1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/seccomp.h> 44 #include <linux/rcupdate.h> 45 #include <linux/rculist.h> 46 #include <linux/rtmutex.h> 47 48 #include <linux/time.h> 49 #include <linux/param.h> 50 #include <linux/resource.h> 51 #include <linux/timer.h> 52 #include <linux/hrtimer.h> 53 #include <linux/kcov.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void cpu_load_update_nohz_start(void); 181 extern void cpu_load_update_nohz_stop(void); 182 #else 183 static inline void cpu_load_update_nohz_start(void) { } 184 static inline void cpu_load_update_nohz_stop(void) { } 185 #endif 186 187 extern void dump_cpu_task(int cpu); 188 189 struct seq_file; 190 struct cfs_rq; 191 struct task_group; 192 #ifdef CONFIG_SCHED_DEBUG 193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194 extern void proc_sched_set_task(struct task_struct *p); 195 #endif 196 197 /* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207 #define TASK_RUNNING 0 208 #define TASK_INTERRUPTIBLE 1 209 #define TASK_UNINTERRUPTIBLE 2 210 #define __TASK_STOPPED 4 211 #define __TASK_TRACED 8 212 /* in tsk->exit_state */ 213 #define EXIT_DEAD 16 214 #define EXIT_ZOMBIE 32 215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216 /* in tsk->state again */ 217 #define TASK_DEAD 64 218 #define TASK_WAKEKILL 128 219 #define TASK_WAKING 256 220 #define TASK_PARKED 512 221 #define TASK_NOLOAD 1024 222 #define TASK_NEW 2048 223 #define TASK_STATE_MAX 4096 224 225 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn" 226 227 extern char ___assert_task_state[1 - 2*!!( 228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 229 230 /* Convenience macros for the sake of set_task_state */ 231 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 232 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 233 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 234 235 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 236 237 /* Convenience macros for the sake of wake_up */ 238 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 239 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 240 241 /* get_task_state() */ 242 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 245 246 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 247 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 248 #define task_is_stopped_or_traced(task) \ 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 250 #define task_contributes_to_load(task) \ 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 252 (task->flags & PF_FROZEN) == 0 && \ 253 (task->state & TASK_NOLOAD) == 0) 254 255 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 256 257 #define __set_task_state(tsk, state_value) \ 258 do { \ 259 (tsk)->task_state_change = _THIS_IP_; \ 260 (tsk)->state = (state_value); \ 261 } while (0) 262 #define set_task_state(tsk, state_value) \ 263 do { \ 264 (tsk)->task_state_change = _THIS_IP_; \ 265 smp_store_mb((tsk)->state, (state_value)); \ 266 } while (0) 267 268 #define __set_current_state(state_value) \ 269 do { \ 270 current->task_state_change = _THIS_IP_; \ 271 current->state = (state_value); \ 272 } while (0) 273 #define set_current_state(state_value) \ 274 do { \ 275 current->task_state_change = _THIS_IP_; \ 276 smp_store_mb(current->state, (state_value)); \ 277 } while (0) 278 279 #else 280 281 /* 282 * @tsk had better be current, or you get to keep the pieces. 283 * 284 * The only reason is that computing current can be more expensive than 285 * using a pointer that's already available. 286 * 287 * Therefore, see set_current_state(). 288 */ 289 #define __set_task_state(tsk, state_value) \ 290 do { (tsk)->state = (state_value); } while (0) 291 #define set_task_state(tsk, state_value) \ 292 smp_store_mb((tsk)->state, (state_value)) 293 294 /* 295 * set_current_state() includes a barrier so that the write of current->state 296 * is correctly serialised wrt the caller's subsequent test of whether to 297 * actually sleep: 298 * 299 * for (;;) { 300 * set_current_state(TASK_UNINTERRUPTIBLE); 301 * if (!need_sleep) 302 * break; 303 * 304 * schedule(); 305 * } 306 * __set_current_state(TASK_RUNNING); 307 * 308 * If the caller does not need such serialisation (because, for instance, the 309 * condition test and condition change and wakeup are under the same lock) then 310 * use __set_current_state(). 311 * 312 * The above is typically ordered against the wakeup, which does: 313 * 314 * need_sleep = false; 315 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 316 * 317 * Where wake_up_state() (and all other wakeup primitives) imply enough 318 * barriers to order the store of the variable against wakeup. 319 * 320 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 321 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 322 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 323 * 324 * This is obviously fine, since they both store the exact same value. 325 * 326 * Also see the comments of try_to_wake_up(). 327 */ 328 #define __set_current_state(state_value) \ 329 do { current->state = (state_value); } while (0) 330 #define set_current_state(state_value) \ 331 smp_store_mb(current->state, (state_value)) 332 333 #endif 334 335 /* Task command name length */ 336 #define TASK_COMM_LEN 16 337 338 #include <linux/spinlock.h> 339 340 /* 341 * This serializes "schedule()" and also protects 342 * the run-queue from deletions/modifications (but 343 * _adding_ to the beginning of the run-queue has 344 * a separate lock). 345 */ 346 extern rwlock_t tasklist_lock; 347 extern spinlock_t mmlist_lock; 348 349 struct task_struct; 350 351 #ifdef CONFIG_PROVE_RCU 352 extern int lockdep_tasklist_lock_is_held(void); 353 #endif /* #ifdef CONFIG_PROVE_RCU */ 354 355 extern void sched_init(void); 356 extern void sched_init_smp(void); 357 extern asmlinkage void schedule_tail(struct task_struct *prev); 358 extern void init_idle(struct task_struct *idle, int cpu); 359 extern void init_idle_bootup_task(struct task_struct *idle); 360 361 extern cpumask_var_t cpu_isolated_map; 362 363 extern int runqueue_is_locked(int cpu); 364 365 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 366 extern void nohz_balance_enter_idle(int cpu); 367 extern void set_cpu_sd_state_idle(void); 368 extern int get_nohz_timer_target(void); 369 #else 370 static inline void nohz_balance_enter_idle(int cpu) { } 371 static inline void set_cpu_sd_state_idle(void) { } 372 #endif 373 374 /* 375 * Only dump TASK_* tasks. (0 for all tasks) 376 */ 377 extern void show_state_filter(unsigned long state_filter); 378 379 static inline void show_state(void) 380 { 381 show_state_filter(0); 382 } 383 384 extern void show_regs(struct pt_regs *); 385 386 /* 387 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 388 * task), SP is the stack pointer of the first frame that should be shown in the back 389 * trace (or NULL if the entire call-chain of the task should be shown). 390 */ 391 extern void show_stack(struct task_struct *task, unsigned long *sp); 392 393 extern void cpu_init (void); 394 extern void trap_init(void); 395 extern void update_process_times(int user); 396 extern void scheduler_tick(void); 397 extern int sched_cpu_starting(unsigned int cpu); 398 extern int sched_cpu_activate(unsigned int cpu); 399 extern int sched_cpu_deactivate(unsigned int cpu); 400 401 #ifdef CONFIG_HOTPLUG_CPU 402 extern int sched_cpu_dying(unsigned int cpu); 403 #else 404 # define sched_cpu_dying NULL 405 #endif 406 407 extern void sched_show_task(struct task_struct *p); 408 409 #ifdef CONFIG_LOCKUP_DETECTOR 410 extern void touch_softlockup_watchdog_sched(void); 411 extern void touch_softlockup_watchdog(void); 412 extern void touch_softlockup_watchdog_sync(void); 413 extern void touch_all_softlockup_watchdogs(void); 414 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 415 void __user *buffer, 416 size_t *lenp, loff_t *ppos); 417 extern unsigned int softlockup_panic; 418 extern unsigned int hardlockup_panic; 419 void lockup_detector_init(void); 420 #else 421 static inline void touch_softlockup_watchdog_sched(void) 422 { 423 } 424 static inline void touch_softlockup_watchdog(void) 425 { 426 } 427 static inline void touch_softlockup_watchdog_sync(void) 428 { 429 } 430 static inline void touch_all_softlockup_watchdogs(void) 431 { 432 } 433 static inline void lockup_detector_init(void) 434 { 435 } 436 #endif 437 438 #ifdef CONFIG_DETECT_HUNG_TASK 439 void reset_hung_task_detector(void); 440 #else 441 static inline void reset_hung_task_detector(void) 442 { 443 } 444 #endif 445 446 /* Attach to any functions which should be ignored in wchan output. */ 447 #define __sched __attribute__((__section__(".sched.text"))) 448 449 /* Linker adds these: start and end of __sched functions */ 450 extern char __sched_text_start[], __sched_text_end[]; 451 452 /* Is this address in the __sched functions? */ 453 extern int in_sched_functions(unsigned long addr); 454 455 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 456 extern signed long schedule_timeout(signed long timeout); 457 extern signed long schedule_timeout_interruptible(signed long timeout); 458 extern signed long schedule_timeout_killable(signed long timeout); 459 extern signed long schedule_timeout_uninterruptible(signed long timeout); 460 extern signed long schedule_timeout_idle(signed long timeout); 461 asmlinkage void schedule(void); 462 extern void schedule_preempt_disabled(void); 463 464 extern long io_schedule_timeout(long timeout); 465 466 static inline void io_schedule(void) 467 { 468 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 469 } 470 471 void __noreturn do_task_dead(void); 472 473 struct nsproxy; 474 struct user_namespace; 475 476 #ifdef CONFIG_MMU 477 extern void arch_pick_mmap_layout(struct mm_struct *mm); 478 extern unsigned long 479 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 480 unsigned long, unsigned long); 481 extern unsigned long 482 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 483 unsigned long len, unsigned long pgoff, 484 unsigned long flags); 485 #else 486 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 487 #endif 488 489 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 490 #define SUID_DUMP_USER 1 /* Dump as user of process */ 491 #define SUID_DUMP_ROOT 2 /* Dump as root */ 492 493 /* mm flags */ 494 495 /* for SUID_DUMP_* above */ 496 #define MMF_DUMPABLE_BITS 2 497 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 498 499 extern void set_dumpable(struct mm_struct *mm, int value); 500 /* 501 * This returns the actual value of the suid_dumpable flag. For things 502 * that are using this for checking for privilege transitions, it must 503 * test against SUID_DUMP_USER rather than treating it as a boolean 504 * value. 505 */ 506 static inline int __get_dumpable(unsigned long mm_flags) 507 { 508 return mm_flags & MMF_DUMPABLE_MASK; 509 } 510 511 static inline int get_dumpable(struct mm_struct *mm) 512 { 513 return __get_dumpable(mm->flags); 514 } 515 516 /* coredump filter bits */ 517 #define MMF_DUMP_ANON_PRIVATE 2 518 #define MMF_DUMP_ANON_SHARED 3 519 #define MMF_DUMP_MAPPED_PRIVATE 4 520 #define MMF_DUMP_MAPPED_SHARED 5 521 #define MMF_DUMP_ELF_HEADERS 6 522 #define MMF_DUMP_HUGETLB_PRIVATE 7 523 #define MMF_DUMP_HUGETLB_SHARED 8 524 #define MMF_DUMP_DAX_PRIVATE 9 525 #define MMF_DUMP_DAX_SHARED 10 526 527 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 528 #define MMF_DUMP_FILTER_BITS 9 529 #define MMF_DUMP_FILTER_MASK \ 530 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 531 #define MMF_DUMP_FILTER_DEFAULT \ 532 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 533 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 534 535 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 536 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 537 #else 538 # define MMF_DUMP_MASK_DEFAULT_ELF 0 539 #endif 540 /* leave room for more dump flags */ 541 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 542 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 543 /* 544 * This one-shot flag is dropped due to necessity of changing exe once again 545 * on NFS restore 546 */ 547 //#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 548 549 #define MMF_HAS_UPROBES 19 /* has uprobes */ 550 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 551 #define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */ 552 #define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */ 553 #define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */ 554 555 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 556 557 struct sighand_struct { 558 atomic_t count; 559 struct k_sigaction action[_NSIG]; 560 spinlock_t siglock; 561 wait_queue_head_t signalfd_wqh; 562 }; 563 564 struct pacct_struct { 565 int ac_flag; 566 long ac_exitcode; 567 unsigned long ac_mem; 568 cputime_t ac_utime, ac_stime; 569 unsigned long ac_minflt, ac_majflt; 570 }; 571 572 struct cpu_itimer { 573 cputime_t expires; 574 cputime_t incr; 575 u32 error; 576 u32 incr_error; 577 }; 578 579 /** 580 * struct prev_cputime - snaphsot of system and user cputime 581 * @utime: time spent in user mode 582 * @stime: time spent in system mode 583 * @lock: protects the above two fields 584 * 585 * Stores previous user/system time values such that we can guarantee 586 * monotonicity. 587 */ 588 struct prev_cputime { 589 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 590 cputime_t utime; 591 cputime_t stime; 592 raw_spinlock_t lock; 593 #endif 594 }; 595 596 static inline void prev_cputime_init(struct prev_cputime *prev) 597 { 598 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 599 prev->utime = prev->stime = 0; 600 raw_spin_lock_init(&prev->lock); 601 #endif 602 } 603 604 /** 605 * struct task_cputime - collected CPU time counts 606 * @utime: time spent in user mode, in &cputime_t units 607 * @stime: time spent in kernel mode, in &cputime_t units 608 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 609 * 610 * This structure groups together three kinds of CPU time that are tracked for 611 * threads and thread groups. Most things considering CPU time want to group 612 * these counts together and treat all three of them in parallel. 