1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 7 struct sched_param { 8 int sched_priority; 9 }; 10 11 #include <asm/param.h> /* for HZ */ 12 13 #include <linux/capability.h> 14 #include <linux/threads.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/timex.h> 18 #include <linux/jiffies.h> 19 #include <linux/rbtree.h> 20 #include <linux/thread_info.h> 21 #include <linux/cpumask.h> 22 #include <linux/errno.h> 23 #include <linux/nodemask.h> 24 #include <linux/mm_types.h> 25 #include <linux/preempt.h> 26 27 #include <asm/page.h> 28 #include <asm/ptrace.h> 29 #include <asm/cputime.h> 30 31 #include <linux/smp.h> 32 #include <linux/sem.h> 33 #include <linux/signal.h> 34 #include <linux/compiler.h> 35 #include <linux/completion.h> 36 #include <linux/pid.h> 37 #include <linux/percpu.h> 38 #include <linux/topology.h> 39 #include <linux/proportions.h> 40 #include <linux/seccomp.h> 41 #include <linux/rcupdate.h> 42 #include <linux/rculist.h> 43 #include <linux/rtmutex.h> 44 45 #include <linux/time.h> 46 #include <linux/param.h> 47 #include <linux/resource.h> 48 #include <linux/timer.h> 49 #include <linux/hrtimer.h> 50 #include <linux/task_io_accounting.h> 51 #include <linux/latencytop.h> 52 #include <linux/cred.h> 53 #include <linux/llist.h> 54 #include <linux/uidgid.h> 55 #include <linux/gfp.h> 56 57 #include <asm/processor.h> 58 59 struct exec_domain; 60 struct futex_pi_state; 61 struct robust_list_head; 62 struct bio_list; 63 struct fs_struct; 64 struct perf_event_context; 65 struct blk_plug; 66 67 /* 68 * List of flags we want to share for kernel threads, 69 * if only because they are not used by them anyway. 70 */ 71 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 72 73 /* 74 * These are the constant used to fake the fixed-point load-average 75 * counting. Some notes: 76 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 77 * a load-average precision of 10 bits integer + 11 bits fractional 78 * - if you want to count load-averages more often, you need more 79 * precision, or rounding will get you. With 2-second counting freq, 80 * the EXP_n values would be 1981, 2034 and 2043 if still using only 81 * 11 bit fractions. 82 */ 83 extern unsigned long avenrun[]; /* Load averages */ 84 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 85 86 #define FSHIFT 11 /* nr of bits of precision */ 87 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 88 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 89 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 90 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 91 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 92 93 #define CALC_LOAD(load,exp,n) \ 94 load *= exp; \ 95 load += n*(FIXED_1-exp); \ 96 load >>= FSHIFT; 97 98 extern unsigned long total_forks; 99 extern int nr_threads; 100 DECLARE_PER_CPU(unsigned long, process_counts); 101 extern int nr_processes(void); 102 extern unsigned long nr_running(void); 103 extern unsigned long nr_iowait(void); 104 extern unsigned long nr_iowait_cpu(int cpu); 105 extern unsigned long this_cpu_load(void); 106 107 108 extern void calc_global_load(unsigned long ticks); 109 extern void update_cpu_load_nohz(void); 110 111 extern unsigned long get_parent_ip(unsigned long addr); 112 113 extern void dump_cpu_task(int cpu); 114 115 struct seq_file; 116 struct cfs_rq; 117 struct task_group; 118 #ifdef CONFIG_SCHED_DEBUG 119 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 120 extern void proc_sched_set_task(struct task_struct *p); 121 extern void 122 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 123 #endif 124 125 /* 126 * Task state bitmask. NOTE! These bits are also 127 * encoded in fs/proc/array.c: get_task_state(). 128 * 129 * We have two separate sets of flags: task->state 130 * is about runnability, while task->exit_state are 131 * about the task exiting. Confusing, but this way 132 * modifying one set can't modify the other one by 133 * mistake. 134 */ 135 #define TASK_RUNNING 0 136 #define TASK_INTERRUPTIBLE 1 137 #define TASK_UNINTERRUPTIBLE 2 138 #define __TASK_STOPPED 4 139 #define __TASK_TRACED 8 140 /* in tsk->exit_state */ 141 #define EXIT_ZOMBIE 16 142 #define EXIT_DEAD 32 143 /* in tsk->state again */ 144 #define TASK_DEAD 64 145 #define TASK_WAKEKILL 128 146 #define TASK_WAKING 256 147 #define TASK_PARKED 512 148 #define TASK_STATE_MAX 1024 149 150 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 151 152 extern char ___assert_task_state[1 - 2*!!( 153 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 154 155 /* Convenience macros for the sake of set_task_state */ 156 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 157 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 158 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 159 160 /* Convenience macros for the sake of wake_up */ 161 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 162 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 163 164 /* get_task_state() */ 165 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 166 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 167 __TASK_TRACED) 168 169 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 170 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 171 #define task_is_dead(task) ((task)->exit_state != 0) 172 #define task_is_stopped_or_traced(task) \ 173 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 174 #define task_contributes_to_load(task) \ 175 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 176 (task->flags & PF_FROZEN) == 0) 177 178 #define __set_task_state(tsk, state_value) \ 179 do { (tsk)->state = (state_value); } while (0) 180 #define set_task_state(tsk, state_value) \ 181 set_mb((tsk)->state, (state_value)) 182 183 /* 184 * set_current_state() includes a barrier so that the write of current->state 185 * is correctly serialised wrt the caller's subsequent test of whether to 186 * actually sleep: 187 * 188 * set_current_state(TASK_UNINTERRUPTIBLE); 189 * if (do_i_need_to_sleep()) 190 * schedule(); 191 * 192 * If the caller does not need such serialisation then use __set_current_state() 193 */ 194 #define __set_current_state(state_value) \ 195 do { current->state = (state_value); } while (0) 196 #define set_current_state(state_value) \ 197 set_mb(current->state, (state_value)) 198 199 /* Task command name length */ 200 #define TASK_COMM_LEN 16 201 202 #include <linux/spinlock.h> 203 204 /* 205 * This serializes "schedule()" and also protects 206 * the run-queue from deletions/modifications (but 207 * _adding_ to the beginning of the run-queue has 208 * a separate lock). 209 */ 210 extern rwlock_t tasklist_lock; 211 extern spinlock_t mmlist_lock; 212 213 struct task_struct; 214 215 #ifdef CONFIG_PROVE_RCU 216 extern int lockdep_tasklist_lock_is_held(void); 217 #endif /* #ifdef CONFIG_PROVE_RCU */ 218 219 extern void sched_init(void); 220 extern void sched_init_smp(void); 221 extern asmlinkage void schedule_tail(struct task_struct *prev); 222 extern void init_idle(struct task_struct *idle, int cpu); 223 extern void init_idle_bootup_task(struct task_struct *idle); 224 225 extern int runqueue_is_locked(int cpu); 226 227 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 228 extern void nohz_balance_enter_idle(int cpu); 229 extern void set_cpu_sd_state_idle(void); 230 extern int get_nohz_timer_target(void); 231 #else 232 static inline void nohz_balance_enter_idle(int cpu) { } 233 static inline void set_cpu_sd_state_idle(void) { } 234 #endif 235 236 /* 237 * Only dump TASK_* tasks. (0 for all tasks) 238 */ 239 extern void show_state_filter(unsigned long state_filter); 240 241 static inline void show_state(void) 242 { 243 show_state_filter(0); 244 } 245 246 extern void show_regs(struct pt_regs *); 247 248 /* 249 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 250 * task), SP is the stack pointer of the first frame that should be shown in the back 251 * trace (or NULL if the entire call-chain of the task should be shown). 252 */ 253 extern void show_stack(struct task_struct *task, unsigned long *sp); 254 255 void io_schedule(void); 256 long io_schedule_timeout(long timeout); 257 258 extern void cpu_init (void); 259 extern void trap_init(void); 260 extern void update_process_times(int user); 261 extern void scheduler_tick(void); 262 263 extern void sched_show_task(struct task_struct *p); 264 265 #ifdef CONFIG_LOCKUP_DETECTOR 266 extern void touch_softlockup_watchdog(void); 267 extern void touch_softlockup_watchdog_sync(void); 268 extern void touch_all_softlockup_watchdogs(void); 269 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 270 void __user *buffer, 271 size_t *lenp, loff_t *ppos); 272 extern unsigned int softlockup_panic; 273 void lockup_detector_init(void); 274 #else 275 static inline void touch_softlockup_watchdog(void) 276 { 277 } 278 static inline void touch_softlockup_watchdog_sync(void) 279 { 280 } 281 static inline void touch_all_softlockup_watchdogs(void) 282 { 283 } 284 static inline void lockup_detector_init(void) 285 { 286 } 287 #endif 288 289 /* Attach to any functions which should be ignored in wchan output. */ 290 #define __sched __attribute__((__section__(".sched.text"))) 291 292 /* Linker adds these: start and end of __sched functions */ 293 extern char __sched_text_start[], __sched_text_end[]; 294 295 /* Is this address in the __sched functions? */ 296 extern int in_sched_functions(unsigned long addr); 297 298 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 299 extern signed long schedule_timeout(signed long timeout); 300 extern signed long schedule_timeout_interruptible(signed long timeout); 301 extern signed long schedule_timeout_killable(signed long timeout); 302 extern signed long schedule_timeout_uninterruptible(signed long timeout); 303 asmlinkage void schedule(void); 304 extern void schedule_preempt_disabled(void); 305 306 struct nsproxy; 307 struct user_namespace; 308 309 #ifdef CONFIG_MMU 310 extern void arch_pick_mmap_layout(struct mm_struct *mm); 311 extern unsigned long 312 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 313 unsigned long, unsigned long); 314 extern unsigned long 315 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 316 unsigned long len, unsigned long pgoff, 317 unsigned long flags); 318 #else 319 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 320 #endif 321 322 323 extern void set_dumpable(struct mm_struct *mm, int value); 324 extern int get_dumpable(struct mm_struct *mm); 325 326 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 327 #define SUID_DUMP_USER 1 /* Dump as user of process */ 328 #define SUID_DUMP_ROOT 2 /* Dump as root */ 329 330 /* mm flags */ 331 /* dumpable bits */ 332 #define MMF_DUMPABLE 0 /* core dump is permitted */ 333 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 334 335 #define MMF_DUMPABLE_BITS 2 336 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 337 338 /* coredump