1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/kcov.h> 18 #include <linux/mutex.h> 19 #include <linux/plist.h> 20 #include <linux/hrtimer.h> 21 #include <linux/irqflags.h> 22 #include <linux/seccomp.h> 23 #include <linux/nodemask.h> 24 #include <linux/rcupdate.h> 25 #include <linux/refcount.h> 26 #include <linux/resource.h> 27 #include <linux/latencytop.h> 28 #include <linux/sched/prio.h> 29 #include <linux/sched/types.h> 30 #include <linux/signal_types.h> 31 #include <linux/mm_types_task.h> 32 #include <linux/task_io_accounting.h> 33 #include <linux/posix-timers.h> 34 #include <linux/rseq.h> 35 #include <linux/seqlock.h> 36 #include <linux/kcsan.h> 37 38 /* task_struct member predeclarations (sorted alphabetically): */ 39 struct audit_context; 40 struct backing_dev_info; 41 struct bio_list; 42 struct blk_plug; 43 struct capture_control; 44 struct cfs_rq; 45 struct fs_struct; 46 struct futex_pi_state; 47 struct io_context; 48 struct mempolicy; 49 struct nameidata; 50 struct nsproxy; 51 struct perf_event_context; 52 struct pid_namespace; 53 struct pipe_inode_info; 54 struct rcu_node; 55 struct reclaim_state; 56 struct robust_list_head; 57 struct root_domain; 58 struct rq; 59 struct sched_attr; 60 struct sched_param; 61 struct seq_file; 62 struct sighand_struct; 63 struct signal_struct; 64 struct task_delay_info; 65 struct task_group; 66 struct io_uring_task; 67 68 /* 69 * Task state bitmask. NOTE! These bits are also 70 * encoded in fs/proc/array.c: get_task_state(). 71 * 72 * We have two separate sets of flags: task->state 73 * is about runnability, while task->exit_state are 74 * about the task exiting. Confusing, but this way 75 * modifying one set can't modify the other one by 76 * mistake. 77 */ 78 79 /* Used in tsk->state: */ 80 #define TASK_RUNNING 0x0000 81 #define TASK_INTERRUPTIBLE 0x0001 82 #define TASK_UNINTERRUPTIBLE 0x0002 83 #define __TASK_STOPPED 0x0004 84 #define __TASK_TRACED 0x0008 85 /* Used in tsk->exit_state: */ 86 #define EXIT_DEAD 0x0010 87 #define EXIT_ZOMBIE 0x0020 88 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 89 /* Used in tsk->state again: */ 90 #define TASK_PARKED 0x0040 91 #define TASK_DEAD 0x0080 92 #define TASK_WAKEKILL 0x0100 93 #define TASK_WAKING 0x0200 94 #define TASK_NOLOAD 0x0400 95 #define TASK_NEW 0x0800 96 #define TASK_STATE_MAX 0x1000 97 98 /* Convenience macros for the sake of set_current_state: */ 99 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 100 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 101 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 102 103 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 104 105 /* Convenience macros for the sake of wake_up(): */ 106 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 107 108 /* get_task_state(): */ 109 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 110 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 111 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 112 TASK_PARKED) 113 114 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 115 116 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 117 118 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 119 120 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 121 122 /* 123 * Special states are those that do not use the normal wait-loop pattern. See 124 * the comment with set_special_state(). 125 */ 126 #define is_special_task_state(state) \ 127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 128 129 #define __set_current_state(state_value) \ 130 do { \ 131 WARN_ON_ONCE(is_special_task_state(state_value));\ 132 current->task_state_change = _THIS_IP_; \ 133 current->state = (state_value); \ 134 } while (0) 135 136 #define set_current_state(state_value) \ 137 do { \ 138 WARN_ON_ONCE(is_special_task_state(state_value));\ 139 current->task_state_change = _THIS_IP_; \ 140 smp_store_mb(current->state, (state_value)); \ 141 } while (0) 142 143 #define set_special_state(state_value) \ 144 do { \ 145 unsigned long flags; /* may shadow */ \ 146 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 147 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 148 current->task_state_change = _THIS_IP_; \ 149 current->state = (state_value); \ 150 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 151 } while (0) 152 #else 153 /* 154 * set_current_state() includes a barrier so that the write of current->state 155 * is correctly serialised wrt the caller's subsequent test of whether to 156 * actually sleep: 157 * 158 * for (;;) { 159 * set_current_state(TASK_UNINTERRUPTIBLE); 160 * if (CONDITION) 161 * break; 162 * 163 * schedule(); 164 * } 165 * __set_current_state(TASK_RUNNING); 166 * 167 * If the caller does not need such serialisation (because, for instance, the 168 * CONDITION test and condition change and wakeup are under the same lock) then 169 * use __set_current_state(). 170 * 171 * The above is typically ordered against the wakeup, which does: 172 * 173 * CONDITION = 1; 174 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 175 * 176 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before 177 * accessing p->state. 178 * 179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 182 * 183 * However, with slightly different timing the wakeup TASK_RUNNING store can 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 185 * a problem either because that will result in one extra go around the loop 186 * and our @cond test will save the day. 187 * 188 * Also see the comments of try_to_wake_up(). 189 */ 190 #define __set_current_state(state_value) \ 191 current->state = (state_value) 192 193 #define set_current_state(state_value) \ 194 smp_store_mb(current->state, (state_value)) 195 196 /* 197 * set_special_state() should be used for those states when the blocking task 198 * can not use the regular condition based wait-loop. In that case we must 199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 200 * will not collide with our state change. 201 */ 202 #define set_special_state(state_value) \ 203 do { \ 204 unsigned long flags; /* may shadow */ \ 205 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 206 current->state = (state_value); \ 207 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 208 } while (0) 209 210 #endif 211 212 /* Task command name length: */ 213 #define TASK_COMM_LEN 16 214 215 extern void scheduler_tick(void); 216 217 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 218 219 extern long schedule_timeout(long timeout); 220 extern long schedule_timeout_interruptible(long timeout); 221 extern long schedule_timeout_killable(long timeout); 222 extern long schedule_timeout_uninterruptible(long timeout); 223 extern long schedule_timeout_idle(long timeout); 224 asmlinkage void schedule(void); 225 extern void schedule_preempt_disabled(void); 226 asmlinkage void preempt_schedule_irq(void); 227 228 extern int __must_check io_schedule_prepare(void); 229 extern void io_schedule_finish(int token); 230 extern long io_schedule_timeout(long timeout); 231 extern void io_schedule(void); 232 233 /** 234 * struct prev_cputime - snapshot of system and user cputime 235 * @utime: time spent in user mode 236 * @stime: time spent in system mode 237 * @lock: protects the above two fields 238 * 239 * Stores previous user/system time values such that we can guarantee 240 * monotonicity. 241 */ 242 struct prev_cputime { 243 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 244 u64 utime; 245 u64 stime; 246 raw_spinlock_t lock; 247 #endif 248 }; 249 250 enum vtime_state { 251 /* Task is sleeping or running in a CPU with VTIME inactive: */ 252 VTIME_INACTIVE = 0, 253 /* Task is idle */ 254 VTIME_IDLE, 255 /* Task runs in kernelspace in a CPU with VTIME active: */ 256 VTIME_SYS, 257 /* Task runs in userspace in a CPU with VTIME active: */ 258 VTIME_USER, 259 /* Task runs as guests in a CPU with VTIME active: */ 260 VTIME_GUEST, 261 }; 262 263 struct vtime { 264 seqcount_t seqcount; 265 unsigned long long starttime; 266 enum vtime_state state; 267 unsigned int cpu; 268 u64 utime; 269 u64 stime; 270 u64 gtime; 271 }; 272 273 /* 274 * Utilization clamp constraints. 