613 */ 614 struct task_cputime { 615 cputime_t utime; 616 cputime_t stime; 617 unsigned long long sum_exec_runtime; 618 }; 619 620 /* Alternate field names when used to cache expirations. */ 621 #define virt_exp utime 622 #define prof_exp stime 623 #define sched_exp sum_exec_runtime 624 625 #define INIT_CPUTIME \ 626 (struct task_cputime) { \ 627 .utime = 0, \ 628 .stime = 0, \ 629 .sum_exec_runtime = 0, \ 630 } 631 632 /* 633 * This is the atomic variant of task_cputime, which can be used for 634 * storing and updating task_cputime statistics without locking. 635 */ 636 struct task_cputime_atomic { 637 atomic64_t utime; 638 atomic64_t stime; 639 atomic64_t sum_exec_runtime; 640 }; 641 642 #define INIT_CPUTIME_ATOMIC \ 643 (struct task_cputime_atomic) { \ 644 .utime = ATOMIC64_INIT(0), \ 645 .stime = ATOMIC64_INIT(0), \ 646 .sum_exec_runtime = ATOMIC64_INIT(0), \ 647 } 648 649 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 650 651 /* 652 * Disable preemption until the scheduler is running -- use an unconditional 653 * value so that it also works on !PREEMPT_COUNT kernels. 654 * 655 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 656 */ 657 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET 658 659 /* 660 * Initial preempt_count value; reflects the preempt_count schedule invariant 661 * which states that during context switches: 662 * 663 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 664 * 665 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 666 * Note: See finish_task_switch(). 667 */ 668 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 669 670 /** 671 * struct thread_group_cputimer - thread group interval timer counts 672 * @cputime_atomic: atomic thread group interval timers. 673 * @running: true when there are timers running and 674 * @cputime_atomic receives updates. 675 * @checking_timer: true when a thread in the group is in the 676 * process of checking for thread group timers. 677 * 678 * This structure contains the version of task_cputime, above, that is 679 * used for thread group CPU timer calculations. 680 */ 681 struct thread_group_cputimer { 682 struct task_cputime_atomic cputime_atomic; 683 bool running; 684 bool checking_timer; 685 }; 686 687 #include <linux/rwsem.h> 688 struct autogroup; 689 690 /* 691 * NOTE! "signal_struct" does not have its own 692 * locking, because a shared signal_struct always 693 * implies a shared sighand_struct, so locking 694 * sighand_struct is always a proper superset of 695 * the locking of signal_struct. 696 */ 697 struct signal_struct { 698 atomic_t sigcnt; 699 atomic_t live; 700 int nr_threads; 701 struct list_head thread_head; 702 703 wait_queue_head_t wait_chldexit; /* for wait4() */ 704 705 /* current thread group signal load-balancing target: */ 706 struct task_struct *curr_target; 707 708 /* shared signal handling: */ 709 struct sigpending shared_pending; 710 711 /* thread group exit support */ 712 int group_exit_code; 713 /* overloaded: 714 * - notify group_exit_task when ->count is equal to notify_count 715 * - everyone except group_exit_task is stopped during signal delivery 716 * of fatal signals, group_exit_task processes the signal. 717 */ 718 int notify_count; 719 struct task_struct *group_exit_task; 720 721 /* thread group stop support, overloads group_exit_code too */ 722 int group_stop_count; 723 unsigned int flags; /* see SIGNAL_* flags below */ 724 725 /* 726 * PR_SET_CHILD_SUBREAPER marks a process, like a service 727 * manager, to re-parent orphan (double-forking) child processes 728 * to this process instead of 'init'. The service manager is 729 * able to receive SIGCHLD signals and is able to investigate 730 * the process until it calls wait(). All children of this 731 * process will inherit a flag if they should look for a 732 * child_subreaper process at exit. 733 */ 734 unsigned int is_child_subreaper:1; 735 unsigned int has_child_subreaper:1; 736 737 /* POSIX.1b Interval Timers */ 738 int posix_timer_id; 739 struct list_head posix_timers; 740 741 /* ITIMER_REAL timer for the process */ 742 struct hrtimer real_timer; 743 struct pid *leader_pid; 744 ktime_t it_real_incr; 745 746 /* 747 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 748 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 749 * values are defined to 0 and 1 respectively 750 */ 751 struct cpu_itimer it[2]; 752 753 /* 754 * Thread group totals for process CPU timers. 755 * See thread_group_cputimer(), et al, for details. 756 */ 757 struct thread_group_cputimer cputimer; 758 759 /* Earliest-expiration cache. */ 760 struct task_cputime cputime_expires; 761 762 #ifdef CONFIG_NO_HZ_FULL 763 atomic_t tick_dep_mask; 764 #endif 765 766 struct list_head cpu_timers[3]; 767 768 struct pid *tty_old_pgrp; 769 770 /* boolean value for session group leader */ 771 int leader; 772 773 struct tty_struct *tty; /* NULL if no tty */ 774 775 #ifdef CONFIG_SCHED_AUTOGROUP 776 struct autogroup *autogroup; 777 #endif 778 /* 779 * Cumulative resource counters for dead threads in the group, 780 * and for reaped dead child processes forked by this group. 781 * Live threads maintain their own counters and add to these 782 * in __exit_signal, except for the group leader. 783 */ 784 seqlock_t stats_lock; 785 cputime_t utime, stime, cutime, cstime; 786 cputime_t gtime; 787 cputime_t cgtime; 788 struct prev_cputime prev_cputime; 789 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 790 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 791 unsigned long inblock, oublock, cinblock, coublock; 792 unsigned long maxrss, cmaxrss; 793 struct task_io_accounting ioac; 794 795 /* 796 * Cumulative ns of schedule CPU time fo dead threads in the 797 * group, not including a zombie group leader, (This only differs 798 * from jiffies_to_ns(utime + stime) if sched_clock uses something 799 * other than jiffies.) 800 */ 801 unsigned long long sum_sched_runtime; 802 803 /* 804 * We don't bother to synchronize most readers of this at all, 805 * because there is no reader checking a limit that actually needs 806 * to get both rlim_cur and rlim_max atomically, and either one 807 * alone is a single word that can safely be read normally. 808 * getrlimit/setrlimit use task_lock(current->group_leader) to 809 * protect this instead of the siglock, because they really 810 * have no need to disable irqs. 811 */ 812 struct rlimit rlim[RLIM_NLIMITS]; 813 814 #ifdef CONFIG_BSD_PROCESS_ACCT 815 struct pacct_struct pacct; /* per-process accounting information */ 816 #endif 817 #ifdef CONFIG_TASKSTATS 818 struct taskstats *stats; 819 #endif 820 #ifdef CONFIG_AUDIT 821 unsigned audit_tty; 822 struct tty_audit_buf *tty_audit_buf; 823 #endif 824 825 /* 826 * Thread is the potential origin of an oom condition; kill first on 827 * oom 828 */ 829 bool oom_flag_origin; 830 short oom_score_adj; /* OOM kill score adjustment */ 831 short oom_score_adj_min; /* OOM kill score adjustment min value. 832 * Only settable by CAP_SYS_RESOURCE. */ 833 struct mm_struct *oom_mm; /* recorded mm when the thread group got 834 * killed by the oom killer */ 835 836 struct mutex cred_guard_mutex; /* guard against foreign influences on 837 * credential calculations 838 * (notably. ptrace) */ 839 }; 840 841 /* 842 * Bits in flags field of signal_struct. 843 */ 844 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 845 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 846 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 847 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 848 /* 849 * Pending notifications to parent. 850 */ 851 #define SIGNAL_CLD_STOPPED 0x00000010 852 #define SIGNAL_CLD_CONTINUED 0x00000020 853 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 854 855 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 856 857 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 858 SIGNAL_STOP_CONTINUED) 859 860 static inline void signal_set_stop_flags(struct signal_struct *sig, 861 unsigned int flags) 862 { 863 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); 864 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 865 } 866 867 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 868 static inline int signal_group_exit(const struct signal_struct *sig) 869 { 870 return (sig->flags & SIGNAL_GROUP_EXIT) || 871 (sig->group_exit_task != NULL); 872 } 873 874 /* 875 * Some day this will be a full-fledged user tracking system.. 876 */ 877 struct user_struct { 878 atomic_t __count; /* reference count */ 879 atomic_t processes; /* How many processes does this user have? */ 880 atomic_t sigpending; /* How many pending signals does this user have? */ 881 #ifdef CONFIG_INOTIFY_USER 882 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 883 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 884 #endif 885 #ifdef CONFIG_FANOTIFY 886 atomic_t fanotify_listeners; 887 #endif 888 #ifdef CONFIG_EPOLL 889 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 890 #endif 891 #ifdef CONFIG_POSIX_MQUEUE 892 /* protected by mq_lock */ 893 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 894 #endif 895 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 896 unsigned long unix_inflight; /* How many files in flight in unix sockets */ 897 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ 898 899 #ifdef CONFIG_KEYS 900 struct key *uid_keyring; /* UID specific keyring */ 901 struct key *session_keyring; /* UID's default session keyring */ 902 #endif 903 904 /* Hash table maintenance information */ 905 struct hlist_node uidhash_node; 906 kuid_t uid; 907 908 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) 909 atomic_long_t locked_vm; 910 #endif 911 }; 912 913 extern int uids_sysfs_init(void); 914 915 extern struct user_struct *find_user(kuid_t); 916 917 extern struct user_struct root_user; 918 #define INIT_USER (&root_user) 919 920 921 struct backing_dev_info; 922 struct reclaim_state; 923 924 #ifdef CONFIG_SCHED_INFO 925 struct sched_info { 926 /* cumulative counters */ 927 unsigned long pcount; /* # of times run on this cpu */ 928 unsigned long long run_delay; /* time spent waiting on a runqueue */ 929 930 /* timestamps */ 931 unsigned long long last_arrival,/* when we last ran on a cpu */ 932 last_queued; /* when we were last queued to run */ 933 }; 934 #endif /* CONFIG_SCHED_INFO */ 935 936 #ifdef CONFIG_TASK_DELAY_ACCT 937 struct task_delay_info { 938 spinlock_t lock; 939 unsigned int flags; /* Private per-task flags */ 940 941 /* For each stat XXX, add following, aligned appropriately 942 * 943 * struct timespec XXX_start, XXX_end; 944 * u64 XXX_delay; 945 * u32 XXX_count; 946 * 947 * Atomicity of updates to XXX_delay, XXX_count protected by 948 * single lock above (split into XXX_lock if contention is an issue). 949 */ 950 951 /* 952 * XXX_count is incremented on every XXX operation, the delay 953 * associated with the operation is added to XXX_delay. 954 * XXX_delay contains the accumulated delay time in nanoseconds. 955 */ 956 u64 blkio_start; /* Shared by blkio, swapin */ 957 u64 blkio_delay; /* wait for sync block io completion */ 958 u64 swapin_delay; /* wait for swapin block io completion */ 959 u32 blkio_count; /* total count of the number of sync block */ 960 /* io operations performed */ 961 u32 swapin_count; /* total count of the number of swapin block */ 962 /* io operations performed */ 963 964 u64 freepages_start; 965 u64 freepages_delay; /* wait for memory reclaim */ 966 u32 freepages_count; /* total count of memory reclaim */ 967 }; 968 #endif /* CONFIG_TASK_DELAY_ACCT */ 969 970 static inline int sched_info_on(void) 971 { 972 #ifdef CONFIG_SCHEDSTATS 973 return 1; 974 #elif defined(CONFIG_TASK_DELAY_ACCT) 975 extern int delayacct_on; 976 return delayacct_on; 977 #else 978 return 0; 979 #endif 980 } 981 982 #ifdef CONFIG_SCHEDSTATS 983 void force_schedstat_enabled(void); 984 #endif 985 986 enum cpu_idle_type { 987 CPU_IDLE, 988 CPU_NOT_IDLE, 989 CPU_NEWLY_IDLE, 990 CPU_MAX_IDLE_TYPES 991 }; 992 993 /* 994 * Integer metrics need fixed point arithmetic, e.g., sched/fair 995 * has a few: load, load_avg, util_avg, freq, and capacity. 996 * 997 * We define a basic fixed point arithmetic range, and then formalize 998 * all these metrics based on that basic range. 999 */ 1000 # define SCHED_FIXEDPOINT_SHIFT 10 1001 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 1002 1003 /* 1004 * Increase resolution of cpu_capacity calculations 1005 */ 1006 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 1007 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 1008 1009 /* 1010 * Wake-queues are lists of tasks with a pending wakeup, whose 1011 * callers have already marked the task as woken internally, 1012 * and can thus carry on. A common use case is being able to 1013 * do the wakeups once the corresponding user lock as been 1014 * released. 1015 * 1016 * We hold reference to each task in the list across the wakeup, 1017 * thus guaranteeing that the memory is still valid by the time 1018 * the actual wakeups are performed in wake_up_q(). 1019 * 1020 * One per task suffices, because there's never a need for a task to be 1021 * in two wake queues simultaneously; it is forbidden to abandon a task 1022 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 1023 * already in a wake queue, the wakeup will happen soon and the second 1024 * waker can just skip it. 1025 * 1026 * The DEFINE_WAKE_Q macro declares and initializes the list head. 1027 * wake_up_q() does NOT reinitialize the list; it's expected to be 1028 * called near the end of a function, where the fact that the queue is 1029 * not used again will be easy to see by inspection. 