1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/kcov.h> 18 #include <linux/mutex.h> 19 #include <linux/plist.h> 20 #include <linux/hrtimer.h> 21 #include <linux/irqflags.h> 22 #include <linux/seccomp.h> 23 #include <linux/nodemask.h> 24 #include <linux/rcupdate.h> 25 #include <linux/refcount.h> 26 #include <linux/resource.h> 27 #include <linux/latencytop.h> 28 #include <linux/sched/prio.h> 29 #include <linux/sched/types.h> 30 #include <linux/signal_types.h> 31 #include <linux/mm_types_task.h> 32 #include <linux/task_io_accounting.h> 33 #include <linux/posix-timers.h> 34 #include <linux/rseq.h> 35 #include <linux/kcsan.h> 36 37 /* task_struct member predeclarations (sorted alphabetically): */ 38 struct audit_context; 39 struct backing_dev_info; 40 struct bio_list; 41 struct blk_plug; 42 struct capture_control; 43 struct cfs_rq; 44 struct fs_struct; 45 struct futex_pi_state; 46 struct io_context; 47 struct mempolicy; 48 struct nameidata; 49 struct nsproxy; 50 struct perf_event_context; 51 struct pid_namespace; 52 struct pipe_inode_info; 53 struct rcu_node; 54 struct reclaim_state; 55 struct robust_list_head; 56 struct root_domain; 57 struct rq; 58 struct sched_attr; 59 struct sched_param; 60 struct seq_file; 61 struct sighand_struct; 62 struct signal_struct; 63 struct task_delay_info; 64 struct task_group; 65 66 /* 67 * Task state bitmask. NOTE! These bits are also 68 * encoded in fs/proc/array.c: get_task_state(). 69 * 70 * We have two separate sets of flags: task->state 71 * is about runnability, while task->exit_state are 72 * about the task exiting. Confusing, but this way 73 * modifying one set can't modify the other one by 74 * mistake. 75 */ 76 77 /* Used in tsk->state: */ 78 #define TASK_RUNNING 0x0000 79 #define TASK_INTERRUPTIBLE 0x0001 80 #define TASK_UNINTERRUPTIBLE 0x0002 81 #define __TASK_STOPPED 0x0004 82 #define __TASK_TRACED 0x0008 83 /* Used in tsk->exit_state: */ 84 #define EXIT_DEAD 0x0010 85 #define EXIT_ZOMBIE 0x0020 86 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 87 /* Used in tsk->state again: */ 88 #define TASK_PARKED 0x0040 89 #define TASK_DEAD 0x0080 90 #define TASK_WAKEKILL 0x0100 91 #define TASK_WAKING 0x0200 92 #define TASK_NOLOAD 0x0400 93 #define TASK_NEW 0x0800 94 #define TASK_STATE_MAX 0x1000 95 96 /* Convenience macros for the sake of set_current_state: */ 97 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 98 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 99 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 100 101 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 102 103 /* Convenience macros for the sake of wake_up(): */ 104 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 105 106 /* get_task_state(): */ 107 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 108 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 109 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 110 TASK_PARKED) 111 112 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 113 114 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 115 116 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 117 118 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 119 120 /* 121 * Special states are those that do not use the normal wait-loop pattern. See 122 * the comment with set_special_state(). 123 */ 124 #define is_special_task_state(state) \ 125 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 126 127 #define __set_current_state(state_value) \ 128 do { \ 129 WARN_ON_ONCE(is_special_task_state(state_value));\ 130 current->task_state_change = _THIS_IP_; \ 131 current->state = (state_value); \ 132 } while (0) 133 134 #define set_current_state(state_value) \ 135 do { \ 136 WARN_ON_ONCE(is_special_task_state(state_value));\ 137 current->task_state_change = _THIS_IP_; \ 138 smp_store_mb(current->state, (state_value)); \ 139 } while (0) 140 141 #define set_special_state(state_value) \ 142 do { \ 143 unsigned long flags; /* may shadow */ \ 144 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 145 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 146 current->task_state_change = _THIS_IP_; \ 147 current->state = (state_value); \ 148 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 149 } while (0) 150 #else 151 /* 152 * set_current_state() includes a barrier so that the write of current->state 153 * is correctly serialised wrt the caller's subsequent test of whether to 154 * actually sleep: 155 * 156 * for (;;) { 157 * set_current_state(TASK_UNINTERRUPTIBLE); 158 * if (CONDITION) 159 * break; 160 * 161 * schedule(); 162 * } 163 * __set_current_state(TASK_RUNNING); 164 * 165 * If the caller does not need such serialisation (because, for instance, the 166 * CONDITION test and condition change and wakeup are under the same lock) then 167 * use __set_current_state(). 168 * 169 * The above is typically ordered against the wakeup, which does: 170 * 171 * CONDITION = 1; 172 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 173 * 174 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before 175 * accessing p->state. 176 * 177 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 178 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 179 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 180 * 181 * However, with slightly different timing the wakeup TASK_RUNNING store can 182 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 183 * a problem either because that will result in one extra go around the loop 184 * and our @cond test will save the day. 185 * 186 * Also see the comments of try_to_wake_up(). 187 */ 188 #define __set_current_state(state_value) \ 189 current->state = (state_value) 190 191 #define set_current_state(state_value) \ 192 smp_store_mb(current->state, (state_value)) 193 194 /* 195 * set_special_state() should be used for those states when the blocking task 196 * can not use the regular condition based wait-loop. In that case we must 197 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 198 * will not collide with our state change. 199 */ 200 #define set_special_state(state_value) \ 201 do { \ 202 unsigned long flags; /* may shadow */ \ 203 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 204 current->state = (state_value); \ 205 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 206 } while (0) 207 208 #endif 209 210 /* Task command name length: */ 211 #define TASK_COMM_LEN 16 212 213 extern void scheduler_tick(void); 214 215 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 216 217 extern long schedule_timeout(long timeout); 218 extern long schedule_timeout_interruptible(long timeout); 219 extern long schedule_timeout_killable(long timeout); 220 extern long schedule_timeout_uninterruptible(long timeout); 221 extern long schedule_timeout_idle(long timeout); 222 asmlinkage void schedule(void); 223 extern void schedule_preempt_disabled(void); 224 asmlinkage void preempt_schedule_irq(void); 225 226 extern int __must_check io_schedule_prepare(void); 227 extern void io_schedule_finish(int token); 228 extern long io_schedule_timeout(long timeout); 229 extern void io_schedule(void); 230 231 /** 232 * struct prev_cputime - snapshot of system and user cputime 233 * @utime: time spent in user mode 234 * @stime: time spent in system mode 235 * @lock: protects the above two fields 236 * 237 * Stores previous user/system time values such that we can guarantee 238 * monotonicity. 