deletions/modifications (but
206  * _adding_ to the beginning of the run-queue has
207  * a separate lock).
208  */
209 extern rwlock_t tasklist_lock;
210 extern spinlock_t mmlist_lock;
211 
212 struct task_struct;
213 
214 #ifdef CONFIG_PROVE_RCU
215 extern int lockdep_tasklist_lock_is_held(void);
216 #endif /* #ifdef CONFIG_PROVE_RCU */
217 
218 extern void sched_init(void);
219 extern void sched_init_smp(void);
220 extern asmlinkage void schedule_tail(struct task_struct *prev);
221 extern void init_idle(struct task_struct *idle, int cpu);
222 extern void init_idle_bootup_task(struct task_struct *idle);
223 
224 extern int runqueue_is_locked(int cpu);
225 
226 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
227 extern void nohz_balance_enter_idle(int cpu);
228 extern void set_cpu_sd_state_idle(void);
229 extern int get_nohz_timer_target(void);
230 #else
231 static inline void nohz_balance_enter_idle(int cpu) { }
232 static inline void set_cpu_sd_state_idle(void) { }
233 #endif
234 
235 /*
236  * Only dump TASK_* tasks. (0 for all tasks)
237  */
238 extern void show_state_filter(unsigned long state_filter);
239 
240 static inline void show_state(void)
241 {
242 	show_state_filter(0);
243 }
244 
245 extern void show_regs(struct pt_regs *);
246 
247 /*
248  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
249  * task), SP is the stack pointer of the first frame that should be shown in the back
250  * trace (or NULL if the entire call-chain of the task should be shown).
251  */
252 extern void show_stack(struct task_struct *task, unsigned long *sp);
253 
254 void io_schedule(void);
255 long io_schedule_timeout(long timeout);
256 
257 extern void cpu_init (void);
258 extern void trap_init(void);
259 extern void update_process_times(int user);
260 extern void scheduler_tick(void);
261 
262 extern void sched_show_task(struct task_struct *p);
263 
264 #ifdef CONFIG_LOCKUP_DETECTOR
265 extern void touch_softlockup_watchdog(void);
266 extern void touch_softlockup_watchdog_sync(void);
267 extern void touch_all_softlockup_watchdogs(void);
268 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
269 				  void __user *buffer,
270 				  size_t *lenp, loff_t *ppos);
271 extern unsigned int  softlockup_panic;
272 void lockup_detector_init(void);
273 #else
274 static inline void touch_softlockup_watchdog(void)
275 {
276 }
277 static inline void touch_softlockup_watchdog_sync(void)
278 {
279 }
280 static inline void touch_all_softlockup_watchdogs(void)
281 {
282 }
283 static inline void lockup_detector_init(void)
284 {
285 }
286 #endif
287 
288 /* Attach to any functions which should be ignored in wchan output. */
289 #define __sched		__attribute__((__section__(".sched.text")))
290 
291 /* Linker adds these: start and end of __sched functions */
292 extern char __sched_text_start[], __sched_text_end[];
293 
294 /* Is this address in the __sched functions? */
295 extern int in_sched_functions(unsigned long addr);
296 
297 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
298 extern signed long schedule_timeout(signed long timeout);
299 extern signed long schedule_timeout_interruptible(signed long timeout);
300 extern signed long schedule_timeout_killable(signed long timeout);
301 extern signed long schedule_timeout_uninterruptible(signed long timeout);
302 asmlinkage void schedule(void);
303 extern void schedule_preempt_disabled(void);
304 
305 struct nsproxy;
306 struct user_namespace;
307 
308 #ifdef CONFIG_MMU
309 extern void arch_pick_mmap_layout(struct mm_struct *mm);
310 extern unsigned long
311 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
312 		       unsigned long, unsigned long);
313 extern unsigned long
314 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
315 			  unsigned long len, unsigned long pgoff,
316 			  unsigned long flags);
317 #else
318 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
319 #endif
320 
321 
322 extern void set_dumpable(struct mm_struct *mm, int value);
323 extern int get_dumpable(struct mm_struct *mm);
324 
325 /* mm flags */
326 /* dumpable bits */
327 #define MMF_DUMPABLE      0  /* core dump is permitted */
328 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
329 
330 #define MMF_DUMPABLE_BITS 2
331 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
332 
333 /* coredump filter bits */
334 #define MMF_DUMP_ANON_PRIVATE	2
335 #define MMF_DUMP_ANON_SHARED	3
336 #define MMF_DUMP_MAPPED_PRIVATE	4
337 #define MMF_DUMP_MAPPED_SHARED	5
338 #define MMF_DUMP_ELF_HEADERS	6
339 #define MMF_DUMP_HUGETLB_PRIVATE 7
340 #define MMF_DUMP_HUGETLB_SHARED  8
341 
342 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
343 #define MMF_DUMP_FILTER_BITS	7
344 #define MMF_DUMP_FILTER_MASK \
345 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
346 #define MMF_DUMP_FILTER_DEFAULT \
347 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
348 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
349 
350 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
351 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
352 #else
353 # define MMF_DUMP_MASK_DEFAULT_ELF	0
354 #endif
355 					/* leave room for more dump flags */
356 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
357 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
358 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
359 
360 #define MMF_HAS_UPROBES		19	/* has uprobes */
361 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
362 
363 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
364 
365 struct sighand_struct {
366 	atomic_t		count;
367 	struct k_sigaction	action[_NSIG];
368 	spinlock_t		siglock;
369 	wait_queue_head_t	signalfd_wqh;
370 };
371 
372 struct pacct_struct {
373 	int			ac_flag;
374 	long			ac_exitcode;
375 	unsigned long		ac_mem;
376 	cputime_t		ac_utime, ac_stime;
377 	unsigned long		ac_minflt, ac_majflt;
378 };
379 
380 struct cpu_itimer {
381 	cputime_t expires;
382 	cputime_t incr;
383 	u32 error;
384 	u32 incr_error;
385 };
386 
387 /**
388  * struct cputime - snaphsot of system and user cputime
389  * @utime: time spent in user mode
390  * @stime: time spent in system mode
391  *
392  * Gathers a generic snapshot of user and system time.
393  */
394 struct cputime {
395 	cputime_t utime;
396 	cputime_t stime;
397 };
398 
399 /**
400  * struct task_cputime - collected CPU time counts
401  * @utime:		time spent in user mode, in &cputime_t units
402  * @stime:		time spent in kernel mode, in &cputime_t units
403  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
404  *
405  * This is an extension of struct cputime that includes the total runtime
406  * spent by the task from the scheduler point of view.
407  *
408  * As a result, this structure groups together three kinds of CPU time
409  * that are tracked for threads and thread groups.  Most things considering
410  * CPU time want to group these counts together and treat all three
411  * of them in parallel.
412  */
413 struct task_cputime {
414 	cputime_t utime;
415 	cputime_t stime;
416 	unsigned long long sum_exec_runtime;
417 };
418 /* Alternate field names when used to cache expirations. */
419 #define prof_exp	stime
420 #define virt_exp	utime
421 #define sched_exp	sum_exec_runtime
422 
423 #define INIT_CPUTIME	\
424 	(struct task_cputime) {					\
425 		.utime = 0,					\
426 		.stime = 0,					\
427 		.sum_exec_runtime = 0,				\
428 	}
429 
430 /*
431  * Disable preemption until the scheduler is running.
432  * Reset by start_kernel()->sched_init()->init_idle().
433  *
434  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
435  * before the scheduler is active -- see should_resched().
436  */
437 #define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
438 
439 /**
440  * struct thread_group_cputimer - thread group interval timer counts
441  * @cputime:		thread group interval timers.
442  * @running:		non-zero when there are timers running and
443  * 			@cputime receives updates.
444  * @lock:		lock for fields in this struct.
445  *
446  * This structure contains the version of task_cputime, above, that is
447  * used for thread group CPU timer calculations.
448  */
449 struct thread_group_cputimer {
450 	struct task_cputime cputime;
451 	int running;
452 	raw_spinlock_t lock;
453 };
454 
455 #include <linux/rwsem.h>
456 struct autogroup;
457 
458 /*
459  * NOTE! "signal_struct" does not have its own
460  * locking, because a shared signal_struct always
461  * implies a shared sighand_struct, so locking
462  * sighand_struct is always a proper superset of
463  * the locking of signal_struct.
464  */
465 struct signal_struct {
466 	atomic_t		sigcnt;
467 	atomic_t		live;
468 	int			nr_threads;
469 
470 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
471 
472 	/* current thread group signal load-balancing target: */
473 	struct task_struct	*curr_target;
474 
475 	/* shared signal handling: */
476 	struct sigpending	shared_pending;
477 
478 	/* thread group exit support */
479 	int			group_exit_code;
480 	/* overloaded:
481 	 * - notify group_exit_task when ->count is equal to notify_count
482 	 * - everyone except group_exit_task is stopped during signal delivery
483 	 *   of fatal signals, group_exit_task processes the signal.
484 	 */
485 	int			notify_count;
486 	struct task_struct	*group_exit_task;
487 
488 	/* thread group stop support, overloads group_exit_code too */
489 	int			group_stop_count;
490 	unsigned int		flags; /* see SIGNAL_* flags below */
491 
492 	/*
493 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
494 	 * manager, to re-parent orphan (double-forking) child processes
495 	 * to this process instead of 'init'. The service manager is
496 	 * able to receive SIGCHLD signals and is able to investigate
497 	 * the process until it calls wait(). All children of this
498 	 * process will inherit a flag if they should look for a
499 	 * child_subreaper process at exit.