1030 * 1031 * Note that this can cause spurious wakeups. schedule() callers 1032 * must ensure the call is done inside a loop, confirming that the 1033 * wakeup condition has in fact occurred. 1034 */ 1035 struct wake_q_node { 1036 struct wake_q_node *next; 1037 }; 1038 1039 struct wake_q_head { 1040 struct wake_q_node *first; 1041 struct wake_q_node **lastp; 1042 }; 1043 1044 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 1045 1046 #define DEFINE_WAKE_Q(name) \ 1047 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 1048 1049 extern void wake_q_add(struct wake_q_head *head, 1050 struct task_struct *task); 1051 extern void wake_up_q(struct wake_q_head *head); 1052 1053 /* 1054 * sched-domains (multiprocessor balancing) declarations: 1055 */ 1056 #ifdef CONFIG_SMP 1057 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 1058 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 1059 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 1060 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 1061 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 1062 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 1063 #define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */ 1064 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */ 1065 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 1066 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 1067 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 1068 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 1069 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 1070 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 1071 #define SD_NUMA 0x4000 /* cross-node balancing */ 1072 1073 #ifdef CONFIG_SCHED_SMT 1074 static inline int cpu_smt_flags(void) 1075 { 1076 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1077 } 1078 #endif 1079 1080 #ifdef CONFIG_SCHED_MC 1081 static inline int cpu_core_flags(void) 1082 { 1083 return SD_SHARE_PKG_RESOURCES; 1084 } 1085 #endif 1086 1087 #ifdef CONFIG_NUMA 1088 static inline int cpu_numa_flags(void) 1089 { 1090 return SD_NUMA; 1091 } 1092 #endif 1093 1094 extern int arch_asym_cpu_priority(int cpu); 1095 1096 struct sched_domain_attr { 1097 int relax_domain_level; 1098 }; 1099 1100 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1101 .relax_domain_level = -1, \ 1102 } 1103 1104 extern int sched_domain_level_max; 1105 1106 struct sched_group; 1107 1108 struct sched_domain_shared { 1109 atomic_t ref; 1110 atomic_t nr_busy_cpus; 1111 int has_idle_cores; 1112 }; 1113 1114 struct sched_domain { 1115 /* These fields must be setup */ 1116 struct sched_domain *parent; /* top domain must be null terminated */ 1117 struct sched_domain *child; /* bottom domain must be null terminated */ 1118 struct sched_group *groups; /* the balancing groups of the domain */ 1119 unsigned long min_interval; /* Minimum balance interval ms */ 1120 unsigned long max_interval; /* Maximum balance interval ms */ 1121 unsigned int busy_factor; /* less balancing by factor if busy */ 1122 unsigned int imbalance_pct; /* No balance until over watermark */ 1123 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1124 unsigned int busy_idx; 1125 unsigned int idle_idx; 1126 unsigned int newidle_idx; 1127 unsigned int wake_idx; 1128 unsigned int forkexec_idx; 1129 unsigned int smt_gain; 1130 1131 int nohz_idle; /* NOHZ IDLE status */ 1132 int flags; /* See SD_* */ 1133 int level; 1134 1135 /* Runtime fields. */ 1136 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1137 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1138 unsigned int nr_balance_failed; /* initialise to 0 */ 1139 1140 /* idle_balance() stats */ 1141 u64 max_newidle_lb_cost; 1142 unsigned long next_decay_max_lb_cost; 1143 1144 u64 avg_scan_cost; /* select_idle_sibling */ 1145 1146 #ifdef CONFIG_SCHEDSTATS 1147 /* load_balance() stats */ 1148 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1149 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1150 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1151 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1152 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1153 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1154 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1155 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1156 1157 /* Active load balancing */ 1158 unsigned int alb_count; 1159 unsigned int alb_failed; 1160 unsigned int alb_pushed; 1161 1162 /* SD_BALANCE_EXEC stats */ 1163 unsigned int sbe_count; 1164 unsigned int sbe_balanced; 1165 unsigned int sbe_pushed; 1166 1167 /* SD_BALANCE_FORK stats */ 1168 unsigned int sbf_count; 1169 unsigned int sbf_balanced; 1170 unsigned int sbf_pushed; 1171 1172 /* try_to_wake_up() stats */ 1173 unsigned int ttwu_wake_remote; 1174 unsigned int ttwu_move_affine; 1175 unsigned int ttwu_move_balance; 1176 #endif 1177 #ifdef CONFIG_SCHED_DEBUG 1178 char *name; 1179 #endif 1180 union { 1181 void *private; /* used during construction */ 1182 struct rcu_head rcu; /* used during destruction */ 1183 }; 1184 struct sched_domain_shared *shared; 1185 1186 unsigned int span_weight; 1187 /* 1188 * Span of all CPUs in this domain. 1189 * 1190 * NOTE: this field is variable length. (Allocated dynamically 1191 * by attaching extra space to the end of the structure, 1192 * depending on how many CPUs the kernel has booted up with) 1193 */ 1194 unsigned long span[0]; 1195 }; 1196 1197 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1198 { 1199 return to_cpumask(sd->span); 1200 } 1201 1202 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1203 struct sched_domain_attr *dattr_new); 1204 1205 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1206 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1207 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1208 1209 bool cpus_share_cache(int this_cpu, int that_cpu); 1210 1211 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1212 typedef int (*sched_domain_flags_f)(void); 1213 1214 #define SDTL_OVERLAP 0x01 1215 1216 struct sd_data { 1217 struct sched_domain **__percpu sd; 1218 struct sched_domain_shared **__percpu sds; 1219 struct sched_group **__percpu sg; 1220 struct sched_group_capacity **__percpu sgc; 1221 }; 1222 1223 struct sched_domain_topology_level { 1224 sched_domain_mask_f mask; 1225 sched_domain_flags_f sd_flags; 1226 int flags; 1227 int numa_level; 1228 struct sd_data data; 1229 #ifdef CONFIG_SCHED_DEBUG 1230 char *name; 1231 #endif 1232 }; 1233 1234 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1235 extern void wake_up_if_idle(int cpu); 1236 1237 #ifdef CONFIG_SCHED_DEBUG 1238 # define SD_INIT_NAME(type) .name = #type 1239 #else 1240 # define SD_INIT_NAME(type) 1241 #endif 1242 1243 #else /* CONFIG_SMP */ 1244 1245 struct sched_domain_attr; 1246 1247 static inline void 1248 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1249 struct sched_domain_attr *dattr_new) 1250 { 1251 } 1252 1253 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1254 { 1255 return true; 1256 } 1257 1258 #endif /* !CONFIG_SMP */ 1259 1260 1261 struct io_context; /* See blkdev.h */ 1262 1263 1264 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1265 extern void prefetch_stack(struct task_struct *t); 1266 #else 1267 static inline void prefetch_stack(struct task_struct *t) { } 1268 #endif 1269 1270 struct audit_context; /* See audit.c */ 1271 struct mempolicy; 1272 struct pipe_inode_info; 1273 struct uts_namespace; 1274 1275 struct load_weight { 1276 unsigned long weight; 1277 u32 inv_weight; 1278 }; 1279 1280 /* 1281 * The load_avg/util_avg accumulates an infinite geometric series 1282 * (see __update_load_avg() in kernel/sched/fair.c). 1283 * 1284 * [load_avg definition] 1285 * 1286 * load_avg = runnable% * scale_load_down(load) 1287 * 1288 * where runnable% is the time ratio that a sched_entity is runnable. 1289 * For cfs_rq, it is the aggregated load_avg of all runnable and 1290 * blocked sched_entities. 1291 * 1292 * load_avg may also take frequency scaling into account: 1293 * 1294 * load_avg = runnable% * scale_load_down(load) * freq% 1295 * 1296 * where freq% is the CPU frequency normalized to the highest frequency. 1297 * 1298 * [util_avg definition] 1299 * 1300 * util_avg = running% * SCHED_CAPACITY_SCALE 1301 * 1302 * where running% is the time ratio that a sched_entity is running on 1303 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 1304 * and blocked sched_entities. 1305 * 1306 * util_avg may also factor frequency scaling and CPU capacity scaling: 1307 * 1308 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% 1309 * 1310 * where freq% is the same as above, and capacity% is the CPU capacity 1311 * normalized to the greatest capacity (due to uarch differences, etc). 1312 * 1313 * N.B., the above ratios (runnable%, running%, freq%, and capacity%) 1314 * themselves are in the range of [0, 1]. To do fixed point arithmetics, 1315 * we therefore scale them to as large a range as necessary. This is for 1316 * example reflected by util_avg's SCHED_CAPACITY_SCALE. 1317 * 1318 * [Overflow issue] 1319 * 1320 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 1321 * with the highest load (=88761), always runnable on a single cfs_rq, 1322 * and should not overflow as the number already hits PID_MAX_LIMIT. 1323 * 1324 * For all other cases (including 32-bit kernels), struct load_weight's 1325 * weight will overflow first before we do, because: 1326 * 1327 * Max(load_avg) <= Max(load.weight) 1328 * 1329 * Then it is the load_weight's responsibility to consider overflow 1330 * issues. 1331 */ 1332 struct sched_avg { 1333 u64 last_update_time, load_sum; 1334 u32 util_sum, period_contrib; 1335 unsigned long load_avg, util_avg; 1336 }; 1337 1338 #ifdef CONFIG_SCHEDSTATS 1339 struct sched_statistics { 1340 u64 wait_start; 1341 u64 wait_max; 1342 u64 wait_count; 1343 u64 wait_sum; 1344 u64 iowait_count; 1345 u64 iowait_sum; 1346 1347 u64 sleep_start; 1348 u64 sleep_max; 1349 s64 sum_sleep_runtime; 1350 1351 u64 block_start; 1352 u64 block_max; 1353 u64 exec_max; 1354 u64 slice_max; 1355 1356 u64 nr_migrations_cold; 1357 u64 nr_failed_migrations_affine; 1358 u64 nr_failed_migrations_running; 1359 u64 nr_failed_migrations_hot; 1360 u64 nr_forced_migrations; 1361 1362 u64 nr_wakeups; 1363 u64 nr_wakeups_sync; 1364 u64 nr_wakeups_migrate; 1365 u64 nr_wakeups_local; 1366 u64 nr_wakeups_remote; 1367 u64 nr_wakeups_affine; 1368 u64 nr_wakeups_affine_attempts; 1369 u64 nr_wakeups_passive; 1370 u64 nr_wakeups_idle; 1371 }; 1372 #endif 1373 1374 struct sched_entity { 1375 struct load_weight load; /* for load-balancing */ 1376 struct rb_node run_node; 1377 struct list_head group_node; 1378 unsigned int on_rq; 1379 1380 u64 exec_start; 1381 u64 sum_exec_runtime; 1382 u64 vruntime; 1383 u64 prev_sum_exec_runtime; 1384 1385 u64 nr_migrations; 1386 1387 #ifdef CONFIG_SCHEDSTATS 1388 struct sched_statistics statistics; 1389 #endif 1390 1391 #ifdef CONFIG_FAIR_GROUP_SCHED 1392 int depth; 1393 struct sched_entity *parent; 1394 /* rq on which this entity is (to be) queued: */ 1395 struct cfs_rq *cfs_rq; 1396 /* rq "owned" by this entity/group: */ 1397 struct cfs_rq *my_q; 1398 #endif 1399 1400 #ifdef CONFIG_SMP 1401 /* 1402 * Per entity load average tracking. 1403 * 1404 * Put into separate cache line so it does not 1405 * collide with read-mostly values above. 1406 */ 1407 struct sched_avg avg ____cacheline_aligned_in_smp; 1408 #endif 1409 }; 1410 1411 struct sched_rt_entity { 1412 struct list_head run_list; 1413 unsigned long timeout; 1414 unsigned long watchdog_stamp; 1415 unsigned int time_slice; 1416 unsigned short on_rq; 1417 unsigned short on_list; 1418 1419 struct sched_rt_entity *back; 1420 #ifdef CONFIG_RT_GROUP_SCHED 1421 struct sched_rt_entity *parent; 1422 /* rq on which this entity is (to be) queued: */ 1423 struct rt_rq *rt_rq; 1424 /* rq "owned" by this entity/group: */ 1425 struct rt_rq *my_q; 1426 #endif 1427 }; 1428 1429 struct sched_dl_entity { 1430 struct rb_node rb_node; 1431 1432 /* 1433 * Original scheduling parameters. Copied here from sched_attr 1434 * during sched_setattr(), they will remain the same until 1435 * the next sched_setattr(). 1436 */ 1437 u64 dl_runtime; /* maximum runtime for each instance */ 1438 u64 dl_deadline; /* relative deadline of each instance */ 1439 u64 dl_period; /* separation of two instances (period) */ 1440 u64 dl_bw; /* dl_runtime / dl_deadline */ 1441 1442 /* 1443 * Actual scheduling parameters. Initialized with the values above, 1444 * they are continously updated during task execution. Note that 1445 * the remaining runtime could be < 0 in case we are in overrun. 1446 */ 1447 s64 runtime; /* remaining runtime for this instance */ 1448 u64 deadline; /* absolute deadline for this instance */ 1449 unsigned int flags; /* specifying the scheduler behaviour */ 1450 1451 /* 1452 * Some bool flags: 1453 * 1454 * @dl_throttled tells if we exhausted the runtime. If so, the 1455 * task has to wait for a replenishment to be performed at the 1456 * next firing of dl_timer. 