239 */ 240 struct prev_cputime { 241 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 242 u64 utime; 243 u64 stime; 244 raw_spinlock_t lock; 245 #endif 246 }; 247 248 enum vtime_state { 249 /* Task is sleeping or running in a CPU with VTIME inactive: */ 250 VTIME_INACTIVE = 0, 251 /* Task is idle */ 252 VTIME_IDLE, 253 /* Task runs in kernelspace in a CPU with VTIME active: */ 254 VTIME_SYS, 255 /* Task runs in userspace in a CPU with VTIME active: */ 256 VTIME_USER, 257 /* Task runs as guests in a CPU with VTIME active: */ 258 VTIME_GUEST, 259 }; 260 261 struct vtime { 262 seqcount_t seqcount; 263 unsigned long long starttime; 264 enum vtime_state state; 265 unsigned int cpu; 266 u64 utime; 267 u64 stime; 268 u64 gtime; 269 }; 270 271 /* 272 * Utilization clamp constraints. 273 * @UCLAMP_MIN: Minimum utilization 274 * @UCLAMP_MAX: Maximum utilization 275 * @UCLAMP_CNT: Utilization clamp constraints count 276 */ 277 enum uclamp_id { 278 UCLAMP_MIN = 0, 279 UCLAMP_MAX, 280 UCLAMP_CNT 281 }; 282 283 #ifdef CONFIG_SMP 284 extern struct root_domain def_root_domain; 285 extern struct mutex sched_domains_mutex; 286 #endif 287 288 struct sched_info { 289 #ifdef CONFIG_SCHED_INFO 290 /* Cumulative counters: */ 291 292 /* # of times we have run on this CPU: */ 293 unsigned long pcount; 294 295 /* Time spent waiting on a runqueue: */ 296 unsigned long long run_delay; 297 298 /* Timestamps: */ 299 300 /* When did we last run on a CPU? */ 301 unsigned long long last_arrival; 302 303 /* When were we last queued to run? */ 304 unsigned long long last_queued; 305 306 #endif /* CONFIG_SCHED_INFO */ 307 }; 308 309 /* 310 * Integer metrics need fixed point arithmetic, e.g., sched/fair 311 * has a few: load, load_avg, util_avg, freq, and capacity. 312 * 313 * We define a basic fixed point arithmetic range, and then formalize 314 * all these metrics based on that basic range. 315 */ 316 # define SCHED_FIXEDPOINT_SHIFT 10 317 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 318 319 /* Increase resolution of cpu_capacity calculations */ 320 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 321 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 322 323 struct load_weight { 324 unsigned long weight; 325 u32 inv_weight; 326 }; 327 328 /** 329 * struct util_est - Estimation utilization of FAIR tasks 330 * @enqueued: instantaneous estimated utilization of a task/cpu 331 * @ewma: the Exponential Weighted Moving Average (EWMA) 332 * utilization of a task 333 * 334 * Support data structure to track an Exponential Weighted Moving Average 335 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 336 * average each time a task completes an activation. Sample's weight is chosen 337 * so that the EWMA will be relatively insensitive to transient changes to the 338 * task's workload. 339 * 340 * The enqueued attribute has a slightly different meaning for tasks and cpus: 341 * - task: the task's util_avg at last task dequeue time 342 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 343 * Thus, the util_est.enqueued of a task represents the contribution on the 344 * estimated utilization of the CPU where that task is currently enqueued. 345 * 346 * Only for tasks we track a moving average of the past instantaneous 347 * estimated utilization. This allows to absorb sporadic drops in utilization 348 * of an otherwise almost periodic task. 349 */ 350 struct util_est { 351 unsigned int enqueued; 352 unsigned int ewma; 353 #define UTIL_EST_WEIGHT_SHIFT 2 354 } __attribute__((__aligned__(sizeof(u64)))); 355 356 /* 357 * The load/runnable/util_avg accumulates an infinite geometric series 358 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). 359 * 360 * [load_avg definition] 361 * 362 * load_avg = runnable% * scale_load_down(load) 363 * 364 * [runnable_avg definition] 365 * 366 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE 367 * 368 * [util_avg definition] 369 * 370 * util_avg = running% * SCHED_CAPACITY_SCALE 371 * 372 * where runnable% is the time ratio that a sched_entity is runnable and 373 * running% the time ratio that a sched_entity is running. 374 * 375 * For cfs_rq, they are the aggregated values of all runnable and blocked 376 * sched_entities. 377 * 378 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU 379 * capacity scaling. The scaling is done through the rq_clock_pelt that is used 380 * for computing those signals (see update_rq_clock_pelt()) 381 * 382 * N.B., the above ratios (runnable% and running%) themselves are in the 383 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 384 * to as large a range as necessary. This is for example reflected by 385 * util_avg's SCHED_CAPACITY_SCALE. 386 * 387 * [Overflow issue] 388 * 389 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 390 * with the highest load (=88761), always runnable on a single cfs_rq, 391 * and should not overflow as the number already hits PID_MAX_LIMIT. 392 * 393 * For all other cases (including 32-bit kernels), struct load_weight's 394 * weight will overflow first before we do, because: 395 * 396 * Max(load_avg) <= Max(load.weight) 397 * 398 * Then it is the load_weight's responsibility to consider overflow 399 * issues. 400 */ 401 struct sched_avg { 402 u64 last_update_time; 403 u64 load_sum; 404 u64 runnable_sum; 405 u32 util_sum; 406 u32 period_contrib; 407 unsigned long load_avg; 408 unsigned long runnable_avg; 409 unsigned long util_avg; 410 struct util_est util_est; 411 } ____cacheline_aligned; 412 413 struct sched_statistics { 414 #ifdef CONFIG_SCHEDSTATS 415 u64 wait_start; 416 u64 wait_max; 417 u64 wait_count; 418 u64 wait_sum; 419 u64 iowait_count; 420 u64 iowait_sum; 421 422 u64 sleep_start; 423 u64 sleep_max; 424 s64 sum_sleep_runtime; 425 426 u64 block_start; 427 u64 block_max; 428 u64 exec_max; 429 u64 slice_max; 430 431 u64 nr_migrations_cold; 432 u64 nr_failed_migrations_affine; 433 u64 nr_failed_migrations_running; 434 u64 nr_failed_migrations_hot; 435 u64 nr_forced_migrations; 436 437 u64 nr_wakeups; 438 u64 nr_wakeups_sync; 439 u64 nr_wakeups_migrate; 440 u64 nr_wakeups_local; 441 u64 nr_wakeups_remote; 442 u64 nr_wakeups_affine; 443 u64 nr_wakeups_affine_attempts; 444 u64 nr_wakeups_passive; 445 u64 nr_wakeups_idle; 446 #endif 447 }; 448 449 struct sched_entity { 450 /* For load-balancing: */ 451 struct load_weight load; 452 struct rb_node run_node; 453 struct list_head group_node; 454 unsigned int on_rq; 455 456 u64 exec_start; 457 u64 sum_exec_runtime; 458 u64 vruntime; 459 u64 prev_sum_exec_runtime; 460 461 u64 nr_migrations; 462 463 struct sched_statistics statistics; 464 465 #ifdef CONFIG_FAIR_GROUP_SCHED 466 int depth; 467 struct sched_entity *parent; 468 /* rq on which this entity is (to be) queued: */ 469 struct cfs_rq *cfs_rq; 470 /* rq "owned" by this entity/group: */ 471 struct cfs_rq *my_q; 472 /* cached value of my_q->h_nr_running */ 473 unsigned long runnable_weight; 474 #endif 475 476 #ifdef CONFIG_SMP 477 /* 478 * Per entity load average tracking. 479 * 480 * Put into separate cache line so it does not 481 * collide with read-mostly values above. 482 */ 483 struct sched_avg avg; 484 #endif 485 }; 486 487 struct sched_rt_entity { 488 struct list_head run_list; 489 unsigned long timeout; 490 unsigned long watchdog_stamp; 491 unsigned int time_slice; 492 unsigned short on_rq; 493 unsigned short on_list; 494 495 struct sched_rt_entity *back; 496 #ifdef CONFIG_RT_GROUP_SCHED 497 struct sched_rt_entity *parent; 498 /* rq on which this entity is (to be) queued: */ 499 struct rt_rq *rt_rq; 500 /* rq "owned" by this entity/group: */ 501 struct rt_rq *my_q; 502 #endif 503 } __randomize_layout; 504 505 struct sched_dl_entity { 506 struct rb_node rb_node; 507 508 /* 509 * Original scheduling parameters. Copied here from sched_attr 510 * during sched_setattr(), they will remain the same until 511 * the next sched_setattr(). 