500 	 */
501 	unsigned int		is_child_subreaper:1;
502 	unsigned int		has_child_subreaper:1;
503 
504 	/* POSIX.1b Interval Timers */
505 	int			posix_timer_id;
506 	struct list_head	posix_timers;
507 
508 	/* ITIMER_REAL timer for the process */
509 	struct hrtimer real_timer;
510 	struct pid *leader_pid;
511 	ktime_t it_real_incr;
512 
513 	/*
514 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
515 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
516 	 * values are defined to 0 and 1 respectively
517 	 */
518 	struct cpu_itimer it[2];
519 
520 	/*
521 	 * Thread group totals for process CPU timers.
522 	 * See thread_group_cputimer(), et al, for details.
523 	 */
524 	struct thread_group_cputimer cputimer;
525 
526 	/* Earliest-expiration cache. */
527 	struct task_cputime cputime_expires;
528 
529 	struct list_head cpu_timers[3];
530 
531 	struct pid *tty_old_pgrp;
532 
533 	/* boolean value for session group leader */
534 	int leader;
535 
536 	struct tty_struct *tty; /* NULL if no tty */
537 
538 #ifdef CONFIG_SCHED_AUTOGROUP
539 	struct autogroup *autogroup;
540 #endif
541 	/*
542 	 * Cumulative resource counters for dead threads in the group,
543 	 * and for reaped dead child processes forked by this group.
544 	 * Live threads maintain their own counters and add to these
545 	 * in __exit_signal, except for the group leader.
546 	 */
547 	cputime_t utime, stime, cutime, cstime;
548 	cputime_t gtime;
549 	cputime_t cgtime;
550 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
551 	struct cputime prev_cputime;
552 #endif
553 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
554 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
555 	unsigned long inblock, oublock, cinblock, coublock;
556 	unsigned long maxrss, cmaxrss;
557 	struct task_io_accounting ioac;
558 
559 	/*
560 	 * Cumulative ns of schedule CPU time fo dead threads in the
561 	 * group, not including a zombie group leader, (This only differs
562 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
563 	 * other than jiffies.)
564 	 */
565 	unsigned long long sum_sched_runtime;
566 
567 	/*
568 	 * We don't bother to synchronize most readers of this at all,
569 	 * because there is no reader checking a limit that actually needs
570 	 * to get both rlim_cur and rlim_max atomically, and either one
571 	 * alone is a single word that can safely be read normally.
572 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
573 	 * protect this instead of the siglock, because they really
574 	 * have no need to disable irqs.
575 	 */
576 	struct rlimit rlim[RLIM_NLIMITS];
577 
578 #ifdef CONFIG_BSD_PROCESS_ACCT
579 	struct pacct_struct pacct;	/* per-process accounting information */
580 #endif
581 #ifdef CONFIG_TASKSTATS
582 	struct taskstats *stats;
583 #endif
584 #ifdef CONFIG_AUDIT
585 	unsigned audit_tty;
586 	unsigned audit_tty_log_passwd;
587 	struct tty_audit_buf *tty_audit_buf;
588 #endif
589 #ifdef CONFIG_CGROUPS
590 	/*
591 	 * group_rwsem prevents new tasks from entering the threadgroup and
592 	 * member tasks from exiting,a more specifically, setting of
593 	 * PF_EXITING.  fork and exit paths are protected with this rwsem
594 	 * using threadgroup_change_begin/end().  Users which require
595 	 * threadgroup to remain stable should use threadgroup_[un]lock()
596 	 * which also takes care of exec path.  Currently, cgroup is the
597 	 * only user.
598 	 */
599 	struct rw_semaphore group_rwsem;
600 #endif
601 
602 	oom_flags_t oom_flags;
603 	short oom_score_adj;		/* OOM kill score adjustment */
604 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
605 					 * Only settable by CAP_SYS_RESOURCE. */
606 
607 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
608 					 * credential calculations
609 					 * (notably. ptrace) */
610 };
611 
612 /*
613  * Bits in flags field of signal_struct.
614  */
615 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
616 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
617 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
618 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
619 /*
620  * Pending notifications to parent.
621  */
622 #define SIGNAL_CLD_STOPPED	0x00000010
623 #define SIGNAL_CLD_CONTINUED	0x00000020
624 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
625 
626 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
627 
628 /* If true, all threads except ->group_exit_task have pending SIGKILL */
629 static inline int signal_group_exit(const struct signal_struct *sig)
630 {
631 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
632 		(sig->group_exit_task != NULL);
633 }
634 
635 /*
636  * Some day this will be a full-fledged user tracking system..
637  */
638 struct user_struct {
639 	atomic_t __count;	/* reference count */
640 	atomic_t processes;	/* How many processes does this user have? */
641 	atomic_t files;		/* How many open files does this user have? */
642 	atomic_t sigpending;	/* How many pending signals does this user have? */
643 #ifdef CONFIG_INOTIFY_USER
644 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
645 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
646 #endif
647 #ifdef CONFIG_FANOTIFY
648 	atomic_t fanotify_listeners;
649 #endif
650 #ifdef CONFIG_EPOLL
651 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
652 #endif
653 #ifdef CONFIG_POSIX_MQUEUE
654 	/* protected by mq_lock	*/
655 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
656 #endif
657 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
658 
659 #ifdef CONFIG_KEYS
660 	struct key *uid_keyring;	/* UID specific keyring */
661 	struct key *session_keyring;	/* UID's default session keyring */
662 #endif
663 
664 	/* Hash table maintenance information */
665 	struct hlist_node uidhash_node;
666 	kuid_t uid;
667 
668 #ifdef CONFIG_PERF_EVENTS
669 	atomic_long_t locked_vm;
670 #endif
671 };
672 
673 extern int uids_sysfs_init(void);
674 
675 extern struct user_struct *find_user(kuid_t);
676 
677 extern struct user_struct root_user;
678 #define INIT_USER (&root_user)
679 
680 
681 struct backing_dev_info;
682 struct reclaim_state;
683 
684 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
685 struct sched_info {
686 	/* cumulative counters */
687 	unsigned long pcount;	      /* # of times run on this cpu */
688 	unsigned long long run_delay; /* time spent waiting on a runqueue */
689 
690 	/* timestamps */
691 	unsigned long long last_arrival,/* when we last ran on a cpu */
692 			   last_queued;	/* when we were last queued to run */
693 };
694 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
695 
696 #ifdef CONFIG_TASK_DELAY_ACCT
697 struct task_delay_info {
698 	spinlock_t	lock;
699 	unsigned int	flags;	/* Private per-task flags */
700 
701 	/* For each stat XXX, add following, aligned appropriately
702 	 *
703 	 * struct timespec XXX_start, XXX_end;
704 	 * u64 XXX_delay;
705 	 * u32 XXX_count;
706 	 *
707 	 * Atomicity of updates to XXX_delay, XXX_count protected by
708 	 * single lock above (split into XXX_lock if contention is an issue).
709 	 */
710 
711 	/*
712 	 * XXX_count is incremented on every XXX operation, the delay
713 	 * associated with the operation is added to XXX_delay.
714 	 * XXX_delay contains the accumulated delay time in nanoseconds.
715 	 */
716 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
717 	u64 blkio_delay;	/* wait for sync block io completion */
718 	u64 swapin_delay;	/* wait for swapin block io completion */
719 	u32 blkio_count;	/* total count of the number of sync block */
720 				/* io operations performed */
721 	u32 swapin_count;	/* total count of the number of swapin block */
722 				/* io operations performed */
723 
724 	struct timespec freepages_start, freepages_end;
725 	u64 freepages_delay;	/* wait for memory reclaim */
726 	u32 freepages_count;	/* total count of memory reclaim */
727 };
728 #endif	/* CONFIG_TASK_DELAY_ACCT */
729 
730 static inline int sched_info_on(void)
731 {
732 #ifdef CONFIG_SCHEDSTATS
733 	return 1;
734 #elif defined(CONFIG_TASK_DELAY_ACCT)
735 	extern int delayacct_on;
736 	return delayacct_on;
737 #else
738 	return 0;
739 #endif
740 }
741 
742 enum cpu_idle_type {
743 	CPU_IDLE,
744 	CPU_NOT_IDLE,
745 	CPU_NEWLY_IDLE,
746 	CPU_MAX_IDLE_TYPES
747 };
748 
749 /*
750  * Increase resolution of cpu_power calculations
751  */
752 #define SCHED_POWER_SHIFT	10
753 #define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
754 
755 /*
756  * sched-domains (multiprocessor balancing) declarations:
757  */
758 #ifdef CONFIG_SMP
759 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
760 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
761 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
762 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
763 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
764 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
765 #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
766 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
767 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
768 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
769 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
770 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
771 
772 extern int __weak arch_sd_sibiling_asym_packing(void);
773 
774 struct sched_domain_attr {
775 	int relax_domain_level;
776 };
777 
778 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
779 	.relax_domain_level = -1,			\
780 }
781 
782 extern int sched_domain_level_max;
783 
784 struct sched_group;
785 
786 struct sched_domain {
787 	/* These fields must be setup */
788 	struct sched_domain *parent;	/* top domain must be null terminated */
789 	struct sched_domain *child;	/* bottom domain must be null terminated */
790 	struct sched_group *groups;	/* the balancing groups of the domain */
791 	unsigned long min_interval;	/* Minimum balance interval ms */
792 	unsigned long max_interval;	/* Maximum balance interval ms */
793 	unsigned int busy_factor;	/* less balancing by factor if busy */
794 	unsigned int imbalance_pct;	/* No balance until over watermark */
795 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
796 	unsigned int busy_idx;
797 	unsigned int idle_idx;
798 	unsigned int newidle_idx;
799 	unsigned int wake_idx;
800 	unsigned int forkexec_idx;
801 	unsigned int smt_gain;
802 
803 	int nohz_idle;			/* NOHZ IDLE status */
804 	int flags;			/* See SD_* */
805 	int level;
806 
807 	/* Runtime fields. */
808 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
809 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
810 	unsigned int nr_balance_failed; /* initialise to 0 */
811 
812 	u64 last_update;
813 
814 #ifdef CONFIG_SCHEDSTATS
815 	/* load_balance() stats */
816 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
817 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
818 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
819 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
820 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
821 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
822 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
823 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
824 
825 	/* Active load balancing */
826 	unsigned int alb_count;
827 	unsigned int alb_failed;
828 	unsigned int alb_pushed;
829 
830 	/* SD_BALANCE_EXEC stats */
831 	unsigned int sbe_count;
832 	unsigned int sbe_balanced;
833 	unsigned int sbe_pushed;
834 
835 	/* SD_BALANCE_FORK stats */
836 	unsigned int sbf_count;
837 	unsigned int sbf_balanced;
838 	unsigned int sbf_pushed;
839 
840 	/* try_to_wake_up() stats */
841 	unsigned int ttwu_wake_remote;
842 	unsigned int ttwu_move_affine;
843 	unsigned int ttwu_move_balance;
844 #endif
845 #ifdef CONFIG_SCHED_DEBUG
846 	char *name;
847 #endif
848 	union {
849 		void *private;		/* used during construction */
850 		struct rcu_head rcu;	/* used during destruction */
851 	};
852 
853 	unsigned int span_weight;
854 	/*
855 	 * Span of all CPUs in this domain.
