xref: /linux/include/linux/sched.h (revision 498d319bb512992ef0784c278fa03679f2f5649d)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 #include <uapi/linux/sched.h>
5 
6 
7 struct sched_param {
8 	int sched_priority;
9 };
10 
11 #include <asm/param.h>	/* for HZ */
12 
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25 #include <linux/preempt.h>
26 
27 #include <asm/page.h>
28 #include <asm/ptrace.h>
29 #include <asm/cputime.h>
30 
31 #include <linux/smp.h>
32 #include <linux/sem.h>
33 #include <linux/signal.h>
34 #include <linux/compiler.h>
35 #include <linux/completion.h>
36 #include <linux/pid.h>
37 #include <linux/percpu.h>
38 #include <linux/topology.h>
39 #include <linux/proportions.h>
40 #include <linux/seccomp.h>
41 #include <linux/rcupdate.h>
42 #include <linux/rculist.h>
43 #include <linux/rtmutex.h>
44 
45 #include <linux/time.h>
46 #include <linux/param.h>
47 #include <linux/resource.h>
48 #include <linux/timer.h>
49 #include <linux/hrtimer.h>
50 #include <linux/task_io_accounting.h>
51 #include <linux/latencytop.h>
52 #include <linux/cred.h>
53 #include <linux/llist.h>
54 #include <linux/uidgid.h>
55 #include <linux/gfp.h>
56 
57 #include <asm/processor.h>
58 
59 struct exec_domain;
60 struct futex_pi_state;
61 struct robust_list_head;
62 struct bio_list;
63 struct fs_struct;
64 struct perf_event_context;
65 struct blk_plug;
66 
67 /*
68  * List of flags we want to share for kernel threads,
69  * if only because they are not used by them anyway.
70  */
71 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
72 
73 /*
74  * These are the constant used to fake the fixed-point load-average
75  * counting. Some notes:
76  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
77  *    a load-average precision of 10 bits integer + 11 bits fractional
78  *  - if you want to count load-averages more often, you need more
79  *    precision, or rounding will get you. With 2-second counting freq,
80  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
81  *    11 bit fractions.
82  */
83 extern unsigned long avenrun[];		/* Load averages */
84 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
85 
86 #define FSHIFT		11		/* nr of bits of precision */
87 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
88 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
89 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
90 #define EXP_5		2014		/* 1/exp(5sec/5min) */
91 #define EXP_15		2037		/* 1/exp(5sec/15min) */
92 
93 #define CALC_LOAD(load,exp,n) \
94 	load *= exp; \
95 	load += n*(FIXED_1-exp); \
96 	load >>= FSHIFT;
97 
98 extern unsigned long total_forks;
99 extern int nr_threads;
100 DECLARE_PER_CPU(unsigned long, process_counts);
101 extern int nr_processes(void);
102 extern unsigned long nr_running(void);
103 extern unsigned long nr_iowait(void);
104 extern unsigned long nr_iowait_cpu(int cpu);
105 extern unsigned long this_cpu_load(void);
106 
107 
108 extern void calc_global_load(unsigned long ticks);
109 extern void update_cpu_load_nohz(void);
110 
111 extern unsigned long get_parent_ip(unsigned long addr);
112 
113 extern void dump_cpu_task(int cpu);
114 
115 struct seq_file;
116 struct cfs_rq;
117 struct task_group;
118 #ifdef CONFIG_SCHED_DEBUG
119 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
120 extern void proc_sched_set_task(struct task_struct *p);
121 extern void
122 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
123 #endif
124 
125 /*
126  * Task state bitmask. NOTE! These bits are also
127  * encoded in fs/proc/array.c: get_task_state().
128  *
129  * We have two separate sets of flags: task->state
130  * is about runnability, while task->exit_state are
131  * about the task exiting. Confusing, but this way
132  * modifying one set can't modify the other one by
133  * mistake.
134  */
135 #define TASK_RUNNING		0
136 #define TASK_INTERRUPTIBLE	1
137 #define TASK_UNINTERRUPTIBLE	2
138 #define __TASK_STOPPED		4
139 #define __TASK_TRACED		8
140 /* in tsk->exit_state */
141 #define EXIT_ZOMBIE		16
142 #define EXIT_DEAD		32
143 /* in tsk->state again */
144 #define TASK_DEAD		64
145 #define TASK_WAKEKILL		128
146 #define TASK_WAKING		256
147 #define TASK_PARKED		512
148 #define TASK_STATE_MAX		1024
149 
150 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
151 
152 extern char ___assert_task_state[1 - 2*!!(
153 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
154 
155 /* Convenience macros for the sake of set_task_state */
156 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
157 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
158 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
159 
160 /* Convenience macros for the sake of wake_up */
161 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
162 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
163 
164 /* get_task_state() */
165 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
166 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
167 				 __TASK_TRACED)
168 
169 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
170 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
171 #define task_is_dead(task)	((task)->exit_state != 0)
172 #define task_is_stopped_or_traced(task)	\
173 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
174 #define task_contributes_to_load(task)	\
175 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
176 				 (task->flags & PF_FROZEN) == 0)
177 
178 #define __set_task_state(tsk, state_value)		\
179 	do { (tsk)->state = (state_value); } while (0)
180 #define set_task_state(tsk, state_value)		\
181 	set_mb((tsk)->state, (state_value))
182 
183 /*
184  * set_current_state() includes a barrier so that the write of current->state
185  * is correctly serialised wrt the caller's subsequent test of whether to
186  * actually sleep:
187  *
188  *	set_current_state(TASK_UNINTERRUPTIBLE);
189  *	if (do_i_need_to_sleep())
190  *		schedule();
191  *
192  * If the caller does not need such serialisation then use __set_current_state()
193  */
194 #define __set_current_state(state_value)			\
195 	do { current->state = (state_value); } while (0)
196 #define set_current_state(state_value)		\
197 	set_mb(current->state, (state_value))
198 
199 /* Task command name length */
200 #define TASK_COMM_LEN 16
201 
202 #include <linux/spinlock.h>
203 
204 /*
205  * This serializes "schedule()" and also protects
206  * the run-queue from deletions/modifications (but
207  * _adding_ to the beginning of the run-queue has
208  * a separate lock).