512 */ 513 u64 dl_runtime; /* Maximum runtime for each instance */ 514 u64 dl_deadline; /* Relative deadline of each instance */ 515 u64 dl_period; /* Separation of two instances (period) */ 516 u64 dl_bw; /* dl_runtime / dl_period */ 517 u64 dl_density; /* dl_runtime / dl_deadline */ 518 519 /* 520 * Actual scheduling parameters. Initialized with the values above, 521 * they are continuously updated during task execution. Note that 522 * the remaining runtime could be < 0 in case we are in overrun. 523 */ 524 s64 runtime; /* Remaining runtime for this instance */ 525 u64 deadline; /* Absolute deadline for this instance */ 526 unsigned int flags; /* Specifying the scheduler behaviour */ 527 528 /* 529 * Some bool flags: 530 * 531 * @dl_throttled tells if we exhausted the runtime. If so, the 532 * task has to wait for a replenishment to be performed at the 533 * next firing of dl_timer. 534 * 535 * @dl_boosted tells if we are boosted due to DI. If so we are 536 * outside bandwidth enforcement mechanism (but only until we 537 * exit the critical section); 538 * 539 * @dl_yielded tells if task gave up the CPU before consuming 540 * all its available runtime during the last job. 541 * 542 * @dl_non_contending tells if the task is inactive while still 543 * contributing to the active utilization. In other words, it 544 * indicates if the inactive timer has been armed and its handler 545 * has not been executed yet. This flag is useful to avoid race 546 * conditions between the inactive timer handler and the wakeup 547 * code. 548 * 549 * @dl_overrun tells if the task asked to be informed about runtime 550 * overruns. 551 */ 552 unsigned int dl_throttled : 1; 553 unsigned int dl_boosted : 1; 554 unsigned int dl_yielded : 1; 555 unsigned int dl_non_contending : 1; 556 unsigned int dl_overrun : 1; 557 558 /* 559 * Bandwidth enforcement timer. Each -deadline task has its 560 * own bandwidth to be enforced, thus we need one timer per task. 561 */ 562 struct hrtimer dl_timer; 563 564 /* 565 * Inactive timer, responsible for decreasing the active utilization 566 * at the "0-lag time". When a -deadline task blocks, it contributes 567 * to GRUB's active utilization until the "0-lag time", hence a 568 * timer is needed to decrease the active utilization at the correct 569 * time. 570 */ 571 struct hrtimer inactive_timer; 572 }; 573 574 #ifdef CONFIG_UCLAMP_TASK 575 /* Number of utilization clamp buckets (shorter alias) */ 576 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 577 578 /* 579 * Utilization clamp for a scheduling entity 580 * @value: clamp value "assigned" to a se 581 * @bucket_id: bucket index corresponding to the "assigned" value 582 * @active: the se is currently refcounted in a rq's bucket 583 * @user_defined: the requested clamp value comes from user-space 584 * 585 * The bucket_id is the index of the clamp bucket matching the clamp value 586 * which is pre-computed and stored to avoid expensive integer divisions from 587 * the fast path. 588 * 589 * The active bit is set whenever a task has got an "effective" value assigned, 590 * which can be different from the clamp value "requested" from user-space. 591 * This allows to know a task is refcounted in the rq's bucket corresponding 592 * to the "effective" bucket_id. 593 * 594 * The user_defined bit is set whenever a task has got a task-specific clamp 595 * value requested from userspace, i.e. the system defaults apply to this task 596 * just as a restriction. This allows to relax default clamps when a less 597 * restrictive task-specific value has been requested, thus allowing to 598 * implement a "nice" semantic. For example, a task running with a 20% 599 * default boost can still drop its own boosting to 0%. 600 */ 601 struct uclamp_se { 602 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 603 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 604 unsigned int active : 1; 605 unsigned int user_defined : 1; 606 }; 607 #endif /* CONFIG_UCLAMP_TASK */ 608 609 union rcu_special { 610 struct { 611 u8 blocked; 612 u8 need_qs; 613 u8 exp_hint; /* Hint for performance. */ 614 u8 need_mb; /* Readers need smp_mb(). */ 615 } b; /* Bits. */ 616 u32 s; /* Set of bits. */ 617 }; 618 619 enum perf_event_task_context { 620 perf_invalid_context = -1, 621 perf_hw_context = 0, 622 perf_sw_context, 623 perf_nr_task_contexts, 624 }; 625 626 struct wake_q_node { 627 struct wake_q_node *next; 628 }; 629 630 struct task_struct { 631 #ifdef CONFIG_THREAD_INFO_IN_TASK 632 /* 633 * For reasons of header soup (see current_thread_info()), this 634 * must be the first element of task_struct. 635 */ 636 struct thread_info thread_info; 637 #endif 638 /* -1 unrunnable, 0 runnable, >0 stopped: */ 639 volatile long state; 640 641 /* 642 * This begins the randomizable portion of task_struct. Only 643 * scheduling-critical items should be added above here. 644 */ 645 randomized_struct_fields_start 646 647 void *stack; 648 refcount_t usage; 649 /* Per task flags (PF_*), defined further below: */ 650 unsigned int flags; 651 unsigned int ptrace; 652 653 #ifdef CONFIG_SMP 654 int on_cpu; 655 struct __call_single_node wake_entry; 656 #ifdef CONFIG_THREAD_INFO_IN_TASK 657 /* Current CPU: */ 658 unsigned int cpu; 659 #endif 660 unsigned int wakee_flips; 661 unsigned long wakee_flip_decay_ts; 662 struct task_struct *last_wakee; 663 664 /* 665 * recent_used_cpu is initially set as the last CPU used by a task 666 * that wakes affine another task. Waker/wakee relationships can 667 * push tasks around a CPU where each wakeup moves to the next one. 668 * Tracking a recently used CPU allows a quick search for a recently 669 * used CPU that may be idle. 670 */ 671 int recent_used_cpu; 672 int wake_cpu; 673 #endif 674 int on_rq; 675 676 int prio; 677 int static_prio; 678 int normal_prio; 679 unsigned int rt_priority; 680 681 const struct sched_class *sched_class; 682 struct sched_entity se; 683 struct sched_rt_entity rt; 684 #ifdef CONFIG_CGROUP_SCHED 685 struct task_group *sched_task_group; 686 #endif 687 struct sched_dl_entity dl; 688 689 #ifdef CONFIG_UCLAMP_TASK 690 /* 691 * Clamp values requested for a scheduling entity. 692 * Must be updated with task_rq_lock() held. 693 */ 694 struct uclamp_se uclamp_req[UCLAMP_CNT]; 695 /* 696 * Effective clamp values used for a scheduling entity. 697 * Must be updated with task_rq_lock() held. 698 */ 699 struct uclamp_se uclamp[UCLAMP_CNT]; 700 #endif 701 702 #ifdef CONFIG_PREEMPT_NOTIFIERS 703 /* List of struct preempt_notifier: */ 704 struct hlist_head preempt_notifiers; 705 #endif 706 707 #ifdef CONFIG_BLK_DEV_IO_TRACE 708 unsigned int btrace_seq; 709 #endif 710 711 unsigned int policy; 712 int nr_cpus_allowed; 713 const cpumask_t *cpus_ptr; 714 cpumask_t cpus_mask; 715 716 #ifdef CONFIG_PREEMPT_RCU 717 int rcu_read_lock_nesting; 718 union rcu_special rcu_read_unlock_special; 719 struct list_head rcu_node_entry; 720 struct rcu_node *rcu_blocked_node; 721 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 722 723 #ifdef CONFIG_TASKS_RCU 724 unsigned long rcu_tasks_nvcsw; 725 u8 rcu_tasks_holdout; 726 u8 rcu_tasks_idx; 727 int rcu_tasks_idle_cpu; 728 struct list_head rcu_tasks_holdout_list; 729 #endif /* #ifdef CONFIG_TASKS_RCU */ 730 731 #ifdef CONFIG_TASKS_TRACE_RCU 732 int trc_reader_nesting; 733 int trc_ipi_to_cpu; 734 union rcu_special trc_reader_special; 735 bool trc_reader_checked; 736 struct list_head trc_holdout_list; 737 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 738 739 struct sched_info sched_info; 740 741 struct list_head tasks; 742 #ifdef CONFIG_SMP 743 struct plist_node pushable_tasks; 744 struct rb_node pushable_dl_tasks; 745 #endif 746 747 struct mm_struct *mm; 748 struct mm_struct *active_mm; 749 750 /* Per-thread