856 	 *
857 	 * NOTE: this field is variable length. (Allocated dynamically
858 	 * by attaching extra space to the end of the structure,
859 	 * depending on how many CPUs the kernel has booted up with)
860 	 */
861 	unsigned long span[0];
862 };
863 
864 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
865 {
866 	return to_cpumask(sd->span);
867 }
868 
869 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
870 				    struct sched_domain_attr *dattr_new);
871 
872 /* Allocate an array of sched domains, for partition_sched_domains(). */
873 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
874 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
875 
876 bool cpus_share_cache(int this_cpu, int that_cpu);
877 
878 #else /* CONFIG_SMP */
879 
880 struct sched_domain_attr;
881 
882 static inline void
883 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
884 			struct sched_domain_attr *dattr_new)
885 {
886 }
887 
888 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
889 {
890 	return true;
891 }
892 
893 #endif	/* !CONFIG_SMP */
894 
895 
896 struct io_context;			/* See blkdev.h */
897 
898 
899 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
900 extern void prefetch_stack(struct task_struct *t);
901 #else
902 static inline void prefetch_stack(struct task_struct *t) { }
903 #endif
904 
905 struct audit_context;		/* See audit.c */
906 struct mempolicy;
907 struct pipe_inode_info;
908 struct uts_namespace;
909 
910 struct load_weight {
911 	unsigned long weight, inv_weight;
912 };
913 
914 struct sched_avg {
915 	/*
916 	 * These sums represent an infinite geometric series and so are bound
917 	 * above by 1024/(1-y).  Thus we only need a u32 to store them for all
918 	 * choices of y < 1-2^(-32)*1024.
919 	 */
920 	u32 runnable_avg_sum, runnable_avg_period;
921 	u64 last_runnable_update;
922 	s64 decay_count;
923 	unsigned long load_avg_contrib;
924 };
925 
926 #ifdef CONFIG_SCHEDSTATS
927 struct sched_statistics {
928 	u64			wait_start;
929 	u64			wait_max;
930 	u64			wait_count;
931 	u64			wait_sum;
932 	u64			iowait_count;
933 	u64			iowait_sum;
934 
935 	u64			sleep_start;
936 	u64			sleep_max;
937 	s64			sum_sleep_runtime;
938 
939 	u64			block_start;
940 	u64			block_max;
941 	u64			exec_max;
942 	u64			slice_max;
943 
944 	u64			nr_migrations_cold;
945 	u64			nr_failed_migrations_affine;
946 	u64			nr_failed_migrations_running;
947 	u64			nr_failed_migrations_hot;
948 	u64			nr_forced_migrations;
949 
950 	u64			nr_wakeups;
951 	u64			nr_wakeups_sync;
952 	u64			nr_wakeups_migrate;
953 	u64			nr_wakeups_local;
954 	u64			nr_wakeups_remote;
955 	u64			nr_wakeups_affine;
956 	u64			nr_wakeups_affine_attempts;
957 	u64			nr_wakeups_passive;
958 	u64			nr_wakeups_idle;
959 };
960 #endif
961 
962 struct sched_entity {
963 	struct load_weight	load;		/* for load-balancing */
964 	struct rb_node		run_node;
965 	struct list_head	group_node;
966 	unsigned int		on_rq;
967 
968 	u64			exec_start;
969 	u64			sum_exec_runtime;
970 	u64			vruntime;
971 	u64			prev_sum_exec_runtime;
972 
973 	u64			nr_migrations;
974 
975 #ifdef CONFIG_SCHEDSTATS
976 	struct sched_statistics statistics;
977 #endif
978 
979 #ifdef CONFIG_FAIR_GROUP_SCHED
980 	struct sched_entity	*parent;
981 	/* rq on which this entity is (to be) queued: */
982 	struct cfs_rq		*cfs_rq;
983 	/* rq "owned" by this entity/group: */
984 	struct cfs_rq		*my_q;
985 #endif
986 
987 #ifdef CONFIG_SMP
988 	/* Per-entity load-tracking */
989 	struct sched_avg	avg;
990 #endif
991 };
992 
993 struct sched_rt_entity {
994 	struct list_head run_list;
995 	unsigned long timeout;
996 	unsigned long watchdog_stamp;
997 	unsigned int time_slice;
998 
999 	struct sched_rt_entity *back;
1000 #ifdef CONFIG_RT_GROUP_SCHED
1001 	struct sched_rt_entity	*parent;
1002 	/* rq on which this entity is (to be) queued: */
1003 	struct rt_rq		*rt_rq;
1004 	/* rq "owned" by this entity/group: */
1005 	struct rt_rq		*my_q;
1006 #endif
1007 };
1008 
1009 
1010 struct rcu_node;
1011 
1012 enum perf_event_task_context {
1013 	perf_invalid_context = -1,
1014 	perf_hw_context = 0,
1015 	perf_sw_context,
1016 	perf_nr_task_contexts,
1017 };
1018 
1019 struct task_struct {
1020 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1021 	void *stack;
1022 	atomic_t usage;
1023 	unsigned int flags;	/* per process flags, defined below */
1024 	unsigned int ptrace;
1025 
1026 #ifdef CONFIG_SMP
1027 	struct llist_node wake_entry;
1028 	int on_cpu;
1029 	struct task_struct *last_wakee;
1030 	unsigned long wakee_flips;
1031 	unsigned long wakee_flip_decay_ts;
1032 #endif
1033 	int on_rq;
1034 
1035 	int prio, static_prio, normal_prio;
1036 	unsigned int rt_priority;
1037 	const struct sched_class *sched_class;
1038 	struct sched_entity se;
1039 	struct sched_rt_entity rt;
1040 #ifdef CONFIG_CGROUP_SCHED
1041 	struct task_group *sched_task_group;
1042 #endif
1043 
1044 #ifdef CONFIG_PREEMPT_NOTIFIERS
1045 	/* list of struct preempt_notifier: */
1046 	struct hlist_head preempt_notifiers;
1047 #endif
1048 
1049 	/*
1050 	 * fpu_counter contains the number of consecutive context switches
1051 	 * that the FPU is used. If this is over a threshold, the lazy fpu
1052 	 * saving becomes unlazy to save the trap. This is an unsigned char
1053 	 * so that after 256 times the counter wraps and the behavior turns
1054 	 * lazy again; this to deal with bursty apps that only use FPU for
1055 	 * a short time
1056 	 */
1057 	unsigned char fpu_counter;
1058 #ifdef CONFIG_BLK_DEV_IO_TRACE
1059 	unsigned int btrace_seq;
1060 #endif
1061 
1062 	unsigned int policy;
1063 	int nr_cpus_allowed;
1064 	cpumask_t cpus_allowed;
1065 
1066 #ifdef CONFIG_PREEMPT_RCU
1067 	int rcu_read_lock_nesting;
1068 	char rcu_read_unlock_special;
1069 	struct list_head rcu_node_entry;
1070 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1071 #ifdef CONFIG_TREE_PREEMPT_RCU
1072 	struct rcu_node *rcu_blocked_node;
1073 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1074 #ifdef CONFIG_RCU_BOOST
1075 	struct rt_mutex *rcu_boost_mutex;
1076 #endif /* #ifdef CONFIG_RCU_BOOST */
1077 
1078 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1079 	struct sched_info sched_info;
1080 #endif
1081 
1082 	struct list_head tasks;
1083 #ifdef CONFIG_SMP
1084 	struct plist_node pushable_tasks;
1085 #endif
1086 
1087 	struct mm_struct *mm, *active_mm;
1088 #ifdef CONFIG_COMPAT_BRK
1089 	unsigned brk_randomized:1;
1090 #endif
1091 #if defined(SPLIT_RSS_COUNTING)
1092 	struct task_rss_stat	rss_stat;
1093 #endif
1094 /* task state */
1095 	int exit_state;
1096 	int exit_code, exit_signal;
1097 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1098 	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1099 
1100 	/* Used for emulating ABI behavior of previous Linux versions */
1101 	unsigned int personality;
1102 
1103 	unsigned did_exec:1;
1104 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1105 				 * execve */
1106 	unsigned in_iowait:1;
1107 
1108 	/* task may not gain privileges */
1109 	unsigned no_new_privs:1;
1110 
1111 	/* Revert to default priority/policy when forking */
1112 	unsigned sched_reset_on_fork:1;
1113 	unsigned sched_contributes_to_load:1;
1114 
1115 	pid_t pid;
1116 	pid_t tgid;
1117 
1118 #ifdef CONFIG_CC_STACKPROTECTOR
1119 	/* Canary value for the -fstack-protector gcc feature */
1120 	unsigned long stack_canary;
1121 #endif
1122 	/*
1123 	 * pointers to (original) parent process, youngest child, younger sibling,
1124 	 * older sibling, respectively.  (p->father can be replaced with
1125 	 * p->real_parent->pid)
1126 	 */
1127 	struct task_struct __rcu *real_parent; /* real parent process */
1128 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1129 	/*
1130 	 * children/sibling forms the list of my natural children
1131 	 */
1132 	struct list_head children;	/* list of my children */
1133 	struct list_head sibling;	/* linkage in my parent's children list */
1134 	struct task_struct *group_leader;	/* threadgroup leader */
1135 
1136 	/*
1137 	 * ptraced is the list of tasks this task is using ptrace on.