209  */
210 extern rwlock_t tasklist_lock;
211 extern spinlock_t mmlist_lock;
212 
213 struct task_struct;
214 
215 #ifdef CONFIG_PROVE_RCU
216 extern int lockdep_tasklist_lock_is_held(void);
217 #endif /* #ifdef CONFIG_PROVE_RCU */
218 
219 extern void sched_init(void);
220 extern void sched_init_smp(void);
221 extern asmlinkage void schedule_tail(struct task_struct *prev);
222 extern void init_idle(struct task_struct *idle, int cpu);
223 extern void init_idle_bootup_task(struct task_struct *idle);
224 
225 extern int runqueue_is_locked(int cpu);
226 
227 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
228 extern void nohz_balance_enter_idle(int cpu);
229 extern void set_cpu_sd_state_idle(void);
230 extern int get_nohz_timer_target(void);
231 #else
232 static inline void nohz_balance_enter_idle(int cpu) { }
233 static inline void set_cpu_sd_state_idle(void) { }
234 #endif
235 
236 /*
237  * Only dump TASK_* tasks. (0 for all tasks)
238  */
239 extern void show_state_filter(unsigned long state_filter);
240 
241 static inline void show_state(void)
242 {
243 	show_state_filter(0);
244 }
245 
246 extern void show_regs(struct pt_regs *);
247 
248 /*
249  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
250  * task), SP is the stack pointer of the first frame that should be shown in the back
251  * trace (or NULL if the entire call-chain of the task should be shown).
252  */
253 extern void show_stack(struct task_struct *task, unsigned long *sp);
254 
255 void io_schedule(void);
256 long io_schedule_timeout(long timeout);
257 
258 extern void cpu_init (void);
259 extern void trap_init(void);
260 extern void update_process_times(int user);
261 extern void scheduler_tick(void);
262 
263 extern void sched_show_task(struct task_struct *p);
264 
265 #ifdef CONFIG_LOCKUP_DETECTOR
266 extern void touch_softlockup_watchdog(void);
267 extern void touch_softlockup_watchdog_sync(void);
268 extern void touch_all_softlockup_watchdogs(void);
269 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
270 				  void __user *buffer,
271 				  size_t *lenp, loff_t *ppos);
272 extern unsigned int  softlockup_panic;
273 void lockup_detector_init(void);
274 #else
275 static inline void touch_softlockup_watchdog(void)
276 {
277 }
278 static inline void touch_softlockup_watchdog_sync(void)
279 {
280 }
281 static inline void touch_all_softlockup_watchdogs(void)
282 {
283 }
284 static inline void lockup_detector_init(void)
285 {
286 }
287 #endif
288 
289 /* Attach to any functions which should be ignored in wchan output. */
290 #define __sched		__attribute__((__section__(".sched.text")))
291 
292 /* Linker adds these: start and end of __sched functions */
293 extern char __sched_text_start[], __sched_text_end[];
294 
295 /* Is this address in the __sched functions? */
296 extern int in_sched_functions(unsigned long addr);
297 
298 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
299 extern signed long schedule_timeout(signed long timeout);
300 extern signed long schedule_timeout_interruptible(signed long timeout);
301 extern signed long schedule_timeout_killable(signed long timeout);
302 extern signed long schedule_timeout_uninterruptible(signed long timeout);
303 asmlinkage void schedule(void);
304 extern void schedule_preempt_disabled(void);
305 
306 struct nsproxy;
307 struct user_namespace;
308 
309 #ifdef CONFIG_MMU
310 extern void arch_pick_mmap_layout(struct mm_struct *mm);
311 extern unsigned long
312 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
313 		       unsigned long, unsigned long);
314 extern unsigned long
315 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
316 			  unsigned long len, unsigned long pgoff,
317 			  unsigned long flags);
318 #else
319 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
320 #endif
321 
322 
323 extern void set_dumpable(struct mm_struct *mm, int value);
324 extern int get_dumpable(struct mm_struct *mm);
325 
326 #define SUID_DUMP_DISABLE	0	/* No setuid dumping */
327 #define SUID_DUMP_USER		1	/* Dump as user of process */
328 #define SUID_DUMP_ROOT		2	/* Dump as root */
329 
330 /* mm flags */
331 /* dumpable bits */
332 #define MMF_DUMPABLE      0  /* core dump is permitted */
333 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
334 
335 #define MMF_DUMPABLE_BITS 2
336 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
337 
338 /* coredump filter bits */
339 #define MMF_DUMP_ANON_PRIVATE	2
340 #define MMF_DUMP_ANON_SHARED	3
341 #define MMF_DUMP_MAPPED_PRIVATE	4
342 #define MMF_DUMP_MAPPED_SHARED	5
343 #define MMF_DUMP_ELF_HEADERS	6
344 #define MMF_DUMP_HUGETLB_PRIVATE 7
345 #define MMF_DUMP_HUGETLB_SHARED  8
346 
347 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
348 #define MMF_DUMP_FILTER_BITS	7
349 #define MMF_DUMP_FILTER_MASK \
350 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
351 #define MMF_DUMP_FILTER_DEFAULT \
352 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
353 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
354 
355 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
356 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