filter bits */ 339 #define MMF_DUMP_ANON_PRIVATE 2 340 #define MMF_DUMP_ANON_SHARED 3 341 #define MMF_DUMP_MAPPED_PRIVATE 4 342 #define MMF_DUMP_MAPPED_SHARED 5 343 #define MMF_DUMP_ELF_HEADERS 6 344 #define MMF_DUMP_HUGETLB_PRIVATE 7 345 #define MMF_DUMP_HUGETLB_SHARED 8 346 347 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 348 #define MMF_DUMP_FILTER_BITS 7 349 #define MMF_DUMP_FILTER_MASK \ 350 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 351 #define MMF_DUMP_FILTER_DEFAULT \ 352 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 353 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 354 355 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 356 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 357 #else 358 # define MMF_DUMP_MASK_DEFAULT_ELF 0 359 #endif 360 /* leave room for more dump flags */ 361 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 362 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 363 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 364 365 #define MMF_HAS_UPROBES 19 /* has uprobes */ 366 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 367 368 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 369 370 struct sighand_struct { 371 atomic_t count; 372 struct k_sigaction action[_NSIG]; 373 spinlock_t siglock; 374 wait_queue_head_t signalfd_wqh; 375 }; 376 377 struct pacct_struct { 378 int ac_flag; 379 long ac_exitcode; 380 unsigned long ac_mem; 381 cputime_t ac_utime, ac_stime; 382 unsigned long ac_minflt, ac_majflt; 383 }; 384 385 struct cpu_itimer { 386 cputime_t expires; 387 cputime_t incr; 388 u32 error; 389 u32 incr_error; 390 }; 391 392 /** 393 * struct cputime - snaphsot of system and user cputime 394 * @utime: time spent in user mode 395 * @stime: time spent in system mode 396 * 397 * Gathers a generic snapshot of user and system time. 398 */ 399 struct cputime { 400 cputime_t utime; 401 cputime_t stime; 402 }; 403 404 /** 405 * struct task_cputime - collected CPU time counts 406 * @utime: time spent in user mode, in &cputime_t units 407 * @stime: time spent in kernel mode, in &cputime_t units 408 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 409 * 410 * This is an extension of struct cputime that includes the total runtime 411 * spent by the task from the scheduler point of view. 412 * 413 * As a result, this structure groups together three kinds of CPU time 414 * that are tracked for threads and thread groups. Most things considering 415 * CPU time want to group these counts together and treat all three 416 * of them in parallel. 417 */ 418 struct task_cputime { 419 cputime_t utime; 420 cputime_t stime; 421 unsigned long long sum_exec_runtime; 422 }; 423 /* Alternate field names when used to cache expirations. */ 424 #define prof_exp stime 425 #define virt_exp utime 426 #define sched_exp sum_exec_runtime 427 428 #define INIT_CPUTIME \ 429 (struct task_cputime) { \ 430 .utime = 0, \ 431 .stime = 0, \ 432 .sum_exec_runtime = 0, \ 433 } 434 435 #define PREEMPT_ENABLED (PREEMPT_NEED_RESCHED) 436 437 #ifdef CONFIG_PREEMPT_COUNT 438 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 439 #else 440 #define PREEMPT_DISABLED PREEMPT_ENABLED 441 #endif 442 443 /* 444 * Disable preemption until the scheduler is running. 445 * Reset by start_kernel()->sched_init()->init_idle(). 446 * 447 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 448 * before the scheduler is active -- see should_resched(). 449 */ 450 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 451 452 /** 453 * struct thread_group_cputimer - thread group interval timer counts 454 * @cputime: thread group interval timers. 455 * @running: non-zero when there are timers running and 456 * @cputime receives updates. 457 * @lock: lock for fields in this struct. 458 * 459 * This structure contains the version of task_cputime, above, that is 460 * used for thread group CPU timer calculations. 461 */ 462 struct thread_group_cputimer { 463 struct task_cputime cputime; 464 int running; 465 raw_spinlock_t lock; 466 }; 467 468 #include <linux/rwsem.h> 469 struct autogroup; 470 471 /* 472 * NOTE! "signal_struct" does not have its own 473 * locking, because a shared signal_struct always 474 * implies a shared sighand_struct, so locking 475 * sighand_struct is always a proper superset of 476 * the locking of signal_struct. 477 */ 478 struct signal_struct { 479 atomic_t sigcnt; 480 atomic_t live; 481 int nr_threads; 482 483 wait_queue_head_t wait_chldexit; /* for wait4() */ 484 485 /* current thread group signal load-balancing target: */ 486 struct task_struct *curr_target; 487 488 /* shared signal handling: */ 489 struct sigpending shared_pending; 490 491 /* thread group exit support */ 492 int group_exit_code; 493 /* overloaded: 494 * - notify group_exit_task when ->count is equal to notify_count 495 * - everyone except group_exit_task is stopped during signal delivery 496 * of fatal signals, group_exit_task processes the signal. 497 */ 498 int notify_count; 499 struct task_struct *group_exit_task; 500 501 /* thread group stop support, overloads group_exit_code too */ 502 int group_stop_count; 503 unsigned int flags; /* see SIGNAL_* flags below */ 504 505 /* 506 * PR_SET_CHILD_SUBREAPER marks a process, like a service 507 * manager, to re-parent orphan (double-forking) child processes 508 * to this process instead of 'init'. The service manager is 509 * able to receive SIGCHLD signals and is able to investigate 510 * the process until it calls wait(). All children of this 511 * process will inherit a flag if they should look for a 512 * child_subreaper process at exit. 513 */ 514 unsigned int is_child_subreaper:1; 515 unsigned int has_child_subreaper:1; 516 517 /* POSIX.1b Interval Timers */ 518 int posix_timer_id; 519 struct list_head posix_timers; 520 521 /* ITIMER_REAL timer for the process */ 522 struct hrtimer real_timer; 523 struct pid *leader_pid; 524 ktime_t it_real_incr; 525 526 /* 527 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 528 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 529 * values are defined to 0 and 1 respectively 530 */ 531 struct cpu_itimer it[2]; 532 533 /* 534 * Thread group totals for process CPU timers. 535 * See thread_group_cputimer(), et al, for details. 536 */ 537 struct thread_group_cputimer cputimer; 538 539 /* Earliest-expiration cache. */ 540 struct task_cputime cputime_expires; 541 542 struct list_head cpu_timers[3]; 543 544 struct pid *tty_old_pgrp; 545 546 /* boolean value for session group leader */ 547 int leader; 548 549 struct tty_struct *tty; /* NULL if no tty */ 550 551 #ifdef CONFIG_SCHED_AUTOGROUP 552 struct autogroup *autogroup; 553 #endif 554 /* 555 * Cumulative resource counters for dead threads in the group, 556 * and for reaped dead child processes forked by this group. 557 * Live threads maintain their own counters and add to these 558 * in __exit_signal, except for the group leader. 559 */ 560 cputime_t utime, stime, cutime, cstime; 561 cputime_t gtime; 562 cputime_t cgtime; 563 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 564 struct cputime prev_cputime; 565 #endif 566 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 567 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 568 unsigned long inblock, oublock, cinblock, coublock; 569 unsigned long maxrss, cmaxrss; 570 struct task_io_accounting ioac; 571 572 /* 573 * Cumulative ns of schedule CPU time fo dead threads in the 574 * group, not including a zombie group leader, (This only differs 575 * from jiffies_to_ns(utime + stime) if sched_clock uses something 576 * other than jiffies.) 577 */ 578 unsigned long long sum_sched_runtime; 579 580 /* 581 * We don't bother to synchronize most readers of this at all, 582 * because there is no reader checking a limit that actually needs 583 * to get both rlim_cur and rlim_max atomically, and either one 584 * alone is a single word that can safely be read normally. 585 * getrlimit/setrlimit use task_lock(current->group_leader) to 586 * protect this instead of the siglock, because they really 587 * have no need to disable irqs. 588 */ 589 struct rlimit rlim[RLIM_NLIMITS]; 590 591 #ifdef CONFIG_BSD_PROCESS_ACCT 592 struct pacct_struct pacct; /* per-process accounting information */ 593 #endif 594 #ifdef CONFIG_TASKSTATS 595 struct taskstats *stats; 596 #endif 597 #ifdef CONFIG_AUDIT 598 unsigned audit_tty; 599 unsigned audit_tty_log_passwd; 600 struct tty_audit_buf *tty_audit_buf; 601 #endif 602 #ifdef CONFIG_CGROUPS 603 /* 604 * group_rwsem prevents new tasks from entering the threadgroup and 605 * member tasks from exiting,a more specifically, setting of 606 * PF_EXITING. fork and exit paths are protected with this rwsem 607 * using threadgroup_change_begin/end(). Users which require 608 * threadgroup to remain stable should use threadgroup_[un]lock() 609 * which also takes care of exec path. Currently, cgroup is the 610 * only user. 611 */ 612 struct rw_semaphore group_rwsem; 613 #endif 614 615 oom_flags_t oom_flags; 616 short oom_score_adj; /* OOM kill score adjustment */ 617 short oom_score_adj_min; /* OOM kill score adjustment min value. 618 * Only settable by CAP_SYS_RESOURCE. */ 619 620 struct mutex cred_guard_mutex; /* guard against foreign influences on 621 * credential calculations 622 * (notably. ptrace) */ 623 }; 624 625 /* 626 * Bits in flags field of signal_struct. 627 */ 628 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 629 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 630 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 631 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 632 /* 633 * Pending notifications to parent. 634 */ 635 #define SIGNAL_CLD_STOPPED 0x00000010 636 #define SIGNAL_CLD_CONTINUED 0x00000020 637 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 638 639 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 640 641 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 642 static inline int signal_group_exit(const struct signal_struct *sig) 643 { 644 return (sig->flags & SIGNAL_GROUP_EXIT) || 645 (sig->group_exit_task != NULL); 646 } 647 648 /* 649 * Some day this will be a full-fledged user tracking system.. 