275 * @UCLAMP_MIN: Minimum utilization 276 * @UCLAMP_MAX: Maximum utilization 277 * @UCLAMP_CNT: Utilization clamp constraints count 278 */ 279 enum uclamp_id { 280 UCLAMP_MIN = 0, 281 UCLAMP_MAX, 282 UCLAMP_CNT 283 }; 284 285 #ifdef CONFIG_SMP 286 extern struct root_domain def_root_domain; 287 extern struct mutex sched_domains_mutex; 288 #endif 289 290 struct sched_info { 291 #ifdef CONFIG_SCHED_INFO 292 /* Cumulative counters: */ 293 294 /* # of times we have run on this CPU: */ 295 unsigned long pcount; 296 297 /* Time spent waiting on a runqueue: */ 298 unsigned long long run_delay; 299 300 /* Timestamps: */ 301 302 /* When did we last run on a CPU? */ 303 unsigned long long last_arrival; 304 305 /* When were we last queued to run? */ 306 unsigned long long last_queued; 307 308 #endif /* CONFIG_SCHED_INFO */ 309 }; 310 311 /* 312 * Integer metrics need fixed point arithmetic, e.g., sched/fair 313 * has a few: load, load_avg, util_avg, freq, and capacity. 314 * 315 * We define a basic fixed point arithmetic range, and then formalize 316 * all these metrics based on that basic range. 317 */ 318 # define SCHED_FIXEDPOINT_SHIFT 10 319 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 320 321 /* Increase resolution of cpu_capacity calculations */ 322 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 323 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 324 325 struct load_weight { 326 unsigned long weight; 327 u32 inv_weight; 328 }; 329 330 /** 331 * struct util_est - Estimation utilization of FAIR tasks 332 * @enqueued: instantaneous estimated utilization of a task/cpu 333 * @ewma: the Exponential Weighted Moving Average (EWMA) 334 * utilization of a task 335 * 336 * Support data structure to track an Exponential Weighted Moving Average 337 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 338 * average each time a task completes an activation. Sample's weight is chosen 339 * so that the EWMA will be relatively insensitive to transient changes to the 340 * task's workload. 341 * 342 * The enqueued attribute has a slightly different meaning for tasks and cpus: 343 * - task: the task's util_avg at last task dequeue time 344 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 345 * Thus, the util_est.enqueued of a task represents the contribution on the 346 * estimated utilization of the CPU where that task is currently enqueued. 347 * 348 * Only for tasks we track a moving average of the past instantaneous 349 * estimated utilization. This allows to absorb sporadic drops in utilization 350 * of an otherwise almost periodic task. 351 */ 352 struct util_est { 353 unsigned int enqueued; 354 unsigned int ewma; 355 #define UTIL_EST_WEIGHT_SHIFT 2 356 } __attribute__((__aligned__(sizeof(u64)))); 357 358 /* 359 * The load/runnable/util_avg accumulates an infinite geometric series 360 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). 361 * 362 * [load_avg definition] 363 * 364 * load_avg = runnable% * scale_load_down(load) 365 * 366 * [runnable_avg definition] 367 * 368 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE 369 * 370 * [util_avg definition] 371 * 372 * util_avg = running% * SCHED_CAPACITY_SCALE 373 * 374 * where runnable% is the time ratio that a sched_entity is runnable and 375 * running% the time ratio that a sched_entity is running. 376 * 377 * For cfs_rq, they are the aggregated values of all runnable and blocked 378 * sched_entities. 379 * 380 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU 381 * capacity scaling. The scaling is done through the rq_clock_pelt that is used 382 * for computing those signals (see update_rq_clock_pelt()) 383 * 384 * N.B., the above ratios (runnable% and running%) themselves are in the 385 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 386 * to as large a range as necessary. This is for example reflected by 387 * util_avg's SCHED_CAPACITY_SCALE. 388 * 389 * [Overflow issue] 390 * 391 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 392 * with the highest load (=88761), always runnable on a single cfs_rq, 393 * and should not overflow as the number already hits PID_MAX_LIMIT. 394 * 395 * For all other cases (including 32-bit kernels), struct load_weight's 396 * weight will overflow first before we do, because: 397 * 398 * Max(load_avg) <= Max(load.weight) 399 * 400 * Then it is the load_weight's responsibility to consider overflow 401 * issues. 402 */ 403 struct sched_avg { 404 u64 last_update_time; 405 u64 load_sum; 406 u64 runnable_sum; 407 u32 util_sum; 408 u32 period_contrib; 409 unsigned long load_avg; 410 unsigned long runnable_avg; 411 unsigned long util_avg; 412 struct util_est util_est; 413 } ____cacheline_aligned; 414 415 struct sched_statistics { 416 #ifdef CONFIG_SCHEDSTATS 417 u64 wait_start; 418 u64 wait_max; 419 u64 wait_count; 420 u64 wait_sum; 421 u64 iowait_count; 422 u64 iowait_sum; 423 424 u64 sleep_start; 425 u64 sleep_max; 426 s64 sum_sleep_runtime; 427 428 u64 block_start; 429 u64 block_max; 430 u64 exec_max; 431 u64 slice_max; 432 433 u64 nr_migrations_cold; 434 u64 nr_failed_migrations_affine; 435 u64 nr_failed_migrations_running; 436 u64 nr_failed_migrations_hot; 437 u64 nr_forced_migrations; 438 439 u64 nr_wakeups; 440 u64 nr_wakeups_sync; 441 u64 nr_wakeups_migrate; 442 u64 nr_wakeups_local; 443 u64 nr_wakeups_remote; 444 u64 nr_wakeups_affine; 445 u64 nr_wakeups_affine_attempts; 446 u64 nr_wakeups_passive; 447 u64 nr_wakeups_idle; 448 #endif 449 }; 450 451 struct sched_entity { 452 /* For load-balancing: */ 453 struct load_weight load; 454 struct rb_node run_node; 455 struct list_head group_node; 456 unsigned int on_rq; 457 458 u64 exec_start; 459 u64 sum_exec_runtime; 460 u64 vruntime; 461 u64 prev_sum_exec_runtime; 462 463 u64 nr_migrations; 464 465 struct sched_statistics statistics; 466 467 #ifdef CONFIG_FAIR_GROUP_SCHED 468 int depth; 469 struct sched_entity *parent; 470 /* rq on which this entity is (to be) queued: */ 471 struct cfs_rq *cfs_rq; 472 /* rq "owned" by this entity/group: */ 473 struct cfs_rq *my_q; 474 /* cached value of my_q->h_nr_running */ 475 unsigned long runnable_weight; 476 #endif 477 478 #ifdef CONFIG_SMP 479 /* 480 * Per entity load average tracking. 481 * 482 * Put into separate cache line so it does not 483 * collide with read-mostly values above. 484 */ 485 struct sched_avg avg; 486 #endif 487 }; 488 489 struct sched_rt_entity { 490 struct list_head run_list; 491 unsigned long timeout; 492 unsigned long watchdog_stamp; 493 unsigned int time_slice; 494 unsigned short on_rq; 495 unsigned short on_list; 496 497 struct sched_rt_entity *back; 498 #ifdef CONFIG_RT_GROUP_SCHED 499 struct sched_rt_entity *parent; 500 /* rq on which this entity is (to be) queued: */ 501 struct rt_rq *rt_rq; 502 /* rq "owned" by this entity/group: */ 503 struct rt_rq *my_q; 504 #endif 505 } __randomize_layout; 506 507 struct sched_dl_entity { 508 struct rb_node rb_node; 509 510 /* 511 * Original scheduling parameters. Copied here from sched_attr 512 * during sched_setattr(), they will remain the same until 513 * the next sched_setattr(). 514 */ 515 u64 dl_runtime; /* Maximum runtime for each instance */ 516 u64 dl_deadline; /* Relative deadline of each instance */ 517 u64 dl_period; /* Separation of two instances (period) */ 518 u64 dl_bw; /* dl_runtime / dl_period */ 519 u64 dl_density; /* dl_runtime / dl_deadline */ 520 521 /* 522 * Actual scheduling parameters. Initialized with the values above, 523 * they are continuously updated during task execution. Note that 524 * the remaining runtime could be < 0 in case we are in overrun. 