1457 * 1458 * @dl_boosted tells if we are boosted due to DI. If so we are 1459 * outside bandwidth enforcement mechanism (but only until we 1460 * exit the critical section); 1461 * 1462 * @dl_yielded tells if task gave up the cpu before consuming 1463 * all its available runtime during the last job. 1464 */ 1465 int dl_throttled, dl_boosted, dl_yielded; 1466 1467 /* 1468 * Bandwidth enforcement timer. Each -deadline task has its 1469 * own bandwidth to be enforced, thus we need one timer per task. 1470 */ 1471 struct hrtimer dl_timer; 1472 }; 1473 1474 union rcu_special { 1475 struct { 1476 u8 blocked; 1477 u8 need_qs; 1478 u8 exp_need_qs; 1479 u8 pad; /* Otherwise the compiler can store garbage here. */ 1480 } b; /* Bits. */ 1481 u32 s; /* Set of bits. */ 1482 }; 1483 struct rcu_node; 1484 1485 enum perf_event_task_context { 1486 perf_invalid_context = -1, 1487 perf_hw_context = 0, 1488 perf_sw_context, 1489 perf_nr_task_contexts, 1490 }; 1491 1492 /* Track pages that require TLB flushes */ 1493 struct tlbflush_unmap_batch { 1494 /* 1495 * Each bit set is a CPU that potentially has a TLB entry for one of 1496 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1497 */ 1498 struct cpumask cpumask; 1499 1500 /* True if any bit in cpumask is set */ 1501 bool flush_required; 1502 1503 /* 1504 * If true then the PTE was dirty when unmapped. The entry must be 1505 * flushed before IO is initiated or a stale TLB entry potentially 1506 * allows an update without redirtying the page. 1507 */ 1508 bool writable; 1509 }; 1510 1511 struct task_struct { 1512 #ifdef CONFIG_THREAD_INFO_IN_TASK 1513 /* 1514 * For reasons of header soup (see current_thread_info()), this 1515 * must be the first element of task_struct. 1516 */ 1517 struct thread_info thread_info; 1518 #endif 1519 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1520 void *stack; 1521 atomic_t usage; 1522 unsigned int flags; /* per process flags, defined below */ 1523 unsigned int ptrace; 1524 1525 #ifdef CONFIG_SMP 1526 struct llist_node wake_entry; 1527 int on_cpu; 1528 #ifdef CONFIG_THREAD_INFO_IN_TASK 1529 unsigned int cpu; /* current CPU */ 1530 #endif 1531 unsigned int wakee_flips; 1532 unsigned long wakee_flip_decay_ts; 1533 struct task_struct *last_wakee; 1534 1535 int wake_cpu; 1536 #endif 1537 int on_rq; 1538 1539 int prio, static_prio, normal_prio; 1540 unsigned int rt_priority; 1541 const struct sched_class *sched_class; 1542 struct sched_entity se; 1543 struct sched_rt_entity rt; 1544 #ifdef CONFIG_CGROUP_SCHED 1545 struct task_group *sched_task_group; 1546 #endif 1547 struct sched_dl_entity dl; 1548 1549 #ifdef CONFIG_PREEMPT_NOTIFIERS 1550 /* list of struct preempt_notifier: */ 1551 struct hlist_head preempt_notifiers; 1552 #endif 1553 1554 #ifdef CONFIG_BLK_DEV_IO_TRACE 1555 unsigned int btrace_seq; 1556 #endif 1557 1558 unsigned int policy; 1559 int nr_cpus_allowed; 1560 cpumask_t cpus_allowed; 1561 1562 #ifdef CONFIG_PREEMPT_RCU 1563 int rcu_read_lock_nesting; 1564 union rcu_special rcu_read_unlock_special; 1565 struct list_head rcu_node_entry; 1566 struct rcu_node *rcu_blocked_node; 1567 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1568 #ifdef CONFIG_TASKS_RCU 1569 unsigned long rcu_tasks_nvcsw; 1570 bool rcu_tasks_holdout; 1571 struct list_head rcu_tasks_holdout_list; 1572 int rcu_tasks_idle_cpu; 1573 #endif /* #ifdef CONFIG_TASKS_RCU */ 1574 1575 #ifdef CONFIG_SCHED_INFO 1576 struct sched_info sched_info; 1577 #endif 1578 1579 struct list_head tasks; 1580 #ifdef CONFIG_SMP 1581 struct plist_node pushable_tasks; 1582 struct rb_node pushable_dl_tasks; 1583 #endif 1584 1585 struct mm_struct *mm, *active_mm; 1586 /* per-thread vma caching */ 1587 u32 vmacache_seqnum; 1588 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1589 #if defined(SPLIT_RSS_COUNTING) 1590 struct task_rss_stat rss_stat; 1591 #endif 1592 /* task state */ 1593 int exit_state; 1594 int exit_code, exit_signal; 1595 int pdeath_signal; /* The signal sent when the parent dies */ 1596 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1597 1598 /* Used for emulating ABI behavior of previous Linux versions */ 1599 unsigned int personality; 1600 1601 /* scheduler bits, serialized by scheduler locks */ 1602 unsigned sched_reset_on_fork:1; 1603 unsigned sched_contributes_to_load:1; 1604 unsigned sched_migrated:1; 1605 unsigned sched_remote_wakeup:1; 1606 unsigned :0; /* force alignment to the next boundary */ 1607 1608 /* unserialized, strictly 'current' */ 1609 unsigned in_execve:1; /* bit to tell LSMs we're in execve */ 1610 unsigned in_iowait:1; 1611 #if !defined(TIF_RESTORE_SIGMASK) 1612 unsigned restore_sigmask:1; 1613 #endif 1614 #ifdef CONFIG_MEMCG 1615 unsigned memcg_may_oom:1; 1616 #ifndef CONFIG_SLOB 1617 unsigned memcg_kmem_skip_account:1; 1618 #endif 1619 #endif 1620 #ifdef CONFIG_COMPAT_BRK 1621 unsigned brk_randomized:1; 1622 #endif 1623 1624 unsigned long atomic_flags; /* Flags needing atomic access. */ 1625 1626 struct restart_block restart_block; 1627 1628 pid_t pid; 1629 pid_t tgid; 1630 1631 #ifdef CONFIG_CC_STACKPROTECTOR 1632 /* Canary value for the -fstack-protector gcc feature */ 1633 unsigned long stack_canary; 1634 #endif 1635 /* 1636 * pointers to (original) parent process, youngest child, younger sibling, 1637 * older sibling, respectively. (p->father can be replaced with 1638 * p->real_parent->pid) 1639 */ 1640 struct task_struct __rcu *real_parent; /* real parent process */ 1641 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1642 /* 1643 * children/sibling forms the list of my natural children 1644 */ 1645 struct list_head children; /* list of my children */ 1646 struct list_head sibling; /* linkage in my parent's children list */ 1647 struct task_struct *group_leader; /* threadgroup leader */ 1648 1649 /* 1650 * ptraced is the list of tasks this task is using ptrace on. 1651 * This includes both natural children and PTRACE_ATTACH targets. 1652 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1653 */ 1654 struct list_head ptraced; 1655 struct list_head ptrace_entry; 1656 1657 /* PID/PID hash table linkage. */ 1658 struct pid_link pids[PIDTYPE_MAX]; 1659 struct list_head thread_group; 1660 struct list_head thread_node; 1661 1662 struct completion *vfork_done; /* for vfork() */ 1663 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1664 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1665 1666 cputime_t utime, stime; 1667 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1668 cputime_t utimescaled, stimescaled; 1669 #endif 1670 cputime_t gtime; 1671 struct prev_cputime prev_cputime; 1672 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1673 seqcount_t vtime_seqcount; 1674 unsigned long long vtime_snap; 1675 enum { 1676 /* Task is sleeping or running in a CPU with VTIME inactive */ 1677 VTIME_INACTIVE = 0, 1678 /* Task runs in userspace in a CPU with VTIME active */ 1679 VTIME_USER, 1680 /* Task runs in kernelspace in a CPU with VTIME active */ 1681 VTIME_SYS, 1682 } vtime_snap_whence; 1683 #endif 1684 1685 #ifdef CONFIG_NO_HZ_FULL 1686 atomic_t tick_dep_mask; 1687 #endif 1688 unsigned long nvcsw, nivcsw; /* context switch counts */ 1689 u64 start_time; /* monotonic time in nsec */ 1690 u64 real_start_time; /* boot based time in nsec */ 1691 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1692 unsigned long min_flt, maj_flt; 1693 1694 struct task_cputime cputime_expires; 1695 struct list_head cpu_timers[3]; 1696 1697 /* process credentials */ 1698 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */ 1699 const struct cred __rcu *real_cred; /* objective and real subjective task 1700 * credentials (COW) */ 1701 const struct cred __rcu *cred; /* effective (overridable) subjective task 1702 * credentials (COW) */ 1703 char comm[TASK_COMM_LEN]; /* executable name excluding path 1704 - access with [gs]et_task_comm (which lock 1705 it with task_lock()) 1706 - initialized normally by setup_new_exec */ 1707 /* file system info */ 1708 struct nameidata *nameidata; 1709 #ifdef CONFIG_SYSVIPC 1710 /* ipc stuff */ 1711 struct sysv_sem sysvsem; 1712 struct sysv_shm sysvshm; 1713 #endif 1714 #ifdef CONFIG_DETECT_HUNG_TASK 1715 /* hung task detection */ 1716 unsigned long last_switch_count; 1717 #endif 1718 /* filesystem information */ 1719 struct fs_struct *fs; 1720 /* open file information */ 1721 struct files_struct *files; 1722 /* namespaces */ 1723 struct nsproxy *nsproxy; 1724 /* signal handlers */ 1725 struct signal_struct *signal; 1726 struct sighand_struct *sighand; 1727 1728 sigset_t blocked, real_blocked; 1729 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1730 struct sigpending pending; 1731 1732 unsigned long sas_ss_sp; 1733 size_t sas_ss_size; 1734 unsigned sas_ss_flags; 1735 1736 struct callback_head *task_works; 1737 1738 struct audit_context *audit_context; 1739 #ifdef CONFIG_AUDITSYSCALL 1740 kuid_t loginuid; 1741 unsigned int sessionid; 1742 #endif 1743 struct seccomp seccomp; 1744 1745 /* Thread group tracking */ 1746 u32 parent_exec_id; 1747 u32 self_exec_id; 1748 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1749 * mempolicy */ 1750 spinlock_t alloc_lock; 1751 1752 /* Protection of the PI data structures: */ 1753 raw_spinlock_t pi_lock; 1754 1755 struct wake_q_node wake_q; 1756 1757 #ifdef CONFIG_RT_MUTEXES 1758 /* PI waiters blocked on a rt_mutex held by this task */ 1759 struct rb_root pi_waiters; 1760 struct rb_node *pi_waiters_leftmost; 1761 /* Deadlock detection and priority inheritance handling */ 1762 struct rt_mutex_waiter *pi_blocked_on; 1763 #endif 1764 1765 #ifdef CONFIG_DEBUG_MUTEXES 1766 /* mutex deadlock detection */ 1767 struct mutex_waiter *blocked_on; 1768 #endif 1769 #ifdef CONFIG_TRACE_IRQFLAGS 1770 unsigned int irq_events; 1771 unsigned long hardirq_enable_ip; 1772 unsigned long hardirq_disable_ip; 1773 unsigned int hardirq_enable_event; 1774 unsigned int hardirq_disable_event; 1775 int hardirqs_enabled; 1776 int hardirq_context; 1777 unsigned long softirq_disable_ip; 1778 unsigned long softirq_enable_ip; 1779 unsigned int softirq_disable_event; 1780 unsigned int softirq_enable_event; 1781 int softirqs_enabled; 1782 int softirq_context; 1783 #endif 1784 #ifdef CONFIG_LOCKDEP 1785 # define MAX_LOCK_DEPTH 48UL 1786 u64 curr_chain_key; 1787 int lockdep_depth; 1788 unsigned int lockdep_recursion; 1789 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1790 gfp_t lockdep_reclaim_gfp; 1791 #endif 1792 #ifdef CONFIG_UBSAN 1793 unsigned int in_ubsan; 1794 #endif 1795 1796 /* journalling filesystem info */ 1797 void *journal_info; 1798 1799 /* stacked block device info */ 1800 struct bio_list *bio_list; 1801 1802 #ifdef CONFIG_BLOCK 1803 /* stack plugging */ 1804 struct blk_plug *plug; 1805 #endif 1806 1807 /* VM state */ 1808 struct reclaim_state *reclaim_state; 1809 1810 struct backing_dev_info *backing_dev_info; 1811 1812 struct io_context *io_context; 1813 1814 unsigned long ptrace_message; 1815 siginfo_t *last_siginfo; /* For ptrace use. */ 1816 struct task_io_accounting ioac; 1817 #if defined(CONFIG_TASK_XACCT) 1818 u64 acct_rss_mem1; /* accumulated rss usage */ 1819 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1820 cputime_t acct_timexpd; /* stime + utime since last update */ 1821 #endif 1822 #ifdef CONFIG_CPUSETS 1823 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1824 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1825 int cpuset_mem_spread_rotor; 1826 int cpuset_slab_spread_rotor; 1827 #endif 1828 #ifdef CONFIG_CGROUPS 1829 /* Control Group info protected by css_set_lock */ 1830 struct css_set __rcu *cgroups; 1831 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1832 struct list_head cg_list; 1833 #endif 1834 #ifdef CONFIG_INTEL_RDT_A 1835 int closid; 1836 #endif 1837 #ifdef CONFIG_FUTEX 1838 struct robust_list_head __user *robust_list; 1839 #ifdef CONFIG_COMPAT 1840 struct compat_robust_list_head __user *compat_robust_list; 1841 #endif 1842 struct list_head pi_state_list; 1843 struct futex_pi_state *pi_state_cache; 1844 #endif 1845 #ifdef CONFIG_PERF_EVENTS 1846 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1847 struct mutex perf_event_mutex; 1848 struct list_head perf_event_list; 1849 #endif 1850 #ifdef CONFIG_DEBUG_PREEMPT 1851 unsigned long preempt_disable_ip; 1852 #endif 1853 #ifdef CONFIG_NUMA 1854 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1855 short il_next; 1856 short pref_node_fork; 1857 #endif 1858 #ifdef CONFIG_NUMA_BALANCING 1859 int numa_scan_seq; 1860 unsigned int numa_scan_period; 1861 unsigned int numa_scan_period_max; 1862 int numa_preferred_nid; 1863 unsigned long numa_migrate_retry; 1864 u64 node_stamp; /* migration stamp */ 1865 u64 last_task_numa_placement; 1866 u64 last_sum_exec_runtime; 1867 struct callback_head numa_work; 1868 1869 struct list_head numa_entry; 1870 struct numa_group *numa_group; 1871 1872 /* 1873 * numa_faults is an array split into four regions: 1874 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1875 * in this precise order. 1876 * 1877 * faults_memory: Exponential decaying average of faults on a per-node 1878 * basis. Scheduling placement decisions are made based on these 1879 * counts. The values remain static for the duration of a PTE scan. 1880 * faults_cpu: Track the nodes the process was running on when a NUMA 1881 * hinting fault was incurred. 1882 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1883 * during the current scan window. When the scan completes, the counts 1884 * in faults_memory and faults_cpu decay and these values are copied. 1885 */ 1886 unsigned long *numa_faults; 1887 unsigned long total_numa_faults; 1888 1889 /* 1890 * numa_faults_locality tracks if faults recorded during the last 1891 * scan window were remote/local or failed to migrate. The task scan 1892 * period is adapted based on the locality of the faults with different 1893 * weights depending on whether they were shared or private faults 1894 */ 1895 unsigned long numa_faults_locality[3]; 1896 1897 unsigned long numa_pages_migrated; 1898 #endif /* CONFIG_NUMA_BALANCING */ 1899 1900 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1901 struct tlbflush_unmap_batch tlb_ubc; 1902 #endif 1903 1904 struct rcu_head rcu; 1905 1906 /* 1907 * cache last used pipe for splice 1908 */ 1909 struct pipe_inode_info *splice_pipe; 1910 1911 struct page_frag task_frag; 1912 1913 #ifdef CONFIG_TASK_DELAY_ACCT 1914 struct task_delay_info *delays; 1915 #endif 1916 #ifdef CONFIG_FAULT_INJECTION 1917 int make_it_fail; 1918 #endif 1919 /* 1920 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1921 * balance_dirty_pages() for some dirty throttling pause 1922 */ 1923 int nr_dirtied; 1924 int nr_dirtied_pause; 1925 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1926 1927 #ifdef CONFIG_LATENCYTOP 1928 int latency_record_count; 1929 struct latency_record latency_record[LT_SAVECOUNT]; 1930 #endif 1931 /* 1932 * time slack values; these are used to round up poll() and 1933 * select() etc timeout values. These are in nanoseconds. 