vma caching: */ 751 struct vmacache vmacache; 752 753 #ifdef SPLIT_RSS_COUNTING 754 struct task_rss_stat rss_stat; 755 #endif 756 int exit_state; 757 int exit_code; 758 int exit_signal; 759 /* The signal sent when the parent dies: */ 760 int pdeath_signal; 761 /* JOBCTL_*, siglock protected: */ 762 unsigned long jobctl; 763 764 /* Used for emulating ABI behavior of previous Linux versions: */ 765 unsigned int personality; 766 767 /* Scheduler bits, serialized by scheduler locks: */ 768 unsigned sched_reset_on_fork:1; 769 unsigned sched_contributes_to_load:1; 770 unsigned sched_migrated:1; 771 unsigned sched_remote_wakeup:1; 772 #ifdef CONFIG_PSI 773 unsigned sched_psi_wake_requeue:1; 774 #endif 775 776 /* Force alignment to the next boundary: */ 777 unsigned :0; 778 779 /* Unserialized, strictly 'current' */ 780 781 /* Bit to tell LSMs we're in execve(): */ 782 unsigned in_execve:1; 783 unsigned in_iowait:1; 784 #ifndef TIF_RESTORE_SIGMASK 785 unsigned restore_sigmask:1; 786 #endif 787 #ifdef CONFIG_MEMCG 788 unsigned in_user_fault:1; 789 #endif 790 #ifdef CONFIG_COMPAT_BRK 791 unsigned brk_randomized:1; 792 #endif 793 #ifdef CONFIG_CGROUPS 794 /* disallow userland-initiated cgroup migration */ 795 unsigned no_cgroup_migration:1; 796 /* task is frozen/stopped (used by the cgroup freezer) */ 797 unsigned frozen:1; 798 #endif 799 #ifdef CONFIG_BLK_CGROUP 800 unsigned use_memdelay:1; 801 #endif 802 #ifdef CONFIG_PSI 803 /* Stalled due to lack of memory */ 804 unsigned in_memstall:1; 805 #endif 806 807 unsigned long atomic_flags; /* Flags requiring atomic access. */ 808 809 struct restart_block restart_block; 810 811 pid_t pid; 812 pid_t tgid; 813 814 #ifdef CONFIG_STACKPROTECTOR 815 /* Canary value for the -fstack-protector GCC feature: */ 816 unsigned long stack_canary; 817 #endif 818 /* 819 * Pointers to the (original) parent process, youngest child, younger sibling, 820 * older sibling, respectively. (p->father can be replaced with 821 * p->real_parent->pid) 822 */ 823 824 /* Real parent process: */ 825 struct task_struct __rcu *real_parent; 826 827 /* Recipient of SIGCHLD, wait4() reports: */ 828 struct task_struct __rcu *parent; 829 830 /* 831 * Children/sibling form the list of natural children: 832 */ 833 struct list_head children; 834 struct list_head sibling; 835 struct task_struct *group_leader; 836 837 /* 838 * 'ptraced' is the list of tasks this task is using ptrace() on. 839 * 840 * This includes both natural children and PTRACE_ATTACH targets. 841 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 842 */ 843 struct list_head ptraced; 844 struct list_head ptrace_entry; 845 846 /* PID/PID hash table linkage. */ 847 struct pid *thread_pid; 848 struct hlist_node pid_links[PIDTYPE_MAX]; 849 struct list_head thread_group; 850 struct list_head thread_node; 851 852 struct completion *vfork_done; 853 854 /* CLONE_CHILD_SETTID: */ 855 int __user *set_child_tid; 856 857 /* CLONE_CHILD_CLEARTID: */ 858 int __user *clear_child_tid; 859 860 u64 utime; 861 u64 stime; 862 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 863 u64 utimescaled; 864 u64 stimescaled; 865 #endif 866 u64 gtime; 867 struct prev_cputime prev_cputime; 868 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 869 struct vtime vtime; 870 #endif 871 872 #ifdef CONFIG_NO_HZ_FULL 873 atomic_t tick_dep_mask; 874 #endif 875 /* Context switch counts: */ 876 unsigned long nvcsw; 877 unsigned long nivcsw; 878 879 /* Monotonic time in nsecs: */ 880 u64 start_time; 881 882 /* Boot based time in nsecs: */ 883 u64 start_boottime; 884 885 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 886 unsigned long min_flt; 887 unsigned long maj_flt; 888 889 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 890 struct posix_cputimers posix_cputimers; 891 892 /* Process credentials: */ 893 894 /* Tracer's credentials at attach: */ 895 const struct cred __rcu *ptracer_cred; 896 897 /* Objective and real subjective task credentials (COW): */ 898 const struct cred __rcu *real_cred; 899 900 /* Effective (overridable) subjective task credentials (COW): */ 901 const struct cred __rcu *cred; 902 903 #ifdef CONFIG_KEYS 904 /* Cached requested key. */ 905 struct key *cached_requested_key; 906 #endif 907 908 /* 909 * executable name, excluding path. 910 * 911 * - normally initialized setup_new_exec() 912 * - access it with [gs]et_task_comm() 913 * - lock it with task_lock() 914 */ 915 char comm[TASK_COMM_LEN]; 916 917 struct nameidata *nameidata; 918 919 #ifdef CONFIG_SYSVIPC 920 struct sysv_sem sysvsem; 921 struct sysv_shm sysvshm; 922 #endif 923 #ifdef CONFIG_DETECT_HUNG_TASK 924 unsigned long last_switch_count; 925 unsigned long last_switch_time; 926 #endif 927 /* Filesystem information: */ 928 struct fs_struct *fs; 929 930 /* Open file information: */ 931 struct files_struct *files; 932 933 /* Namespaces: */ 934 struct nsproxy *nsproxy; 935 936 /* Signal handlers: */ 937 struct signal_struct *signal; 938 struct sighand_struct __rcu *sighand; 939 sigset_t blocked; 940 sigset_t real_blocked; 941 /* Restored if set_restore_sigmask() was used: */ 942 sigset_t saved_sigmask; 943 struct sigpending pending; 944 unsigned long sas_ss_sp; 945 size_t sas_ss_size; 946 unsigned int sas_ss_flags; 947 948 struct callback_head *task_works; 949 950 #ifdef CONFIG_AUDIT 951 #ifdef CONFIG_AUDITSYSCALL 952 struct audit_context *audit_context; 953 #endif 954 kuid_t loginuid; 955 unsigned int sessionid; 956 #endif 957 struct seccomp seccomp; 958 959 /* Thread group tracking: */ 960 u64 parent_exec_id; 961 u64 self_exec_id; 962 963 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 964 spinlock_t alloc_lock; 965 966 /* Protection of the PI data structures: */ 967 raw_spinlock_t pi_lock; 968 969 struct wake_q_node wake_q; 970 971 #ifdef CONFIG_RT_MUTEXES 972 /* PI waiters blocked on a rt_mutex held by this task: */ 973 struct rb_root_cached pi_waiters; 974 /* Updated under owner's pi_lock and rq lock */ 975 struct task_struct *pi_top_task; 976 /* Deadlock detection and priority inheritance handling: */ 977 struct rt_mutex_waiter *pi_blocked_on; 978 #endif 979 980 #ifdef CONFIG_DEBUG_MUTEXES 981 /* Mutex deadlock detection: */ 982 struct mutex_waiter *blocked_on; 983 #endif 984 985 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 986 int non_block_count; 987 #endif 988 989 #ifdef CONFIG_TRACE_IRQFLAGS 990 struct irqtrace_events irqtrace; 991 unsigned int hardirq_threaded; 992 u64 hardirq_chain_key; 993 int softirqs_enabled; 994 int softirq_context; 995 int irq_config; 996 #endif 997 998 #ifdef CONFIG_LOCKDEP 999 # define MAX_LOCK_DEPTH 48UL 1000 u64 curr_chain_key; 1001 int lockdep_depth; 1002 unsigned int lockdep_recursion; 1003 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1004 #endif 1005 1006 #ifdef CONFIG_UBSAN 1007 unsigned int in_ubsan; 1008 #endif 1009 1010 /* Journalling filesystem info: */ 1011 void *journal_info; 1012 1013 /* Stacked block device info: */ 1014 struct bio_list *bio_list; 1015 1016 #ifdef CONFIG_BLOCK 1017 /* Stack plugging: */ 1018 struct blk_plug *plug; 1019 #endif 1020 1021 /* VM state: */ 1022 struct reclaim_state *reclaim_state; 1023 1024 struct backing_dev_info *backing_dev_info; 1025 1026 struct io_context *io_context; 1027 1028 #ifdef CONFIG_COMPACTION 1029 struct capture_control *capture_control; 1030 #endif 1031 /* Ptrace state: */ 1032 unsigned long ptrace_message; 1033 kernel_siginfo_t *last_siginfo; 1034 1035 struct task_io_accounting ioac; 1036 #ifdef CONFIG_PSI 1037 /* Pressure stall state */ 1038 unsigned int psi_flags; 1039 #endif 1040 #ifdef CONFIG_TASK_XACCT 1041 /* Accumulated RSS usage: */ 1042 u64 acct_rss_mem1; 1043 /* Accumulated virtual