1138 	 * This includes both natural children and PTRACE_ATTACH targets.
1139 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1140 	 */
1141 	struct list_head ptraced;
1142 	struct list_head ptrace_entry;
1143 
1144 	/* PID/PID hash table linkage. */
1145 	struct pid_link pids[PIDTYPE_MAX];
1146 	struct list_head thread_group;
1147 
1148 	struct completion *vfork_done;		/* for vfork() */
1149 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1150 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1151 
1152 	cputime_t utime, stime, utimescaled, stimescaled;
1153 	cputime_t gtime;
1154 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1155 	struct cputime prev_cputime;
1156 #endif
1157 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1158 	seqlock_t vtime_seqlock;
1159 	unsigned long long vtime_snap;
1160 	enum {
1161 		VTIME_SLEEPING = 0,
1162 		VTIME_USER,
1163 		VTIME_SYS,
1164 	} vtime_snap_whence;
1165 #endif
1166 	unsigned long nvcsw, nivcsw; /* context switch counts */
1167 	struct timespec start_time; 		/* monotonic time */
1168 	struct timespec real_start_time;	/* boot based time */
1169 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1170 	unsigned long min_flt, maj_flt;
1171 
1172 	struct task_cputime cputime_expires;
1173 	struct list_head cpu_timers[3];
1174 
1175 /* process credentials */
1176 	const struct cred __rcu *real_cred; /* objective and real subjective task
1177 					 * credentials (COW) */
1178 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1179 					 * credentials (COW) */
1180 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1181 				     - access with [gs]et_task_comm (which lock
1182 				       it with task_lock())
1183 				     - initialized normally by setup_new_exec */
1184 /* file system info */
1185 	int link_count, total_link_count;
1186 #ifdef CONFIG_SYSVIPC
1187 /* ipc stuff */
1188 	struct sysv_sem sysvsem;
1189 #endif
1190 #ifdef CONFIG_DETECT_HUNG_TASK
1191 /* hung task detection */
1192 	unsigned long last_switch_count;
1193 #endif
1194 /* CPU-specific state of this task */
1195 	struct thread_struct thread;
1196 /* filesystem information */
1197 	struct fs_struct *fs;
1198 /* open file information */
1199 	struct files_struct *files;
1200 /* namespaces */
1201 	struct nsproxy *nsproxy;
1202 /* signal handlers */
1203 	struct signal_struct *signal;
1204 	struct sighand_struct *sighand;
1205 
1206 	sigset_t blocked, real_blocked;
1207 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1208 	struct sigpending pending;
1209 
1210 	unsigned long sas_ss_sp;
1211 	size_t sas_ss_size;
1212 	int (*notifier)(void *priv);
1213 	void *notifier_data;
1214 	sigset_t *notifier_mask;
1215 	struct callback_head *task_works;
1216 
1217 	struct audit_context *audit_context;
1218 #ifdef CONFIG_AUDITSYSCALL
1219 	kuid_t loginuid;
1220 	unsigned int sessionid;
1221 #endif
1222 	struct seccomp seccomp;
1223 
1224 /* Thread group tracking */
1225    	u32 parent_exec_id;
1226    	u32 self_exec_id;
1227 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1228  * mempolicy */
1229 	spinlock_t alloc_lock;
1230 
1231 	/* Protection of the PI data structures: */
1232 	raw_spinlock_t pi_lock;
1233 
1234 #ifdef CONFIG_RT_MUTEXES
1235 	/* PI waiters blocked on a rt_mutex held by this task */
1236 	struct plist_head pi_waiters;
1237 	/* Deadlock detection and priority inheritance handling */
1238 	struct rt_mutex_waiter *pi_blocked_on;
1239 #endif
1240 
1241 #ifdef CONFIG_DEBUG_MUTEXES
1242 	/* mutex deadlock detection */
1243 	struct mutex_waiter *blocked_on;
1244 #endif
1245 #ifdef CONFIG_TRACE_IRQFLAGS
1246 	unsigned int irq_events;
1247 	unsigned long hardirq_enable_ip;
1248 	unsigned long hardirq_disable_ip;
1249 	unsigned int hardirq_enable_event;
1250 	unsigned int hardirq_disable_event;
1251 	int hardirqs_enabled;
1252 	int hardirq_context;
1253 	unsigned long softirq_disable_ip;
1254 	unsigned long softirq_enable_ip;
1255 	unsigned int softirq_disable_event;
1256 	unsigned int softirq_enable_event;
1257 	int softirqs_enabled;
1258 	int softirq_context;
1259 #endif
1260 #ifdef CONFIG_LOCKDEP
1261 # define MAX_LOCK_DEPTH 48UL
1262 	u64 curr_chain_key;
1263 	int lockdep_depth;
1264 	unsigned int lockdep_recursion;
1265 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1266 	gfp_t lockdep_reclaim_gfp;
1267 #endif
1268 
1269 /* journalling filesystem info */
1270 	void *journal_info;
1271 
1272 /* stacked block device info */
1273 	struct bio_list *bio_list;
1274 
1275 #ifdef CONFIG_BLOCK
1276 /* stack plugging */
1277 	struct blk_plug *plug;
1278 #endif
1279 
1280 /* VM state */
1281 	struct reclaim_state *reclaim_state;
1282 
1283 	struct backing_dev_info *backing_dev_info;
1284 
1285 	struct io_context *io_context;
1286 
1287 	unsigned long ptrace_message;
1288 	siginfo_t *last_siginfo; /* For ptrace use.  */
1289 	struct task_io_accounting ioac;
1290 #if defined(CONFIG_TASK_XACCT)
1291 	u64 acct_rss_mem1;	/* accumulated rss usage */
1292 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1293 	cputime_t acct_timexpd;	/* stime + utime since last update */
1294 #endif
1295 #ifdef CONFIG_CPUSETS
1296 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1297 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1298 	int cpuset_mem_spread_rotor;
1299 	int cpuset_slab_spread_rotor;
1300 #endif
1301 #ifdef CONFIG_CGROUPS
1302 	/* Control Group info protected by css_set_lock */
1303 	struct css_set __rcu *cgroups;
1304 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1305 	struct list_head cg_list;
1306 #endif
1307 #ifdef CONFIG_FUTEX
1308 	struct robust_list_head __user *robust_list;
1309 #ifdef CONFIG_COMPAT
1310 	struct compat_robust_list_head __user *compat_robust_list;
1311 #endif
1312 	struct list_head pi_state_list;
1313 	struct futex_pi_state *pi_state_cache;
1314 #endif
1315 #ifdef CONFIG_PERF_EVENTS
1316 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1317 	struct mutex perf_event_mutex;
1318 	struct list_head perf_event_list;
1319 #endif
1320 #ifdef CONFIG_NUMA
1321 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1322 	short il_next;
1323 	short pref_node_fork;
1324 #endif
1325 #ifdef CONFIG_NUMA_BALANCING
1326 	int numa_scan_seq;
1327 	int numa_migrate_seq;
1328 	unsigned int numa_scan_period;
1329 	u64 node_stamp;			/* migration stamp  */
1330 	struct callback_head numa_work;
1331 #endif /* CONFIG_NUMA_BALANCING */
1332 
1333 	struct rcu_head rcu;
1334 
1335 	/*
1336 	 * cache last used pipe for splice
1337 	 */
1338 	struct pipe_inode_info *splice_pipe;
1339 
1340 	struct page_frag task_frag;
1341 
1342 #ifdef	CONFIG_TASK_DELAY_ACCT
1343 	struct task_delay_info *delays;
1344 #endif
1345 #ifdef CONFIG_FAULT_INJECTION
1346 	int make_it_fail;
1347 #endif
1348 	/*
1349 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1350 	 * balance_dirty_pages() for some dirty throttling pause
1351 	 */
1352 	int nr_dirtied;
1353 	int nr_dirtied_pause;
1354 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1355 
1356 #ifdef CONFIG_LATENCYTOP
1357 	int latency_record_count;
1358 	struct latency_record latency_record[LT_SAVECOUNT];
1359 #endif
1360 	/*
1361 	 * time slack values; these are used to round up poll() and
1362 	 * select() etc timeout values. These are in nanoseconds.