650 */ 651 struct user_struct { 652 atomic_t __count; /* reference count */ 653 atomic_t processes; /* How many processes does this user have? */ 654 atomic_t files; /* How many open files does this user have? */ 655 atomic_t sigpending; /* How many pending signals does this user have? */ 656 #ifdef CONFIG_INOTIFY_USER 657 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 658 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 659 #endif 660 #ifdef CONFIG_FANOTIFY 661 atomic_t fanotify_listeners; 662 #endif 663 #ifdef CONFIG_EPOLL 664 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 665 #endif 666 #ifdef CONFIG_POSIX_MQUEUE 667 /* protected by mq_lock */ 668 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 669 #endif 670 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 671 672 #ifdef CONFIG_KEYS 673 struct key *uid_keyring; /* UID specific keyring */ 674 struct key *session_keyring; /* UID's default session keyring */ 675 #endif 676 677 /* Hash table maintenance information */ 678 struct hlist_node uidhash_node; 679 kuid_t uid; 680 681 #ifdef CONFIG_PERF_EVENTS 682 atomic_long_t locked_vm; 683 #endif 684 }; 685 686 extern int uids_sysfs_init(void); 687 688 extern struct user_struct *find_user(kuid_t); 689 690 extern struct user_struct root_user; 691 #define INIT_USER (&root_user) 692 693 694 struct backing_dev_info; 695 struct reclaim_state; 696 697 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 698 struct sched_info { 699 /* cumulative counters */ 700 unsigned long pcount; /* # of times run on this cpu */ 701 unsigned long long run_delay; /* time spent waiting on a runqueue */ 702 703 /* timestamps */ 704 unsigned long long last_arrival,/* when we last ran on a cpu */ 705 last_queued; /* when we were last queued to run */ 706 }; 707 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 708 709 #ifdef CONFIG_TASK_DELAY_ACCT 710 struct task_delay_info { 711 spinlock_t lock; 712 unsigned int flags; /* Private per-task flags */ 713 714 /* For each stat XXX, add following, aligned appropriately 715 * 716 * struct timespec XXX_start, XXX_end; 717 * u64 XXX_delay; 718 * u32 XXX_count; 719 * 720 * Atomicity of updates to XXX_delay, XXX_count protected by 721 * single lock above (split into XXX_lock if contention is an issue). 722 */ 723 724 /* 725 * XXX_count is incremented on every XXX operation, the delay 726 * associated with the operation is added to XXX_delay. 727 * XXX_delay contains the accumulated delay time in nanoseconds. 728 */ 729 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 730 u64 blkio_delay; /* wait for sync block io completion */ 731 u64 swapin_delay; /* wait for swapin block io completion */ 732 u32 blkio_count; /* total count of the number of sync block */ 733 /* io operations performed */ 734 u32 swapin_count; /* total count of the number of swapin block */ 735 /* io operations performed */ 736 737 struct timespec freepages_start, freepages_end; 738 u64 freepages_delay; /* wait for memory reclaim */ 739 u32 freepages_count; /* total count of memory reclaim */ 740 }; 741 #endif /* CONFIG_TASK_DELAY_ACCT */ 742 743 static inline int sched_info_on(void) 744 { 745 #ifdef CONFIG_SCHEDSTATS 746 return 1; 747 #elif defined(CONFIG_TASK_DELAY_ACCT) 748 extern int delayacct_on; 749 return delayacct_on; 750 #else 751 return 0; 752 #endif 753 } 754 755 enum cpu_idle_type { 756 CPU_IDLE, 757 CPU_NOT_IDLE, 758 CPU_NEWLY_IDLE, 759 CPU_MAX_IDLE_TYPES 760 }; 761 762 /* 763 * Increase resolution of cpu_power calculations 764 */ 765 #define SCHED_POWER_SHIFT 10 766 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 767 768 /* 769 * sched-domains (multiprocessor balancing) declarations: 770 */ 771 #ifdef CONFIG_SMP 772 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 773 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 774 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 775 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 776 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 777 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 778 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 779 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 780 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 781 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 782 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 783 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 784 #define SD_NUMA 0x4000 /* cross-node balancing */ 785 786 extern int __weak arch_sd_sibiling_asym_packing(void); 787 788 struct sched_domain_attr { 789 int relax_domain_level; 790 }; 791 792 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 793 .relax_domain_level = -1, \ 794 } 795 796 extern int sched_domain_level_max; 797 798 struct sched_group; 799 800 struct sched_domain { 801 /* These fields must be setup */ 802 struct sched_domain *parent; /* top domain must be null terminated */ 803 struct sched_domain *child; /* bottom domain must be null terminated */ 804 struct sched_group *groups; /* the balancing groups of the domain */ 805 unsigned long min_interval; /* Minimum balance interval ms */ 806 unsigned long max_interval; /* Maximum balance interval ms */ 807 unsigned int busy_factor; /* less balancing by factor if busy */ 808 unsigned int imbalance_pct; /* No balance until over watermark */ 809 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 810 unsigned int busy_idx; 811 unsigned int idle_idx; 812 unsigned int newidle_idx; 813 unsigned int wake_idx; 814 unsigned int forkexec_idx; 815 unsigned int smt_gain; 816 817 int nohz_idle; /* NOHZ IDLE status */ 818 int flags; /* See SD_* */ 819 int level; 820 821 /* Runtime fields. */ 822 unsigned long last_balance; /* init to jiffies. units in jiffies */ 823 unsigned int balance_interval; /* initialise to 1. units in ms. */ 824 unsigned int nr_balance_failed; /* initialise to 0 */ 825 826 u64 last_update; 827 828 /* idle_balance() stats */ 829 u64 max_newidle_lb_cost; 830 unsigned long next_decay_max_lb_cost; 831 832 #ifdef CONFIG_SCHEDSTATS 833 /* load_balance() stats */ 834 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 835 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 836 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 837 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 838 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 839 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 840 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 841 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 842 843 /* Active load balancing */ 844 unsigned int alb_count; 845 unsigned int alb_failed; 846 unsigned int alb_pushed; 847 848 /* SD_BALANCE_EXEC stats */ 849 unsigned int sbe_count; 850 unsigned int sbe_balanced; 851 unsigned int sbe_pushed; 852 853 /* SD_BALANCE_FORK stats */ 854 unsigned int sbf_count; 855 unsigned int sbf_balanced; 856 unsigned int sbf_pushed; 857 858 /* try_to_wake_up() stats */ 859 unsigned int ttwu_wake_remote; 860 unsigned int ttwu_move_affine; 861 unsigned int ttwu_move_balance; 862 #endif 863 #ifdef CONFIG_SCHED_DEBUG 864 char *name; 865 #endif 866 union { 867 void *private; /* used during construction */ 868 struct rcu_head rcu; /* used during destruction */ 869 }; 870 871 unsigned int span_weight; 872 /* 873 * Span of all CPUs in this domain. 874 * 875 * NOTE: this field is variable length. (Allocated dynamically 876 * by attaching extra space to the end of the structure, 877 * depending on how many CPUs the kernel has booted up with) 878 */ 879 unsigned long span[0]; 880 }; 881 882 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 883 { 884 return to_cpumask(sd->span); 885 } 886 887 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 888 struct sched_domain_attr *dattr_new); 889 890 /* Allocate an array of sched domains, for partition_sched_domains(). */ 891 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 892 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 893 894 bool cpus_share_cache(int this_cpu, int that_cpu); 895 896 #else /* CONFIG_SMP */ 897 898 struct sched_domain_attr; 899 900 static inline void 901 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 902 struct sched_domain_attr *dattr_new) 903 { 904 } 905 906 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 907 { 908 return true; 909 } 910 911 #endif /* !CONFIG_SMP */ 912 913 914 struct io_context; /* See blkdev.h */ 915 916 917 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 918 extern void prefetch_stack(struct task_struct *t); 919 #else 920 static inline void prefetch_stack(struct task_struct *t) { } 921 #endif 922 923 struct audit_context; /* See audit.c */ 924 struct mempolicy; 925 struct pipe_inode_info; 926 struct uts_namespace; 927 928 struct load_weight { 929 unsigned long weight, inv_weight; 930 }; 931 932 struct sched_avg { 933 /* 934 * These sums represent an infinite geometric series and so are bound 935 * above by 1024/(1-y). Thus we only need a u32 to store them for all 936 * choices of y < 1-2^(-32)*1024. 937 */ 938 u32 runnable_avg_sum, runnable_avg_period; 939 u64 last_runnable_update; 940 s64 decay_count; 941 unsigned long load_avg_contrib; 942 }; 943 944 #ifdef CONFIG_SCHEDSTATS 945 struct sched_statistics { 946 u64 wait_start; 947 u64 wait_max; 948 u64 wait_count; 949 u64 wait_sum; 950 u64 iowait_count; 951 u64 iowait_sum; 952 953 u64 sleep_start; 954 u64 sleep_max; 955 s64 sum_sleep_runtime; 956 957 u64 block_start; 958 u64 block_max; 959 u64 exec_max; 960 u64 slice_max; 961 962 u64 nr_migrations_cold; 963 u64 nr_failed_migrations_affine; 964 u64 nr_failed_migrations_running; 965 u64 nr_failed_migrations_hot; 966 u64 nr_forced_migrations; 967 968 u64 nr_wakeups; 969 u64 nr_wakeups_sync; 970 u64 nr_wakeups_migrate; 971 u64 nr_wakeups_local; 972 u64 nr_wakeups_remote; 973 u64 nr_wakeups_affine; 974 u64 nr_wakeups_affine_attempts; 975 u64 nr_wakeups_passive; 976 u64 nr_wakeups_idle; 977 }; 978 #endif 979 980 struct sched_entity { 981 struct load_weight load; /* for load-balancing */ 982 struct rb_node run_node; 983 struct list_head group_node; 984 unsigned int on_rq; 985 986 u64 exec_start; 987 u64 sum_exec_runtime; 988 u64 vruntime; 989 u64 prev_sum_exec_runtime; 990 991 u64 nr_migrations; 992 993 #ifdef CONFIG_SCHEDSTATS 994 struct sched_statistics statistics; 995 #endif 996 997 #ifdef CONFIG_FAIR_GROUP_SCHED 998 struct sched_entity *parent; 999 /* rq on which this entity is (to be) queued: */ 1000 struct cfs_rq *cfs_rq; 1001 /* rq "owned" by this entity/group: */ 1002 struct cfs_rq *my_q; 1003 #endif 1004 1005 #ifdef CONFIG_SMP 1006 /* Per-entity load-tracking */ 1007 struct sched_avg avg; 1008 #endif 1009 }; 1010 1011 struct sched_rt_entity { 1012 struct list_head run_list; 1013 unsigned long timeout; 1014 unsigned long watchdog_stamp; 1015 unsigned int time_slice; 1016 1017 struct sched_rt_entity *back; 1018 #ifdef CONFIG_RT_GROUP_SCHED 1019 struct sched_rt_entity *parent; 1020 /* rq on which this entity is (to be) queued: */ 1021 struct rt_rq *rt_rq; 1022 /* rq "owned" by this entity/group: */ 1023 struct rt_rq *my_q; 1024 #endif 1025 }; 1026 1027 1028 struct rcu_node; 1029 1030 enum perf_event_task_context { 1031 perf_invalid_context = -1, 1032 perf_hw_context = 0, 1033 perf_sw_context, 1034 perf_nr_task_contexts, 1035 }; 1036 1037 struct task_struct { 1038 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1039 void *stack; 1040 atomic_t usage; 1041 unsigned int flags; /* per process flags, defined below */ 1042 unsigned int ptrace; 1043 1044 #ifdef CONFIG_SMP 1045 struct llist_node wake_entry; 1046 int