memory usage: */ 1044 u64 acct_vm_mem1; 1045 /* stime + utime since last update: */ 1046 u64 acct_timexpd; 1047 #endif 1048 #ifdef CONFIG_CPUSETS 1049 /* Protected by ->alloc_lock: */ 1050 nodemask_t mems_allowed; 1051 /* Seqence number to catch updates: */ 1052 seqcount_t mems_allowed_seq; 1053 int cpuset_mem_spread_rotor; 1054 int cpuset_slab_spread_rotor; 1055 #endif 1056 #ifdef CONFIG_CGROUPS 1057 /* Control Group info protected by css_set_lock: */ 1058 struct css_set __rcu *cgroups; 1059 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1060 struct list_head cg_list; 1061 #endif 1062 #ifdef CONFIG_X86_CPU_RESCTRL 1063 u32 closid; 1064 u32 rmid; 1065 #endif 1066 #ifdef CONFIG_FUTEX 1067 struct robust_list_head __user *robust_list; 1068 #ifdef CONFIG_COMPAT 1069 struct compat_robust_list_head __user *compat_robust_list; 1070 #endif 1071 struct list_head pi_state_list; 1072 struct futex_pi_state *pi_state_cache; 1073 struct mutex futex_exit_mutex; 1074 unsigned int futex_state; 1075 #endif 1076 #ifdef CONFIG_PERF_EVENTS 1077 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1078 struct mutex perf_event_mutex; 1079 struct list_head perf_event_list; 1080 #endif 1081 #ifdef CONFIG_DEBUG_PREEMPT 1082 unsigned long preempt_disable_ip; 1083 #endif 1084 #ifdef CONFIG_NUMA 1085 /* Protected by alloc_lock: */ 1086 struct mempolicy *mempolicy; 1087 short il_prev; 1088 short pref_node_fork; 1089 #endif 1090 #ifdef CONFIG_NUMA_BALANCING 1091 int numa_scan_seq; 1092 unsigned int numa_scan_period; 1093 unsigned int numa_scan_period_max; 1094 int numa_preferred_nid; 1095 unsigned long numa_migrate_retry; 1096 /* Migration stamp: */ 1097 u64 node_stamp; 1098 u64 last_task_numa_placement; 1099 u64 last_sum_exec_runtime; 1100 struct callback_head numa_work; 1101 1102 /* 1103 * This pointer is only modified for current in syscall and 1104 * pagefault context (and for tasks being destroyed), so it can be read 1105 * from any of the following contexts: 1106 * - RCU read-side critical section 1107 * - current->numa_group from everywhere 1108 * - task's runqueue locked, task not running 1109 */ 1110 struct numa_group __rcu *numa_group; 1111 1112 /* 1113 * numa_faults is an array split into four regions: 1114 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1115 * in this precise order. 1116 * 1117 * faults_memory: Exponential decaying average of faults on a per-node 1118 * basis. Scheduling placement decisions are made based on these 1119 * counts. The values remain static for the duration of a PTE scan. 1120 * faults_cpu: Track the nodes the process was running on when a NUMA 1121 * hinting fault was incurred. 1122 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1123 * during the current scan window. When the scan completes, the counts 1124 * in faults_memory and faults_cpu decay and these values are copied. 1125 */ 1126 unsigned long *numa_faults; 1127 unsigned long total_numa_faults; 1128 1129 /* 1130 * numa_faults_locality tracks if faults recorded during the last 1131 * scan window were remote/local or failed to migrate. The task scan 1132 * period is adapted based on the locality of the faults with different 1133 * weights depending on whether they were shared or private faults 1134 */ 1135 unsigned long numa_faults_locality[3]; 1136 1137 unsigned long numa_pages_migrated; 1138 #endif /* CONFIG_NUMA_BALANCING */ 1139 1140 #ifdef CONFIG_RSEQ 1141 struct rseq __user *rseq; 1142 u32 rseq_sig; 1143 /* 1144 * RmW on rseq_event_mask must be performed atomically 1145 * with respect to preemption. 1146 */ 1147 unsigned long rseq_event_mask; 1148 #endif 1149 1150 struct tlbflush_unmap_batch tlb_ubc; 1151 1152 union { 1153 refcount_t rcu_users; 1154 struct rcu_head rcu; 1155 }; 1156 1157 /* Cache last used pipe for splice(): */ 1158 struct pipe_inode_info *splice_pipe; 1159 1160 struct page_frag task_frag; 1161 1162 #ifdef CONFIG_TASK_DELAY_ACCT 1163 struct task_delay_info *delays; 1164 #endif 1165 1166 #ifdef CONFIG_FAULT_INJECTION 1167 int make_it_fail; 1168 unsigned int fail_nth; 1169 #endif 1170 /* 1171 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1172 * balance_dirty_pages() for a dirty throttling pause: 1173 */ 1174 int nr_dirtied; 1175 int nr_dirtied_pause; 1176 /* Start of a write-and-pause period: */ 1177 unsigned long dirty_paused_when; 1178 1179 #ifdef CONFIG_LATENCYTOP 1180 int latency_record_count; 1181 struct latency_record latency_record[LT_SAVECOUNT]; 1182 #endif 1183 /* 1184 * Time slack values; these are used to round up poll() and 1185 * select() etc timeout values. These are in nanoseconds. 1186 */ 1187 u64 timer_slack_ns; 1188 u64 default_timer_slack_ns; 1189 1190 #ifdef CONFIG_KASAN 1191 unsigned int kasan_depth; 1192 #endif 1193 1194 #ifdef CONFIG_KCSAN 1195 struct kcsan_ctx kcsan_ctx; 1196 #ifdef CONFIG_TRACE_IRQFLAGS 1197 struct irqtrace_events kcsan_save_irqtrace; 1198 #endif 1199 #endif 1200 1201 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1202 /* Index of current stored address in ret_stack: */ 1203 int curr_ret_stack; 1204 int curr_ret_depth; 1205 1206 /* Stack of return addresses for return function tracing: */ 1207 struct ftrace_ret_stack *ret_stack; 1208 1209 /* Timestamp for last schedule: */ 1210 unsigned long long ftrace_timestamp; 1211 1212 /* 1213 * Number of functions that haven't been traced 1214 * because of depth overrun: 1215 */ 1216 atomic_t trace_overrun; 1217 1218 /* Pause tracing: */ 1219 atomic_t tracing_graph_pause; 1220 #endif 1221 1222 #ifdef CONFIG_TRACING 1223 /* State flags for use by tracers: */ 1224 unsigned long trace; 1225 1226 /* Bitmask and counter of trace recursion: */ 1227 unsigned long trace_recursion; 1228 #endif /* CONFIG_TRACING */ 1229 1230 #ifdef CONFIG_KCOV 1231 /* See kernel/kcov.c for more details. */ 1232 1233 /* Coverage collection mode enabled for this task (0 if disabled): */ 1234 unsigned int kcov_mode; 1235 1236 /* Size of the kcov_area: */ 1237 unsigned int kcov_size; 1238 1239 /* Buffer for coverage collection: */ 1240 void *kcov_area; 1241 1242 /* KCOV descriptor wired with this task or NULL: */ 1243 struct kcov *kcov; 1244 1245 /* KCOV common handle for remote coverage collection: */ 1246 u64 kcov_handle; 1247 1248 /* KCOV sequence number: */ 1249 int kcov_sequence; 1250 1251 /* Collect coverage from softirq context: */ 1252 unsigned int kcov_softirq; 1253 #endif 1254 1255 #ifdef CONFIG_MEMCG 1256 struct mem_cgroup *memcg_in_oom; 1257 gfp_t memcg_oom_gfp_mask; 1258 int memcg_oom_order; 1259 1260 /* Number of pages to reclaim on returning to userland: */ 1261 unsigned int memcg_nr_pages_over_high; 1262 1263 /* Used by memcontrol for targeted memcg charge: */ 1264 struct mem_cgroup *active_memcg; 1265 #endif 1266 1267 #ifdef CONFIG_BLK_CGROUP 1268 struct request_queue *throttle_queue; 1269 #endif 1270 1271 #ifdef CONFIG_UPROBES 1272 struct uprobe_task *utask; 1273 #endif 1274 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1275 unsigned int sequential_io; 1276 unsigned int sequential_io_avg; 1277 #endif 1278 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1279 unsigned long task_state_change; 1280 #endif 1281 int pagefault_disabled; 1282 #ifdef CONFIG_MMU 1283 struct task_struct *oom_reaper_list; 1284 #endif 1285 #ifdef CONFIG_VMAP_STACK 1286 struct vm_struct *stack_vm_area; 1287 #endif 1288 #ifdef CONFIG_THREAD_INFO_IN_TASK 1289 /* A live task holds one reference: */ 1290 refcount_t stack_refcount; 1291 #endif 1292 #ifdef CONFIG_LIVEPATCH 1293 int patch_state; 1294 #endif 1295 #ifdef CONFIG_SECURITY 1296 /* Used by LSM modules for access restriction: */ 1297 void *security; 1298 #endif 1299 1300 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1301 unsigned long lowest_stack; 1302 unsigned long prev_lowest_stack; 1303 #endif 1304 1305 #ifdef CONFIG_X86_MCE 1306 u64 mce_addr; 1307 __u64 mce_ripv : 1, 1308 mce_whole_page : 1, 1309 __mce_reserved : 62; 1310 struct callback_head mce_kill_me; 1311 #endif 1312 1313 /* 1314 * New fields for task_struct should be added above here, so that 1315 * they are included in the randomized portion of task_struct. 