1363 	 */
1364 	unsigned long timer_slack_ns;
1365 	unsigned long default_timer_slack_ns;
1366 
1367 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1368 	/* Index of current stored address in ret_stack */
1369 	int curr_ret_stack;
1370 	/* Stack of return addresses for return function tracing */
1371 	struct ftrace_ret_stack	*ret_stack;
1372 	/* time stamp for last schedule */
1373 	unsigned long long ftrace_timestamp;
1374 	/*
1375 	 * Number of functions that haven't been traced
1376 	 * because of depth overrun.
1377 	 */
1378 	atomic_t trace_overrun;
1379 	/* Pause for the tracing */
1380 	atomic_t tracing_graph_pause;
1381 #endif
1382 #ifdef CONFIG_TRACING
1383 	/* state flags for use by tracers */
1384 	unsigned long trace;
1385 	/* bitmask and counter of trace recursion */
1386 	unsigned long trace_recursion;
1387 #endif /* CONFIG_TRACING */
1388 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1389 	struct memcg_batch_info {
1390 		int do_batch;	/* incremented when batch uncharge started */
1391 		struct mem_cgroup *memcg; /* target memcg of uncharge */
1392 		unsigned long nr_pages;	/* uncharged usage */
1393 		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1394 	} memcg_batch;
1395 	unsigned int memcg_kmem_skip_account;
1396 #endif
1397 #ifdef CONFIG_UPROBES
1398 	struct uprobe_task *utask;
1399 #endif
1400 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1401 	unsigned int	sequential_io;
1402 	unsigned int	sequential_io_avg;
1403 #endif
1404 };
1405 
1406 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1407 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1408 
1409 #ifdef CONFIG_NUMA_BALANCING
1410 extern void task_numa_fault(int node, int pages, bool migrated);
1411 extern void set_numabalancing_state(bool enabled);
1412 #else
1413 static inline void task_numa_fault(int node, int pages, bool migrated)
1414 {
1415 }
1416 static inline void set_numabalancing_state(bool enabled)
1417 {
1418 }
1419 #endif
1420 
1421 static inline struct pid *task_pid(struct task_struct *task)
1422 {
1423 	return task->pids[PIDTYPE_PID].pid;
1424 }
1425 
1426 static inline struct pid *task_tgid(struct task_struct *task)
1427 {
1428 	return task->group_leader->pids[PIDTYPE_PID].pid;
1429 }
1430 
1431 /*
1432  * Without tasklist or rcu lock it is not safe to dereference
1433  * the result of task_pgrp/task_session even if task == current,
1434  * we can race with another thread doing sys_setsid/sys_setpgid.
1435  */
1436 static inline struct pid *task_pgrp(struct task_struct *task)
1437 {
1438 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1439 }
1440 
1441 static inline struct pid *task_session(struct task_struct *task)
1442 {
1443 	return task->group_leader->pids[PIDTYPE_SID].pid;
1444 }
1445 
1446 struct pid_namespace;
1447 
1448 /*
1449  * the helpers to get the task's different pids as they are seen
1450  * from various namespaces
1451  *
1452  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1453  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1454  *                     current.
1455  * task_xid_nr_ns()  : id seen from the ns specified;
1456  *
1457  * set_task_vxid()   : assigns a virtual id to a task;
1458  *
1459  * see also pid_nr() etc in include/linux/pid.h
1460  */
1461 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1462 			struct pid_namespace *ns);
1463 
1464 static inline pid_t task_pid_nr(struct task_struct *tsk)
1465 {
1466 	return tsk->pid;
1467 }
1468 
1469 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1470 					struct pid_namespace *ns)
1471 {
1472 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1473 }
1474 
1475 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1476 {
1477 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1478 }
1479 
1480 
1481 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1482 {
1483 	return tsk->tgid;
1484 }
1485 
1486 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1487 
1488 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1489 {
1490 	return pid_vnr(task_tgid(tsk));
1491 }
1492 
1493 
1494 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1495 					struct pid_namespace *ns)
1496 {
1497 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1498 }
1499 
1500 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1501 {
1502 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1503 }
1504 
1505 
1506 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1507 					struct pid_namespace *ns)
1508 {
1509 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1510 }
1511 
1512 static inline pid_t task_session_vnr(struct task_struct *tsk)
1513 {
1514 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1515 }
1516 
1517 /* obsolete, do not use */
1518 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1519 {
1520 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1521 }
1522 
1523 /**
1524  * pid_alive - check that a task structure is not stale
1525  * @p: Task structure to be checked.
1526  *
1527  * Test if a process is not yet dead (at most zombie state)
1528  * If pid_alive fails, then pointers within the task structure
1529  * can be stale and must not be dereferenced.
1530  *
1531  * Return: 1 if the process is alive. 0 otherwise.
1532  */
1533 static inline int pid_alive(struct task_struct *p)
1534 {
1535 	return p->pids[PIDTYPE_PID].pid != NULL;
1536 }
1537 
1538 /**
1539  * is_global_init - check if a task structure is init
1540  * @tsk: Task structure to be checked.
1541  *
1542  * Check if a task structure is the first user space task the kernel created.
1543  *
1544  * Return: 1 if the task structure is init. 0 otherwise.
1545  */
1546 static inline int is_global_init(struct task_struct *tsk)
1547 {
1548 	return tsk->pid == 1;
1549 }
1550 
1551 extern struct pid *cad_pid;
1552 
1553 extern void free_task(struct task_struct *tsk);
1554 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1555 
1556 extern void __put_task_struct(struct task_struct *t);
1557 
1558 static inline void put_task_struct(struct task_struct *t)
1559 {
1560 	if (atomic_dec_and_test(&t->usage))
1561 		__put_task_struct(t);
1562 }
1563 
1564 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1565 extern void task_cputime(struct task_struct *t,
1566 			 cputime_t *utime, cputime_t *stime);
1567 extern void task_cputime_scaled(struct task_struct *t,
1568 				cputime_t *utimescaled, cputime_t *stimescaled);
1569 extern cputime_t task_gtime(struct task_struct *t);
1570 #else
1571 static inline void task_cputime(struct task_struct *t,
1572 				cputime_t *utime, cputime_t *stime)
1573 {
1574 	if (utime)
1575 		*utime = t->utime;
1576 	if (stime)
1577 		*stime = t->stime;
1578 }
1579 
1580 static inline void task_cputime_scaled(struct task_struct *t,
1581 				       cputime_t *utimescaled,
1582 				       cputime_t *stimescaled)
1583 {
1584 	if (utimescaled)
1585 		*utimescaled = t->utimescaled;
1586 	if (stimescaled)
1587 		*stimescaled = t->stimescaled;
1588 }
1589 
1590 static inline cputime_t task_gtime(struct task_struct *t)
1591 {
1592 	return t->gtime;
1593 }
1594 #endif
1595 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1596 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1597 
1598 /*
1599  * Per process flags
1600  */
1601 #define PF_EXITING	0x00000004	/* getting shut down */
1602 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1603 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1604 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1605 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1606 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1607 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1608 #define PF_DUMPCORE	0x00000200	/* dumped core */
1609 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1610 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1611 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1612 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1613 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
1614 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1615 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1616 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1617 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1618 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
1619 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1620 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1621 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1622 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1623 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1624 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1625 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1626 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1627 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1628 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1629 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1630 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1631 
1632 /*
1633  * Only the _current_ task can read/write to tsk->flags, but other
1634  * tasks can access tsk->flags in readonly mode for example
1635  * with tsk_used_math (like during threaded core dumping).
1636  * There is however an exception to this rule during ptrace
1637  * or during fork: the ptracer task is allowed to write to the
1638  * child->flags of its traced child (same goes for fork, the parent
1639  * can write to the child->flags), because we're guaranteed the
1640  * child is not running and in turn not changing child->flags
1641  * at the same time the parent does it.