525 */ 526 s64 runtime; /* Remaining runtime for this instance */ 527 u64 deadline; /* Absolute deadline for this instance */ 528 unsigned int flags; /* Specifying the scheduler behaviour */ 529 530 /* 531 * Some bool flags: 532 * 533 * @dl_throttled tells if we exhausted the runtime. If so, the 534 * task has to wait for a replenishment to be performed at the 535 * next firing of dl_timer. 536 * 537 * @dl_boosted tells if we are boosted due to DI. If so we are 538 * outside bandwidth enforcement mechanism (but only until we 539 * exit the critical section); 540 * 541 * @dl_yielded tells if task gave up the CPU before consuming 542 * all its available runtime during the last job. 543 * 544 * @dl_non_contending tells if the task is inactive while still 545 * contributing to the active utilization. In other words, it 546 * indicates if the inactive timer has been armed and its handler 547 * has not been executed yet. This flag is useful to avoid race 548 * conditions between the inactive timer handler and the wakeup 549 * code. 550 * 551 * @dl_overrun tells if the task asked to be informed about runtime 552 * overruns. 553 */ 554 unsigned int dl_throttled : 1; 555 unsigned int dl_boosted : 1; 556 unsigned int dl_yielded : 1; 557 unsigned int dl_non_contending : 1; 558 unsigned int dl_overrun : 1; 559 560 /* 561 * Bandwidth enforcement timer. Each -deadline task has its 562 * own bandwidth to be enforced, thus we need one timer per task. 563 */ 564 struct hrtimer dl_timer; 565 566 /* 567 * Inactive timer, responsible for decreasing the active utilization 568 * at the "0-lag time". When a -deadline task blocks, it contributes 569 * to GRUB's active utilization until the "0-lag time", hence a 570 * timer is needed to decrease the active utilization at the correct 571 * time. 572 */ 573 struct hrtimer inactive_timer; 574 }; 575 576 #ifdef CONFIG_UCLAMP_TASK 577 /* Number of utilization clamp buckets (shorter alias) */ 578 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 579 580 /* 581 * Utilization clamp for a scheduling entity 582 * @value: clamp value "assigned" to a se 583 * @bucket_id: bucket index corresponding to the "assigned" value 584 * @active: the se is currently refcounted in a rq's bucket 585 * @user_defined: the requested clamp value comes from user-space 586 * 587 * The bucket_id is the index of the clamp bucket matching the clamp value 588 * which is pre-computed and stored to avoid expensive integer divisions from 589 * the fast path. 590 * 591 * The active bit is set whenever a task has got an "effective" value assigned, 592 * which can be different from the clamp value "requested" from user-space. 593 * This allows to know a task is refcounted in the rq's bucket corresponding 594 * to the "effective" bucket_id. 595 * 596 * The user_defined bit is set whenever a task has got a task-specific clamp 597 * value requested from userspace, i.e. the system defaults apply to this task 598 * just as a restriction. This allows to relax default clamps when a less 599 * restrictive task-specific value has been requested, thus allowing to 600 * implement a "nice" semantic. For example, a task running with a 20% 601 * default boost can still drop its own boosting to 0%. 602 */ 603 struct uclamp_se { 604 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 605 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 606 unsigned int active : 1; 607 unsigned int user_defined : 1; 608 }; 609 #endif /* CONFIG_UCLAMP_TASK */ 610 611 union rcu_special { 612 struct { 613 u8 blocked; 614 u8 need_qs; 615 u8 exp_hint; /* Hint for performance. */ 616 u8 need_mb; /* Readers need smp_mb(). */ 617 } b; /* Bits. */ 618 u32 s; /* Set of bits. */ 619 }; 620 621 enum perf_event_task_context { 622 perf_invalid_context = -1, 623 perf_hw_context = 0, 624 perf_sw_context, 625 perf_nr_task_contexts, 626 }; 627 628 struct wake_q_node { 629 struct wake_q_node *next; 630 }; 631 632 struct task_struct { 633 #ifdef CONFIG_THREAD_INFO_IN_TASK 634 /* 635 * For reasons of header soup (see current_thread_info()), this 636 * must be the first element of task_struct. 637 */ 638 struct thread_info thread_info; 639 #endif 640 /* -1 unrunnable, 0 runnable, >0 stopped: */ 641 volatile long state; 642 643 /* 644 * This begins the randomizable portion of task_struct. Only 645 * scheduling-critical items should be added above here. 646 */ 647 randomized_struct_fields_start 648 649 void *stack; 650 refcount_t usage; 651 /* Per task flags (PF_*), defined further below: */ 652 unsigned int flags; 653 unsigned int ptrace; 654 655 #ifdef CONFIG_SMP 656 int on_cpu; 657 struct __call_single_node wake_entry; 658 #ifdef CONFIG_THREAD_INFO_IN_TASK 659 /* Current CPU: */ 660 unsigned int cpu; 661 #endif 662 unsigned int wakee_flips; 663 unsigned long wakee_flip_decay_ts; 664 struct task_struct *last_wakee; 665 666 /* 667 * recent_used_cpu is initially set as the last CPU used by a task 668 * that wakes affine another task. Waker/wakee relationships can 669 * push tasks around a CPU where each wakeup moves to the next one. 670 * Tracking a recently used CPU allows a quick search for a recently 671 * used CPU that may be idle. 672 */ 673 int recent_used_cpu; 674 int wake_cpu; 675 #endif 676 int on_rq; 677 678 int prio; 679 int static_prio; 680 int normal_prio; 681 unsigned int rt_priority; 682 683 const struct sched_class *sched_class; 684 struct sched_entity se; 685 struct sched_rt_entity rt; 686 #ifdef CONFIG_CGROUP_SCHED 687 struct task_group *sched_task_group; 688 #endif 689 struct sched_dl_entity dl; 690 691 #ifdef CONFIG_UCLAMP_TASK 692 /* 693 * Clamp values requested for a scheduling entity. 694 * Must be updated with task_rq_lock() held. 695 */ 696 struct uclamp_se uclamp_req[UCLAMP_CNT]; 697 /* 698 * Effective clamp values used for a scheduling entity. 699 * Must be updated with task_rq_lock() held. 700 */ 701 struct uclamp_se uclamp[UCLAMP_CNT]; 702 #endif 703 704 #ifdef CONFIG_PREEMPT_NOTIFIERS 705 /* List of struct preempt_notifier: */ 706 struct hlist_head preempt_notifiers; 707 #endif 708 709 #ifdef CONFIG_BLK_DEV_IO_TRACE 710 unsigned int btrace_seq; 711 #endif 712 713 unsigned int policy; 714 int nr_cpus_allowed; 715 const cpumask_t *cpus_ptr; 716 cpumask_t cpus_mask; 717 718 #ifdef CONFIG_PREEMPT_RCU 719 int rcu_read_lock_nesting; 720 union rcu_special rcu_read_unlock_special; 721 struct list_head rcu_node_entry; 722 struct rcu_node *rcu_blocked_node; 723 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 724 725 #ifdef CONFIG_TASKS_RCU 726 unsigned long rcu_tasks_nvcsw; 727 u8 rcu_tasks_holdout; 728 u8 rcu_tasks_idx; 729 int rcu_tasks_idle_cpu; 730 struct list_head rcu_tasks_holdout_list; 731 #endif /* #ifdef CONFIG_TASKS_RCU */ 732 733 #ifdef CONFIG_TASKS_TRACE_RCU 734 int trc_reader_nesting; 735 int trc_ipi_to_cpu; 736 union rcu_special trc_reader_special; 737 bool trc_reader_checked; 738 struct list_head trc_holdout_list; 739 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 740 741 struct sched_info sched_info; 742 743 struct list_head tasks; 744 #ifdef CONFIG_SMP 745 struct plist_node pushable_tasks; 746 struct rb_node pushable_dl_tasks; 747 #endif 748 749 struct mm_struct *mm; 750 struct mm_struct *active_mm; 751 752 /* Per-thread vma caching: */ 753 struct vmacache vmacache; 754 755 #ifdef SPLIT_RSS_COUNTING 756 struct task_rss_stat rss_stat; 757 #endif 758 int exit_state; 759 int exit_code; 760 int exit_signal; 761 /* The signal sent when the parent dies: */ 762 int pdeath_signal; 763 /* JOBCTL_*, siglock