357 #else
358 # define MMF_DUMP_MASK_DEFAULT_ELF	0
359 #endif
360 					/* leave room for more dump flags */
361 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
362 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
363 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
364 
365 #define MMF_HAS_UPROBES		19	/* has uprobes */
366 #define MMF_RECALC_UPROBES	20	/* MMF_HAS_UPROBES can be wrong */
367 
368 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
369 
370 struct sighand_struct {
371 	atomic_t		count;
372 	struct k_sigaction	action[_NSIG];
373 	spinlock_t		siglock;
374 	wait_queue_head_t	signalfd_wqh;
375 };
376 
377 struct pacct_struct {
378 	int			ac_flag;
379 	long			ac_exitcode;
380 	unsigned long		ac_mem;
381 	cputime_t		ac_utime, ac_stime;
382 	unsigned long		ac_minflt, ac_majflt;
383 };
384 
385 struct cpu_itimer {
386 	cputime_t expires;
387 	cputime_t incr;
388 	u32 error;
389 	u32 incr_error;
390 };
391 
392 /**
393  * struct cputime - snaphsot of system and user cputime
394  * @utime: time spent in user mode
395  * @stime: time spent in system mode
396  *
397  * Gathers a generic snapshot of user and system time.
398  */
399 struct cputime {
400 	cputime_t utime;
401 	cputime_t stime;
402 };
403 
404 /**
405  * struct task_cputime - collected CPU time counts
406  * @utime:		time spent in user mode, in &cputime_t units
407  * @stime:		time spent in kernel mode, in &cputime_t units
408  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
409  *
410  * This is an extension of struct cputime that includes the total runtime
411  * spent by the task from the scheduler point of view.
412  *
413  * As a result, this structure groups together three kinds of CPU time
414  * that are tracked for threads and thread groups.  Most things considering
415  * CPU time want to group these counts together and treat all three
416  * of them in parallel.
417  */
418 struct task_cputime {
419 	cputime_t utime;
420 	cputime_t stime;
421 	unsigned long long sum_exec_runtime;
422 };
423 /* Alternate field names when used to cache expirations. */
424 #define prof_exp	stime
425 #define virt_exp	utime
426 #define sched_exp	sum_exec_runtime
427 
428 #define INIT_CPUTIME	\
429 	(struct task_cputime) {					\
430 		.utime = 0,					\
431 		.stime = 0,					\
432 		.sum_exec_runtime = 0,				\
433 	}
434 
435 #define PREEMPT_ENABLED		(PREEMPT_NEED_RESCHED)
436 
437 #ifdef CONFIG_PREEMPT_COUNT
438 #define PREEMPT_DISABLED	(1 + PREEMPT_ENABLED)
439 #else
440 #define PREEMPT_DISABLED	PREEMPT_ENABLED
441 #endif
442 
443 /*
444  * Disable preemption until the scheduler is running.
445  * Reset by start_kernel()->sched_init()->init_idle().
446  *
447  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
448  * before the scheduler is active -- see should_resched().
449  */
450 #define INIT_PREEMPT_COUNT	(PREEMPT_DISABLED + PREEMPT_ACTIVE)
451 
452 /**
453  * struct thread_group_cputimer - thread group interval timer counts
454  * @cputime:		thread group interval timers.
455  * @running:		non-zero when there are timers running and
456  * 			@cputime receives updates.
457  * @lock:		lock for fields in this struct.
458  *
459  * This structure contains the version of task_cputime, above, that is
460  * used for thread group CPU timer calculations.
461  */
462 struct thread_group_cputimer {
463 	struct task_cputime cputime;
464 	int running;
465 	raw_spinlock_t lock;
466 };
467 
468 #include <linux/rwsem.h>
469 struct autogroup;
470 
471 /*
472  * NOTE! "signal_struct" does not have its own
473  * locking, because a shared signal_struct always
474  * implies a shared sighand_struct, so locking
475  * sighand_struct is always a proper superset of
476  * the locking of signal_struct.
477  */
478 struct signal_struct {
479 	atomic_t		sigcnt;
480 	atomic_t		live;
481 	int			nr_threads;
482 
483 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
484 
485 	/* current thread group signal load-balancing target: */
486 	struct task_struct	*curr_target;
487 
488 	/* shared signal handling: */
489 	struct sigpending	shared_pending;
490 
491 	/* thread group exit support */
492 	int			group_exit_code;
493 	/* overloaded:
494 	 * - notify group_exit_task when ->count is equal to notify_count
495 	 * - everyone except group_exit_task is stopped during signal delivery
496 	 *   of fatal signals, group_exit_task processes the signal.
497 	 */
498 	int			notify_count;
499 	struct task_struct	*group_exit_task;
500 
501 	/* thread group stop support, overloads group_exit_code too */
502 	int			group_stop_count;
503 	unsigned int		flags; /* see SIGNAL_* flags below */
504 
505 	/*
506 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
507 	 * manager, to re-parent orphan (double-forking) child processes
508 	 * to this process instead of 'init'. The service manager is
509 	 * able to receive SIGCHLD signals and is able to investigate
510 	 * the process until it calls wait(). All children of this
511 	 * process will inherit a flag if they should look for a
512 	 * child_subreaper process at exit.