1316 */ 1317 randomized_struct_fields_end 1318 1319 /* CPU-specific state of this task: */ 1320 struct thread_struct thread; 1321 1322 /* 1323 * WARNING: on x86, 'thread_struct' contains a variable-sized 1324 * structure. It *MUST* be at the end of 'task_struct'. 1325 * 1326 * Do not put anything below here! 1327 */ 1328 }; 1329 1330 static inline struct pid *task_pid(struct task_struct *task) 1331 { 1332 return task->thread_pid; 1333 } 1334 1335 /* 1336 * the helpers to get the task's different pids as they are seen 1337 * from various namespaces 1338 * 1339 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1340 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1341 * current. 1342 * task_xid_nr_ns() : id seen from the ns specified; 1343 * 1344 * see also pid_nr() etc in include/linux/pid.h 1345 */ 1346 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1347 1348 static inline pid_t task_pid_nr(struct task_struct *tsk) 1349 { 1350 return tsk->pid; 1351 } 1352 1353 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1354 { 1355 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1356 } 1357 1358 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1359 { 1360 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1361 } 1362 1363 1364 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1365 { 1366 return tsk->tgid; 1367 } 1368 1369 /** 1370 * pid_alive - check that a task structure is not stale 1371 * @p: Task structure to be checked. 1372 * 1373 * Test if a process is not yet dead (at most zombie state) 1374 * If pid_alive fails, then pointers within the task structure 1375 * can be stale and must not be dereferenced. 1376 * 1377 * Return: 1 if the process is alive. 0 otherwise. 1378 */ 1379 static inline int pid_alive(const struct task_struct *p) 1380 { 1381 return p->thread_pid != NULL; 1382 } 1383 1384 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1385 { 1386 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1387 } 1388 1389 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1390 { 1391 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1392 } 1393 1394 1395 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1396 { 1397 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1398 } 1399 1400 static inline pid_t task_session_vnr(struct task_struct *tsk) 1401 { 1402 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1403 } 1404 1405 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1406 { 1407 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1408 } 1409 1410 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1411 { 1412 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1413 } 1414 1415 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1416 { 1417 pid_t pid = 0; 1418 1419 rcu_read_lock(); 1420 if (pid_alive(tsk)) 1421 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1422 rcu_read_unlock(); 1423 1424 return pid; 1425 } 1426 1427 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1428 { 1429 return task_ppid_nr_ns(tsk, &init_pid_ns); 1430 } 1431 1432 /* Obsolete, do not use: */ 1433 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1434 { 1435 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1436 } 1437 1438 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1439 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1440 1441 static inline unsigned int task_state_index(struct task_struct *tsk) 1442 { 1443 unsigned int tsk_state = READ_ONCE(tsk->state); 1444 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1445 1446 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1447 1448 if (tsk_state == TASK_IDLE) 1449 state = TASK_REPORT_IDLE; 1450 1451 return fls(state); 1452 } 1453 1454 static inline char task_index_to_char(unsigned int state) 1455 { 1456 static const char state_char[] = "RSDTtXZPI"; 1457 1458 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1459 1460 return state_char[state]; 1461 } 1462 1463 static inline char task_state_to_char(struct task_struct *tsk) 1464 { 1465 return task_index_to_char(task_state_index(tsk)); 1466 } 1467 1468 /** 1469 * is_global_init - check if a task structure is init. Since init 1470 * is free to have sub-threads we need to check tgid. 1471 * @tsk: Task structure to be checked. 1472 * 1473 * Check if a task structure is the first user space task the kernel created. 1474 * 1475 * Return: 1 if the task structure is init. 0 otherwise. 1476 */ 1477 static inline int is_global_init(struct task_struct *tsk) 1478 { 1479 return task_tgid_nr(tsk) == 1; 1480 } 1481 1482 extern struct pid *cad_pid; 1483 1484 /* 1485 * Per process flags 1486 */ 1487 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1488 #define PF_EXITING 0x00000004 /* Getting shut down */ 1489 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1490 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1491 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1492 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1493 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1494 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1495 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1496 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1497 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1498 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1499 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1500 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1501 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1502 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1503 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1504 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1505 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, 1506 * I am cleaning dirty pages from some other bdi. */ 1507 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1508 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1509 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1510 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1511 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1512 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ 1513 #define PF_IO_WORKER 0x20000000 /* Task is an IO worker */ 1514 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1515 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1516 1517 /* 1518 * Only the _current_ task can read/write to tsk->flags, but other 1519 * tasks can access tsk->flags in readonly mode for example 1520 * with tsk_used_math (like during threaded core dumping). 