protected: */ 764 unsigned long jobctl; 765 766 /* Used for emulating ABI behavior of previous Linux versions: */ 767 unsigned int personality; 768 769 /* Scheduler bits, serialized by scheduler locks: */ 770 unsigned sched_reset_on_fork:1; 771 unsigned sched_contributes_to_load:1; 772 unsigned sched_migrated:1; 773 unsigned sched_remote_wakeup:1; 774 #ifdef CONFIG_PSI 775 unsigned sched_psi_wake_requeue:1; 776 #endif 777 778 /* Force alignment to the next boundary: */ 779 unsigned :0; 780 781 /* Unserialized, strictly 'current' */ 782 783 /* Bit to tell LSMs we're in execve(): */ 784 unsigned in_execve:1; 785 unsigned in_iowait:1; 786 #ifndef TIF_RESTORE_SIGMASK 787 unsigned restore_sigmask:1; 788 #endif 789 #ifdef CONFIG_MEMCG 790 unsigned in_user_fault:1; 791 #endif 792 #ifdef CONFIG_COMPAT_BRK 793 unsigned brk_randomized:1; 794 #endif 795 #ifdef CONFIG_CGROUPS 796 /* disallow userland-initiated cgroup migration */ 797 unsigned no_cgroup_migration:1; 798 /* task is frozen/stopped (used by the cgroup freezer) */ 799 unsigned frozen:1; 800 #endif 801 #ifdef CONFIG_BLK_CGROUP 802 unsigned use_memdelay:1; 803 #endif 804 #ifdef CONFIG_PSI 805 /* Stalled due to lack of memory */ 806 unsigned in_memstall:1; 807 #endif 808 809 unsigned long atomic_flags; /* Flags requiring atomic access. */ 810 811 struct restart_block restart_block; 812 813 pid_t pid; 814 pid_t tgid; 815 816 #ifdef CONFIG_STACKPROTECTOR 817 /* Canary value for the -fstack-protector GCC feature: */ 818 unsigned long stack_canary; 819 #endif 820 /* 821 * Pointers to the (original) parent process, youngest child, younger sibling, 822 * older sibling, respectively. (p->father can be replaced with 823 * p->real_parent->pid) 824 */ 825 826 /* Real parent process: */ 827 struct task_struct __rcu *real_parent; 828 829 /* Recipient of SIGCHLD, wait4() reports: */ 830 struct task_struct __rcu *parent; 831 832 /* 833 * Children/sibling form the list of natural children: 834 */ 835 struct list_head children; 836 struct list_head sibling; 837 struct task_struct *group_leader; 838 839 /* 840 * 'ptraced' is the list of tasks this task is using ptrace() on. 841 * 842 * This includes both natural children and PTRACE_ATTACH targets. 843 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 844 */ 845 struct list_head ptraced; 846 struct list_head ptrace_entry; 847 848 /* PID/PID hash table linkage. */ 849 struct pid *thread_pid; 850 struct hlist_node pid_links[PIDTYPE_MAX]; 851 struct list_head thread_group; 852 struct list_head thread_node; 853 854 struct completion *vfork_done; 855 856 /* CLONE_CHILD_SETTID: */ 857 int __user *set_child_tid; 858 859 /* CLONE_CHILD_CLEARTID: */ 860 int __user *clear_child_tid; 861 862 u64 utime; 863 u64 stime; 864 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 865 u64 utimescaled; 866 u64 stimescaled; 867 #endif 868 u64 gtime; 869 struct prev_cputime prev_cputime; 870 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 871 struct vtime vtime; 872 #endif 873 874 #ifdef CONFIG_NO_HZ_FULL 875 atomic_t tick_dep_mask; 876 #endif 877 /* Context switch counts: */ 878 unsigned long nvcsw; 879 unsigned long nivcsw; 880 881 /* Monotonic time in nsecs: */ 882 u64 start_time; 883 884 /* Boot based time in nsecs: */ 885 u64 start_boottime; 886 887 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 888 unsigned long min_flt; 889 unsigned long maj_flt; 890 891 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 892 struct posix_cputimers posix_cputimers; 893 894 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 895 struct posix_cputimers_work posix_cputimers_work; 896 #endif 897 898 /* Process credentials: */ 899 900 /* Tracer's credentials at attach: */ 901 const struct cred __rcu *ptracer_cred; 902 903 /* Objective and real subjective task credentials (COW): */ 904 const struct cred __rcu *real_cred; 905 906 /* Effective (overridable) subjective task credentials (COW): */ 907 const struct cred __rcu *cred; 908 909 #ifdef CONFIG_KEYS 910 /* Cached requested key. */ 911 struct key *cached_requested_key; 912 #endif 913 914 /* 915 * executable name, excluding path. 916 * 917 * - normally initialized setup_new_exec() 918 * - access it with [gs]et_task_comm() 919 * - lock it with task_lock() 920 */ 921 char comm[TASK_COMM_LEN]; 922 923 struct nameidata *nameidata; 924 925 #ifdef CONFIG_SYSVIPC 926 struct sysv_sem sysvsem; 927 struct sysv_shm sysvshm; 928 #endif 929 #ifdef CONFIG_DETECT_HUNG_TASK 930 unsigned long last_switch_count; 931 unsigned long last_switch_time; 932 #endif 933 /* Filesystem information: */ 934 struct fs_struct *fs; 935 936 /* Open file information: */ 937 struct files_struct *files; 938 939 #ifdef CONFIG_IO_URING 940 struct io_uring_task *io_uring; 941 #endif 942 943 /* Namespaces: */ 944 struct nsproxy *nsproxy; 945 946 /* Signal handlers: */ 947 struct signal_struct *signal; 948 struct sighand_struct __rcu *sighand; 949 sigset_t blocked; 950 sigset_t real_blocked; 951 /* Restored if set_restore_sigmask() was used: */ 952 sigset_t saved_sigmask; 953 struct sigpending pending; 954 unsigned long sas_ss_sp; 955 size_t sas_ss_size; 956 unsigned int sas_ss_flags; 957 958 struct callback_head *task_works; 959 960 #ifdef CONFIG_AUDIT 961 #ifdef CONFIG_AUDITSYSCALL 962 struct audit_context *audit_context; 963 #endif 964 kuid_t loginuid; 965 unsigned int sessionid; 966 #endif 967 struct seccomp seccomp; 968 969 /* Thread group tracking: */ 970 u64 parent_exec_id; 971 u64 self_exec_id; 972 973 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 974 spinlock_t alloc_lock; 975 976 /* Protection of the PI data structures: */ 977 raw_spinlock_t pi_lock; 978 979 struct wake_q_node wake_q; 980 981 #ifdef CONFIG_RT_MUTEXES 982 /* PI waiters blocked on a rt_mutex held by this task: */ 983 struct rb_root_cached pi_waiters; 984 /* Updated under owner's pi_lock and rq lock */ 985 struct task_struct *pi_top_task; 986 /* Deadlock detection and priority inheritance handling: */ 987 struct rt_mutex_waiter *pi_blocked_on; 988 #endif 989 990 #ifdef CONFIG_DEBUG_MUTEXES 991 /* Mutex deadlock detection: */ 992 struct mutex_waiter *blocked_on; 993 #endif 994 995 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 996 int non_block_count; 997 #endif 998 999 #ifdef CONFIG_TRACE_IRQFLAGS 1000 struct irqtrace_events irqtrace; 1001 unsigned int hardirq_threaded; 1002 u64 hardirq_chain_key; 1003 int softirqs_enabled; 1004 int softirq_context; 1005 int irq_config; 1006 #endif 1007 1008 #ifdef CONFIG_LOCKDEP 1009 # define MAX_LOCK_DEPTH 48UL 1010 u64 curr_chain_key; 1011 int lockdep_depth; 1012 unsigned int lockdep_recursion; 1013 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1014 #endif 1015 1016 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP) 1017 unsigned int in_ubsan; 1018 #endif 1019 1020 /* Journalling filesystem info: */ 1021 void *journal_info; 1022 1023 /* Stacked block device info: */ 1024 struct bio_list *bio_list; 1025 1026 #ifdef CONFIG_BLOCK 1027 /* Stack plugging: */ 1028 struct blk_plug *plug; 1029 #endif 1030 1031 /* VM state: */ 1032 struct reclaim_state *reclaim_state; 1033 1034 struct backing_dev_info *backing_dev_info; 1035 1036 struct io_context *io_context; 1037 1038 #ifdef CONFIG_COMPACTION 1039 struct capture_control *capture_control; 1040 #endif 1041 /* Ptrace state: */ 1042 unsigned long ptrace_message; 1043 kernel_siginfo_t *last_siginfo; 1044 1045 struct task_io_accounting ioac; 1046 #ifdef CONFIG_PSI 1047 /* Pressure stall state */ 1048 unsigned int psi_flags; 1049 #endif 1050 #ifdef CONFIG_TASK_XACCT 1051 /* Accumulated RSS usage: */ 1052 u64 acct_rss_mem1; 1053 /* Accumulated virtual memory usage: */ 1054 u64 acct_vm_mem1; 1055 /* stime + utime since last update: */ 1056 u64 acct_timexpd; 