1642  */
1643 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1644 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1645 #define clear_used_math() clear_stopped_child_used_math(current)
1646 #define set_used_math() set_stopped_child_used_math(current)
1647 #define conditional_stopped_child_used_math(condition, child) \
1648 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1649 #define conditional_used_math(condition) \
1650 	conditional_stopped_child_used_math(condition, current)
1651 #define copy_to_stopped_child_used_math(child) \
1652 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1653 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1654 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1655 #define used_math() tsk_used_math(current)
1656 
1657 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1658 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1659 {
1660 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1661 		flags &= ~__GFP_IO;
1662 	return flags;
1663 }
1664 
1665 static inline unsigned int memalloc_noio_save(void)
1666 {
1667 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1668 	current->flags |= PF_MEMALLOC_NOIO;
1669 	return flags;
1670 }
1671 
1672 static inline void memalloc_noio_restore(unsigned int flags)
1673 {
1674 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1675 }
1676 
1677 /*
1678  * task->jobctl flags
1679  */
1680 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1681 
1682 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1683 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1684 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1685 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1686 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1687 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1688 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1689 
1690 #define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1691 #define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1692 #define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1693 #define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1694 #define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1695 #define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1696 #define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1697 
1698 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1699 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1700 
1701 extern bool task_set_jobctl_pending(struct task_struct *task,
1702 				    unsigned int mask);
1703 extern void task_clear_jobctl_trapping(struct task_struct *task);
1704 extern void task_clear_jobctl_pending(struct task_struct *task,
1705 				      unsigned int mask);
1706 
1707 #ifdef CONFIG_PREEMPT_RCU
1708 
1709 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1710 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1711 
1712 static inline void rcu_copy_process(struct task_struct *p)
1713 {
1714 	p->rcu_read_lock_nesting = 0;
1715 	p->rcu_read_unlock_special = 0;
1716 #ifdef CONFIG_TREE_PREEMPT_RCU
1717 	p->rcu_blocked_node = NULL;
1718 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1719 #ifdef CONFIG_RCU_BOOST
1720 	p->rcu_boost_mutex = NULL;
1721 #endif /* #ifdef CONFIG_RCU_BOOST */
1722 	INIT_LIST_HEAD(&p->rcu_node_entry);
1723 }
1724 
1725 #else
1726 
1727 static inline void rcu_copy_process(struct task_struct *p)
1728 {
1729 }
1730 
1731 #endif
1732 
1733 static inline void tsk_restore_flags(struct task_struct *task,
1734 				unsigned long orig_flags, unsigned long flags)
1735 {
1736 	task->flags &= ~flags;
1737 	task->flags |= orig_flags & flags;
1738 }
1739 
1740 #ifdef CONFIG_SMP
1741 extern void do_set_cpus_allowed(struct task_struct *p,
1742 			       const struct cpumask *new_mask);
1743 
1744 extern int set_cpus_allowed_ptr(struct task_struct *p,
1745 				const struct cpumask *new_mask);
1746 #else
1747 static inline void do_set_cpus_allowed(struct task_struct *p,
1748 				      const struct cpumask *new_mask)
1749 {
1750 }
1751 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1752 				       const struct cpumask *new_mask)
1753 {
1754 	if (!cpumask_test_cpu(0, new_mask))
1755 		return -EINVAL;
1756 	return 0;
1757 }
1758 #endif
1759 
1760 #ifdef CONFIG_NO_HZ_COMMON
1761 void calc_load_enter_idle(void);
1762 void calc_load_exit_idle(void);
1763 #else
1764 static inline void calc_load_enter_idle(void) { }
1765 static inline void calc_load_exit_idle(void) { }
1766 #endif /* CONFIG_NO_HZ_COMMON */
1767 
1768 #ifndef CONFIG_CPUMASK_OFFSTACK
1769 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1770 {
1771 	return set_cpus_allowed_ptr(p, &new_mask);
1772 }
1773 #endif
1774 
1775 /*
1776  * Do not use outside of architecture code which knows its limitations.
1777  *
1778  * sched_clock() has no promise of monotonicity or bounded drift between
1779  * CPUs, use (which you should not) requires disabling IRQs.
1780  *
1781  * Please use one of the three interfaces below.
1782  */
1783 extern unsigned long long notrace sched_clock(void);
1784 /*
1785  * See the comment in kernel/sched/clock.c
1786  */
1787 extern u64 cpu_clock(int cpu);
1788 extern u64 local_clock(void);
1789 extern u64 sched_clock_cpu(int cpu);
1790 
1791 
1792 extern void sched_clock_init(void);
1793 
1794 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1795 static inline void sched_clock_tick(void)
1796 {
1797 }
1798 
1799 static inline void sched_clock_idle_sleep_event(void)
1800 {
1801 }
1802 
1803 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1804 {
1805 }
1806 #else
1807 /*
1808  * Architectures can set this to 1 if they have specified
1809  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1810  * but then during bootup it turns out that sched_clock()
1811  * is reliable after all:
1812  */
1813 extern int sched_clock_stable;
1814 
1815 extern void sched_clock_tick(void);
1816 extern void sched_clock_idle_sleep_event(void);
1817 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1818 #endif
1819 
1820 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1821 /*
1822  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1823  * The reason for this explicit opt-in is not to have perf penalty with
1824  * slow sched_clocks.
1825  */
1826 extern void enable_sched_clock_irqtime(void);
1827 extern void disable_sched_clock_irqtime(void);
1828 #else
1829 static inline void enable_sched_clock_irqtime(void) {}
1830 static inline void disable_sched_clock_irqtime(void) {}
1831 #endif
1832 
1833 extern unsigned long long
1834 task_sched_runtime(struct task_struct *task);
1835 
1836 /* sched_exec is called by processes performing an exec */
1837 #ifdef CONFIG_SMP
1838 extern void sched_exec(void);
1839 #else
1840 #define sched_exec()   {}
1841 #endif
1842 
1843 extern void sched_clock_idle_sleep_event(void);
1844 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1845 
1846 #ifdef CONFIG_HOTPLUG_CPU
1847 extern void idle_task_exit(void);
1848 #else
1849 static inline void idle_task_exit(void) {}
1850 #endif
1851 
1852 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1853 extern void wake_up_nohz_cpu(int cpu);
1854 #else
1855 static inline void wake_up_nohz_cpu(int cpu) { }
1856 #endif
1857 
1858 #ifdef CONFIG_NO_HZ_FULL
1859 extern bool sched_can_stop_tick(void);
1860 extern u64 scheduler_tick_max_deferment(void);
1861 #else
1862 static inline bool sched_can_stop_tick(void) { return false; }
1863 #endif
1864 
1865 #ifdef CONFIG_SCHED_AUTOGROUP
1866 extern void sched_autogroup_create_attach(struct task_struct *p);
1867 extern void sched_autogroup_detach(struct task_struct *p);
1868 extern void sched_autogroup_fork(struct signal_struct *sig);
1869 extern void sched_autogroup_exit(struct signal_struct *sig);
1870 #ifdef CONFIG_PROC_FS
1871 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1872 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1873 #endif
1874 #else
1875 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1876 static inline void sched_autogroup_detach(struct task_struct *p) { }
1877 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1878 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1879 #endif
1880 
1881 extern bool yield_to(struct task_struct *p, bool preempt);
1882 extern void set_user_nice(struct task_struct *p, long nice);
1883 extern int task_prio(const struct task_struct *p);
1884 extern int task_nice(const struct task_struct *p);
1885 extern int can_nice(const struct task_struct *p, const int nice);
1886 extern int task_curr(const struct task_struct *p);
1887 extern int idle_cpu(int cpu);
1888 extern int sched_setscheduler(struct task_struct *, int,
1889 			      const struct sched_param *);
1890 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1891 				      const struct sched_param *);
1892 extern struct task_struct *idle_task(int cpu);
1893 /**
1894  * is_idle_task - is the specified task an idle task?
1895  * @p: the task in question.
1896  *
1897  * Return: 1 if @p is an idle task. 0 otherwise.
1898  */
1899 static inline bool is_idle_task(const struct task_struct *p)
1900 {
1901 	return p->pid == 0;
1902 }
1903 extern struct task_struct *curr_task(int cpu);
1904 extern void set_curr_task(int cpu, struct task_struct *p);
1905 
1906 void yield(void);
1907 
1908 /*
1909  * The default (Linux) execution domain.
1910  */
1911 extern struct exec_domain	default_exec_domain;
1912 
1913 union thread_union {
1914 	struct thread_info thread_info;
1915 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1916 };
1917 
1918 #ifndef __HAVE_ARCH_KSTACK_END
1919 static inline int kstack_end(void *addr)
1920 {
1921 	/* Reliable end of stack detection:
1922 	 * Some APM bios versions misalign the stack
1923 	 */
1924 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1925 }
1926 #endif
1927 
1928 extern union thread_union init_thread_union;
1929 extern struct task_struct init_task;
1930 
1931 extern struct   mm_struct init_mm;
1932 
1933 extern struct pid_namespace init_pid_ns;
1934 
1935 /*
1936  * find a task by one of its numerical ids
1937  *
1938  * find_task_by_pid_ns():
1939  *      finds a task by its pid in the specified namespace
1940  * find_task_by_vpid():
1941  *      finds a task by its virtual pid
1942  *
1943  * see also find_vpid() etc in include/linux/pid.h
1944  */
1945 
1946 extern struct task_struct *find_task_by_vpid(pid_t nr);
1947 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1948 		struct pid_namespace *ns);
1949 
1950 /* per-UID process charging. */
1951 extern struct user_struct * alloc_uid(kuid_t);
1952 static inline struct user_struct *get_uid(struct user_struct *u)
1953 {
1954 	atomic_inc(&u->__count);
1955 	return u;
1956 }
1957 extern void free_uid(struct user_struct *);
1958 
1959 #include <asm/current.h>
1960 
1961 extern void xtime_update(unsigned long ticks);
1962 
1963 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1964 extern int wake_up_process(struct task_struct *tsk);
1965 extern void wake_up_new_task(struct task_struct *tsk);
1966 #ifdef CONFIG_SMP
1967  extern void kick_process(struct task_struct *tsk);
1968 #else
1969  static inline void kick_process(struct task_struct *tsk) { }
1970 #endif
1971 extern void sched_fork(struct task_struct *p);
1972 extern void sched_dead(struct task_struct *p);
1973 
1974 extern void proc_caches_init(void);
1975 extern void flush_signals(struct task_struct *);
1976 extern void __flush_signals(struct task_struct *);
1977 extern void ignore_signals(struct task_struct *);
1978 extern void flush_signal_handlers(struct task_struct *, int force_default);
1979 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1980 
1981 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1982 {
1983 	unsigned long flags;
1984 	int ret;
1985 
1986 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
1987 	ret = dequeue_signal(tsk, mask, info);
1988 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1989 
1990 	return ret;
1991 }
1992 
1993 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1994 			      sigset_t *mask);
1995 extern void unblock_all_signals(void);
1996 extern void release_task(struct task_struct * p);
1997 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1998 extern int force_sigsegv(int, struct task_struct *);
1999 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2000 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2001 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2002 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2003 				const struct cred *, u32);
2004 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2005 extern int kill_pid(struct pid *pid, int sig, int priv);
2006 extern int kill_proc_info(int, struct siginfo *, pid_t);
2007 extern __must_check bool do_notify_parent(struct task_struct *, int);
2008 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2009 extern void force_sig(int, struct task_struct *);
2010 extern int send_sig(int, struct task_struct *, int);
2011 extern int zap_other_threads(struct task_struct *p);
2012 extern struct sigqueue *sigqueue_alloc(void);
2013 extern void sigqueue_free(struct sigqueue *);
2014 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2015 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2016 
2017 static inline void restore_saved_sigmask(void)
2018 {
2019 	if (test_and_clear_restore_sigmask())
2020 		__set_current_blocked(&current->saved_sigmask);
2021 }
2022 
2023 static inline sigset_t *sigmask_to_save(void)
2024 {
2025 	sigset_t *res = &current->blocked;
2026 	if (unlikely(test_restore_sigmask()))
2027 		res = &current->saved_sigmask;
2028 	return res;
2029 }
2030 
2031 static inline int kill_cad_pid(int sig, int priv)
2032 {
2033 	return kill_pid(cad_pid, sig, priv);
2034 }
2035 
2036 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2037 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2038 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2039 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2040 
2041 /*
2042  * True if we are on the alternate signal stack.