513 	 */
514 	unsigned int		is_child_subreaper:1;
515 	unsigned int		has_child_subreaper:1;
516 
517 	/* POSIX.1b Interval Timers */
518 	int			posix_timer_id;
519 	struct list_head	posix_timers;
520 
521 	/* ITIMER_REAL timer for the process */
522 	struct hrtimer real_timer;
523 	struct pid *leader_pid;
524 	ktime_t it_real_incr;
525 
526 	/*
527 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
528 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
529 	 * values are defined to 0 and 1 respectively
530 	 */
531 	struct cpu_itimer it[2];
532 
533 	/*
534 	 * Thread group totals for process CPU timers.
535 	 * See thread_group_cputimer(), et al, for details.
536 	 */
537 	struct thread_group_cputimer cputimer;
538 
539 	/* Earliest-expiration cache. */
540 	struct task_cputime cputime_expires;
541 
542 	struct list_head cpu_timers[3];
543 
544 	struct pid *tty_old_pgrp;
545 
546 	/* boolean value for session group leader */
547 	int leader;
548 
549 	struct tty_struct *tty; /* NULL if no tty */
550 
551 #ifdef CONFIG_SCHED_AUTOGROUP
552 	struct autogroup *autogroup;
553 #endif
554 	/*
555 	 * Cumulative resource counters for dead threads in the group,
556 	 * and for reaped dead child processes forked by this group.
557 	 * Live threads maintain their own counters and add to these
558 	 * in __exit_signal, except for the group leader.
559 	 */
560 	cputime_t utime, stime, cutime, cstime;
561 	cputime_t gtime;
562 	cputime_t cgtime;
563 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
564 	struct cputime prev_cputime;
565 #endif
566 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
567 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
568 	unsigned long inblock, oublock, cinblock, coublock;
569 	unsigned long maxrss, cmaxrss;
570 	struct task_io_accounting ioac;
571 
572 	/*
573 	 * Cumulative ns of schedule CPU time fo dead threads in the
574 	 * group, not including a zombie group leader, (This only differs
575 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
576 	 * other than jiffies.)
577 	 */
578 	unsigned long long sum_sched_runtime;
579 
580 	/*
581 	 * We don't bother to synchronize most readers of this at all,
582 	 * because there is no reader checking a limit that actually needs
583 	 * to get both rlim_cur and rlim_max atomically, and either one
584 	 * alone is a single word that can safely be read normally.
585 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
586 	 * protect this instead of the siglock, because they really
587 	 * have no need to disable irqs.
588 	 */
589 	struct rlimit rlim[RLIM_NLIMITS];
590 
591 #ifdef CONFIG_BSD_PROCESS_ACCT
592 	struct pacct_struct pacct;	/* per-process accounting information */
593 #endif
594 #ifdef CONFIG_TASKSTATS
595 	struct taskstats *stats;
596 #endif
597 #ifdef CONFIG_AUDIT
598 	unsigned audit_tty;
599 	unsigned audit_tty_log_passwd;
600 	struct tty_audit_buf *tty_audit_buf;
601 #endif
602 #ifdef CONFIG_CGROUPS
603 	/*
604 	 * group_rwsem prevents new tasks from entering the threadgroup and
605 	 * member tasks from exiting,a more specifically, setting of
606 	 * PF_EXITING.  fork and exit paths are protected with this rwsem
607 	 * using threadgroup_change_begin/end().  Users which require
608 	 * threadgroup to remain stable should use threadgroup_[un]lock()
609 	 * which also takes care of exec path.  Currently, cgroup is the
610 	 * only user.
611 	 */
612 	struct rw_semaphore group_rwsem;
613 #endif
614 
615 	oom_flags_t oom_flags;
616 	short oom_score_adj;		/* OOM kill score adjustment */
617 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
618 					 * Only settable by CAP_SYS_RESOURCE. */
619 
620 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
621 					 * credential calculations
622 					 * (notably. ptrace) */
623 };
624 
625 /*
626  * Bits in flags field of signal_struct.
627  */
628 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
629 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
630 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
631 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
632 /*
633  * Pending notifications to parent.
634  */
635 #define SIGNAL_CLD_STOPPED	0x00000010
636 #define SIGNAL_CLD_CONTINUED	0x00000020
637 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
638 
639 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
640 
641 /* If true, all threads except ->group_exit_task have pending SIGKILL */
642 static inline int signal_group_exit(const struct signal_struct *sig)
643 {
644 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
645 		(sig->group_exit_task != NULL);
646 }
647 
648 /*
649  * Some day this will be a full-fledged user tracking system..