1521 * There is however an exception to this rule during ptrace 1522 * or during fork: the ptracer task is allowed to write to the 1523 * child->flags of its traced child (same goes for fork, the parent 1524 * can write to the child->flags), because we're guaranteed the 1525 * child is not running and in turn not changing child->flags 1526 * at the same time the parent does it. 1527 */ 1528 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1529 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1530 #define clear_used_math() clear_stopped_child_used_math(current) 1531 #define set_used_math() set_stopped_child_used_math(current) 1532 1533 #define conditional_stopped_child_used_math(condition, child) \ 1534 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1535 1536 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1537 1538 #define copy_to_stopped_child_used_math(child) \ 1539 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1540 1541 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1542 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1543 #define used_math() tsk_used_math(current) 1544 1545 static inline bool is_percpu_thread(void) 1546 { 1547 #ifdef CONFIG_SMP 1548 return (current->flags & PF_NO_SETAFFINITY) && 1549 (current->nr_cpus_allowed == 1); 1550 #else 1551 return true; 1552 #endif 1553 } 1554 1555 /* Per-process atomic flags. */ 1556 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1557 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1558 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1559 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1560 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1561 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1562 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1563 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1564 1565 #define TASK_PFA_TEST(name, func) \ 1566 static inline bool task_##func(struct task_struct *p) \ 1567 { return test_bit(PFA_##name, &p->atomic_flags); } 1568 1569 #define TASK_PFA_SET(name, func) \ 1570 static inline void task_set_##func(struct task_struct *p) \ 1571 { set_bit(PFA_##name, &p->atomic_flags); } 1572 1573 #define TASK_PFA_CLEAR(name, func) \ 1574 static inline void task_clear_##func(struct task_struct *p) \ 1575 { clear_bit(PFA_##name, &p->atomic_flags); } 1576 1577 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1578 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1579 1580 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1581 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1582 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1583 1584 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1585 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1586 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1587 1588 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1589 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1590 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1591 1592 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1593 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1594 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1595 1596 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1597 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1598 1599 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1600 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1601 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1602 1603 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1604 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1605 1606 static inline void 1607 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1608 { 1609 current->flags &= ~flags; 1610 current->flags |= orig_flags & flags; 1611 } 1612 1613 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1614 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1615 #ifdef CONFIG_SMP 1616 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1617 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1618 #else 1619 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1620 { 1621 } 1622 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1623 { 1624 if (!cpumask_test_cpu(0, new_mask)) 1625 return -EINVAL; 1626 return 0; 1627 } 1628 #endif 1629 1630 extern int yield_to(struct task_struct *p, bool preempt); 1631 extern void set_user_nice(struct task_struct *p, long nice); 1632 extern int task_prio(const struct task_struct *p); 1633 1634 /** 1635 * task_nice - return the nice value of a given task. 1636 * @p: the task in question. 1637 * 1638 * Return: The nice value [ -20 ... 0 ... 19 ]. 1639 */ 1640 static inline int task_nice(const struct task_struct *p) 1641 { 1642 return PRIO_TO_NICE((p)->static_prio); 1643 } 1644 1645 extern int can_nice(const struct task_struct *p, const int nice); 1646 extern int task_curr(const struct task_struct *p); 1647 extern int idle_cpu(int cpu); 1648 extern int available_idle_cpu(int cpu); 1649 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1650 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1651 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1652 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1653 extern struct task_struct *idle_task(int cpu); 1654 1655 /** 1656 * is_idle_task - is the specified task an idle task? 1657 * @p: the task in question. 1658 * 1659 * Return: 1 if @p is an idle task. 0 otherwise. 1660 */ 1661 static inline bool is_idle_task(const struct task_struct *p) 1662 { 1663 return !!(p->flags & PF_IDLE); 1664 } 1665 1666 extern struct task_struct *curr_task(int cpu); 1667 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1668 1669 void yield(void); 1670 1671 union thread_union { 1672 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1673 struct task_struct task; 1674 #endif 1675 #ifndef CONFIG_THREAD_INFO_IN_TASK 1676 struct thread_info thread_info; 1677 #endif 1678 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1679 }; 1680 1681 #ifndef CONFIG_THREAD_INFO_IN_TASK 1682 extern struct thread_info init_thread_info; 1683 #endif 1684 1685 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1686 1687 #ifdef CONFIG_THREAD_INFO_IN_TASK 1688 static inline struct thread_info *task_thread_info(struct task_struct *task) 1689 { 1690 return &task->thread_info; 1691 } 1692 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1693 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1694 #endif 1695 1696 /* 1697 * find a task by one of its numerical ids 1698 * 1699 * find_task_by_pid_ns(): 1700 * finds a task by its pid in the specified namespace 1701 * find_task_by_vpid(): 1702 * finds a task by its virtual pid 1703 * 1704 * see also find_vpid() etc in include/linux/pid.h 1705 */ 1706 1707 extern struct task_struct *find_task_by_vpid(pid_t nr); 1708 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1709 1710 /* 1711 * find a task by its virtual pid and get the task struct 1712 */ 1713 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1714 1715 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1716 extern int wake_up_process(struct task_struct *tsk); 1717 extern void wake_up_new_task(struct task_struct *tsk); 1718 1719 #ifdef CONFIG_SMP 1720 extern void kick_process(struct task_struct *tsk); 1721 #else 1722 static inline void kick_process(struct task_struct *tsk) { } 1723 #endif 1724 1725 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1726 1727 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1728 { 1729 __set_task_comm(tsk, from, false); 1730 } 1731 1732 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1733 #define get_task_comm(buf, tsk) ({ \ 1734 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1735 __get_task_comm(buf, sizeof(buf), tsk); \ 1736 }) 1737 1738 #ifdef CONFIG_SMP 1739 static __always_inline void scheduler_ipi(void) 1740 { 1741 /* 1742 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1743 * TIF_NEED_RESCHED remotely (for the first time) will also send 1744 * this IPI. 1745 */ 1746 preempt_fold_need_resched(); 1747 } 1748 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1749 #else 1750 static inline void scheduler_ipi(void) { } 1751 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1752 { 1753 return 1; 1754 } 1755 #endif 1756 1757 /* 1758 * Set thread flags in other task's structures. 