1934 */ 1935 u64 timer_slack_ns; 1936 u64 default_timer_slack_ns; 1937 1938 #ifdef CONFIG_KASAN 1939 unsigned int kasan_depth; 1940 #endif 1941 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1942 /* Index of current stored address in ret_stack */ 1943 int curr_ret_stack; 1944 /* Stack of return addresses for return function tracing */ 1945 struct ftrace_ret_stack *ret_stack; 1946 /* time stamp for last schedule */ 1947 unsigned long long ftrace_timestamp; 1948 /* 1949 * Number of functions that haven't been traced 1950 * because of depth overrun. 1951 */ 1952 atomic_t trace_overrun; 1953 /* Pause for the tracing */ 1954 atomic_t tracing_graph_pause; 1955 #endif 1956 #ifdef CONFIG_TRACING 1957 /* state flags for use by tracers */ 1958 unsigned long trace; 1959 /* bitmask and counter of trace recursion */ 1960 unsigned long trace_recursion; 1961 #endif /* CONFIG_TRACING */ 1962 #ifdef CONFIG_KCOV 1963 /* Coverage collection mode enabled for this task (0 if disabled). */ 1964 enum kcov_mode kcov_mode; 1965 /* Size of the kcov_area. */ 1966 unsigned kcov_size; 1967 /* Buffer for coverage collection. */ 1968 void *kcov_area; 1969 /* kcov desciptor wired with this task or NULL. */ 1970 struct kcov *kcov; 1971 #endif 1972 #ifdef CONFIG_MEMCG 1973 struct mem_cgroup *memcg_in_oom; 1974 gfp_t memcg_oom_gfp_mask; 1975 int memcg_oom_order; 1976 1977 /* number of pages to reclaim on returning to userland */ 1978 unsigned int memcg_nr_pages_over_high; 1979 #endif 1980 #ifdef CONFIG_UPROBES 1981 struct uprobe_task *utask; 1982 #endif 1983 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1984 unsigned int sequential_io; 1985 unsigned int sequential_io_avg; 1986 #endif 1987 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1988 unsigned long task_state_change; 1989 #endif 1990 int pagefault_disabled; 1991 #ifdef CONFIG_MMU 1992 struct task_struct *oom_reaper_list; 1993 #endif 1994 #ifdef CONFIG_VMAP_STACK 1995 struct vm_struct *stack_vm_area; 1996 #endif 1997 #ifdef CONFIG_THREAD_INFO_IN_TASK 1998 /* A live task holds one reference. */ 1999 atomic_t stack_refcount; 2000 #endif 2001 /* CPU-specific state of this task */ 2002 struct thread_struct thread; 2003 /* 2004 * WARNING: on x86, 'thread_struct' contains a variable-sized 2005 * structure. It *MUST* be at the end of 'task_struct'. 2006 * 2007 * Do not put anything below here! 2008 */ 2009 }; 2010 2011 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 2012 extern int arch_task_struct_size __read_mostly; 2013 #else 2014 # define arch_task_struct_size (sizeof(struct task_struct)) 2015 #endif 2016 2017 #ifdef CONFIG_VMAP_STACK 2018 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) 2019 { 2020 return t->stack_vm_area; 2021 } 2022 #else 2023 static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) 2024 { 2025 return NULL; 2026 } 2027 #endif 2028 2029 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 2030 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 2031 2032 static inline int tsk_nr_cpus_allowed(struct task_struct *p) 2033 { 2034 return p->nr_cpus_allowed; 2035 } 2036 2037 #define TNF_MIGRATED 0x01 2038 #define TNF_NO_GROUP 0x02 2039 #define TNF_SHARED 0x04 2040 #define TNF_FAULT_LOCAL 0x08 2041 #define TNF_MIGRATE_FAIL 0x10 2042 2043 static inline bool in_vfork(struct task_struct *tsk) 2044 { 2045 bool ret; 2046 2047 /* 2048 * need RCU to access ->real_parent if CLONE_VM was used along with 2049 * CLONE_PARENT. 2050 * 2051 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not 2052 * imply CLONE_VM 2053 * 2054 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus 2055 * ->real_parent is not necessarily the task doing vfork(), so in 2056 * theory we can't rely on task_lock() if we want to dereference it. 2057 * 2058 * And in this case we can't trust the real_parent->mm == tsk->mm 2059 * check, it can be false negative. But we do not care, if init or 2060 * another oom-unkillable task does this it should blame itself. 2061 */ 2062 rcu_read_lock(); 2063 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm; 2064 rcu_read_unlock(); 2065 2066 return ret; 2067 } 2068 2069 #ifdef CONFIG_NUMA_BALANCING 2070 extern void task_numa_fault(int last_node, int node, int pages, int flags); 2071 extern pid_t task_numa_group_id(struct task_struct *p); 2072 extern void set_numabalancing_state(bool enabled); 2073 extern void task_numa_free(struct task_struct *p); 2074 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 2075 int src_nid, int dst_cpu); 2076 #else 2077 static inline void task_numa_fault(int last_node, int node, int pages, 2078 int flags) 2079 { 2080 } 2081 static inline pid_t task_numa_group_id(struct task_struct *p) 2082 { 2083 return 0; 2084 } 2085 static inline void set_numabalancing_state(bool enabled) 2086 { 2087 } 2088 static inline void task_numa_free(struct task_struct *p) 2089 { 2090 } 2091 static inline bool should_numa_migrate_memory(struct task_struct *p, 2092 struct page *page, int src_nid, int dst_cpu) 2093 { 2094 return true; 2095 } 2096 #endif 2097 2098 static inline struct pid *task_pid(struct task_struct *task) 2099 { 2100 return task->pids[PIDTYPE_PID].pid; 2101 } 2102 2103 static inline struct pid *task_tgid(struct task_struct *task) 2104 { 2105 return task->group_leader->pids[PIDTYPE_PID].pid; 2106 } 2107 2108 /* 2109 * Without tasklist or rcu lock it is not safe to dereference 2110 * the result of task_pgrp/task_session even if task == current, 2111 * we can race with another thread doing sys_setsid/sys_setpgid. 2112 */ 2113 static inline struct pid *task_pgrp(struct task_struct *task) 2114 { 2115 return task->group_leader->pids[PIDTYPE_PGID].pid; 2116 } 2117 2118 static inline struct pid *task_session(struct task_struct *task) 2119 { 2120 return task->group_leader->pids[PIDTYPE_SID].pid; 2121 } 2122 2123 struct pid_namespace; 2124 2125 /* 2126 * the helpers to get the task's different pids as they are seen 2127 * from various namespaces 2128 * 2129 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 2130 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 2131 * current. 2132 * task_xid_nr_ns() : id seen from the ns specified; 2133 * 2134 * set_task_vxid() : assigns a virtual id to a task; 2135 * 2136 * see also pid_nr() etc in include/linux/pid.h 2137 */ 2138 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 2139 struct pid_namespace *ns); 2140 2141 static inline pid_t task_pid_nr(struct task_struct *tsk) 2142 { 2143 return tsk->pid; 2144 } 2145 2146 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 2147 struct pid_namespace *ns) 2148 { 2149 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 2150 } 2151 2152 static inline pid_t task_pid_vnr(struct task_struct *tsk) 2153 { 2154 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 2155 } 2156 2157 2158 static inline pid_t task_tgid_nr(struct task_struct *tsk) 2159 { 2160 return tsk->tgid; 2161 } 2162 2163 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 2164 2165 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 2166 { 2167 return pid_vnr(task_tgid(tsk)); 2168 } 2169 2170 2171 static inline int pid_alive(const struct task_struct *p); 2172 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 2173 { 2174 pid_t pid = 0; 2175 2176 rcu_read_lock(); 2177 if (pid_alive(tsk)) 2178 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 2179 rcu_read_unlock(); 2180 2181 return pid; 2182 } 2183 2184 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 2185 { 2186 return task_ppid_nr_ns(tsk, &init_pid_ns); 2187 } 2188 2189 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 2190 struct pid_namespace *ns) 2191 { 2192 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 2193 } 2194 2195 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 2196 { 2197 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 2198 } 2199 2200 2201 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 2202 struct pid_namespace *ns) 2203 { 2204 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 2205 } 2206 2207 static inline pid_t task_session_vnr(struct task_struct *tsk) 2208 { 2209 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 2210 } 2211 2212 /* obsolete, do not use */ 2213 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 2214 { 2215 return task_pgrp_nr_ns(tsk, &init_pid_ns); 2216 } 2217 2218 /** 2219 * pid_alive - check that a task structure is not stale 2220 * @p: Task structure to be checked. 2221 * 2222 * Test if a process is not yet dead (at most zombie state) 2223 * If pid_alive fails, then pointers within the task structure 2224 * can be stale and must not be dereferenced. 2225 * 2226 * Return: 1 if the process is alive. 0 otherwise. 2227 */ 2228 static inline int pid_alive(const struct task_struct *p) 2229 { 2230 return p->pids[PIDTYPE_PID].pid != NULL; 2231 } 2232 2233 /** 2234 * is_global_init - check if a task structure is init. Since init 2235 * is free to have sub-threads we need to check tgid. 2236 * @tsk: Task structure to be checked. 2237 * 2238 * Check if a task structure is the first user space task the kernel created. 2239 * 2240 * Return: 1 if the task structure is init. 0 otherwise. 2241 */ 2242 static inline int is_global_init(struct task_struct *tsk) 2243 { 2244 return task_tgid_nr(tsk) == 1; 2245 } 2246 2247 extern struct pid *cad_pid; 2248 2249 extern void free_task(struct task_struct *tsk); 2250 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2251 2252 extern void __put_task_struct(struct task_struct *t); 2253 2254 static inline void put_task_struct(struct task_struct *t) 2255 { 2256 if (atomic_dec_and_test(&t->usage)) 2257 __put_task_struct(t); 2258 } 2259 2260 struct task_struct *task_rcu_dereference(struct task_struct **ptask); 2261 struct task_struct *try_get_task_struct(struct task_struct **ptask); 2262 2263 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2264 extern void task_cputime(struct task_struct *t, 2265 cputime_t *utime, cputime_t *stime); 2266 extern cputime_t task_gtime(struct task_struct *t); 2267 #else 2268 static inline void task_cputime(struct task_struct *t, 2269 cputime_t *utime, cputime_t *stime) 2270 { 2271 *utime = t->utime; 2272 *stime = t->stime; 2273 } 2274 2275 static inline cputime_t task_gtime(struct task_struct *t) 2276 { 2277 return t->gtime; 2278 } 2279 #endif 2280 2281 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2282 static inline void task_cputime_scaled(struct task_struct *t, 2283 cputime_t *utimescaled, 2284 cputime_t *stimescaled) 2285 { 2286 *utimescaled = t->utimescaled; 2287 *stimescaled = t->stimescaled; 2288 } 2289 #else 2290 static inline void task_cputime_scaled(struct task_struct *t, 2291 cputime_t *utimescaled, 2292 cputime_t *stimescaled) 2293 { 2294 task_cputime(t, utimescaled, stimescaled); 2295 } 2296 #endif 2297 2298 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2299 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2300 2301 /* 2302 * Per process flags 2303 */ 2304 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 2305 #define PF_EXITING 0x00000004 /* getting shut down */ 2306 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2307 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2308 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2309 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2310 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2311 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2312 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2313 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2314 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2315 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2316 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2317 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2318 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2319 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2320 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2321 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2322 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2323 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2324 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2325 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2326 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2327 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2328 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2329 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2330 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2331 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2332 2333 /* 2334 * Only the _current_ task can read/write to tsk->flags, but other 2335 * tasks can access tsk->flags in readonly mode for example 2336 * with tsk_used_math (like during threaded core dumping). 