on_cpu; 1047 struct task_struct *last_wakee; 1048 unsigned long wakee_flips; 1049 unsigned long wakee_flip_decay_ts; 1050 1051 int wake_cpu; 1052 #endif 1053 int on_rq; 1054 1055 int prio, static_prio, normal_prio; 1056 unsigned int rt_priority; 1057 const struct sched_class *sched_class; 1058 struct sched_entity se; 1059 struct sched_rt_entity rt; 1060 #ifdef CONFIG_CGROUP_SCHED 1061 struct task_group *sched_task_group; 1062 #endif 1063 1064 #ifdef CONFIG_PREEMPT_NOTIFIERS 1065 /* list of struct preempt_notifier: */ 1066 struct hlist_head preempt_notifiers; 1067 #endif 1068 1069 #ifdef CONFIG_BLK_DEV_IO_TRACE 1070 unsigned int btrace_seq; 1071 #endif 1072 1073 unsigned int policy; 1074 int nr_cpus_allowed; 1075 cpumask_t cpus_allowed; 1076 1077 #ifdef CONFIG_PREEMPT_RCU 1078 int rcu_read_lock_nesting; 1079 char rcu_read_unlock_special; 1080 struct list_head rcu_node_entry; 1081 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1082 #ifdef CONFIG_TREE_PREEMPT_RCU 1083 struct rcu_node *rcu_blocked_node; 1084 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1085 #ifdef CONFIG_RCU_BOOST 1086 struct rt_mutex *rcu_boost_mutex; 1087 #endif /* #ifdef CONFIG_RCU_BOOST */ 1088 1089 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1090 struct sched_info sched_info; 1091 #endif 1092 1093 struct list_head tasks; 1094 #ifdef CONFIG_SMP 1095 struct plist_node pushable_tasks; 1096 #endif 1097 1098 struct mm_struct *mm, *active_mm; 1099 #ifdef CONFIG_COMPAT_BRK 1100 unsigned brk_randomized:1; 1101 #endif 1102 #if defined(SPLIT_RSS_COUNTING) 1103 struct task_rss_stat rss_stat; 1104 #endif 1105 /* task state */ 1106 int exit_state; 1107 int exit_code, exit_signal; 1108 int pdeath_signal; /* The signal sent when the parent dies */ 1109 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1110 1111 /* Used for emulating ABI behavior of previous Linux versions */ 1112 unsigned int personality; 1113 1114 unsigned did_exec:1; 1115 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1116 * execve */ 1117 unsigned in_iowait:1; 1118 1119 /* task may not gain privileges */ 1120 unsigned no_new_privs:1; 1121 1122 /* Revert to default priority/policy when forking */ 1123 unsigned sched_reset_on_fork:1; 1124 unsigned sched_contributes_to_load:1; 1125 1126 pid_t pid; 1127 pid_t tgid; 1128 1129 #ifdef CONFIG_CC_STACKPROTECTOR 1130 /* Canary value for the -fstack-protector gcc feature */ 1131 unsigned long stack_canary; 1132 #endif 1133 /* 1134 * pointers to (original) parent process, youngest child, younger sibling, 1135 * older sibling, respectively. (p->father can be replaced with 1136 * p->real_parent->pid) 1137 */ 1138 struct task_struct __rcu *real_parent; /* real parent process */ 1139 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1140 /* 1141 * children/sibling forms the list of my natural children 1142 */ 1143 struct list_head children; /* list of my children */ 1144 struct list_head sibling; /* linkage in my parent's children list */ 1145 struct task_struct *group_leader; /* threadgroup leader */ 1146 1147 /* 1148 * ptraced is the list of tasks this task is using ptrace on. 1149 * This includes both natural children and PTRACE_ATTACH targets. 1150 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1151 */ 1152 struct list_head ptraced; 1153 struct list_head ptrace_entry; 1154 1155 /* PID/PID hash table linkage. */ 1156 struct pid_link pids[PIDTYPE_MAX]; 1157 struct list_head thread_group; 1158 1159 struct completion *vfork_done; /* for vfork() */ 1160 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1161 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1162 1163 cputime_t utime, stime, utimescaled, stimescaled; 1164 cputime_t gtime; 1165 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1166 struct cputime prev_cputime; 1167 #endif 1168 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1169 seqlock_t vtime_seqlock; 1170 unsigned long long vtime_snap; 1171 enum { 1172 VTIME_SLEEPING = 0, 1173 VTIME_USER, 1174 VTIME_SYS, 1175 } vtime_snap_whence; 1176 #endif 1177 unsigned long nvcsw, nivcsw; /* context switch counts */ 1178 struct timespec start_time; /* monotonic time */ 1179 struct timespec real_start_time; /* boot based time */ 1180 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1181 unsigned long min_flt, maj_flt; 1182 1183 struct task_cputime cputime_expires; 1184 struct list_head cpu_timers[3]; 1185 1186 /* process credentials */ 1187 const struct cred __rcu *real_cred; /* objective and real subjective task 1188 * credentials (COW) */ 1189 const struct cred __rcu *cred; /* effective (overridable) subjective task 1190 * credentials (COW) */ 1191 char comm[TASK_COMM_LEN]; /* executable name excluding path 1192 - access with [gs]et_task_comm (which lock 1193 it with task_lock()) 1194 - initialized normally by setup_new_exec */ 1195 /* file system info */ 1196 int link_count, total_link_count; 1197 #ifdef CONFIG_SYSVIPC 1198 /* ipc stuff */ 1199 struct sysv_sem sysvsem; 1200 #endif 1201 #ifdef CONFIG_DETECT_HUNG_TASK 1202 /* hung task detection */ 1203 unsigned long last_switch_count; 1204 #endif 1205 /* CPU-specific state of this task */ 1206 struct thread_struct thread; 1207 /* filesystem information */ 1208 struct fs_struct *fs; 1209 /* open file information */ 1210 struct files_struct *files; 1211 /* namespaces */ 1212 struct nsproxy *nsproxy; 1213 /* signal handlers */ 1214 struct signal_struct *signal; 1215 struct sighand_struct *sighand; 1216 1217 sigset_t blocked, real_blocked; 1218 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1219 struct sigpending pending; 1220 1221 unsigned long sas_ss_sp; 1222 size_t sas_ss_size; 1223 int (*notifier)(void *priv); 1224 void *notifier_data; 1225 sigset_t *notifier_mask; 1226 struct callback_head *task_works; 1227 1228 struct audit_context *audit_context; 1229 #ifdef CONFIG_AUDITSYSCALL 1230 kuid_t loginuid; 1231 unsigned int sessionid; 1232 #endif 1233 struct seccomp seccomp; 1234 1235 /* Thread group tracking */ 1236 u32 parent_exec_id; 1237 u32 self_exec_id; 1238 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1239 * mempolicy */ 1240 spinlock_t alloc_lock; 1241 1242 /* Protection of the PI data structures: */ 1243 raw_spinlock_t pi_lock; 1244 1245 #ifdef CONFIG_RT_MUTEXES 1246 /* PI waiters blocked on a rt_mutex held by this task */ 1247 struct plist_head pi_waiters; 1248 /* Deadlock detection and priority inheritance handling */ 1249 struct rt_mutex_waiter *pi_blocked_on; 1250 #endif 1251 1252 #ifdef CONFIG_DEBUG_MUTEXES 1253 /* mutex deadlock detection */ 1254 struct mutex_waiter *blocked_on; 1255 #endif 1256 #ifdef CONFIG_TRACE_IRQFLAGS 1257 unsigned int irq_events; 1258 unsigned long hardirq_enable_ip; 1259 unsigned long hardirq_disable_ip; 1260 unsigned int hardirq_enable_event; 1261 unsigned int hardirq_disable_event; 1262 int hardirqs_enabled; 1263 int hardirq_context; 1264 unsigned long softirq_disable_ip; 1265 unsigned long softirq_enable_ip; 1266 unsigned int softirq_disable_event; 1267 unsigned int softirq_enable_event; 1268 int softirqs_enabled; 1269 int softirq_context; 1270 #endif 1271 #ifdef CONFIG_LOCKDEP 1272 # define MAX_LOCK_DEPTH 48UL 1273 u64 curr_chain_key; 1274 int lockdep_depth; 1275 unsigned int lockdep_recursion; 1276 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1277 gfp_t lockdep_reclaim_gfp; 1278 #endif 1279 1280 /* journalling filesystem info */ 1281 void *journal_info; 1282 1283 /* stacked block device info */ 1284 struct bio_list *bio_list; 1285 1286 #ifdef CONFIG_BLOCK 1287 /* stack plugging */ 1288 struct blk_plug *plug; 1289 #endif 1290 1291 /* VM state */ 1292 struct reclaim_state *reclaim_state; 1293 1294 struct backing_dev_info *backing_dev_info; 1295 1296 struct io_context *io_context; 1297 1298 unsigned long ptrace_message; 1299 siginfo_t *last_siginfo; /* For ptrace use. */ 1300 struct task_io_accounting ioac; 1301 #if defined(CONFIG_TASK_XACCT) 1302 u64 acct_rss_mem1; /* accumulated rss usage */ 1303 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1304 cputime_t acct_timexpd; /* stime + utime since last update */ 1305 #endif 1306 #ifdef CONFIG_CPUSETS 1307 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1308 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1309 int cpuset_mem_spread_rotor; 1310 int cpuset_slab_spread_rotor; 1311 #endif 1312 #ifdef CONFIG_CGROUPS 1313 /* Control Group info protected by css_set_lock */ 1314 struct css_set __rcu *cgroups; 1315 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1316 struct list_head cg_list; 1317 #endif 1318 #ifdef CONFIG_FUTEX 1319 struct robust_list_head __user *robust_list; 1320 #ifdef CONFIG_COMPAT 1321 struct compat_robust_list_head __user *compat_robust_list; 1322 #endif 1323 struct list_head pi_state_list; 1324 struct futex_pi_state *pi_state_cache; 1325 #endif 1326 #ifdef CONFIG_PERF_EVENTS 1327 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1328 struct mutex perf_event_mutex; 1329 struct list_head perf_event_list; 1330 #endif 1331 #ifdef CONFIG_NUMA 1332 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1333 short il_next; 1334 short pref_node_fork; 1335 #endif 1336 #ifdef CONFIG_NUMA_BALANCING 1337 int numa_scan_seq; 1338 unsigned int numa_scan_period; 1339 unsigned int numa_scan_period_max; 1340 int numa_preferred_nid; 1341 int numa_migrate_deferred; 1342 unsigned long numa_migrate_retry; 1343 u64 node_stamp; /* migration stamp */ 1344 struct callback_head numa_work; 1345 1346 struct list_head numa_entry; 1347 struct numa_group *numa_group; 1348 1349 /* 1350 * Exponential decaying average of faults on a per-node basis. 1351 * Scheduling placement decisions are made based on the these counts. 1352 * The values remain static for the duration of a PTE scan 1353 */ 1354 unsigned long *numa_faults; 1355 unsigned long total_numa_faults; 1356 1357 /* 1358 * numa_faults_buffer records faults per node during the current 1359 * scan window. When the scan completes, the counts in numa_faults 1360 * decay and these values are copied. 1361 */ 1362 unsigned long *numa_faults_buffer; 1363 1364 /* 1365 * numa_faults_locality tracks if faults recorded during the last 1366 * scan window were remote/local. The task scan period is adapted 1367 * based on the locality of the faults with different weights 1368 * depending on whether they were shared or private faults 1369 */ 1370 unsigned long numa_faults_locality[2]; 1371 1372 unsigned long numa_pages_migrated; 1373 #endif /* CONFIG_NUMA_BALANCING */ 1374 1375 struct rcu_head rcu; 1376 1377 /* 1378 * cache last used pipe for splice 1379 */ 1380 struct pipe_inode_info *splice_pipe; 1381 1382 struct page_frag task_frag; 1383 1384 #ifdef CONFIG_TASK_DELAY_ACCT 1385 struct task_delay_info *delays; 1386 #endif 1387 #ifdef CONFIG_FAULT_INJECTION 1388 int make_it_fail; 1389 #endif 1390 /* 1391 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1392 * balance_dirty_pages() for some dirty throttling pause 1393 */ 1394 int nr_dirtied; 1395 int nr_dirtied_pause; 1396 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1397 1398 #ifdef CONFIG_LATENCYTOP 1399 int latency_record_count; 1400 struct latency_record latency_record[LT_SAVECOUNT]; 1401 #endif 1402 /* 1403 * time slack values; these are used to round up poll() and 1404 * select() etc timeout values. These are in nanoseconds. 