2043  */
2044 static inline int on_sig_stack(unsigned long sp)
2045 {
2046 #ifdef CONFIG_STACK_GROWSUP
2047 	return sp >= current->sas_ss_sp &&
2048 		sp - current->sas_ss_sp < current->sas_ss_size;
2049 #else
2050 	return sp > current->sas_ss_sp &&
2051 		sp - current->sas_ss_sp <= current->sas_ss_size;
2052 #endif
2053 }
2054 
2055 static inline int sas_ss_flags(unsigned long sp)
2056 {
2057 	return (current->sas_ss_size == 0 ? SS_DISABLE
2058 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2059 }
2060 
2061 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2062 {
2063 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2064 #ifdef CONFIG_STACK_GROWSUP
2065 		return current->sas_ss_sp;
2066 #else
2067 		return current->sas_ss_sp + current->sas_ss_size;
2068 #endif
2069 	return sp;
2070 }
2071 
2072 /*
2073  * Routines for handling mm_structs
2074  */
2075 extern struct mm_struct * mm_alloc(void);
2076 
2077 /* mmdrop drops the mm and the page tables */
2078 extern void __mmdrop(struct mm_struct *);
2079 static inline void mmdrop(struct mm_struct * mm)
2080 {
2081 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2082 		__mmdrop(mm);
2083 }
2084 
2085 /* mmput gets rid of the mappings and all user-space */
2086 extern void mmput(struct mm_struct *);
2087 /* Grab a reference to a task's mm, if it is not already going away */
2088 extern struct mm_struct *get_task_mm(struct task_struct *task);
2089 /*
2090  * Grab a reference to a task's mm, if it is not already going away
2091  * and ptrace_may_access with the mode parameter passed to it
2092  * succeeds.
2093  */
2094 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2095 /* Remove the current tasks stale references to the old mm_struct */
2096 extern void mm_release(struct task_struct *, struct mm_struct *);
2097 /* Allocate a new mm structure and copy contents from tsk->mm */
2098 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2099 
2100 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2101 			struct task_struct *);
2102 extern void flush_thread(void);
2103 extern void exit_thread(void);
2104 
2105 extern void exit_files(struct task_struct *);
2106 extern void __cleanup_sighand(struct sighand_struct *);
2107 
2108 extern void exit_itimers(struct signal_struct *);
2109 extern void flush_itimer_signals(void);
2110 
2111 extern void do_group_exit(int);
2112 
2113 extern int allow_signal(int);
2114 extern int disallow_signal(int);
2115 
2116 extern int do_execve(const char *,
2117 		     const char __user * const __user *,
2118 		     const char __user * const __user *);
2119 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2120 struct task_struct *fork_idle(int);
2121 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2122 
2123 extern void set_task_comm(struct task_struct *tsk, char *from);
2124 extern char *get_task_comm(char *to, struct task_struct *tsk);
2125 
2126 #ifdef CONFIG_SMP
2127 void scheduler_ipi(void);
2128 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2129 #else
2130 static inline void scheduler_ipi(void) { }
2131 static inline unsigned long wait_task_inactive(struct task_struct *p,
2132 					       long match_state)
2133 {
2134 	return 1;
2135 }
2136 #endif
2137 
2138 #define next_task(p) \
2139 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2140 
2141 #define for_each_process(p) \
2142 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2143 
2144 extern bool current_is_single_threaded(void);
2145 
2146 /*
2147  * Careful: do_each_thread/while_each_thread is a double loop so
2148  *          'break' will not work as expected - use goto instead.
2149  */
2150 #define do_each_thread(g, t) \
2151 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2152 
2153 #define while_each_thread(g, t) \
2154 	while ((t = next_thread(t)) != g)
2155 
2156 static inline int get_nr_threads(struct task_struct *tsk)
2157 {
2158 	return tsk->signal->nr_threads;
2159 }
2160 
2161 static inline bool thread_group_leader(struct task_struct *p)
2162 {
2163 	return p->exit_signal >= 0;
2164 }
2165 
2166 /* Do to the insanities of de_thread it is possible for a process
2167  * to have the pid of the thread group leader without actually being
2168  * the thread group leader.  For iteration through the pids in proc
2169  * all we care about is that we have a task with the appropriate
2170  * pid, we don't actually care if we have the right task.
2171  */
2172 static inline int has_group_leader_pid(struct task_struct *p)
2173 {
2174 	return p->pid == p->tgid;
2175 }
2176 
2177 static inline
2178 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2179 {
2180 	return p1->tgid == p2->tgid;
2181 }
2182 
2183 static inline struct task_struct *next_thread(const struct task_struct *p)
2184 {
2185 	return list_entry_rcu(p->thread_group.next,
2186 			      struct task_struct, thread_group);
2187 }
2188 
2189 static inline int thread_group_empty(struct task_struct *p)
2190 {
2191 	return list_empty(&p->thread_group);
2192 }
2193 
2194 #define delay_group_leader(p) \
2195 		(thread_group_leader(p) && !thread_group_empty(p))
2196 
2197 /*
2198  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2199  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2200  * pins the final release of task.io_context.  Also protects ->cpuset and
2201  * ->cgroup.subsys[]. And ->vfork_done.
2202  *
2203  * Nests both inside and outside of read_lock(&tasklist_lock).
2204  * It must not be nested with write_lock_irq(&tasklist_lock),
2205  * neither inside nor outside.
2206  */
2207 static inline void task_lock(struct task_struct *p)
2208 {
2209 	spin_lock(&p->alloc_lock);
2210 }
2211 
2212 static inline void task_unlock(struct task_struct *p)
2213 {
2214 	spin_unlock(&p->alloc_lock);
2215 }
2216 
2217 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2218 							unsigned long *flags);
2219 
2220 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2221 						       unsigned long *flags)
2222 {
2223 	struct sighand_struct *ret;
2224 
2225 	ret = __lock_task_sighand(tsk, flags);
2226 	(void)__cond_lock(&tsk->sighand->siglock, ret);
2227 	return ret;
2228 }
2229 
2230 static inline void unlock_task_sighand(struct task_struct *tsk,
2231 						unsigned long *flags)
2232 {
2233 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2234 }
2235 
2236 #ifdef CONFIG_CGROUPS
2237 static inline void threadgroup_change_begin(struct task_struct *tsk)
2238 {
2239 	down_read(&tsk->signal->group_rwsem);
2240 }
2241 static inline void threadgroup_change_end(struct task_struct *tsk)
2242 {
2243 	up_read(&tsk->signal->group_rwsem);
2244 }
2245 
2246 /**
2247  * threadgroup_lock - lock threadgroup
2248  * @tsk: member task of the threadgroup to lock
2249  *
2250  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2251  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2252  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2253  * needs to stay stable across blockable operations.
2254  *
2255  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2256  * synchronization.  While held, no new task will be added to threadgroup
2257  * and no existing live task will have its PF_EXITING set.
2258  *
2259  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2260  * sub-thread becomes a new leader.
2261  */
2262 static inline void threadgroup_lock(struct task_struct *tsk)
2263 {
2264 	down_write(&tsk->signal->group_rwsem);
2265 }
2266 
2267 /**
2268  * threadgroup_unlock - unlock threadgroup
2269  * @tsk: member task of the threadgroup to unlock
2270  *
2271  * Reverse threadgroup_lock().