650  */
651 struct user_struct {
652 	atomic_t __count;	/* reference count */
653 	atomic_t processes;	/* How many processes does this user have? */
654 	atomic_t files;		/* How many open files does this user have? */
655 	atomic_t sigpending;	/* How many pending signals does this user have? */
656 #ifdef CONFIG_INOTIFY_USER
657 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
658 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
659 #endif
660 #ifdef CONFIG_FANOTIFY
661 	atomic_t fanotify_listeners;
662 #endif
663 #ifdef CONFIG_EPOLL
664 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
665 #endif
666 #ifdef CONFIG_POSIX_MQUEUE
667 	/* protected by mq_lock	*/
668 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
669 #endif
670 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
671 
672 #ifdef CONFIG_KEYS
673 	struct key *uid_keyring;	/* UID specific keyring */
674 	struct key *session_keyring;	/* UID's default session keyring */
675 #endif
676 
677 	/* Hash table maintenance information */
678 	struct hlist_node uidhash_node;
679 	kuid_t uid;
680 
681 #ifdef CONFIG_PERF_EVENTS
682 	atomic_long_t locked_vm;
683 #endif
684 };
685 
686 extern int uids_sysfs_init(void);
687 
688 extern struct user_struct *find_user(kuid_t);
689 
690 extern struct user_struct root_user;
691 #define INIT_USER (&root_user)
692 
693 
694 struct backing_dev_info;
695 struct reclaim_state;
696 
697 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
698 struct sched_info {
699 	/* cumulative counters */
700 	unsigned long pcount;	      /* # of times run on this cpu */
701 	unsigned long long run_delay; /* time spent waiting on a runqueue */
702 
703 	/* timestamps */
704 	unsigned long long last_arrival,/* when we last ran on a cpu */
705 			   last_queued;	/* when we were last queued to run */
706 };
707 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
708 
709 #ifdef CONFIG_TASK_DELAY_ACCT
710 struct task_delay_info {
711 	spinlock_t	lock;
712 	unsigned int	flags;	/* Private per-task flags */
713 
714 	/* For each stat XXX, add following, aligned appropriately
715 	 *
716 	 * struct timespec XXX_start, XXX_end;
717 	 * u64 XXX_delay;
718 	 * u32 XXX_count;
719 	 *
720 	 * Atomicity of updates to XXX_delay, XXX_count protected by
721 	 * single lock above (split into XXX_lock if contention is an issue).
722 	 */
723 
724 	/*
725 	 * XXX_count is incremented on every XXX operation, the delay
726 	 * associated with the operation is added to XXX_delay.
727 	 * XXX_delay contains the accumulated delay time in nanoseconds.
728 	 */
729 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
730 	u64 blkio_delay;	/* wait for sync block io completion */
731 	u64 swapin_delay;	/* wait for swapin block io completion */
732 	u32 blkio_count;	/* total count of the number of sync block */
733 				/* io operations performed */
734 	u32 swapin_count;	/* total count of the number of swapin block */
735 				/* io operations performed */
736 
737 	struct timespec freepages_start, freepages_end;
738 	u64 freepages_delay;	/* wait for memory reclaim */
739 	u32 freepages_count;	/* total count of memory reclaim */
740 };
741 #endif	/* CONFIG_TASK_DELAY_ACCT */
742 
743 static inline int sched_info_on(void)
744 {
745 #ifdef CONFIG_SCHEDSTATS
746 	return 1;
747 #elif defined(CONFIG_TASK_DELAY_ACCT)
748 	extern int delayacct_on;
749 	return delayacct_on;
750 #else
751 	return 0;
752 #endif
753 }
754 
755 enum cpu_idle_type {
756 	CPU_IDLE,
757 	CPU_NOT_IDLE,
758 	CPU_NEWLY_IDLE,
759 	CPU_MAX_IDLE_TYPES
760 };
761 
762 /*
763  * Increase resolution of cpu_power calculations
764  */
765 #define SCHED_POWER_SHIFT	10
766 #define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
767 
768 /*
769  * sched-domains (multiprocessor balancing) declarations:
770  */
771 #ifdef CONFIG_SMP
772 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
773 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
774 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
775 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
776 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
777 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
778 #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
779 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
780 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
781 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
782 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
783 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
784 #define SD_NUMA			0x4000	/* cross-node balancing */
785 
786 extern int __weak arch_sd_sibiling_asym_packing(void);
787 
788 struct sched_domain_attr {
789 	int relax_domain_level;
790 };
791 
792 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
793 	.relax_domain_level = -1,			\
794 }
795 
796 extern int sched_domain_level_max;
797 
798 struct sched_group;
799 
800 struct sched_domain {
801 	/* These fields must be setup */
802 	struct sched_domain *parent;	/* top domain must be null terminated */
803 	struct sched_domain *child;	/* bottom domain must be null terminated */
804 	struct sched_group *groups;	/* the balancing groups of the domain */
805 	unsigned long min_interval;	/* Minimum balance interval ms */
806 	unsigned long max_interval;	/* Maximum balance interval ms */
807 	unsigned int busy_factor;	/* less balancing by factor if busy */
808 	unsigned int imbalance_pct;	/* No balance until over watermark */
809 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
810 	unsigned int busy_idx;
811 	unsigned int idle_idx;
812 	unsigned int newidle_idx;
813 	unsigned int wake_idx;
814 	unsigned int forkexec_idx;
815 	unsigned int smt_gain;
816 
817 	int nohz_idle;			/* NOHZ IDLE status */
818 	int flags;			/* See SD_* */
819 	int level;
820 
821 	/* Runtime fields. */
822 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
823 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
824 	unsigned int nr_balance_failed; /* initialise to 0 */
825 
826 	u64 last_update;
827 
828 	/* idle_balance() stats */
829 	u64 max_newidle_lb_cost;
830 	unsigned long next_decay_max_lb_cost;
831 
832 #ifdef CONFIG_SCHEDSTATS
833 	/* load_balance() stats */
834 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
835 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
836 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
837 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
838 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
839 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
840 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
841 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
842 
843 	/* Active load balancing */
844 	unsigned int alb_count;
845 	unsigned int alb_failed;
846 	unsigned int alb_pushed;
847 
848 	/* SD_BALANCE_EXEC stats */
849 	unsigned int sbe_count;
850 	unsigned int sbe_balanced;
851 	unsigned int sbe_pushed;
852 
853 	/* SD_BALANCE_FORK stats */
854 	unsigned int sbf_count;
855 	unsigned int sbf_balanced;
856 	unsigned int sbf_pushed;
857 
858 	/* try_to_wake_up() stats */
859 	unsigned int ttwu_wake_remote;
860 	unsigned int ttwu_move_affine;
861 	unsigned int ttwu_move_balance;
862 #endif
863 #ifdef CONFIG_SCHED_DEBUG
864 	char *name;
865 #endif
866 	union {
867 		void *private;		/* used during construction */
868 		struct rcu_head rcu;	/* used during destruction */
869 	};
870 
871 	unsigned int span_weight;
872 	/*
873 	 * Span of all CPUs in this domain.