2337 * There is however an exception to this rule during ptrace 2338 * or during fork: the ptracer task is allowed to write to the 2339 * child->flags of its traced child (same goes for fork, the parent 2340 * can write to the child->flags), because we're guaranteed the 2341 * child is not running and in turn not changing child->flags 2342 * at the same time the parent does it. 2343 */ 2344 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2345 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2346 #define clear_used_math() clear_stopped_child_used_math(current) 2347 #define set_used_math() set_stopped_child_used_math(current) 2348 #define conditional_stopped_child_used_math(condition, child) \ 2349 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2350 #define conditional_used_math(condition) \ 2351 conditional_stopped_child_used_math(condition, current) 2352 #define copy_to_stopped_child_used_math(child) \ 2353 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2354 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2355 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2356 #define used_math() tsk_used_math(current) 2357 2358 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2359 * __GFP_FS is also cleared as it implies __GFP_IO. 2360 */ 2361 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2362 { 2363 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2364 flags &= ~(__GFP_IO | __GFP_FS); 2365 return flags; 2366 } 2367 2368 static inline unsigned int memalloc_noio_save(void) 2369 { 2370 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2371 current->flags |= PF_MEMALLOC_NOIO; 2372 return flags; 2373 } 2374 2375 static inline void memalloc_noio_restore(unsigned int flags) 2376 { 2377 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2378 } 2379 2380 /* Per-process atomic flags. */ 2381 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2382 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2383 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2384 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */ 2385 2386 2387 #define TASK_PFA_TEST(name, func) \ 2388 static inline bool task_##func(struct task_struct *p) \ 2389 { return test_bit(PFA_##name, &p->atomic_flags); } 2390 #define TASK_PFA_SET(name, func) \ 2391 static inline void task_set_##func(struct task_struct *p) \ 2392 { set_bit(PFA_##name, &p->atomic_flags); } 2393 #define TASK_PFA_CLEAR(name, func) \ 2394 static inline void task_clear_##func(struct task_struct *p) \ 2395 { clear_bit(PFA_##name, &p->atomic_flags); } 2396 2397 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2398 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2399 2400 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2401 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2402 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2403 2404 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2405 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2406 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2407 2408 TASK_PFA_TEST(LMK_WAITING, lmk_waiting) 2409 TASK_PFA_SET(LMK_WAITING, lmk_waiting) 2410 2411 /* 2412 * task->jobctl flags 2413 */ 2414 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2415 2416 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2417 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2418 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2419 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2420 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2421 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2422 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2423 2424 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2425 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2426 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2427 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2428 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2429 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2430 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2431 2432 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2433 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2434 2435 extern bool task_set_jobctl_pending(struct task_struct *task, 2436 unsigned long mask); 2437 extern void task_clear_jobctl_trapping(struct task_struct *task); 2438 extern void task_clear_jobctl_pending(struct task_struct *task, 2439 unsigned long mask); 2440 2441 static inline void rcu_copy_process(struct task_struct *p) 2442 { 2443 #ifdef CONFIG_PREEMPT_RCU 2444 p->rcu_read_lock_nesting = 0; 2445 p->rcu_read_unlock_special.s = 0; 2446 p->rcu_blocked_node = NULL; 2447 INIT_LIST_HEAD(&p->rcu_node_entry); 2448 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2449 #ifdef CONFIG_TASKS_RCU 2450 p->rcu_tasks_holdout = false; 2451 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2452 p->rcu_tasks_idle_cpu = -1; 2453 #endif /* #ifdef CONFIG_TASKS_RCU */ 2454 } 2455 2456 static inline void tsk_restore_flags(struct task_struct *task, 2457 unsigned long orig_flags, unsigned long flags) 2458 { 2459 task->flags &= ~flags; 2460 task->flags |= orig_flags & flags; 2461 } 2462 2463 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2464 const struct cpumask *trial); 2465 extern int task_can_attach(struct task_struct *p, 2466 const struct cpumask *cs_cpus_allowed); 2467 #ifdef CONFIG_SMP 2468 extern void do_set_cpus_allowed(struct task_struct *p, 2469 const struct cpumask *new_mask); 2470 2471 extern int set_cpus_allowed_ptr(struct task_struct *p, 2472 const struct cpumask *new_mask); 2473 #else 2474 static inline void do_set_cpus_allowed(struct task_struct *p, 2475 const struct cpumask *new_mask) 2476 { 2477 } 2478 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2479 const struct cpumask *new_mask) 2480 { 2481 if (!cpumask_test_cpu(0, new_mask)) 2482 return -EINVAL; 2483 return 0; 2484 } 2485 #endif 2486 2487 #ifdef CONFIG_NO_HZ_COMMON 2488 void calc_load_enter_idle(void); 2489 void calc_load_exit_idle(void); 2490 #else 2491 static inline void calc_load_enter_idle(void) { } 2492 static inline void calc_load_exit_idle(void) { } 2493 #endif /* CONFIG_NO_HZ_COMMON */ 2494 2495 #ifndef cpu_relax_yield 2496 #define cpu_relax_yield() cpu_relax() 2497 #endif 2498 2499 /* 2500 * Do not use outside of architecture code which knows its limitations. 2501 * 2502 * sched_clock() has no promise of monotonicity or bounded drift between 2503 * CPUs, use (which you should not) requires disabling IRQs. 2504 * 2505 * Please use one of the three interfaces below. 2506 */ 2507 extern unsigned long long notrace sched_clock(void); 2508 /* 2509 * See the comment in kernel/sched/clock.c 2510 */ 2511 extern u64 running_clock(void); 2512 extern u64 sched_clock_cpu(int cpu); 2513 2514 2515 extern void sched_clock_init(void); 2516 2517 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2518 static inline void sched_clock_tick(void) 2519 { 2520 } 2521 2522 static inline void sched_clock_idle_sleep_event(void) 2523 { 2524 } 2525 2526 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2527 { 2528 } 2529 2530 static inline u64 cpu_clock(int cpu) 2531 { 2532 return sched_clock(); 2533 } 2534 2535 static inline u64 local_clock(void) 2536 { 2537 return sched_clock(); 2538 } 2539 #else 2540 /* 2541 * Architectures can set this to 1 if they have specified 2542 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2543 * but then during bootup it turns out that sched_clock() 2544 * is reliable after all: 2545 */ 2546 extern int sched_clock_stable(void); 2547 extern void set_sched_clock_stable(void); 2548 extern void clear_sched_clock_stable(void); 2549 2550 extern void sched_clock_tick(void); 2551 extern void sched_clock_idle_sleep_event(void); 2552 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2553 2554 /* 2555 * As outlined in clock.c, provides a fast, high resolution, nanosecond 2556 * time source that is monotonic per cpu argument and has bounded drift 2557 * between cpus. 2558 * 2559 * ######################### BIG FAT WARNING ########################## 2560 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 2561 * # go backwards !! # 2562 * #################################################################### 2563 */ 2564 static inline u64 cpu_clock(int cpu) 2565 { 2566 return sched_clock_cpu(cpu); 2567 } 2568 2569 static inline u64 local_clock(void) 2570 { 2571 return sched_clock_cpu(raw_smp_processor_id()); 2572 } 2573 #endif 2574 2575 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2576 /* 2577 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2578 * The reason for this explicit opt-in is not to have perf penalty with 2579 * slow sched_clocks. 2580 */ 2581 extern void enable_sched_clock_irqtime(void); 2582 extern void disable_sched_clock_irqtime(void); 2583 #else 2584 static inline void enable_sched_clock_irqtime(void) {} 2585 static inline void disable_sched_clock_irqtime(void) {} 2586 #endif 2587 2588 extern unsigned long long 2589 task_sched_runtime(struct task_struct *task); 2590 2591 /* sched_exec is called by processes performing an exec */ 2592 #ifdef CONFIG_SMP 2593 extern void sched_exec(void); 2594 #else 2595 #define sched_exec() {} 2596 #endif 2597 2598 extern void sched_clock_idle_sleep_event(void); 2599 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2600 2601 #ifdef CONFIG_HOTPLUG_CPU 2602 extern void idle_task_exit(void); 2603 #else 2604 static inline void idle_task_exit(void) {} 2605 #endif 2606 2607 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2608 extern void wake_up_nohz_cpu(int cpu); 2609 #else 2610 static inline void wake_up_nohz_cpu(int cpu) { } 2611 #endif 2612 2613 #ifdef CONFIG_NO_HZ_FULL 2614 extern u64 scheduler_tick_max_deferment(void); 2615 #endif 2616 2617 #ifdef CONFIG_SCHED_AUTOGROUP 2618 extern void sched_autogroup_create_attach(struct task_struct *p); 2619 extern void sched_autogroup_detach(struct task_struct *p); 2620 extern void sched_autogroup_fork(struct signal_struct *sig); 2621 extern void sched_autogroup_exit(struct signal_struct *sig); 2622 extern void sched_autogroup_exit_task(struct task_struct *p); 2623 #ifdef CONFIG_PROC_FS 2624 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2625 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2626 #endif 2627 #else 2628 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2629 static inline void sched_autogroup_detach(struct task_struct *p) { } 2630 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2631 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2632 static inline void sched_autogroup_exit_task(struct task_struct *p) { } 2633 #endif 2634 2635 extern int yield_to(struct task_struct *p, bool preempt); 2636 extern void set_user_nice(struct task_struct *p, long nice); 2637 extern int task_prio(const struct task_struct *p); 2638 /** 2639 * task_nice - return the nice value of a given task. 2640 * @p: the task in question. 2641 * 2642 * Return: The nice value [ -20 ... 0 ... 19 ]. 2643 */ 2644 static inline int task_nice(const struct task_struct *p) 2645 { 2646 return PRIO_TO_NICE((p)->static_prio); 2647 } 2648 extern int can_nice(const struct task_struct *p, const int nice); 2649 extern int task_curr(const struct task_struct *p); 2650 extern int idle_cpu(int cpu); 2651 extern int sched_setscheduler(struct task_struct *, int, 2652 const struct sched_param *); 2653 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2654 const struct sched_param *); 2655 extern int sched_setattr(struct task_struct *, 2656 const struct sched_attr *); 2657 extern struct task_struct *idle_task(int cpu); 2658 /** 2659 * is_idle_task - is the specified task an idle task? 2660 * @p: the task in question. 2661 * 2662 * Return: 1 if @p is an idle task. 0 otherwise. 2663 */ 2664 static inline bool is_idle_task(const struct task_struct *p) 2665 { 2666 return !!(p->flags & PF_IDLE); 2667 } 2668 extern struct task_struct *curr_task(int cpu); 2669 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 2670 2671 void yield(void); 2672 2673 union thread_union { 2674 #ifndef CONFIG_THREAD_INFO_IN_TASK 2675 struct thread_info thread_info; 2676 #endif 2677 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2678 }; 2679 2680 #ifndef __HAVE_ARCH_KSTACK_END 2681 static inline int kstack_end(void *addr) 2682 { 2683 /* Reliable end of stack detection: 2684 * Some APM bios versions misalign the stack 2685 */ 2686 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2687 } 2688 #endif 2689 2690 extern union thread_union init_thread_union; 2691 extern struct task_struct init_task; 2692 2693 extern struct mm_struct init_mm; 2694 2695 extern struct pid_namespace init_pid_ns; 2696 2697 /* 2698 * find a task by one of its numerical ids 2699 * 2700 * find_task_by_pid_ns(): 2701 * finds a task by its pid in the specified namespace 2702 * find_task_by_vpid(): 2703 * finds a task by its virtual pid 2704 * 2705 * see also find_vpid() etc in include/linux/pid.h 2706 */ 2707 2708 extern struct task_struct *find_task_by_vpid(pid_t nr); 2709 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2710 struct pid_namespace *ns); 2711 2712 /* per-UID process charging. */ 2713 extern struct user_struct * alloc_uid(kuid_t); 2714 static inline struct user_struct *get_uid(struct user_struct *u) 2715 { 2716 atomic_inc(&u->__count); 2717 return u; 2718 } 2719 extern void free_uid(struct user_struct *); 2720 2721 #include <asm/current.h> 2722 2723 extern void xtime_update(unsigned long ticks); 2724 2725 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2726 extern int wake_up_process(struct task_struct *tsk); 2727 extern void wake_up_new_task(struct task_struct *tsk); 2728 #ifdef CONFIG_SMP 2729 extern void kick_process(struct task_struct *tsk); 2730 #else 2731 static inline void kick_process(struct task_struct *tsk) { } 2732 #endif 2733 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2734 extern void sched_dead(struct task_struct *p); 2735 2736 extern void proc_caches_init(void); 2737 extern void flush_signals(struct task_struct *); 2738 extern void ignore_signals(struct task_struct *); 2739 extern void flush_signal_handlers(struct task_struct *, int force_default); 2740 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2741 2742 static inline int kernel_dequeue_signal(siginfo_t *info) 2743 { 2744 struct task_struct *tsk = current; 2745 siginfo_t __info; 2746 int ret; 2747 2748 spin_lock_irq(&tsk->sighand->siglock); 2749 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 2750 spin_unlock_irq(&tsk->sighand->siglock); 2751 2752 return ret; 2753 } 2754 2755 static inline void kernel_signal_stop(void) 2756 { 2757 spin_lock_irq(¤t->sighand->siglock); 2758 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 2759 __set_current_state(TASK_STOPPED); 2760 spin_unlock_irq(¤t->sighand->siglock); 2761 2762 schedule(); 2763 } 2764 2765 extern void release_task(struct task_struct * p); 2766 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2767 extern int force_sigsegv(int, struct task_struct *); 2768 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2769 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2770 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2771 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2772 const struct cred *, u32); 2773 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2774 extern int kill_pid(struct pid *pid, int sig, int priv); 2775 extern int kill_proc_info(int, struct siginfo *, pid_t); 2776 extern __must_check bool do_notify_parent(struct task_struct *, int); 2777 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2778 extern void force_sig(int, struct task_struct *); 2779 extern int send_sig(int, struct task_struct *, int); 2780 extern int zap_other_threads(struct task_struct *p); 2781 extern struct sigqueue *sigqueue_alloc(void); 2782 extern void sigqueue_free(struct sigqueue *); 2783 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2784 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2785 2786 #ifdef TIF_RESTORE_SIGMASK 2787 /* 2788 * Legacy restore_sigmask accessors. These are inefficient on 2789 * SMP architectures because they require atomic operations. 