2272  */
2273 static inline void threadgroup_unlock(struct task_struct *tsk)
2274 {
2275 	up_write(&tsk->signal->group_rwsem);
2276 }
2277 #else
2278 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2279 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2280 static inline void threadgroup_lock(struct task_struct *tsk) {}
2281 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2282 #endif
2283 
2284 #ifndef __HAVE_THREAD_FUNCTIONS
2285 
2286 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2287 #define task_stack_page(task)	((task)->stack)
2288 
2289 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2290 {
2291 	*task_thread_info(p) = *task_thread_info(org);
2292 	task_thread_info(p)->task = p;
2293 }
2294 
2295 static inline unsigned long *end_of_stack(struct task_struct *p)
2296 {
2297 	return (unsigned long *)(task_thread_info(p) + 1);
2298 }
2299 
2300 #endif
2301 
2302 static inline int object_is_on_stack(void *obj)
2303 {
2304 	void *stack = task_stack_page(current);
2305 
2306 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2307 }
2308 
2309 extern void thread_info_cache_init(void);
2310 
2311 #ifdef CONFIG_DEBUG_STACK_USAGE
2312 static inline unsigned long stack_not_used(struct task_struct *p)
2313 {
2314 	unsigned long *n = end_of_stack(p);
2315 
2316 	do { 	/* Skip over canary */
2317 		n++;
2318 	} while (!*n);
2319 
2320 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2321 }
2322 #endif
2323 
2324 /* set thread flags in other task's structures
2325  * - see asm/thread_info.h for TIF_xxxx flags available
2326  */
2327 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2328 {
2329 	set_ti_thread_flag(task_thread_info(tsk), flag);
2330 }
2331 
2332 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2333 {
2334 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2335 }
2336 
2337 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2338 {
2339 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2340 }
2341 
2342 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2343 {
2344 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2345 }
2346 
2347 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2348 {
2349 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2350 }
2351 
2352 static inline void set_tsk_need_resched(struct task_struct *tsk)
2353 {
2354 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2355 }
2356 
2357 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2358 {
2359 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2360 }
2361 
2362 static inline int test_tsk_need_resched(struct task_struct *tsk)
2363 {
2364 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2365 }
2366 
2367 static inline int restart_syscall(void)
2368 {
2369 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2370 	return -ERESTARTNOINTR;
2371 }
2372 
2373 static inline int signal_pending(struct task_struct *p)
2374 {
2375 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2376 }
2377 
2378 static inline int __fatal_signal_pending(struct task_struct *p)
2379 {
2380 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2381 }
2382 
2383 static inline int fatal_signal_pending(struct task_struct *p)
2384 {
2385 	return signal_pending(p) && __fatal_signal_pending(p);
2386 }
2387 
2388 static inline int signal_pending_state(long state, struct task_struct *p)
2389 {
2390 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2391 		return 0;
2392 	if (!signal_pending(p))
2393 		return 0;
2394 
2395 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2396 }
2397 
2398 static inline int need_resched(void)
2399 {
2400 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2401 }
2402 
2403 /*
2404  * cond_resched() and cond_resched_lock(): latency reduction via
2405  * explicit rescheduling in places that are safe. The return
2406  * value indicates whether a reschedule was done in fact.
2407  * cond_resched_lock() will drop the spinlock before scheduling,
2408  * cond_resched_softirq() will enable bhs before scheduling.
2409  */
2410 extern int _cond_resched(void);
2411 
2412 #define cond_resched() ({			\
2413 	__might_sleep(__FILE__, __LINE__, 0);	\
2414 	_cond_resched();			\
2415 })
2416 
2417 extern int __cond_resched_lock(spinlock_t *lock);
2418 
2419 #ifdef CONFIG_PREEMPT_COUNT
2420 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2421 #else
2422 #define PREEMPT_LOCK_OFFSET	0
2423 #endif
2424 
2425 #define cond_resched_lock(lock) ({				\
2426 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2427 	__cond_resched_lock(lock);				\
2428 })
2429 
2430 extern int __cond_resched_softirq(void);
2431 
2432 #define cond_resched_softirq() ({					\
2433 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2434 	__cond_resched_softirq();					\
2435 })
2436 
2437 static inline void cond_resched_rcu(void)
2438 {
2439 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2440 	rcu_read_unlock();
2441 	cond_resched();
2442 	rcu_read_lock();
2443 #endif
2444 }
2445 
2446 /*
2447  * Does a critical section need to be broken due to another
2448  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2449  * but a general need for low latency)
2450  */
2451 static inline int spin_needbreak(spinlock_t *lock)
2452 {
2453 #ifdef CONFIG_PREEMPT
2454 	return spin_is_contended(lock);
2455 #else
2456 	return 0;
2457 #endif
2458 }
2459 
2460 /*
2461  * Idle thread specific functions to determine the need_resched
2462  * polling state. We have two versions, one based on TS_POLLING in
2463  * thread_info.status and one based on TIF_POLLING_NRFLAG in
2464  * thread_info.flags
2465  */
2466 #ifdef TS_POLLING
2467 static inline int tsk_is_polling(struct task_struct *p)
2468 {
2469 	return task_thread_info(p)->status & TS_POLLING;
2470 }
2471 static inline void current_set_polling(void)
2472 {
2473 	current_thread_info()->status |= TS_POLLING;
2474 }
2475 
2476 static inline void current_clr_polling(void)
2477 {
2478 	current_thread_info()->status &= ~TS_POLLING;
2479 	smp_mb__after_clear_bit();
2480 }
2481 #elif defined(TIF_POLLING_NRFLAG)
2482 static inline int tsk_is_polling(struct task_struct *p)
2483 {
2484 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2485 }
2486 static inline void current_set_polling(void)
2487 {
2488 	set_thread_flag(TIF_POLLING_NRFLAG);
2489 }
2490 
2491 static inline void current_clr_polling(void)
2492 {
2493 	clear_thread_flag(TIF_POLLING_NRFLAG);
2494 }
2495 #else
2496 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2497 static inline void current_set_polling(void) { }
2498 static inline void current_clr_polling(void) { }
2499 #endif
2500 
2501 /*
2502  * Thread group CPU time accounting.
2503  */
2504 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2505 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2506 
2507 static inline void thread_group_cputime_init(struct signal_struct *sig)
2508 {
2509 	raw_spin_lock_init(&sig->cputimer.lock);
2510 }
2511 
2512 /*
2513  * Reevaluate whether the task has signals pending delivery.
2514  * Wake the task if so.
2515  * This is required every time the blocked sigset_t changes.
2516  * callers must hold sighand->siglock.
2517  */
2518 extern void recalc_sigpending_and_wake(struct task_struct *t);
2519 extern void recalc_sigpending(void);
2520 
2521 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2522 
2523 static inline void signal_wake_up(struct task_struct *t, bool resume)
2524 {
2525 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2526 }
2527 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2528 {
2529 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2530 }
2531 
2532 /*
2533  * Wrappers for p->thread_info->cpu access. No-op on UP.
2534  */
2535 #ifdef CONFIG_SMP
2536 
2537 static inline unsigned int task_cpu(const struct task_struct *p)
2538 {
2539 	return task_thread_info(p)->cpu;
2540 }
2541 
2542 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2543 
2544 #else
2545 
2546 static inline unsigned int task_cpu(const struct task_struct *p)
2547 {
2548 	return 0;
2549 }
2550 
2551 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2552 {
2553 }
2554 
2555 #endif /* CONFIG_SMP */
2556 
2557 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2558 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2559 
2560 #ifdef CONFIG_CGROUP_SCHED
2561 extern struct task_group root_task_group;
2562 #endif /* CONFIG_CGROUP_SCHED */
2563 
2564 extern int task_can_switch_user(struct user_struct *up,
2565 					struct task_struct *tsk);
2566 
2567 #ifdef CONFIG_TASK_XACCT
2568 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2569 {
2570 	tsk->ioac.rchar += amt;
2571 }
2572 
2573 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2574 {
2575 	tsk->ioac.wchar += amt;
2576 }
2577 
2578 static inline void inc_syscr(struct task_struct *tsk)
2579 {
2580 	tsk->ioac.syscr++;
2581 }
2582 
2583 static inline void inc_syscw(struct task_struct *tsk)
2584 {
2585 	tsk->ioac.syscw++;
2586 }
2587 #else
2588 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2589 {
2590 }
2591 
2592 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2593 {
2594 }
2595 
2596 static inline void inc_syscr(struct task_struct *tsk)
2597 {
2598 }
2599 
2600 static inline void inc_syscw(struct task_struct *tsk)
2601 {
2602 }
2603 #endif
2604 
2605 #ifndef TASK_SIZE_OF
2606 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2607 #endif
2608 
2609 #ifdef CONFIG_MM_OWNER
2610 extern void mm_update_next_owner(struct mm_struct *mm);
2611 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2612 #else
2613 static inline void mm_update_next_owner(struct mm_struct *mm)
2614 {
2615 }
2616 
2617 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2618 {
2619 }
2620 #endif /* CONFIG_MM_OWNER */
2621 
2622 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2623 		unsigned int limit)
2624 {
2625 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2626 }
2627 
2628 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2629 		unsigned int limit)
2630 {
2631 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2632 }
2633 
2634 static inline unsigned long rlimit(unsigned int limit)
2635 {
2636 	return task_rlimit(current, limit);
2637 }
2638 
2639 static inline unsigned long rlimit_max(unsigned int limit)
2640 {
2641 	return task_rlimit_max(current, limit);
2642 }
2643 
2644 #endif
2645