874 	 *
875 	 * NOTE: this field is variable length. (Allocated dynamically
876 	 * by attaching extra space to the end of the structure,
877 	 * depending on how many CPUs the kernel has booted up with)
878 	 */
879 	unsigned long span[0];
880 };
881 
882 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
883 {
884 	return to_cpumask(sd->span);
885 }
886 
887 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
888 				    struct sched_domain_attr *dattr_new);
889 
890 /* Allocate an array of sched domains, for partition_sched_domains(). */
891 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
892 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
893 
894 bool cpus_share_cache(int this_cpu, int that_cpu);
895 
896 #else /* CONFIG_SMP */
897 
898 struct sched_domain_attr;
899 
900 static inline void
901 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
902 			struct sched_domain_attr *dattr_new)
903 {
904 }
905 
906 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
907 {
908 	return true;
909 }
910 
911 #endif	/* !CONFIG_SMP */
912 
913 
914 struct io_context;			/* See blkdev.h */
915 
916 
917 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
918 extern void prefetch_stack(struct task_struct *t);
919 #else
920 static inline void prefetch_stack(struct task_struct *t) { }
921 #endif
922 
923 struct audit_context;		/* See audit.c */
924 struct mempolicy;
925 struct pipe_inode_info;
926 struct uts_namespace;
927 
928 struct load_weight {
929 	unsigned long weight, inv_weight;
930 };
931 
932 struct sched_avg {
933 	/*
934 	 * These sums represent an infinite geometric series and so are bound
935 	 * above by 1024/(1-y).  Thus we only need a u32 to store them for all
936 	 * choices of y < 1-2^(-32)*1024.
937 	 */
938 	u32 runnable_avg_sum, runnable_avg_period;
939 	u64 last_runnable_update;
940 	s64 decay_count;
941 	unsigned long load_avg_contrib;
942 };
943 
944 #ifdef CONFIG_SCHEDSTATS
945 struct sched_statistics {
946 	u64			wait_start;
947 	u64			wait_max;
948 	u64			wait_count;
949 	u64			wait_sum;
950 	u64			iowait_count;
951 	u64			iowait_sum;
952 
953 	u64			sleep_start;
954 	u64			sleep_max;
955 	s64			sum_sleep_runtime;
956 
957 	u64			block_start;
958 	u64			block_max;
959 	u64			exec_max;
960 	u64			slice_max;
961 
962 	u64			nr_migrations_cold;
963 	u64			nr_failed_migrations_affine;
964 	u64			nr_failed_migrations_running;
965 	u64			nr_failed_migrations_hot;
966 	u64			nr_forced_migrations;
967 
968 	u64			nr_wakeups;
969 	u64			nr_wakeups_sync;
970 	u64			nr_wakeups_migrate;
971 	u64			nr_wakeups_local;
972 	u64			nr_wakeups_remote;
973 	u64			nr_wakeups_affine;
974 	u64			nr_wakeups_affine_attempts;
975 	u64			nr_wakeups_passive;
976 	u64			nr_wakeups_idle;
977 };
978 #endif
979 
980 struct sched_entity {
981 	struct load_weight	load;		/* for load-balancing */
982 	struct rb_node		run_node;
983 	struct list_head	group_node;
984 	unsigned int		on_rq;
985 
986 	u64			exec_start;
987 	u64			sum_exec_runtime;
988 	u64			vruntime;
989 	u64			prev_sum_exec_runtime;
990 
991 	u64			nr_migrations;
992 
993 #ifdef CONFIG_SCHEDSTATS
994 	struct sched_statistics statistics;
995 #endif
996 
997 #ifdef CONFIG_FAIR_GROUP_SCHED
998 	struct sched_entity	*parent;
999 	/* rq on which this entity is (to be) queued: */
1000 	struct cfs_rq		*cfs_rq;
1001 	/* rq "owned" by this entity/group: */
1002 	struct cfs_rq		*my_q;
1003 #endif
1004 
1005 #ifdef CONFIG_SMP
1006 	/* Per-entity load-tracking */
1007 	struct sched_avg	avg;
1008 #endif
1009 };
1010 
1011 struct sched_rt_entity {
1012 	struct list_head run_list;
1013 	unsigned long timeout;
1014 	unsigned long watchdog_stamp;
1015 	unsigned int time_slice;
1016 
1017 	struct sched_rt_entity *back;
1018 #ifdef CONFIG_RT_GROUP_SCHED
1019 	struct sched_rt_entity	*parent;
1020 	/* rq on which this entity is (to be) queued: */
1021 	struct rt_rq		*rt_rq;