1057 #endif 1058 #ifdef CONFIG_CPUSETS 1059 /* Protected by ->alloc_lock: */ 1060 nodemask_t mems_allowed; 1061 /* Seqence number to catch updates: */ 1062 seqcount_spinlock_t mems_allowed_seq; 1063 int cpuset_mem_spread_rotor; 1064 int cpuset_slab_spread_rotor; 1065 #endif 1066 #ifdef CONFIG_CGROUPS 1067 /* Control Group info protected by css_set_lock: */ 1068 struct css_set __rcu *cgroups; 1069 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1070 struct list_head cg_list; 1071 #endif 1072 #ifdef CONFIG_X86_CPU_RESCTRL 1073 u32 closid; 1074 u32 rmid; 1075 #endif 1076 #ifdef CONFIG_FUTEX 1077 struct robust_list_head __user *robust_list; 1078 #ifdef CONFIG_COMPAT 1079 struct compat_robust_list_head __user *compat_robust_list; 1080 #endif 1081 struct list_head pi_state_list; 1082 struct futex_pi_state *pi_state_cache; 1083 struct mutex futex_exit_mutex; 1084 unsigned int futex_state; 1085 #endif 1086 #ifdef CONFIG_PERF_EVENTS 1087 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1088 struct mutex perf_event_mutex; 1089 struct list_head perf_event_list; 1090 #endif 1091 #ifdef CONFIG_DEBUG_PREEMPT 1092 unsigned long preempt_disable_ip; 1093 #endif 1094 #ifdef CONFIG_NUMA 1095 /* Protected by alloc_lock: */ 1096 struct mempolicy *mempolicy; 1097 short il_prev; 1098 short pref_node_fork; 1099 #endif 1100 #ifdef CONFIG_NUMA_BALANCING 1101 int numa_scan_seq; 1102 unsigned int numa_scan_period; 1103 unsigned int numa_scan_period_max; 1104 int numa_preferred_nid; 1105 unsigned long numa_migrate_retry; 1106 /* Migration stamp: */ 1107 u64 node_stamp; 1108 u64 last_task_numa_placement; 1109 u64 last_sum_exec_runtime; 1110 struct callback_head numa_work; 1111 1112 /* 1113 * This pointer is only modified for current in syscall and 1114 * pagefault context (and for tasks being destroyed), so it can be read 1115 * from any of the following contexts: 1116 * - RCU read-side critical section 1117 * - current->numa_group from everywhere 1118 * - task's runqueue locked, task not running 1119 */ 1120 struct numa_group __rcu *numa_group; 1121 1122 /* 1123 * numa_faults is an array split into four regions: 1124 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1125 * in this precise order. 1126 * 1127 * faults_memory: Exponential decaying average of faults on a per-node 1128 * basis. Scheduling placement decisions are made based on these 1129 * counts. The values remain static for the duration of a PTE scan. 1130 * faults_cpu: Track the nodes the process was running on when a NUMA 1131 * hinting fault was incurred. 1132 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1133 * during the current scan window. When the scan completes, the counts 1134 * in faults_memory and faults_cpu decay and these values are copied. 1135 */ 1136 unsigned long *numa_faults; 1137 unsigned long total_numa_faults; 1138 1139 /* 1140 * numa_faults_locality tracks if faults recorded during the last 1141 * scan window were remote/local or failed to migrate. The task scan 1142 * period is adapted based on the locality of the faults with different 1143 * weights depending on whether they were shared or private faults 1144 */ 1145 unsigned long numa_faults_locality[3]; 1146 1147 unsigned long numa_pages_migrated; 1148 #endif /* CONFIG_NUMA_BALANCING */ 1149 1150 #ifdef CONFIG_RSEQ 1151 struct rseq __user *rseq; 1152 u32 rseq_sig; 1153 /* 1154 * RmW on rseq_event_mask must be performed atomically 1155 * with respect to preemption. 1156 */ 1157 unsigned long rseq_event_mask; 1158 #endif 1159 1160 struct tlbflush_unmap_batch tlb_ubc; 1161 1162 union { 1163 refcount_t rcu_users; 1164 struct rcu_head rcu; 1165 }; 1166 1167 /* Cache last used pipe for splice(): */ 1168 struct pipe_inode_info *splice_pipe; 1169 1170 struct page_frag task_frag; 1171 1172 #ifdef CONFIG_TASK_DELAY_ACCT 1173 struct task_delay_info *delays; 1174 #endif 1175 1176 #ifdef CONFIG_FAULT_INJECTION 1177 int make_it_fail; 1178 unsigned int fail_nth; 1179 #endif 1180 /* 1181 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1182 * balance_dirty_pages() for a dirty throttling pause: 1183 */ 1184 int nr_dirtied; 1185 int nr_dirtied_pause; 1186 /* Start of a write-and-pause period: */ 1187 unsigned long dirty_paused_when; 1188 1189 #ifdef CONFIG_LATENCYTOP 1190 int latency_record_count; 1191 struct latency_record latency_record[LT_SAVECOUNT]; 1192 #endif 1193 /* 1194 * Time slack values; these are used to round up poll() and 1195 * select() etc timeout values. These are in nanoseconds. 1196 */ 1197 u64 timer_slack_ns; 1198 u64 default_timer_slack_ns; 1199 1200 #ifdef CONFIG_KASAN 1201 unsigned int kasan_depth; 1202 #endif 1203 1204 #ifdef CONFIG_KCSAN 1205 struct kcsan_ctx kcsan_ctx; 1206 #ifdef CONFIG_TRACE_IRQFLAGS 1207 struct irqtrace_events kcsan_save_irqtrace; 1208 #endif 1209 #endif 1210 1211 #if IS_ENABLED(CONFIG_KUNIT) 1212 struct kunit *kunit_test; 1213 #endif 1214 1215 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1216 /* Index of current stored address in ret_stack: */ 1217 int curr_ret_stack; 1218 int curr_ret_depth; 1219 1220 /* Stack of return addresses for return function tracing: */ 1221 struct ftrace_ret_stack *ret_stack; 1222 1223 /* Timestamp for last schedule: */ 1224 unsigned long long ftrace_timestamp; 1225 1226 /* 1227 * Number of functions that haven't been traced 1228 * because of depth overrun: 1229 */ 1230 atomic_t trace_overrun; 1231 1232 /* Pause tracing: */ 1233 atomic_t tracing_graph_pause; 1234 #endif 1235 1236 #ifdef CONFIG_TRACING 1237 /* State flags for use by tracers: */ 1238 unsigned long trace; 1239 1240 /* Bitmask and counter of trace recursion: */ 1241 unsigned long trace_recursion; 1242 #endif /* CONFIG_TRACING */ 1243 1244 #ifdef CONFIG_KCOV 1245 /* See kernel/kcov.c for more details. */ 1246 1247 /* Coverage collection mode enabled for this task (0 if disabled): */ 1248 unsigned int kcov_mode; 1249 1250 /* Size of the kcov_area: */ 1251 unsigned int kcov_size; 1252 1253 /* Buffer for coverage collection: */ 1254 void *kcov_area; 1255 1256 /* KCOV descriptor wired with this task or NULL: */ 1257 struct kcov *kcov; 1258 1259 /* KCOV common handle for remote coverage collection: */ 1260 u64 kcov_handle; 1261 1262 /* KCOV sequence number: */ 1263 int kcov_sequence; 1264 1265 /* Collect coverage from softirq context: */ 1266 unsigned int kcov_softirq; 1267 #endif 1268 1269 #ifdef CONFIG_MEMCG 1270 struct mem_cgroup *memcg_in_oom; 1271 gfp_t memcg_oom_gfp_mask; 1272 int memcg_oom_order; 1273 1274 /* Number of pages to reclaim on returning to userland: */ 1275 unsigned int memcg_nr_pages_over_high; 1276 1277 /* Used by memcontrol for targeted memcg charge: */ 1278 struct mem_cgroup *active_memcg; 1279 #endif 1280 1281 #ifdef CONFIG_BLK_CGROUP 1282 struct request_queue *throttle_queue; 1283 #endif 1284 1285 #ifdef CONFIG_UPROBES 1286 struct uprobe_task *utask; 1287 #endif 1288 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1289 unsigned int sequential_io; 1290 unsigned int sequential_io_avg; 1291 #endif 1292 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1293 unsigned long task_state_change; 1294 #endif 1295 int pagefault_disabled; 1296 #ifdef CONFIG_MMU 1297 struct task_struct *oom_reaper_list; 1298 #endif 1299 #ifdef CONFIG_VMAP_STACK 1300 struct vm_struct *stack_vm_area; 1301 #endif 1302 #ifdef CONFIG_THREAD_INFO_IN_TASK 1303 /* A live task holds one reference: */ 1304 refcount_t stack_refcount; 1305 #endif 1306 #ifdef CONFIG_LIVEPATCH 1307 int patch_state; 1308 #endif 1309 #ifdef CONFIG_SECURITY 1310 /* Used by LSM modules for access restriction: */ 1311 void *security; 1312 #endif 1313 1314 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1315 unsigned long lowest_stack; 1316 unsigned long prev_lowest_stack; 1317 #endif 1318 1319 #ifdef CONFIG_X86_MCE 1320 void __user *mce_vaddr; 1321 __u64 mce_kflags; 1322 u64 mce_addr; 1323 __u64 mce_ripv : 1, 1324 mce_whole_page : 1, 1325 __mce_reserved : 62; 1326 struct callback_head mce_kill_me; 1327 #endif 1328 1329 /* 1330 * New fields for task_struct should be added above here, so that 1331 * they are included in the randomized portion of task_struct. 