2790 */ 2791 2792 /** 2793 * set_restore_sigmask() - make sure saved_sigmask processing gets done 2794 * 2795 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 2796 * will run before returning to user mode, to process the flag. For 2797 * all callers, TIF_SIGPENDING is already set or it's no harm to set 2798 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 2799 * arch code will notice on return to user mode, in case those bits 2800 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 2801 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 2802 */ 2803 static inline void set_restore_sigmask(void) 2804 { 2805 set_thread_flag(TIF_RESTORE_SIGMASK); 2806 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 2807 } 2808 static inline void clear_restore_sigmask(void) 2809 { 2810 clear_thread_flag(TIF_RESTORE_SIGMASK); 2811 } 2812 static inline bool test_restore_sigmask(void) 2813 { 2814 return test_thread_flag(TIF_RESTORE_SIGMASK); 2815 } 2816 static inline bool test_and_clear_restore_sigmask(void) 2817 { 2818 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 2819 } 2820 2821 #else /* TIF_RESTORE_SIGMASK */ 2822 2823 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 2824 static inline void set_restore_sigmask(void) 2825 { 2826 current->restore_sigmask = true; 2827 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 2828 } 2829 static inline void clear_restore_sigmask(void) 2830 { 2831 current->restore_sigmask = false; 2832 } 2833 static inline bool test_restore_sigmask(void) 2834 { 2835 return current->restore_sigmask; 2836 } 2837 static inline bool test_and_clear_restore_sigmask(void) 2838 { 2839 if (!current->restore_sigmask) 2840 return false; 2841 current->restore_sigmask = false; 2842 return true; 2843 } 2844 #endif 2845 2846 static inline void restore_saved_sigmask(void) 2847 { 2848 if (test_and_clear_restore_sigmask()) 2849 __set_current_blocked(¤t->saved_sigmask); 2850 } 2851 2852 static inline sigset_t *sigmask_to_save(void) 2853 { 2854 sigset_t *res = ¤t->blocked; 2855 if (unlikely(test_restore_sigmask())) 2856 res = ¤t->saved_sigmask; 2857 return res; 2858 } 2859 2860 static inline int kill_cad_pid(int sig, int priv) 2861 { 2862 return kill_pid(cad_pid, sig, priv); 2863 } 2864 2865 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2866 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2867 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2868 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2869 2870 /* 2871 * True if we are on the alternate signal stack. 2872 */ 2873 static inline int on_sig_stack(unsigned long sp) 2874 { 2875 /* 2876 * If the signal stack is SS_AUTODISARM then, by construction, we 2877 * can't be on the signal stack unless user code deliberately set 2878 * SS_AUTODISARM when we were already on it. 2879 * 2880 * This improves reliability: if user state gets corrupted such that 2881 * the stack pointer points very close to the end of the signal stack, 2882 * then this check will enable the signal to be handled anyway. 2883 */ 2884 if (current->sas_ss_flags & SS_AUTODISARM) 2885 return 0; 2886 2887 #ifdef CONFIG_STACK_GROWSUP 2888 return sp >= current->sas_ss_sp && 2889 sp - current->sas_ss_sp < current->sas_ss_size; 2890 #else 2891 return sp > current->sas_ss_sp && 2892 sp - current->sas_ss_sp <= current->sas_ss_size; 2893 #endif 2894 } 2895 2896 static inline int sas_ss_flags(unsigned long sp) 2897 { 2898 if (!current->sas_ss_size) 2899 return SS_DISABLE; 2900 2901 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2902 } 2903 2904 static inline void sas_ss_reset(struct task_struct *p) 2905 { 2906 p->sas_ss_sp = 0; 2907 p->sas_ss_size = 0; 2908 p->sas_ss_flags = SS_DISABLE; 2909 } 2910 2911 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2912 { 2913 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2914 #ifdef CONFIG_STACK_GROWSUP 2915 return current->sas_ss_sp; 2916 #else 2917 return current->sas_ss_sp + current->sas_ss_size; 2918 #endif 2919 return sp; 2920 } 2921 2922 /* 2923 * Routines for handling mm_structs 2924 */ 2925 extern struct mm_struct * mm_alloc(void); 2926 2927 /* mmdrop drops the mm and the page tables */ 2928 extern void __mmdrop(struct mm_struct *); 2929 static inline void mmdrop(struct mm_struct *mm) 2930 { 2931 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2932 __mmdrop(mm); 2933 } 2934 2935 static inline void mmdrop_async_fn(struct work_struct *work) 2936 { 2937 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work); 2938 __mmdrop(mm); 2939 } 2940 2941 static inline void mmdrop_async(struct mm_struct *mm) 2942 { 2943 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 2944 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 2945 schedule_work(&mm->async_put_work); 2946 } 2947 } 2948 2949 static inline bool mmget_not_zero(struct mm_struct *mm) 2950 { 2951 return atomic_inc_not_zero(&mm->mm_users); 2952 } 2953 2954 /* mmput gets rid of the mappings and all user-space */ 2955 extern void mmput(struct mm_struct *); 2956 #ifdef CONFIG_MMU 2957 /* same as above but performs the slow path from the async context. Can 2958 * be called from the atomic context as well 2959 */ 2960 extern void mmput_async(struct mm_struct *); 2961 #endif 2962 2963 /* Grab a reference to a task's mm, if it is not already going away */ 2964 extern struct mm_struct *get_task_mm(struct task_struct *task); 2965 /* 2966 * Grab a reference to a task's mm, if it is not already going away 2967 * and ptrace_may_access with the mode parameter passed to it 2968 * succeeds. 2969 */ 2970 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2971 /* Remove the current tasks stale references to the old mm_struct */ 2972 extern void mm_release(struct task_struct *, struct mm_struct *); 2973 2974 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2975 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2976 struct task_struct *, unsigned long); 2977 #else 2978 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2979 struct task_struct *); 2980 2981 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2982 * via pt_regs, so ignore the tls argument passed via C. */ 2983 static inline int copy_thread_tls( 2984 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2985 struct task_struct *p, unsigned long tls) 2986 { 2987 return copy_thread(clone_flags, sp, arg, p); 2988 } 2989 #endif 2990 extern void flush_thread(void); 2991 2992 #ifdef CONFIG_HAVE_EXIT_THREAD 2993 extern void exit_thread(struct task_struct *tsk); 2994 #else 2995 static inline void exit_thread(struct task_struct *tsk) 2996 { 2997 } 2998 #endif 2999 3000 extern void exit_files(struct task_struct *); 3001 extern void __cleanup_sighand(struct sighand_struct *); 3002 3003 extern void exit_itimers(struct signal_struct *); 3004 extern void flush_itimer_signals(void); 3005 3006 extern void do_group_exit(int); 3007 3008 extern int do_execve(struct filename *, 3009 const char __user * const __user *, 3010 const char __user * const __user *); 3011 extern int do_execveat(int, struct filename *, 3012 const char __user * const __user *, 3013 const char __user * const __user *, 3014 int); 3015 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 3016 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 3017 struct task_struct *fork_idle(int); 3018 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 3019 3020 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 3021 static inline void set_task_comm(struct task_struct *tsk, const char *from) 3022 { 3023 __set_task_comm(tsk, from, false); 3024 } 3025 extern char *get_task_comm(char *to, struct task_struct *tsk); 3026 3027 #ifdef CONFIG_SMP 3028 void scheduler_ipi(void); 3029 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 3030 #else 3031 static inline void scheduler_ipi(void) { } 3032 static inline unsigned long wait_task_inactive(struct task_struct *p, 3033 long match_state) 3034 { 3035 return 1; 3036 } 3037 #endif 3038 3039 #define tasklist_empty() \ 3040 list_empty(&init_task.tasks) 3041 3042 #define next_task(p) \ 3043 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 3044 3045 #define for_each_process(p) \ 3046 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 3047 3048 extern bool current_is_single_threaded(void); 3049 3050 /* 3051 * Careful: do_each_thread/while_each_thread is a double loop so 3052 * 'break' will not work as expected - use goto instead. 3053 */ 3054 #define do_each_thread(g, t) \ 3055 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 3056 3057 #define while_each_thread(g, t) \ 3058 while ((t = next_thread(t)) != g) 3059 3060 #define __for_each_thread(signal, t) \ 3061 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 3062 3063 #define for_each_thread(p, t) \ 3064 __for_each_thread((p)->signal, t) 3065 3066 /* Careful: this is a double loop, 'break' won't work as expected. */ 3067 #define for_each_process_thread(p, t) \ 3068 for_each_process(p) for_each_thread(p, t) 3069 3070 static inline int get_nr_threads(struct task_struct *tsk) 3071 { 3072 return tsk->signal->nr_threads; 3073 } 3074 3075 static inline bool thread_group_leader(struct task_struct *p) 3076 { 3077 return p->exit_signal >= 0; 3078 } 3079 3080 /* Do to the insanities of de_thread it is possible for a process 3081 * to have the pid of the thread group leader without actually being 3082 * the thread group leader. For iteration through the pids in proc 3083 * all we care about is that we have a task with the appropriate 3084 * pid, we don't actually care if we have the right task. 3085 */ 3086 static inline bool has_group_leader_pid(struct task_struct *p) 3087 { 3088 return task_pid(p) == p->signal->leader_pid; 3089 } 3090 3091 static inline 3092 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 3093 { 3094 return p1->signal == p2->signal; 3095 } 3096 3097 static inline struct task_struct *next_thread(const struct task_struct *p) 3098 { 3099 return list_entry_rcu(p->thread_group.next, 3100 struct task_struct, thread_group); 3101 } 3102 3103 static inline int thread_group_empty(struct task_struct *p) 3104 { 3105 return list_empty(&p->thread_group); 3106 } 3107 3108 #define delay_group_leader(p) \ 3109 (thread_group_leader(p) && !thread_group_empty(p)) 3110 3111 /* 3112 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 3113 * subscriptions and synchronises with wait4(). Also used in procfs. Also 3114 * pins the final release of task.io_context. Also protects ->cpuset and 3115 * ->cgroup.subsys[]. And ->vfork_done. 3116 * 3117 * Nests both inside and outside of read_lock(&tasklist_lock). 3118 * It must not be nested with write_lock_irq(&tasklist_lock), 3119 * neither inside nor outside. 3120 */ 3121 static inline void task_lock(struct task_struct *p) 3122 { 3123 spin_lock(&p->alloc_lock); 3124 } 3125 3126 static inline void task_unlock(struct task_struct *p) 3127 { 3128 spin_unlock(&p->alloc_lock); 3129 } 3130 3131 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 3132 unsigned long *flags); 3133 3134 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 3135 unsigned long *flags) 3136 { 3137 struct sighand_struct *ret; 3138 3139 ret = __lock_task_sighand(tsk, flags); 3140 (void)__cond_lock(&tsk->sighand->siglock, ret); 3141 return ret; 3142 } 3143 3144 static inline void unlock_task_sighand(struct task_struct *tsk, 3145 unsigned long *flags) 3146 { 3147 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 3148 } 3149 3150 /** 3151 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 3152 * @tsk: task causing the changes 3153 * 3154 * All operations which modify a threadgroup - a new thread joining the 3155 * group, death of a member thread (the assertion of PF_EXITING) and 3156 * exec(2) dethreading the process and replacing the leader - are wrapped 3157 * by threadgroup_change_{begin|end}(). This is to provide a place which 3158 * subsystems needing threadgroup stability can hook into for 3159 * synchronization. 3160 */ 3161 static inline void threadgroup_change_begin(struct task_struct *tsk) 3162 { 3163 might_sleep(); 3164 cgroup_threadgroup_change_begin(tsk); 3165 } 3166 3167 /** 3168 * threadgroup_change_end - mark the end of changes to a threadgroup 3169 * @tsk: task causing the changes 3170 * 3171 * See threadgroup_change_begin(). 