1022 	/* rq "owned" by this entity/group: */
1023 	struct rt_rq		*my_q;
1024 #endif
1025 };
1026 
1027 
1028 struct rcu_node;
1029 
1030 enum perf_event_task_context {
1031 	perf_invalid_context = -1,
1032 	perf_hw_context = 0,
1033 	perf_sw_context,
1034 	perf_nr_task_contexts,
1035 };
1036 
1037 struct task_struct {
1038 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1039 	void *stack;
1040 	atomic_t usage;
1041 	unsigned int flags;	/* per process flags, defined below */
1042 	unsigned int ptrace;
1043 
1044 #ifdef CONFIG_SMP
1045 	struct llist_node wake_entry;
1046 	int on_cpu;
1047 	struct task_struct *last_wakee;
1048 	unsigned long wakee_flips;
1049 	unsigned long wakee_flip_decay_ts;
1050 
1051 	int wake_cpu;
1052 #endif
1053 	int on_rq;
1054 
1055 	int prio, static_prio, normal_prio;
1056 	unsigned int rt_priority;
1057 	const struct sched_class *sched_class;
1058 	struct sched_entity se;
1059 	struct sched_rt_entity rt;
1060 #ifdef CONFIG_CGROUP_SCHED
1061 	struct task_group *sched_task_group;
1062 #endif
1063 
1064 #ifdef CONFIG_PREEMPT_NOTIFIERS
1065 	/* list of struct preempt_notifier: */
1066 	struct hlist_head preempt_notifiers;
1067 #endif
1068 
1069 #ifdef CONFIG_BLK_DEV_IO_TRACE
1070 	unsigned int btrace_seq;
1071 #endif
1072 
1073 	unsigned int policy;
1074 	int nr_cpus_allowed;
1075 	cpumask_t cpus_allowed;
1076 
1077 #ifdef CONFIG_PREEMPT_RCU
1078 	int rcu_read_lock_nesting;
1079 	char rcu_read_unlock_special;
1080 	struct list_head rcu_node_entry;
1081 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1082 #ifdef CONFIG_TREE_PREEMPT_RCU
1083 	struct rcu_node *rcu_blocked_node;
1084 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1085 #ifdef CONFIG_RCU_BOOST
1086 	struct rt_mutex *rcu_boost_mutex;
1087 #endif /* #ifdef CONFIG_RCU_BOOST */
1088 
1089 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1090 	struct sched_info sched_info;
1091 #endif
1092 
1093 	struct list_head tasks;
1094 #ifdef CONFIG_SMP
1095 	struct plist_node pushable_tasks;
1096 #endif
1097 
1098 	struct mm_struct *mm, *active_mm;
1099 #ifdef CONFIG_COMPAT_BRK
1100 	unsigned brk_randomized:1;
1101 #endif
1102 #if defined(SPLIT_RSS_COUNTING)
1103 	struct task_rss_stat	rss_stat;
1104 #endif
1105 /* task state */
1106 	int exit_state;
1107 	int exit_code, exit_signal;
1108 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1109 	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1110 
1111 	/* Used for emulating ABI behavior of previous Linux versions */
1112 	unsigned int personality;
1113 
1114 	unsigned did_exec:1;
1115 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1116 				 * execve */
1117 	unsigned in_iowait:1;
1118 
1119 	/* task may not gain privileges */
1120 	unsigned no_new_privs:1;
1121 
1122 	/* Revert to default priority/policy when forking */
1123 	unsigned sched_reset_on_fork:1;
1124 	unsigned sched_contributes_to_load:1;
1125 
1126 	pid_t pid;
1127 	pid_t tgid;
1128 
1129 #ifdef CONFIG_CC_STACKPROTECTOR
1130 	/* Canary value for the -fstack-protector gcc feature */
1131 	unsigned long stack_canary;
1132 #endif
1133 	/*
1134 	 * pointers to (original) parent process, youngest child, younger sibling,
1135 	 * older sibling, respectively.  (p->father can be replaced with
1136 	 * p->real_parent->pid)
1137 	 */
1138 	struct task_struct __rcu *real_parent; /* real parent process */
1139 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1140 	/*
1141 	 * children/sibling forms the list of my natural children
1142 	 */
1143 	struct list_head children;	/* list of my children */
1144 	struct list_head sibling;	/* linkage in my parent's children list */
1145 	struct task_struct *group_leader;	/* threadgroup leader */
1146 
1147 	/*
1148 	 * ptraced is the list of tasks this task is using ptrace on.
1149 	 * This includes both natural children and PTRACE_ATTACH targets.