1332 */ 1333 randomized_struct_fields_end 1334 1335 /* CPU-specific state of this task: */ 1336 struct thread_struct thread; 1337 1338 /* 1339 * WARNING: on x86, 'thread_struct' contains a variable-sized 1340 * structure. It *MUST* be at the end of 'task_struct'. 1341 * 1342 * Do not put anything below here! 1343 */ 1344 }; 1345 1346 static inline struct pid *task_pid(struct task_struct *task) 1347 { 1348 return task->thread_pid; 1349 } 1350 1351 /* 1352 * the helpers to get the task's different pids as they are seen 1353 * from various namespaces 1354 * 1355 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1356 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1357 * current. 1358 * task_xid_nr_ns() : id seen from the ns specified; 1359 * 1360 * see also pid_nr() etc in include/linux/pid.h 1361 */ 1362 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1363 1364 static inline pid_t task_pid_nr(struct task_struct *tsk) 1365 { 1366 return tsk->pid; 1367 } 1368 1369 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1370 { 1371 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1372 } 1373 1374 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1375 { 1376 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1377 } 1378 1379 1380 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1381 { 1382 return tsk->tgid; 1383 } 1384 1385 /** 1386 * pid_alive - check that a task structure is not stale 1387 * @p: Task structure to be checked. 1388 * 1389 * Test if a process is not yet dead (at most zombie state) 1390 * If pid_alive fails, then pointers within the task structure 1391 * can be stale and must not be dereferenced. 1392 * 1393 * Return: 1 if the process is alive. 0 otherwise. 1394 */ 1395 static inline int pid_alive(const struct task_struct *p) 1396 { 1397 return p->thread_pid != NULL; 1398 } 1399 1400 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1401 { 1402 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1403 } 1404 1405 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1406 { 1407 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1408 } 1409 1410 1411 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1412 { 1413 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1414 } 1415 1416 static inline pid_t task_session_vnr(struct task_struct *tsk) 1417 { 1418 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1419 } 1420 1421 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1422 { 1423 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1424 } 1425 1426 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1427 { 1428 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1429 } 1430 1431 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1432 { 1433 pid_t pid = 0; 1434 1435 rcu_read_lock(); 1436 if (pid_alive(tsk)) 1437 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1438 rcu_read_unlock(); 1439 1440 return pid; 1441 } 1442 1443 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1444 { 1445 return task_ppid_nr_ns(tsk, &init_pid_ns); 1446 } 1447 1448 /* Obsolete, do not use: */ 1449 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1450 { 1451 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1452 } 1453 1454 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1455 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1456 1457 static inline unsigned int task_state_index(struct task_struct *tsk) 1458 { 1459 unsigned int tsk_state = READ_ONCE(tsk->state); 1460 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1461 1462 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1463 1464 if (tsk_state == TASK_IDLE) 1465 state = TASK_REPORT_IDLE; 1466 1467 return fls(state); 1468 } 1469 1470 static inline char task_index_to_char(unsigned int state) 1471 { 1472 static const char state_char[] = "RSDTtXZPI"; 1473 1474 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1475 1476 return state_char[state]; 1477 } 1478 1479 static inline char task_state_to_char(struct task_struct *tsk) 1480 { 1481 return task_index_to_char(task_state_index(tsk)); 1482 } 1483 1484 /** 1485 * is_global_init - check if a task structure is init. Since init 1486 * is free to have sub-threads we need to check tgid. 1487 * @tsk: Task structure to be checked. 1488 * 1489 * Check if a task structure is the first user space task the kernel created. 1490 * 1491 * Return: 1 if the task structure is init. 0 otherwise. 1492 */ 1493 static inline int is_global_init(struct task_struct *tsk) 1494 { 1495 return task_tgid_nr(tsk) == 1; 1496 } 1497 1498 extern struct pid *cad_pid; 1499 1500 /* 1501 * Per process flags 1502 */ 1503 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */ 1504 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1505 #define PF_EXITING 0x00000004 /* Getting shut down */ 1506 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */ 1507 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1508 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1509 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1510 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1511 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1512 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1513 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1514 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1515 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1516 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1517 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1518 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1519 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1520 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1521 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1522 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, 1523 * I am cleaning dirty pages from some other bdi. */ 1524 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1525 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1526 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1527 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1528 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1529 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ 1530 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1531 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1532 1533 /* 1534 * Only the _current_ task can read/write to tsk->flags, but other 1535 * tasks can access tsk->flags in readonly mode for example 1536 * with tsk_used_math (like during threaded core dumping). 