1405 */ 1406 unsigned long timer_slack_ns; 1407 unsigned long default_timer_slack_ns; 1408 1409 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1410 /* Index of current stored address in ret_stack */ 1411 int curr_ret_stack; 1412 /* Stack of return addresses for return function tracing */ 1413 struct ftrace_ret_stack *ret_stack; 1414 /* time stamp for last schedule */ 1415 unsigned long long ftrace_timestamp; 1416 /* 1417 * Number of functions that haven't been traced 1418 * because of depth overrun. 1419 */ 1420 atomic_t trace_overrun; 1421 /* Pause for the tracing */ 1422 atomic_t tracing_graph_pause; 1423 #endif 1424 #ifdef CONFIG_TRACING 1425 /* state flags for use by tracers */ 1426 unsigned long trace; 1427 /* bitmask and counter of trace recursion */ 1428 unsigned long trace_recursion; 1429 #endif /* CONFIG_TRACING */ 1430 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1431 struct memcg_batch_info { 1432 int do_batch; /* incremented when batch uncharge started */ 1433 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1434 unsigned long nr_pages; /* uncharged usage */ 1435 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1436 } memcg_batch; 1437 unsigned int memcg_kmem_skip_account; 1438 struct memcg_oom_info { 1439 struct mem_cgroup *memcg; 1440 gfp_t gfp_mask; 1441 int order; 1442 unsigned int may_oom:1; 1443 } memcg_oom; 1444 #endif 1445 #ifdef CONFIG_UPROBES 1446 struct uprobe_task *utask; 1447 #endif 1448 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1449 unsigned int sequential_io; 1450 unsigned int sequential_io_avg; 1451 #endif 1452 }; 1453 1454 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1455 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1456 1457 #define TNF_MIGRATED 0x01 1458 #define TNF_NO_GROUP 0x02 1459 #define TNF_SHARED 0x04 1460 #define TNF_FAULT_LOCAL 0x08 1461 1462 #ifdef CONFIG_NUMA_BALANCING 1463 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1464 extern pid_t task_numa_group_id(struct task_struct *p); 1465 extern void set_numabalancing_state(bool enabled); 1466 extern void task_numa_free(struct task_struct *p); 1467 1468 extern unsigned int sysctl_numa_balancing_migrate_deferred; 1469 #else 1470 static inline void task_numa_fault(int last_node, int node, int pages, 1471 int flags) 1472 { 1473 } 1474 static inline pid_t task_numa_group_id(struct task_struct *p) 1475 { 1476 return 0; 1477 } 1478 static inline void set_numabalancing_state(bool enabled) 1479 { 1480 } 1481 static inline void task_numa_free(struct task_struct *p) 1482 { 1483 } 1484 #endif 1485 1486 static inline struct pid *task_pid(struct task_struct *task) 1487 { 1488 return task->pids[PIDTYPE_PID].pid; 1489 } 1490 1491 static inline struct pid *task_tgid(struct task_struct *task) 1492 { 1493 return task->group_leader->pids[PIDTYPE_PID].pid; 1494 } 1495 1496 /* 1497 * Without tasklist or rcu lock it is not safe to dereference 1498 * the result of task_pgrp/task_session even if task == current, 1499 * we can race with another thread doing sys_setsid/sys_setpgid. 1500 */ 1501 static inline struct pid *task_pgrp(struct task_struct *task) 1502 { 1503 return task->group_leader->pids[PIDTYPE_PGID].pid; 1504 } 1505 1506 static inline struct pid *task_session(struct task_struct *task) 1507 { 1508 return task->group_leader->pids[PIDTYPE_SID].pid; 1509 } 1510 1511 struct pid_namespace; 1512 1513 /* 1514 * the helpers to get the task's different pids as they are seen 1515 * from various namespaces 1516 * 1517 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1518 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1519 * current. 1520 * task_xid_nr_ns() : id seen from the ns specified; 1521 * 1522 * set_task_vxid() : assigns a virtual id to a task; 1523 * 1524 * see also pid_nr() etc in include/linux/pid.h 1525 */ 1526 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1527 struct pid_namespace *ns); 1528 1529 static inline pid_t task_pid_nr(struct task_struct *tsk) 1530 { 1531 return tsk->pid; 1532 } 1533 1534 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1535 struct pid_namespace *ns) 1536 { 1537 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1538 } 1539 1540 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1541 { 1542 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1543 } 1544 1545 1546 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1547 { 1548 return tsk->tgid; 1549 } 1550 1551 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1552 1553 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1554 { 1555 return pid_vnr(task_tgid(tsk)); 1556 } 1557 1558 1559 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1560 struct pid_namespace *ns) 1561 { 1562 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1563 } 1564 1565 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1566 { 1567 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1568 } 1569 1570 1571 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1572 struct pid_namespace *ns) 1573 { 1574 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1575 } 1576 1577 static inline pid_t task_session_vnr(struct task_struct *tsk) 1578 { 1579 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1580 } 1581 1582 /* obsolete, do not use */ 1583 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1584 { 1585 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1586 } 1587 1588 /** 1589 * pid_alive - check that a task structure is not stale 1590 * @p: Task structure to be checked. 1591 * 1592 * Test if a process is not yet dead (at most zombie state) 1593 * If pid_alive fails, then pointers within the task structure 1594 * can be stale and must not be dereferenced. 1595 * 1596 * Return: 1 if the process is alive. 0 otherwise. 1597 */ 1598 static inline int pid_alive(struct task_struct *p) 1599 { 1600 return p->pids[PIDTYPE_PID].pid != NULL; 1601 } 1602 1603 /** 1604 * is_global_init - check if a task structure is init 1605 * @tsk: Task structure to be checked. 1606 * 1607 * Check if a task structure is the first user space task the kernel created. 1608 * 1609 * Return: 1 if the task structure is init. 0 otherwise. 1610 */ 1611 static inline int is_global_init(struct task_struct *tsk) 1612 { 1613 return tsk->pid == 1; 1614 } 1615 1616 extern struct pid *cad_pid; 1617 1618 extern void free_task(struct task_struct *tsk); 1619 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1620 1621 extern void __put_task_struct(struct task_struct *t); 1622 1623 static inline void put_task_struct(struct task_struct *t) 1624 { 1625 if (atomic_dec_and_test(&t->usage)) 1626 __put_task_struct(t); 1627 } 1628 1629 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1630 extern void task_cputime(struct task_struct *t, 1631 cputime_t *utime, cputime_t *stime); 1632 extern void task_cputime_scaled(struct task_struct *t, 1633 cputime_t *utimescaled, cputime_t *stimescaled); 1634 extern cputime_t task_gtime(struct task_struct *t); 1635 #else 1636 static inline void task_cputime(struct task_struct *t, 1637 cputime_t *utime, cputime_t *stime) 1638 { 1639 if (utime) 1640 *utime = t->utime; 1641 if (stime) 1642 *stime = t->stime; 1643 } 1644 1645 static inline void task_cputime_scaled(struct task_struct *t, 1646 cputime_t *utimescaled, 1647 cputime_t *stimescaled) 1648 { 1649 if (utimescaled) 1650 *utimescaled = t->utimescaled; 1651 if (stimescaled) 1652 *stimescaled = t->stimescaled; 1653 } 1654 1655 static inline cputime_t task_gtime(struct task_struct *t) 1656 { 1657 return t->gtime; 1658 } 1659 #endif 1660 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1661 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1662 1663 /* 1664 * Per process flags 1665 */ 1666 #define PF_EXITING 0x00000004 /* getting shut down */ 1667 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1668 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1669 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1670 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1671 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1672 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1673 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1674 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1675 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1676 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1677 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1678 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1679 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1680 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1681 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1682 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1683 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1684 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1685 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1686 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1687 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1688 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1689 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1690 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1691 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1692 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1693 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1694 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1695 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 1696 1697 /* 1698 * Only the _current_ task can read/write to tsk->flags, but other 1699 * tasks can access tsk->flags in readonly mode for example 1700 * with tsk_used_math (like during threaded core dumping). 