3172 */ 3173 static inline void threadgroup_change_end(struct task_struct *tsk) 3174 { 3175 cgroup_threadgroup_change_end(tsk); 3176 } 3177 3178 #ifdef CONFIG_THREAD_INFO_IN_TASK 3179 3180 static inline struct thread_info *task_thread_info(struct task_struct *task) 3181 { 3182 return &task->thread_info; 3183 } 3184 3185 /* 3186 * When accessing the stack of a non-current task that might exit, use 3187 * try_get_task_stack() instead. task_stack_page will return a pointer 3188 * that could get freed out from under you. 3189 */ 3190 static inline void *task_stack_page(const struct task_struct *task) 3191 { 3192 return task->stack; 3193 } 3194 3195 #define setup_thread_stack(new,old) do { } while(0) 3196 3197 static inline unsigned long *end_of_stack(const struct task_struct *task) 3198 { 3199 return task->stack; 3200 } 3201 3202 #elif !defined(__HAVE_THREAD_FUNCTIONS) 3203 3204 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 3205 #define task_stack_page(task) ((void *)(task)->stack) 3206 3207 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 3208 { 3209 *task_thread_info(p) = *task_thread_info(org); 3210 task_thread_info(p)->task = p; 3211 } 3212 3213 /* 3214 * Return the address of the last usable long on the stack. 3215 * 3216 * When the stack grows down, this is just above the thread 3217 * info struct. Going any lower will corrupt the threadinfo. 3218 * 3219 * When the stack grows up, this is the highest address. 3220 * Beyond that position, we corrupt data on the next page. 3221 */ 3222 static inline unsigned long *end_of_stack(struct task_struct *p) 3223 { 3224 #ifdef CONFIG_STACK_GROWSUP 3225 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 3226 #else 3227 return (unsigned long *)(task_thread_info(p) + 1); 3228 #endif 3229 } 3230 3231 #endif 3232 3233 #ifdef CONFIG_THREAD_INFO_IN_TASK 3234 static inline void *try_get_task_stack(struct task_struct *tsk) 3235 { 3236 return atomic_inc_not_zero(&tsk->stack_refcount) ? 3237 task_stack_page(tsk) : NULL; 3238 } 3239 3240 extern void put_task_stack(struct task_struct *tsk); 3241 #else 3242 static inline void *try_get_task_stack(struct task_struct *tsk) 3243 { 3244 return task_stack_page(tsk); 3245 } 3246 3247 static inline void put_task_stack(struct task_struct *tsk) {} 3248 #endif 3249 3250 #define task_stack_end_corrupted(task) \ 3251 (*(end_of_stack(task)) != STACK_END_MAGIC) 3252 3253 static inline int object_is_on_stack(void *obj) 3254 { 3255 void *stack = task_stack_page(current); 3256 3257 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 3258 } 3259 3260 extern void thread_stack_cache_init(void); 3261 3262 #ifdef CONFIG_DEBUG_STACK_USAGE 3263 static inline unsigned long stack_not_used(struct task_struct *p) 3264 { 3265 unsigned long *n = end_of_stack(p); 3266 3267 do { /* Skip over canary */ 3268 # ifdef CONFIG_STACK_GROWSUP 3269 n--; 3270 # else 3271 n++; 3272 # endif 3273 } while (!*n); 3274 3275 # ifdef CONFIG_STACK_GROWSUP 3276 return (unsigned long)end_of_stack(p) - (unsigned long)n; 3277 # else 3278 return (unsigned long)n - (unsigned long)end_of_stack(p); 3279 # endif 3280 } 3281 #endif 3282 extern void set_task_stack_end_magic(struct task_struct *tsk); 3283 3284 /* set thread flags in other task's structures 3285 * - see asm/thread_info.h for TIF_xxxx flags available 3286 */ 3287 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 3288 { 3289 set_ti_thread_flag(task_thread_info(tsk), flag); 3290 } 3291 3292 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3293 { 3294 clear_ti_thread_flag(task_thread_info(tsk), flag); 3295 } 3296 3297 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 3298 { 3299 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 3300 } 3301 3302 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3303 { 3304 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 3305 } 3306 3307 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 3308 { 3309 return test_ti_thread_flag(task_thread_info(tsk), flag); 3310 } 3311 3312 static inline void set_tsk_need_resched(struct task_struct *tsk) 3313 { 3314 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3315 } 3316 3317 static inline void clear_tsk_need_resched(struct task_struct *tsk) 3318 { 3319 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3320 } 3321 3322 static inline int test_tsk_need_resched(struct task_struct *tsk) 3323 { 3324 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 3325 } 3326 3327 static inline int restart_syscall(void) 3328 { 3329 set_tsk_thread_flag(current, TIF_SIGPENDING); 3330 return -ERESTARTNOINTR; 3331 } 3332 3333 static inline int signal_pending(struct task_struct *p) 3334 { 3335 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 3336 } 3337 3338 static inline int __fatal_signal_pending(struct task_struct *p) 3339 { 3340 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 3341 } 3342 3343 static inline int fatal_signal_pending(struct task_struct *p) 3344 { 3345 return signal_pending(p) && __fatal_signal_pending(p); 3346 } 3347 3348 static inline int signal_pending_state(long state, struct task_struct *p) 3349 { 3350 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 3351 return 0; 3352 if (!signal_pending(p)) 3353 return 0; 3354 3355 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 3356 } 3357 3358 /* 3359 * cond_resched() and cond_resched_lock(): latency reduction via 3360 * explicit rescheduling in places that are safe. The return 3361 * value indicates whether a reschedule was done in fact. 3362 * cond_resched_lock() will drop the spinlock before scheduling, 3363 * cond_resched_softirq() will enable bhs before scheduling. 3364 */ 3365 #ifndef CONFIG_PREEMPT 3366 extern int _cond_resched(void); 3367 #else 3368 static inline int _cond_resched(void) { return 0; } 3369 #endif 3370 3371 #define cond_resched() ({ \ 3372 ___might_sleep(__FILE__, __LINE__, 0); \ 3373 _cond_resched(); \ 3374 }) 3375 3376 extern int __cond_resched_lock(spinlock_t *lock); 3377 3378 #define cond_resched_lock(lock) ({ \ 3379 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 3380 __cond_resched_lock(lock); \ 3381 }) 3382 3383 extern int __cond_resched_softirq(void); 3384 3385 #define cond_resched_softirq() ({ \ 3386 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 3387 __cond_resched_softirq(); \ 3388 }) 3389 3390 static inline void cond_resched_rcu(void) 3391 { 3392 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 3393 rcu_read_unlock(); 3394 cond_resched(); 3395 rcu_read_lock(); 3396 #endif 3397 } 3398 3399 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3400 { 3401 #ifdef CONFIG_DEBUG_PREEMPT 3402 return p->preempt_disable_ip; 3403 #else 3404 return 0; 3405 #endif 3406 } 3407 3408 /* 3409 * Does a critical section need to be broken due to another 3410 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 3411 * but a general need for low latency) 3412 */ 3413 static inline int spin_needbreak(spinlock_t *lock) 3414 { 3415 #ifdef CONFIG_PREEMPT 3416 return spin_is_contended(lock); 3417 #else 3418 return 0; 3419 #endif 3420 } 3421 3422 /* 3423 * Idle thread specific functions to determine the need_resched 3424 * polling state. 3425 */ 3426 #ifdef TIF_POLLING_NRFLAG 3427 static inline int tsk_is_polling(struct task_struct *p) 3428 { 3429 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 3430 } 3431 3432 static inline void __current_set_polling(void) 3433 { 3434 set_thread_flag(TIF_POLLING_NRFLAG); 3435 } 3436 3437 static inline bool __must_check current_set_polling_and_test(void) 3438 { 3439 __current_set_polling(); 3440 3441 /* 3442 * Polling state must be visible before we test NEED_RESCHED, 3443 * paired by resched_curr() 3444 */ 3445 smp_mb__after_atomic(); 3446 3447 return unlikely(tif_need_resched()); 3448 } 3449 3450 static inline void __current_clr_polling(void) 3451 { 3452 clear_thread_flag(TIF_POLLING_NRFLAG); 3453 } 3454 3455 static inline bool __must_check current_clr_polling_and_test(void) 3456 { 3457 __current_clr_polling(); 3458 3459 /* 3460 * Polling state must be visible before we test NEED_RESCHED, 3461 * paired by resched_curr() 3462 */ 3463 smp_mb__after_atomic(); 3464 3465 return unlikely(tif_need_resched()); 3466 } 3467 3468 #else 3469 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3470 static inline void __current_set_polling(void) { } 3471 static inline void __current_clr_polling(void) { } 3472 3473 static inline bool __must_check current_set_polling_and_test(void) 3474 { 3475 return unlikely(tif_need_resched()); 3476 } 3477 static inline bool __must_check current_clr_polling_and_test(void) 3478 { 3479 return unlikely(tif_need_resched()); 3480 } 3481 #endif 3482 3483 static inline void current_clr_polling(void) 3484 { 3485 __current_clr_polling(); 3486 3487 /* 3488 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3489 * Once the bit is cleared, we'll get IPIs with every new 3490 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3491 * fold. 3492 */ 3493 smp_mb(); /* paired with resched_curr() */ 3494 3495 preempt_fold_need_resched(); 3496 } 3497 3498 static __always_inline bool need_resched(void) 3499 { 3500 return unlikely(tif_need_resched()); 3501 } 3502 3503 /* 3504 * Thread group CPU time accounting. 3505 */ 3506 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3507 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3508 3509 /* 3510 * Reevaluate whether the task has signals pending delivery. 3511 * Wake the task if so. 3512 * This is required every time the blocked sigset_t changes. 3513 * callers must hold sighand->siglock. 3514 */ 3515 extern void recalc_sigpending_and_wake(struct task_struct *t); 3516 extern void recalc_sigpending(void); 3517 3518 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3519 3520 static inline void signal_wake_up(struct task_struct *t, bool resume) 3521 { 3522 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3523 } 3524 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3525 { 3526 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3527 } 3528 3529 /* 3530 * Wrappers for p->thread_info->cpu access. No-op on UP. 3531 */ 3532 #ifdef CONFIG_SMP 3533 3534 static inline unsigned int task_cpu(const struct task_struct *p) 3535 { 3536 #ifdef CONFIG_THREAD_INFO_IN_TASK 3537 return p->cpu; 3538 #else 3539 return task_thread_info(p)->cpu; 3540 #endif 3541 } 3542 3543 static inline int task_node(const struct task_struct *p) 3544 { 3545 return cpu_to_node(task_cpu(p)); 3546 } 3547 3548 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3549 3550 #else 3551 3552 static inline unsigned int task_cpu(const struct task_struct *p) 3553 { 3554 return 0; 3555 } 3556 3557 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3558 { 3559 } 3560 3561 #endif /* CONFIG_SMP */ 3562 3563 /* 3564 * In order to reduce various lock holder preemption latencies provide an 3565 * interface to see if a vCPU is currently running or not. 3566 * 3567 * This allows us to terminate optimistic spin loops and block, analogous to 3568 * the native optimistic spin heuristic of testing if the lock owner task is 3569 * running or not. 3570 */ 3571 #ifndef vcpu_is_preempted 3572 # define vcpu_is_preempted(cpu) false 3573 #endif 3574 3575 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3576 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3577 3578 #ifdef CONFIG_CGROUP_SCHED 3579 extern struct task_group root_task_group; 3580 #endif /* CONFIG_CGROUP_SCHED */ 3581 3582 extern int task_can_switch_user(struct user_struct *up, 3583 struct task_struct *tsk); 3584 3585 #ifdef CONFIG_TASK_XACCT 3586 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3587 { 3588 tsk->ioac.rchar += amt; 3589 } 3590 3591 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3592 { 3593 tsk->ioac.wchar += amt; 3594 } 3595 3596 static inline void inc_syscr(struct task_struct *tsk) 3597 { 3598 tsk->ioac.syscr++; 3599 } 3600 3601 static inline void inc_syscw(struct task_struct *tsk) 3602 { 3603 tsk->ioac.syscw++; 3604 } 3605 #else 3606 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3607 { 3608 } 3609 3610 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3611 { 3612 } 3613 3614 static inline void inc_syscr(struct task_struct *tsk) 3615 { 3616 } 3617 3618 static inline void inc_syscw(struct task_struct *tsk) 3619 { 3620 } 3621 #endif 3622 3623 #ifndef TASK_SIZE_OF 3624 #define TASK_SIZE_OF(tsk) TASK_SIZE 3625 #endif 3626 3627 #ifdef CONFIG_MEMCG 3628 extern void mm_update_next_owner(struct mm_struct *mm); 3629 #else 3630 static inline void mm_update_next_owner(struct mm_struct *mm) 3631 { 3632 } 3633 #endif /* CONFIG_MEMCG */ 3634 3635 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3636 unsigned int limit) 3637 { 3638 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3639 } 3640 3641 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3642 unsigned int limit) 3643 { 3644 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3645 } 3646 3647 static inline unsigned long rlimit(unsigned int limit) 3648 { 3649 return task_rlimit(current, limit); 3650 } 3651 3652 static inline unsigned long rlimit_max(unsigned int limit) 3653 { 3654 return task_rlimit_max(current, limit); 3655 } 3656 3657 #define SCHED_CPUFREQ_RT (1U << 0) 3658 #define SCHED_CPUFREQ_DL (1U << 1) 3659 #define SCHED_CPUFREQ_IOWAIT (1U << 2) 3660 3661 #define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL) 3662 3663 #ifdef CONFIG_CPU_FREQ 3664 struct update_util_data { 3665 void (*func)(struct update_util_data *data, u64 time, unsigned int flags); 3666 }; 3667 3668 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data, 3669 void (*func)(struct update_util_data *data, u64 time, 3670 unsigned int flags)); 3671 void cpufreq_remove_update_util_hook(int cpu); 3672 #endif /* CONFIG_CPU_FREQ */ 3673 3674 #endif 3675