1537 * There is however an exception to this rule during ptrace 1538 * or during fork: the ptracer task is allowed to write to the 1539 * child->flags of its traced child (same goes for fork, the parent 1540 * can write to the child->flags), because we're guaranteed the 1541 * child is not running and in turn not changing child->flags 1542 * at the same time the parent does it. 1543 */ 1544 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1545 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1546 #define clear_used_math() clear_stopped_child_used_math(current) 1547 #define set_used_math() set_stopped_child_used_math(current) 1548 1549 #define conditional_stopped_child_used_math(condition, child) \ 1550 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1551 1552 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1553 1554 #define copy_to_stopped_child_used_math(child) \ 1555 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1556 1557 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1558 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1559 #define used_math() tsk_used_math(current) 1560 1561 static inline bool is_percpu_thread(void) 1562 { 1563 #ifdef CONFIG_SMP 1564 return (current->flags & PF_NO_SETAFFINITY) && 1565 (current->nr_cpus_allowed == 1); 1566 #else 1567 return true; 1568 #endif 1569 } 1570 1571 /* Per-process atomic flags. */ 1572 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1573 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1574 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1575 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1576 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1577 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1578 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1579 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1580 1581 #define TASK_PFA_TEST(name, func) \ 1582 static inline bool task_##func(struct task_struct *p) \ 1583 { return test_bit(PFA_##name, &p->atomic_flags); } 1584 1585 #define TASK_PFA_SET(name, func) \ 1586 static inline void task_set_##func(struct task_struct *p) \ 1587 { set_bit(PFA_##name, &p->atomic_flags); } 1588 1589 #define TASK_PFA_CLEAR(name, func) \ 1590 static inline void task_clear_##func(struct task_struct *p) \ 1591 { clear_bit(PFA_##name, &p->atomic_flags); } 1592 1593 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1594 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1595 1596 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1597 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1598 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1599 1600 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1601 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1602 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1603 1604 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1605 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1606 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1607 1608 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1609 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1610 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1611 1612 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1613 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1614 1615 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1616 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1617 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1618 1619 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1620 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1621 1622 static inline void 1623 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1624 { 1625 current->flags &= ~flags; 1626 current->flags |= orig_flags & flags; 1627 } 1628 1629 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1630 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1631 #ifdef CONFIG_SMP 1632 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1633 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1634 #else 1635 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1636 { 1637 } 1638 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1639 { 1640 if (!cpumask_test_cpu(0, new_mask)) 1641 return -EINVAL; 1642 return 0; 1643 } 1644 #endif 1645 1646 extern int yield_to(struct task_struct *p, bool preempt); 1647 extern void set_user_nice(struct task_struct *p, long nice); 1648 extern int task_prio(const struct task_struct *p); 1649 1650 /** 1651 * task_nice - return the nice value of a given task. 1652 * @p: the task in question. 1653 * 1654 * Return: The nice value [ -20 ... 0 ... 19 ]. 1655 */ 1656 static inline int task_nice(const struct task_struct *p) 1657 { 1658 return PRIO_TO_NICE((p)->static_prio); 1659 } 1660 1661 extern int can_nice(const struct task_struct *p, const int nice); 1662 extern int task_curr(const struct task_struct *p); 1663 extern int idle_cpu(int cpu); 1664 extern int available_idle_cpu(int cpu); 1665 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1666 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1667 extern void sched_set_fifo(struct task_struct *p); 1668 extern void sched_set_fifo_low(struct task_struct *p); 1669 extern void sched_set_normal(struct task_struct *p, int nice); 1670 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1671 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1672 extern struct task_struct *idle_task(int cpu); 1673 1674 /** 1675 * is_idle_task - is the specified task an idle task? 1676 * @p: the task in question. 1677 * 1678 * Return: 1 if @p is an idle task. 0 otherwise. 1679 */ 1680 static __always_inline bool is_idle_task(const struct task_struct *p) 1681 { 1682 return !!(p->flags & PF_IDLE); 1683 } 1684 1685 extern struct task_struct *curr_task(int cpu); 1686 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1687 1688 void yield(void); 1689 1690 union thread_union { 1691 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1692 struct task_struct task; 1693 #endif 1694 #ifndef CONFIG_THREAD_INFO_IN_TASK 1695 struct thread_info thread_info; 1696 #endif 1697 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1698 }; 1699 1700 #ifndef CONFIG_THREAD_INFO_IN_TASK 1701 extern struct thread_info init_thread_info; 1702 #endif 1703 1704 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1705 1706 #ifdef CONFIG_THREAD_INFO_IN_TASK 1707 static inline struct thread_info *task_thread_info(struct task_struct *task) 1708 { 1709 return &task->thread_info; 1710 } 1711 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1712 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1713 #endif 1714 1715 /* 1716 * find a task by one of its numerical ids 1717 * 1718 * find_task_by_pid_ns(): 1719 * finds a task by its pid in the specified namespace 1720 * find_task_by_vpid(): 1721 * finds a task by its virtual pid 1722 * 1723 * see also find_vpid() etc in include/linux/pid.h 1724 */ 1725 1726 extern struct task_struct *find_task_by_vpid(pid_t nr); 1727 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1728 1729 /* 1730 * find a task by its virtual pid and get the task struct 1731 */ 1732 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1733 1734 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1735 extern int wake_up_process(struct task_struct *tsk); 1736 extern void wake_up_new_task(struct task_struct *tsk); 1737 1738 #ifdef CONFIG_SMP 1739 extern void kick_process(struct task_struct *tsk); 1740 #else 1741 static inline void kick_process(struct task_struct *tsk) { } 1742 #endif 1743 1744 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1745 1746 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1747 { 1748 __set_task_comm(tsk, from, false); 1749 } 1750 1751 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1752 #define get_task_comm(buf, tsk) ({ \ 1753 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1754 __get_task_comm(buf, sizeof(buf), tsk); \ 1755 }) 1756 1757 #ifdef CONFIG_SMP 1758 static __always_inline void scheduler_ipi(void) 1759 { 1760 /* 1761 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1762 * TIF_NEED_RESCHED remotely (for the first time) will also send 1763 * this IPI. 1764 */ 1765 preempt_fold_need_resched(); 1766 } 1767 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1768 #else 1769 static inline void scheduler_ipi(void) { } 1770 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1771 { 1772 return 1; 1773 } 1774 #endif 1775 1776 /* 1777 * Set thread flags in other task's structures. 