1701 * There is however an exception to this rule during ptrace 1702 * or during fork: the ptracer task is allowed to write to the 1703 * child->flags of its traced child (same goes for fork, the parent 1704 * can write to the child->flags), because we're guaranteed the 1705 * child is not running and in turn not changing child->flags 1706 * at the same time the parent does it. 1707 */ 1708 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1709 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1710 #define clear_used_math() clear_stopped_child_used_math(current) 1711 #define set_used_math() set_stopped_child_used_math(current) 1712 #define conditional_stopped_child_used_math(condition, child) \ 1713 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1714 #define conditional_used_math(condition) \ 1715 conditional_stopped_child_used_math(condition, current) 1716 #define copy_to_stopped_child_used_math(child) \ 1717 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1718 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1719 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1720 #define used_math() tsk_used_math(current) 1721 1722 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */ 1723 static inline gfp_t memalloc_noio_flags(gfp_t flags) 1724 { 1725 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 1726 flags &= ~__GFP_IO; 1727 return flags; 1728 } 1729 1730 static inline unsigned int memalloc_noio_save(void) 1731 { 1732 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 1733 current->flags |= PF_MEMALLOC_NOIO; 1734 return flags; 1735 } 1736 1737 static inline void memalloc_noio_restore(unsigned int flags) 1738 { 1739 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 1740 } 1741 1742 /* 1743 * task->jobctl flags 1744 */ 1745 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1746 1747 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1748 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1749 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1750 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1751 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1752 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1753 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1754 1755 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1756 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1757 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1758 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1759 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1760 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1761 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1762 1763 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1764 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1765 1766 extern bool task_set_jobctl_pending(struct task_struct *task, 1767 unsigned int mask); 1768 extern void task_clear_jobctl_trapping(struct task_struct *task); 1769 extern void task_clear_jobctl_pending(struct task_struct *task, 1770 unsigned int mask); 1771 1772 #ifdef CONFIG_PREEMPT_RCU 1773 1774 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1775 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1776 1777 static inline void rcu_copy_process(struct task_struct *p) 1778 { 1779 p->rcu_read_lock_nesting = 0; 1780 p->rcu_read_unlock_special = 0; 1781 #ifdef CONFIG_TREE_PREEMPT_RCU 1782 p->rcu_blocked_node = NULL; 1783 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1784 #ifdef CONFIG_RCU_BOOST 1785 p->rcu_boost_mutex = NULL; 1786 #endif /* #ifdef CONFIG_RCU_BOOST */ 1787 INIT_LIST_HEAD(&p->rcu_node_entry); 1788 } 1789 1790 #else 1791 1792 static inline void rcu_copy_process(struct task_struct *p) 1793 { 1794 } 1795 1796 #endif 1797 1798 static inline void tsk_restore_flags(struct task_struct *task, 1799 unsigned long orig_flags, unsigned long flags) 1800 { 1801 task->flags &= ~flags; 1802 task->flags |= orig_flags & flags; 1803 } 1804 1805 #ifdef CONFIG_SMP 1806 extern void do_set_cpus_allowed(struct task_struct *p, 1807 const struct cpumask *new_mask); 1808 1809 extern int set_cpus_allowed_ptr(struct task_struct *p, 1810 const struct cpumask *new_mask); 1811 #else 1812 static inline void do_set_cpus_allowed(struct task_struct *p, 1813 const struct cpumask *new_mask) 1814 { 1815 } 1816 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1817 const struct cpumask *new_mask) 1818 { 1819 if (!cpumask_test_cpu(0, new_mask)) 1820 return -EINVAL; 1821 return 0; 1822 } 1823 #endif 1824 1825 #ifdef CONFIG_NO_HZ_COMMON 1826 void calc_load_enter_idle(void); 1827 void calc_load_exit_idle(void); 1828 #else 1829 static inline void calc_load_enter_idle(void) { } 1830 static inline void calc_load_exit_idle(void) { } 1831 #endif /* CONFIG_NO_HZ_COMMON */ 1832 1833 #ifndef CONFIG_CPUMASK_OFFSTACK 1834 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1835 { 1836 return set_cpus_allowed_ptr(p, &new_mask); 1837 } 1838 #endif 1839 1840 /* 1841 * Do not use outside of architecture code which knows its limitations. 1842 * 1843 * sched_clock() has no promise of monotonicity or bounded drift between 1844 * CPUs, use (which you should not) requires disabling IRQs. 1845 * 1846 * Please use one of the three interfaces below. 1847 */ 1848 extern unsigned long long notrace sched_clock(void); 1849 /* 1850 * See the comment in kernel/sched/clock.c 1851 */ 1852 extern u64 cpu_clock(int cpu); 1853 extern u64 local_clock(void); 1854 extern u64 sched_clock_cpu(int cpu); 1855 1856 1857 extern void sched_clock_init(void); 1858 1859 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1860 static inline void sched_clock_tick(void) 1861 { 1862 } 1863 1864 static inline void sched_clock_idle_sleep_event(void) 1865 { 1866 } 1867 1868 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1869 { 1870 } 1871 #else 1872 /* 1873 * Architectures can set this to 1 if they have specified 1874 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1875 * but then during bootup it turns out that sched_clock() 1876 * is reliable after all: 1877 */ 1878 extern int sched_clock_stable; 1879 1880 extern void sched_clock_tick(void); 1881 extern void sched_clock_idle_sleep_event(void); 1882 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1883 #endif 1884 1885 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1886 /* 1887 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1888 * The reason for this explicit opt-in is not to have perf penalty with 1889 * slow sched_clocks. 1890 */ 1891 extern void enable_sched_clock_irqtime(void); 1892 extern void disable_sched_clock_irqtime(void); 1893 #else 1894 static inline void enable_sched_clock_irqtime(void) {} 1895 static inline void disable_sched_clock_irqtime(void) {} 1896 #endif 1897 1898 extern unsigned long long 1899 task_sched_runtime(struct task_struct *task); 1900 1901 /* sched_exec is called by processes performing an exec */ 1902 #ifdef CONFIG_SMP 1903 extern void sched_exec(void); 1904 #else 1905 #define sched_exec() {} 1906 #endif 1907 1908 extern void sched_clock_idle_sleep_event(void); 1909 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1910 1911 #ifdef CONFIG_HOTPLUG_CPU 1912 extern void idle_task_exit(void); 1913 #else 1914 static inline void idle_task_exit(void) {} 1915 #endif 1916 1917 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 1918 extern void wake_up_nohz_cpu(int cpu); 1919 #else 1920 static inline void wake_up_nohz_cpu(int cpu) { } 1921 #endif 1922 1923 #ifdef CONFIG_NO_HZ_FULL 1924 extern bool sched_can_stop_tick(void); 1925 extern u64 scheduler_tick_max_deferment(void); 1926 #else 1927 static inline bool sched_can_stop_tick(void) { return false; } 1928 #endif 1929 1930 #ifdef CONFIG_SCHED_AUTOGROUP 1931 extern void sched_autogroup_create_attach(struct task_struct *p); 1932 extern void sched_autogroup_detach(struct task_struct *p); 1933 extern void sched_autogroup_fork(struct signal_struct *sig); 1934 extern void sched_autogroup_exit(struct signal_struct *sig); 1935 #ifdef CONFIG_PROC_FS 1936 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 1937 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 1938 #endif 1939 #else 1940 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 1941 static inline void sched_autogroup_detach(struct task_struct *p) { } 1942 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 1943 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 1944 #endif 1945 1946 extern bool yield_to(struct task_struct *p, bool preempt); 1947 extern void set_user_nice(struct task_struct *p, long nice); 1948 extern int task_prio(const struct task_struct *p); 1949 extern int task_nice(const struct task_struct *p); 1950 extern int can_nice(const struct task_struct *p, const int nice); 1951 extern int task_curr(const struct task_struct *p); 1952 extern int idle_cpu(int cpu); 1953 extern int sched_setscheduler(struct task_struct *, int, 1954 const struct sched_param *); 1955 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1956 const struct sched_param *); 1957 extern struct task_struct *idle_task(int cpu); 1958 /** 1959 * is_idle_task - is the specified task an idle task? 1960 * @p: the task in question. 1961 * 1962 * Return: 1 if @p is an idle task. 0 otherwise. 1963 */ 1964 static inline bool is_idle_task(const struct task_struct *p) 1965 { 1966 return p->pid == 0; 1967 } 1968 extern struct task_struct *curr_task(int cpu); 1969 extern void set_curr_task(int cpu, struct task_struct *p); 1970 1971 void yield(void); 1972 1973 /* 1974 * The default (Linux) execution domain. 1975 */ 1976 extern struct exec_domain default_exec_domain; 1977 1978 union thread_union { 1979 struct thread_info thread_info; 1980 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1981 }; 1982 1983 #ifndef __HAVE_ARCH_KSTACK_END 1984 static inline int kstack_end(void *addr) 1985 { 1986 /* Reliable end of stack detection: 1987 * Some APM bios versions misalign the stack 1988 */ 1989 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1990 } 1991 #endif 1992 1993 extern union thread_union init_thread_union; 1994 extern struct task_struct init_task; 1995 1996 extern struct mm_struct init_mm; 1997 1998 extern struct pid_namespace init_pid_ns; 1999 2000 /* 2001 * find a task by one of its numerical ids 2002 * 2003 * find_task_by_pid_ns(): 2004 * finds a task by its pid in the specified namespace 2005 * find_task_by_vpid(): 2006 * finds a task by its virtual pid 2007 * 2008 * see also find_vpid() etc in include/linux/pid.h 2009 */ 2010 2011 extern struct task_struct *find_task_by_vpid(pid_t nr); 2012 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2013 struct pid_namespace *ns); 2014 2015 /* per-UID process charging. */ 2016 extern struct user_struct * alloc_uid(kuid_t); 2017 static inline struct user_struct *get_uid(struct user_struct *u) 2018 { 2019 atomic_inc(&u->__count); 2020 return u; 2021 } 2022 extern void free_uid(struct user_struct *); 2023 2024 #include <asm/current.h> 2025 2026 extern void xtime_update(unsigned long ticks); 2027 2028 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2029 extern int wake_up_process(struct task_struct *tsk); 2030 extern void wake_up_new_task(struct task_struct *tsk); 2031 #ifdef CONFIG_SMP 2032 extern void kick_process(struct task_struct *tsk); 2033 #else 2034 static inline void kick_process(struct task_struct *tsk) { } 2035 #endif 2036 extern void sched_fork(unsigned long clone_flags, struct task_struct *p); 2037 extern void sched_dead(struct task_struct *p); 2038 2039 extern void proc_caches_init(void); 2040 extern void flush_signals(struct task_struct *); 2041 extern void __flush_signals(struct task_struct *); 2042 extern void ignore_signals(struct