1759 * See asm/thread_info.h for TIF_xxxx flags available: 1760 */ 1761 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1762 { 1763 set_ti_thread_flag(task_thread_info(tsk), flag); 1764 } 1765 1766 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1767 { 1768 clear_ti_thread_flag(task_thread_info(tsk), flag); 1769 } 1770 1771 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1772 bool value) 1773 { 1774 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1775 } 1776 1777 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1778 { 1779 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1780 } 1781 1782 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1783 { 1784 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1785 } 1786 1787 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1788 { 1789 return test_ti_thread_flag(task_thread_info(tsk), flag); 1790 } 1791 1792 static inline void set_tsk_need_resched(struct task_struct *tsk) 1793 { 1794 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1795 } 1796 1797 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1798 { 1799 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1800 } 1801 1802 static inline int test_tsk_need_resched(struct task_struct *tsk) 1803 { 1804 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1805 } 1806 1807 /* 1808 * cond_resched() and cond_resched_lock(): latency reduction via 1809 * explicit rescheduling in places that are safe. The return 1810 * value indicates whether a reschedule was done in fact. 1811 * cond_resched_lock() will drop the spinlock before scheduling, 1812 */ 1813 #ifndef CONFIG_PREEMPTION 1814 extern int _cond_resched(void); 1815 #else 1816 static inline int _cond_resched(void) { return 0; } 1817 #endif 1818 1819 #define cond_resched() ({ \ 1820 ___might_sleep(__FILE__, __LINE__, 0); \ 1821 _cond_resched(); \ 1822 }) 1823 1824 extern int __cond_resched_lock(spinlock_t *lock); 1825 1826 #define cond_resched_lock(lock) ({ \ 1827 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1828 __cond_resched_lock(lock); \ 1829 }) 1830 1831 static inline void cond_resched_rcu(void) 1832 { 1833 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1834 rcu_read_unlock(); 1835 cond_resched(); 1836 rcu_read_lock(); 1837 #endif 1838 } 1839 1840 /* 1841 * Does a critical section need to be broken due to another 1842 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 1843 * but a general need for low latency) 1844 */ 1845 static inline int spin_needbreak(spinlock_t *lock) 1846 { 1847 #ifdef CONFIG_PREEMPTION 1848 return spin_is_contended(lock); 1849 #else 1850 return 0; 1851 #endif 1852 } 1853 1854 static __always_inline bool need_resched(void) 1855 { 1856 return unlikely(tif_need_resched()); 1857 } 1858 1859 /* 1860 * Wrappers for p->thread_info->cpu access. No-op on UP. 1861 */ 1862 #ifdef CONFIG_SMP 1863 1864 static inline unsigned int task_cpu(const struct task_struct *p) 1865 { 1866 #ifdef CONFIG_THREAD_INFO_IN_TASK 1867 return READ_ONCE(p->cpu); 1868 #else 1869 return READ_ONCE(task_thread_info(p)->cpu); 1870 #endif 1871 } 1872 1873 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1874 1875 #else 1876 1877 static inline unsigned int task_cpu(const struct task_struct *p) 1878 { 1879 return 0; 1880 } 1881 1882 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1883 { 1884 } 1885 1886 #endif /* CONFIG_SMP */ 1887 1888 /* 1889 * In order to reduce various lock holder preemption latencies provide an 1890 * interface to see if a vCPU is currently running or not. 1891 * 1892 * This allows us to terminate optimistic spin loops and block, analogous to 1893 * the native optimistic spin heuristic of testing if the lock owner task is 1894 * running or not. 1895 */ 1896 #ifndef vcpu_is_preempted 1897 static inline bool vcpu_is_preempted(int cpu) 1898 { 1899 return false; 1900 } 1901 #endif 1902 1903 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1904 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1905 1906 #ifndef TASK_SIZE_OF 1907 #define TASK_SIZE_OF(tsk) TASK_SIZE 1908 #endif 1909 1910 #ifdef CONFIG_RSEQ 1911 1912 /* 1913 * Map the event mask on the user-space ABI enum rseq_cs_flags 1914 * for direct mask checks. 1915 */ 1916 enum rseq_event_mask_bits { 1917 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1918 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1919 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1920 }; 1921 1922 enum rseq_event_mask { 1923 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1924 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1925 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1926 }; 1927 1928 static inline void rseq_set_notify_resume(struct task_struct *t) 1929 { 1930 if (t->rseq) 1931 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1932 } 1933 1934 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1935 1936 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1937 struct pt_regs *regs) 1938 { 1939 if (current->rseq) 1940 __rseq_handle_notify_resume(ksig, regs); 1941 } 1942 1943 static inline void rseq_signal_deliver(struct ksignal *ksig, 1944 struct pt_regs *regs) 1945 { 1946 preempt_disable(); 1947 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 1948 preempt_enable(); 1949 rseq_handle_notify_resume(ksig, regs); 1950 } 1951 1952 /* rseq_preempt() requires preemption to be disabled. */ 1953 static inline void rseq_preempt(struct task_struct *t) 1954 { 1955 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1956 rseq_set_notify_resume(t); 1957 } 1958 1959 /* rseq_migrate() requires preemption to be disabled. */ 1960 static inline void rseq_migrate(struct task_struct *t) 1961 { 1962 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1963 rseq_set_notify_resume(t); 1964 } 1965 1966 /* 1967 * If parent process has a registered restartable sequences area, the 1968 * child inherits. Unregister rseq for a clone with CLONE_VM set. 1969 */ 1970 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1971 { 1972 if (clone_flags & CLONE_VM) { 1973 t->rseq = NULL; 1974 t->rseq_sig = 0; 1975 t->rseq_event_mask = 0; 1976 } else { 1977 t->rseq = current->rseq; 1978 t->rseq_sig = current->rseq_sig; 1979 t->rseq_event_mask = current->rseq_event_mask; 1980 } 1981 } 1982 1983 static inline void rseq_execve(struct task_struct *t) 1984 { 1985 t->rseq = NULL; 1986 t->rseq_sig = 0; 1987 t->rseq_event_mask = 0; 1988 } 1989 1990 #else 1991 1992 static inline void rseq_set_notify_resume(struct task_struct *t) 1993 { 1994 } 1995 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1996 struct pt_regs *regs) 1997 { 1998 } 1999 static inline void rseq_signal_deliver(struct ksignal *ksig, 2000 struct pt_regs *regs) 2001 { 2002 } 2003 static inline void rseq_preempt(struct task_struct *t) 2004 { 2005 } 2006 static inline void rseq_migrate(struct task_struct *t) 2007 { 2008 } 2009 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2010 { 2011 } 2012 static inline void rseq_execve(struct task_struct *t) 2013 { 2014 } 2015 2016 #endif 2017 2018 #ifdef CONFIG_DEBUG_RSEQ 2019 2020 void rseq_syscall(struct pt_regs *regs); 2021 2022 #else 2023 2024 static inline void rseq_syscall(struct pt_regs *regs) 2025 { 2026 } 2027 2028 #endif 2029 2030 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 2031 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 2032 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 2033 2034 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 2035 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 2036 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 2037 2038 int sched_trace_rq_cpu(struct rq *rq); 2039 int sched_trace_rq_nr_running(struct rq *rq); 2040 2041 const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 2042 2043 #endif 2044