1778 * See asm/thread_info.h for TIF_xxxx flags available: 1779 */ 1780 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1781 { 1782 set_ti_thread_flag(task_thread_info(tsk), flag); 1783 } 1784 1785 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1786 { 1787 clear_ti_thread_flag(task_thread_info(tsk), flag); 1788 } 1789 1790 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1791 bool value) 1792 { 1793 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1794 } 1795 1796 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1797 { 1798 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1799 } 1800 1801 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1802 { 1803 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1804 } 1805 1806 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1807 { 1808 return test_ti_thread_flag(task_thread_info(tsk), flag); 1809 } 1810 1811 static inline void set_tsk_need_resched(struct task_struct *tsk) 1812 { 1813 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1814 } 1815 1816 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1817 { 1818 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1819 } 1820 1821 static inline int test_tsk_need_resched(struct task_struct *tsk) 1822 { 1823 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1824 } 1825 1826 /* 1827 * cond_resched() and cond_resched_lock(): latency reduction via 1828 * explicit rescheduling in places that are safe. The return 1829 * value indicates whether a reschedule was done in fact. 1830 * cond_resched_lock() will drop the spinlock before scheduling, 1831 */ 1832 #ifndef CONFIG_PREEMPTION 1833 extern int _cond_resched(void); 1834 #else 1835 static inline int _cond_resched(void) { return 0; } 1836 #endif 1837 1838 #define cond_resched() ({ \ 1839 ___might_sleep(__FILE__, __LINE__, 0); \ 1840 _cond_resched(); \ 1841 }) 1842 1843 extern int __cond_resched_lock(spinlock_t *lock); 1844 1845 #define cond_resched_lock(lock) ({ \ 1846 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1847 __cond_resched_lock(lock); \ 1848 }) 1849 1850 static inline void cond_resched_rcu(void) 1851 { 1852 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1853 rcu_read_unlock(); 1854 cond_resched(); 1855 rcu_read_lock(); 1856 #endif 1857 } 1858 1859 /* 1860 * Does a critical section need to be broken due to another 1861 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 1862 * but a general need for low latency) 1863 */ 1864 static inline int spin_needbreak(spinlock_t *lock) 1865 { 1866 #ifdef CONFIG_PREEMPTION 1867 return spin_is_contended(lock); 1868 #else 1869 return 0; 1870 #endif 1871 } 1872 1873 static __always_inline bool need_resched(void) 1874 { 1875 return unlikely(tif_need_resched()); 1876 } 1877 1878 /* 1879 * Wrappers for p->thread_info->cpu access. No-op on UP. 1880 */ 1881 #ifdef CONFIG_SMP 1882 1883 static inline unsigned int task_cpu(const struct task_struct *p) 1884 { 1885 #ifdef CONFIG_THREAD_INFO_IN_TASK 1886 return READ_ONCE(p->cpu); 1887 #else 1888 return READ_ONCE(task_thread_info(p)->cpu); 1889 #endif 1890 } 1891 1892 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1893 1894 #else 1895 1896 static inline unsigned int task_cpu(const struct task_struct *p) 1897 { 1898 return 0; 1899 } 1900 1901 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1902 { 1903 } 1904 1905 #endif /* CONFIG_SMP */ 1906 1907 /* 1908 * In order to reduce various lock holder preemption latencies provide an 1909 * interface to see if a vCPU is currently running or not. 1910 * 1911 * This allows us to terminate optimistic spin loops and block, analogous to 1912 * the native optimistic spin heuristic of testing if the lock owner task is 1913 * running or not. 1914 */ 1915 #ifndef vcpu_is_preempted 1916 static inline bool vcpu_is_preempted(int cpu) 1917 { 1918 return false; 1919 } 1920 #endif 1921 1922 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1923 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1924 1925 #ifndef TASK_SIZE_OF 1926 #define TASK_SIZE_OF(tsk) TASK_SIZE 1927 #endif 1928 1929 #ifdef CONFIG_RSEQ 1930 1931 /* 1932 * Map the event mask on the user-space ABI enum rseq_cs_flags 1933 * for direct mask checks. 1934 */ 1935 enum rseq_event_mask_bits { 1936 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1937 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1938 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1939 }; 1940 1941 enum rseq_event_mask { 1942 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1943 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1944 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1945 }; 1946 1947 static inline void rseq_set_notify_resume(struct task_struct *t) 1948 { 1949 if (t->rseq) 1950 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1951 } 1952 1953 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1954 1955 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1956 struct pt_regs *regs) 1957 { 1958 if (current->rseq) 1959 __rseq_handle_notify_resume(ksig, regs); 1960 } 1961 1962 static inline void rseq_signal_deliver(struct ksignal *ksig, 1963 struct pt_regs *regs) 1964 { 1965 preempt_disable(); 1966 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 1967 preempt_enable(); 1968 rseq_handle_notify_resume(ksig, regs); 1969 } 1970 1971 /* rseq_preempt() requires preemption to be disabled. */ 1972 static inline void rseq_preempt(struct task_struct *t) 1973 { 1974 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1975 rseq_set_notify_resume(t); 1976 } 1977 1978 /* rseq_migrate() requires preemption to be disabled. */ 1979 static inline void rseq_migrate(struct task_struct *t) 1980 { 1981 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1982 rseq_set_notify_resume(t); 1983 } 1984 1985 /* 1986 * If parent process has a registered restartable sequences area, the 1987 * child inherits. Unregister rseq for a clone with CLONE_VM set. 1988 */ 1989 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1990 { 1991 if (clone_flags & CLONE_VM) { 1992 t->rseq = NULL; 1993 t->rseq_sig = 0; 1994 t->rseq_event_mask = 0; 1995 } else { 1996 t->rseq = current->rseq; 1997 t->rseq_sig = current->rseq_sig; 1998 t->rseq_event_mask = current->rseq_event_mask; 1999 } 2000 } 2001 2002 static inline void rseq_execve(struct task_struct *t) 2003 { 2004 t->rseq = NULL; 2005 t->rseq_sig = 0; 2006 t->rseq_event_mask = 0; 2007 } 2008 2009 #else 2010 2011 static inline void rseq_set_notify_resume(struct task_struct *t) 2012 { 2013 } 2014 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 2015 struct pt_regs *regs) 2016 { 2017 } 2018 static inline void rseq_signal_deliver(struct ksignal *ksig, 2019 struct pt_regs *regs) 2020 { 2021 } 2022 static inline void rseq_preempt(struct task_struct *t) 2023 { 2024 } 2025 static inline void rseq_migrate(struct task_struct *t) 2026 { 2027 } 2028 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2029 { 2030 } 2031 static inline void rseq_execve(struct task_struct *t) 2032 { 2033 } 2034 2035 #endif 2036 2037 #ifdef CONFIG_DEBUG_RSEQ 2038 2039 void rseq_syscall(struct pt_regs *regs); 2040 2041 #else 2042 2043 static inline void rseq_syscall(struct pt_regs *regs) 2044 { 2045 } 2046 2047 #endif 2048 2049 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 2050 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 2051 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 2052 2053 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 2054 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 2055 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 2056 2057 int sched_trace_rq_cpu(struct rq *rq); 2058 int sched_trace_rq_cpu_capacity(struct rq *rq); 2059 int sched_trace_rq_nr_running(struct rq *rq); 2060 2061 const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 2062 2063 #endif 2064