task_struct *); 2043 extern void flush_signal_handlers(struct task_struct *, int force_default); 2044 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2045 2046 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2047 { 2048 unsigned long flags; 2049 int ret; 2050 2051 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2052 ret = dequeue_signal(tsk, mask, info); 2053 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2054 2055 return ret; 2056 } 2057 2058 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2059 sigset_t *mask); 2060 extern void unblock_all_signals(void); 2061 extern void release_task(struct task_struct * p); 2062 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2063 extern int force_sigsegv(int, struct task_struct *); 2064 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2065 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2066 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2067 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2068 const struct cred *, u32); 2069 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2070 extern int kill_pid(struct pid *pid, int sig, int priv); 2071 extern int kill_proc_info(int, struct siginfo *, pid_t); 2072 extern __must_check bool do_notify_parent(struct task_struct *, int); 2073 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2074 extern void force_sig(int, struct task_struct *); 2075 extern int send_sig(int, struct task_struct *, int); 2076 extern int zap_other_threads(struct task_struct *p); 2077 extern struct sigqueue *sigqueue_alloc(void); 2078 extern void sigqueue_free(struct sigqueue *); 2079 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2080 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2081 2082 static inline void restore_saved_sigmask(void) 2083 { 2084 if (test_and_clear_restore_sigmask()) 2085 __set_current_blocked(¤t->saved_sigmask); 2086 } 2087 2088 static inline sigset_t *sigmask_to_save(void) 2089 { 2090 sigset_t *res = ¤t->blocked; 2091 if (unlikely(test_restore_sigmask())) 2092 res = ¤t->saved_sigmask; 2093 return res; 2094 } 2095 2096 static inline int kill_cad_pid(int sig, int priv) 2097 { 2098 return kill_pid(cad_pid, sig, priv); 2099 } 2100 2101 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2102 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2103 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2104 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2105 2106 /* 2107 * True if we are on the alternate signal stack. 2108 */ 2109 static inline int on_sig_stack(unsigned long sp) 2110 { 2111 #ifdef CONFIG_STACK_GROWSUP 2112 return sp >= current->sas_ss_sp && 2113 sp - current->sas_ss_sp < current->sas_ss_size; 2114 #else 2115 return sp > current->sas_ss_sp && 2116 sp - current->sas_ss_sp <= current->sas_ss_size; 2117 #endif 2118 } 2119 2120 static inline int sas_ss_flags(unsigned long sp) 2121 { 2122 return (current->sas_ss_size == 0 ? SS_DISABLE 2123 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2124 } 2125 2126 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2127 { 2128 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2129 #ifdef CONFIG_STACK_GROWSUP 2130 return current->sas_ss_sp; 2131 #else 2132 return current->sas_ss_sp + current->sas_ss_size; 2133 #endif 2134 return sp; 2135 } 2136 2137 /* 2138 * Routines for handling mm_structs 2139 */ 2140 extern struct mm_struct * mm_alloc(void); 2141 2142 /* mmdrop drops the mm and the page tables */ 2143 extern void __mmdrop(struct mm_struct *); 2144 static inline void mmdrop(struct mm_struct * mm) 2145 { 2146 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2147 __mmdrop(mm); 2148 } 2149 2150 /* mmput gets rid of the mappings and all user-space */ 2151 extern void mmput(struct mm_struct *); 2152 /* Grab a reference to a task's mm, if it is not already going away */ 2153 extern struct mm_struct *get_task_mm(struct task_struct *task); 2154 /* 2155 * Grab a reference to a task's mm, if it is not already going away 2156 * and ptrace_may_access with the mode parameter passed to it 2157 * succeeds. 2158 */ 2159 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2160 /* Remove the current tasks stale references to the old mm_struct */ 2161 extern void mm_release(struct task_struct *, struct mm_struct *); 2162 /* Allocate a new mm structure and copy contents from tsk->mm */ 2163 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2164 2165 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2166 struct task_struct *); 2167 extern void flush_thread(void); 2168 extern void exit_thread(void); 2169 2170 extern void exit_files(struct task_struct *); 2171 extern void __cleanup_sighand(struct sighand_struct *); 2172 2173 extern void exit_itimers(struct signal_struct *); 2174 extern void flush_itimer_signals(void); 2175 2176 extern void do_group_exit(int); 2177 2178 extern int allow_signal(int); 2179 extern int disallow_signal(int); 2180 2181 extern int do_execve(const char *, 2182 const char __user * const __user *, 2183 const char __user * const __user *); 2184 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2185 struct task_struct *fork_idle(int); 2186 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2187 2188 extern void set_task_comm(struct task_struct *tsk, char *from); 2189 extern char *get_task_comm(char *to, struct task_struct *tsk); 2190 2191 #ifdef CONFIG_SMP 2192 void scheduler_ipi(void); 2193 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2194 #else 2195 static inline void scheduler_ipi(void) { } 2196 static inline unsigned long wait_task_inactive(struct task_struct *p, 2197 long match_state) 2198 { 2199 return 1; 2200 } 2201 #endif 2202 2203 #define next_task(p) \ 2204 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2205 2206 #define for_each_process(p) \ 2207 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2208 2209 extern bool current_is_single_threaded(void); 2210 2211 /* 2212 * Careful: do_each_thread/while_each_thread is a double loop so 2213 * 'break' will not work as expected - use goto instead. 2214 */ 2215 #define do_each_thread(g, t) \ 2216 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2217 2218 #define while_each_thread(g, t) \ 2219 while ((t = next_thread(t)) != g) 2220 2221 static inline int get_nr_threads(struct task_struct *tsk) 2222 { 2223 return tsk->signal->nr_threads; 2224 } 2225 2226 static inline bool thread_group_leader(struct task_struct *p) 2227 { 2228 return p->exit_signal >= 0; 2229 } 2230 2231 /* Do to the insanities of de_thread it is possible for a process 2232 * to have the pid of the thread group leader without actually being 2233 * the thread group leader. For iteration through the pids in proc 2234 * all we care about is that we have a task with the appropriate 2235 * pid, we don't actually care if we have the right task. 2236 */ 2237 static inline bool has_group_leader_pid(struct task_struct *p) 2238 { 2239 return task_pid(p) == p->signal->leader_pid; 2240 } 2241 2242 static inline 2243 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2244 { 2245 return p1->signal == p2->signal; 2246 } 2247 2248 static inline struct task_struct *next_thread(const struct task_struct *p) 2249 { 2250 return list_entry_rcu(p->thread_group.next, 2251 struct task_struct, thread_group); 2252 } 2253 2254 static inline int thread_group_empty(struct task_struct *p) 2255 { 2256 return list_empty(&p->thread_group); 2257 } 2258 2259 #define delay_group_leader(p) \ 2260 (thread_group_leader(p) && !thread_group_empty(p)) 2261 2262 /* 2263 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2264 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2265 * pins the final release of task.io_context. Also protects ->cpuset and 2266 * ->cgroup.subsys[]. And ->vfork_done. 2267 * 2268 * Nests both inside and outside of read_lock(&tasklist_lock). 2269 * It must not be nested with write_lock_irq(&tasklist_lock), 2270 * neither inside nor outside. 2271 */ 2272 static inline void task_lock(struct task_struct *p) 2273 { 2274 spin_lock(&p->alloc_lock); 2275 } 2276 2277 static inline void task_unlock(struct task_struct *p) 2278 { 2279 spin_unlock(&p->alloc_lock); 2280 } 2281 2282 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2283 unsigned long *flags); 2284 2285 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2286 unsigned long *flags) 2287 { 2288 struct sighand_struct *ret; 2289 2290 ret = __lock_task_sighand(tsk, flags); 2291 (void)__cond_lock(&tsk->sighand->siglock, ret); 2292 return ret; 2293 } 2294 2295 static inline void unlock_task_sighand(struct task_struct *tsk, 2296 unsigned long *flags) 2297 { 2298 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2299 } 2300 2301 #ifdef CONFIG_CGROUPS 2302 static inline void threadgroup_change_begin(struct task_struct *tsk) 2303 { 2304 down_read(&tsk->signal->group_rwsem); 2305 } 2306 static inline void threadgroup_change_end(struct task_struct *tsk) 2307 { 2308 up_read(&tsk->signal->group_rwsem); 2309 } 2310 2311 /** 2312 * threadgroup_lock - lock threadgroup 2313 * @tsk: member task of the threadgroup to lock 2314 * 2315 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2316 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2317 * change ->group_leader/pid. This is useful for cases where the threadgroup 2318 * needs to stay stable across blockable operations. 2319 * 2320 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2321 * synchronization. While held, no new task will be added to threadgroup 2322 * and no existing live task will have its PF_EXITING set. 2323 * 2324 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2325 * sub-thread becomes a new leader. 2326 */ 2327 static inline void threadgroup_lock(struct task_struct *tsk) 2328 { 2329 down_write(&tsk->signal->group_rwsem); 2330 } 2331 2332 /** 2333 * threadgroup_unlock - unlock threadgroup 2334 * @tsk: member task of the threadgroup to unlock 2335 * 2336 * Reverse threadgroup_lock(). 2337 */ 2338 static inline void threadgroup_unlock(struct task_struct *tsk) 2339 { 2340 up_write(&tsk->signal->group_rwsem); 2341 } 2342 #else 2343 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2344 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2345 static inline void threadgroup_lock(struct task_struct *tsk) {} 2346 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2347 #endif 2348 2349 #ifndef __HAVE_THREAD_FUNCTIONS 2350 2351 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2352 #define task_stack_page(task) ((task)->stack) 2353 2354 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2355 { 2356 *task_thread_info(p) = *task_thread_info(org); 2357 task_thread_info(p)->task = p; 2358 } 2359 2360 static inline unsigned long *end_of_stack(struct task_struct *p) 2361 { 2362 return (unsigned long *)(task_thread_info(p) + 1); 2363 } 2364 2365 #endif 2366 2367 static inline int object_is_on_stack(void *obj) 2368 { 2369 void *stack = task_stack_page(current); 2370 2371 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2372 } 2373 2374 extern void thread_info_cache_init(void); 2375 2376 #ifdef CONFIG_DEBUG_STACK_USAGE 2377 static inline unsigned long stack_not_used(struct task_struct *p) 2378 { 2379 unsigned long *n = end_of_stack(p); 2380 2381 do { /* Skip over canary */ 2382 n++; 2383 } while (!*n); 2384 2385 return (unsigned long)n - (unsigned long)end_of_stack(p); 2386 } 2387 #endif 2388 2389 /* set thread flags in other task's structures 2390 * - see asm/thread_info.h for TIF_xxxx flags available 2391 */ 2392 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2393 { 2394 set_ti_thread_flag(task_thread_info(tsk), flag); 2395 } 2396 2397 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2398 { 2399 clear_ti_thread_flag(task_thread_info(tsk), flag); 2400 } 2401 2402 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2403 { 2404 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2405 } 2406 2407 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2408 { 2409 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2410 } 2411 2412 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2413 { 2414 return test_ti_thread_flag(task_thread_info(tsk), flag); 2415 } 2416 2417 static inline void set_tsk_need_resched(struct task_struct *tsk) 2418 { 2419 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2420 } 2421 2422 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2423 { 2424 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2425 } 2426 2427 static inline int test_tsk_need_resched(struct task_struct *tsk) 2428 { 2429 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2430 } 2431 2432 static inline int restart_syscall(void) 2433 { 2434 set_tsk_thread_flag(current, TIF_SIGPENDING); 2435 return -ERESTARTNOINTR; 2436 } 2437 2438 static inline int signal_pending(struct task_struct *p) 2439 { 2440 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2441 } 2442 2443 static inline int __fatal_signal_pending(struct task_struct *p) 2444 { 2445 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2446 } 2447 2448 static inline int fatal_signal_pending(struct task_struct *p) 2449 { 2450 return signal_pending(p) && __fatal_signal_pending(p); 2451 } 2452 2453 static inline int signal_pending_state(long state, struct task_struct *p) 2454 { 2455 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2456 return 0; 2457 if (!signal_pending(p)) 2458 return 0; 2459 2460 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2461 } 2462 2463 /* 2464 * cond_resched() and cond_resched_lock(): latency reduction via 2465 * explicit rescheduling in places that are safe. The return 2466 * value indicates whether a reschedule was done in fact. 2467 * cond_resched_lock() will drop the spinlock before scheduling, 2468 * cond_resched_softirq() will enable bhs before scheduling. 2469 */ 2470 extern int _cond_resched(void); 2471 2472 #define cond_resched() ({ \ 2473 __might_sleep(__FILE__, __LINE__, 0); \ 2474 _cond_resched(); \ 2475 }) 2476 2477 extern int __cond_resched_lock(spinlock_t *lock); 2478 2479 #ifdef CONFIG_PREEMPT_COUNT 2480 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2481 #else 2482 #define PREEMPT_LOCK_OFFSET 0 2483 #endif 2484 2485 #define cond_resched_lock(lock) ({ \ 2486 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2487 __cond_resched_lock(lock); \ 2488 }) 2489 2490 extern int __cond_resched_softirq(void); 2491 2492 #define cond_resched_softirq() ({ \ 2493 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2494 __cond_resched_softirq(); \ 2495 }) 2496 2497 static inline void cond_resched_rcu(void) 2498 { 2499 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2500 rcu_read_unlock(); 2501 cond_resched(); 2502 rcu_read_lock(); 2503 #endif 2504 } 2505 2506 /* 2507 * Does a critical section need to be broken due to another 2508 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2509 * but a general need for low latency) 2510 */ 2511 static inline int spin_needbreak(spinlock_t *lock) 2512 { 2513 #ifdef CONFIG_PREEMPT 2514 return spin_is_contended(lock); 2515 #else 2516 return 0; 2517 #endif 2518 } 2519 2520 /* 2521 * Idle thread specific functions to determine the need_resched 2522 * polling state. We have two versions, one based on TS_POLLING in 2523 * thread_info.status and one based on TIF_POLLING_NRFLAG in 2524 * thread_info.flags 2525 */ 2526 #ifdef TS_POLLING 2527 static inline int tsk_is_polling(struct task_struct *p) 2528 { 2529 return task_thread_info(p)->status & TS_POLLING; 2530 } 2531 static inline void __current_set_polling(void) 2532 { 2533 current_thread_info()->status |= TS_POLLING; 2534 } 2535 2536 static inline bool __must_check current_set_polling_and_test(void) 2537 { 2538 __current_set_polling(); 2539 2540 /* 2541 * Polling state must be visible before we test NEED_RESCHED, 2542 * paired by resched_task() 2543 */ 2544 smp_mb(); 2545 2546 return unlikely(tif_need_resched()); 2547 } 2548 2549 static inline void __current_clr_polling(void) 2550 { 2551 current_thread_info()->status &= ~TS_POLLING; 2552 } 2553 2554 static inline bool __must_check current_clr_polling_and_test(void) 2555 { 2556 __current_clr_polling(); 2557 2558 /* 2559 * Polling state must be visible before we test NEED_RESCHED, 2560 * paired by resched_task() 2561 */ 2562 smp_mb(); 2563 2564 return unlikely(tif_need_resched()); 2565 } 2566 #elif defined(TIF_POLLING_NRFLAG) 2567 static inline int tsk_is_polling(struct task_struct *p) 2568 { 2569 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2570 } 2571 2572 static inline void __current_set_polling(void) 2573 { 2574 set_thread_flag(TIF_POLLING_NRFLAG); 2575 } 2576 2577 static inline bool __must_check current_set_polling_and_test(void) 2578 { 2579 __current_set_polling(); 2580 2581 /* 2582 * Polling state must be visible before we test NEED_RESCHED, 2583 * paired by resched_task() 2584 * 2585 * XXX: assumes set/clear bit are identical barrier wise. 2586 */ 2587 smp_mb__after_clear_bit(); 2588 2589 return unlikely(tif_need_resched()); 2590 } 2591 2592 static inline void __current_clr_polling(void) 2593 { 2594 clear_thread_flag(TIF_POLLING_NRFLAG); 2595 } 2596 2597 static inline bool __must_check current_clr_polling_and_test(void) 2598 { 2599 __current_clr_polling(); 2600 2601 /* 2602 * Polling state must be visible before we test NEED_RESCHED, 2603 * paired by resched_task() 2604 */ 2605 smp_mb__after_clear_bit(); 2606 2607 return unlikely(tif_need_resched()); 2608 } 2609 2610 #else 2611 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2612 static inline void __current_set_polling(void) { } 2613 static inline void __current_clr_polling(void) { } 2614 2615 static inline bool __must_check current_set_polling_and_test(void) 2616 { 2617 return unlikely(tif_need_resched()); 2618 } 2619 static inline bool __must_check current_clr_polling_and_test(void) 2620 { 2621 return unlikely(tif_need_resched()); 2622 } 2623 #endif 2624 2625 static __always_inline bool need_resched(void) 2626 { 2627 return unlikely(tif_need_resched()); 2628 } 2629 2630 /* 2631 * Thread group CPU time accounting. 2632 */ 2633 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2634 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2635 2636 static inline void thread_group_cputime_init(struct signal_struct *sig) 2637 { 2638 raw_spin_lock_init(&sig->cputimer.lock); 2639 } 2640 2641 /* 2642 * Reevaluate whether the task has signals pending delivery. 2643 * Wake the task if so. 2644 * This is required every time the blocked sigset_t changes. 2645 * callers must hold sighand->siglock. 2646 */ 2647 extern void recalc_sigpending_and_wake(struct task_struct *t); 2648 extern void recalc_sigpending(void); 2649 2650 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2651 2652 static inline void signal_wake_up(struct task_struct *t, bool resume) 2653 { 2654 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2655 } 2656 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2657 { 2658 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2659 } 2660 2661 /* 2662 * Wrappers for p->thread_info->cpu access. No-op on UP. 2663 */ 2664 #ifdef CONFIG_SMP 2665 2666 static inline unsigned int task_cpu(const struct task_struct *p) 2667 { 2668 return task_thread_info(p)->cpu; 2669 } 2670 2671 static inline int task_node(const struct task_struct *p) 2672 { 2673 return cpu_to_node(task_cpu(p)); 2674 } 2675 2676 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2677 2678 #else 2679 2680 static inline unsigned int task_cpu(const struct task_struct *p) 2681 { 2682 return 0; 2683 } 2684 2685 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2686 { 2687 } 2688 2689 #endif /* CONFIG_SMP */ 2690 2691 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2692 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2693 2694 #ifdef CONFIG_CGROUP_SCHED 2695 extern struct task_group root_task_group; 2696 #endif /* CONFIG_CGROUP_SCHED */ 2697 2698 extern int task_can_switch_user(struct user_struct *up, 2699 struct task_struct *tsk); 2700 2701 #ifdef CONFIG_TASK_XACCT 2702 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2703 { 2704 tsk->ioac.rchar += amt; 2705 } 2706 2707 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2708 { 2709 tsk->ioac.wchar += amt; 2710 } 2711 2712 static inline void inc_syscr(struct task_struct *tsk) 2713 { 2714 tsk->ioac.syscr++; 2715 } 2716 2717 static inline void inc_syscw(struct task_struct *tsk) 2718 { 2719 tsk->ioac.syscw++; 2720 } 2721 #else 2722 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2723 { 2724 } 2725 2726 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2727 { 2728 } 2729 2730 static inline void inc_syscr(struct task_struct *tsk) 2731 { 2732 } 2733 2734 static inline void inc_syscw(struct task_struct *tsk) 2735 { 2736 } 2737 #endif 2738 2739 #ifndef TASK_SIZE_OF 2740 #define TASK_SIZE_OF(tsk) TASK_SIZE 2741 #endif 2742 2743 #ifdef CONFIG_MM_OWNER 2744 extern void mm_update_next_owner(struct mm_struct *mm); 2745 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2746 #else 2747 static inline void mm_update_next_owner(struct mm_struct *mm) 2748 { 2749 } 2750 2751 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2752 { 2753 } 2754 #endif /* CONFIG_MM_OWNER */ 2755 2756 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2757 unsigned int limit) 2758 { 2759 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2760 } 2761 2762 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2763 unsigned int limit) 2764 { 2765 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2766 } 2767 2768 static inline unsigned long rlimit(unsigned int limit) 2769 { 2770 return task_rlimit(current, limit); 2771 } 2772 2773 static inline unsigned long rlimit_max(unsigned int limit) 2774 { 2775 return task_rlimit_max(current, limit); 2776 } 2777 2778 #endif 2779