1150 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1151 	 */
1152 	struct list_head ptraced;
1153 	struct list_head ptrace_entry;
1154 
1155 	/* PID/PID hash table linkage. */
1156 	struct pid_link pids[PIDTYPE_MAX];
1157 	struct list_head thread_group;
1158 
1159 	struct completion *vfork_done;		/* for vfork() */
1160 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1161 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1162 
1163 	cputime_t utime, stime, utimescaled, stimescaled;
1164 	cputime_t gtime;
1165 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1166 	struct cputime prev_cputime;
1167 #endif
1168 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1169 	seqlock_t vtime_seqlock;
1170 	unsigned long long vtime_snap;
1171 	enum {
1172 		VTIME_SLEEPING = 0,
1173 		VTIME_USER,
1174 		VTIME_SYS,
1175 	} vtime_snap_whence;
1176 #endif
1177 	unsigned long nvcsw, nivcsw; /* context switch counts */
1178 	struct timespec start_time; 		/* monotonic time */
1179 	struct timespec real_start_time;	/* boot based time */
1180 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1181 	unsigned long min_flt, maj_flt;
1182 
1183 	struct task_cputime cputime_expires;
1184 	struct list_head cpu_timers[3];
1185 
1186 /* process credentials */
1187 	const struct cred __rcu *real_cred; /* objective and real subjective task
1188 					 * credentials (COW) */
1189 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1190 					 * credentials (COW) */
1191 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1192 				     - access with [gs]et_task_comm (which lock
1193 				       it with task_lock())
1194 				     - initialized normally by setup_new_exec */
1195 /* file system info */
1196 	int link_count, total_link_count;
1197 #ifdef CONFIG_SYSVIPC
1198 /* ipc stuff */
1199 	struct sysv_sem sysvsem;
1200 #endif
1201 #ifdef CONFIG_DETECT_HUNG_TASK
1202 /* hung task detection */
1203 	unsigned long last_switch_count;
1204 #endif
1205 /* CPU-specific state of this task */
1206 	struct thread_struct thread;
1207 /* filesystem information */
1208 	struct fs_struct *fs;
1209 /* open file information */
1210 	struct files_struct *files;
1211 /* namespaces */
1212 	struct nsproxy *nsproxy;
1213 /* signal handlers */
1214 	struct signal_struct *signal;
1215 	struct sighand_struct *sighand;
1216 
1217 	sigset_t blocked, real_blocked;
1218 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1219 	struct sigpending pending;
1220 
1221 	unsigned long sas_ss_sp;
1222 	size_t sas_ss_size;
1223 	int (*notifier)(void *priv);
1224 	void *notifier_data;
1225 	sigset_t *notifier_mask;
1226 	struct callback_head *task_works;
1227 
1228 	struct audit_context *audit_context;
1229 #ifdef CONFIG_AUDITSYSCALL
1230 	kuid_t loginuid;
1231 	unsigned int sessionid;
1232 #endif
1233 	struct seccomp seccomp;
1234 
1235 /* Thread group tracking */
1236    	u32 parent_exec_id;
1237    	u32 self_exec_id;
1238 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1239  * mempolicy */
1240 	spinlock_t alloc_lock;
1241 
1242 	/* Protection of the PI data structures: */
1243 	raw_spinlock_t pi_lock;
1244 
1245 #ifdef CONFIG_RT_MUTEXES
1246 	/* PI waiters blocked on a rt_mutex held by this task */
1247 	struct plist_head pi_waiters;
1248 	/* Deadlock detection and priority inheritance handling */
1249 	struct rt_mutex_waiter *pi_blocked_on;
1250 #endif
1251 
1252 #ifdef CONFIG_DEBUG_MUTEXES
1253 	/* mutex deadlock detection */
1254 	struct mutex_waiter *blocked_on;
1255 #endif
1256 #ifdef CONFIG_TRACE_IRQFLAGS
1257 	unsigned int irq_events;
1258 	unsigned long hardirq_enable_ip;
1259 	unsigned long hardirq_disable_ip;
1260 	unsigned int hardirq_enable_event;
1261 	unsigned int hardirq_disable_event;
1262 	int hardirqs_enabled;
1263 	int hardirq_context;
1264 	unsigned long softirq_disable_ip;
1265 	unsigned long softirq_enable_ip;
1266 	unsigned int softirq_disable_event;
1267 	unsigned int softirq_enable_event;
1268 	int softirqs_enabled;
1269 	int softirq_context;
1270 #endif
1271 #ifdef CONFIG_LOCKDEP
1272 # define MAX_LOCK_DEPTH 48UL
1273 	u64 curr_chain_key;
1274 	int lockdep_depth;
1275 	unsigned int lockdep_recursion;
1276 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1277 	gfp_t lockdep_reclaim_gfp;
1278 #endif
1279 
1280 /* journalling filesystem info */
1281 	void *journal_info;
1282 
1283 /* stacked block device info */
1284 	struct bio_list *bio_list;
1285 
1286 #ifdef CONFIG_BLOCK
1287 /* stack plugging */
1288 	struct blk_plug *plug;
1289 #endif
1290 
1291 /* VM state */
1292 	struct reclaim_state *reclaim_state;
1293 
1294 	struct backing_dev_info *backing_dev_info;
1295 
1296 	struct io_context *io_context;
1297 
1298 	unsigned long ptrace_message;
1299 	siginfo_t *last_siginfo; /* For ptrace use.  */
1300 	struct task_io_accounting ioac;
1301 #if defined(CONFIG_TASK_XACCT)
1302 	u64 acct_rss_mem1;	/* accumulated rss usage */
1303 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1304 	cputime_t acct_timexpd;	/* stime + utime since last update */
1305 #endif
1306 #ifdef CONFIG_CPUSETS
1307 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1308 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1309 	int cpuset_mem_spread_rotor;
1310 	int cpuset_slab_spread_rotor;
1311 #endif
1312 #ifdef CONFIG_CGROUPS
1313 	/* Control Group info protected by css_set_lock */
1314 	struct css_set __rcu *cgroups;
1315 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1316 	struct list_head cg_list;
1317 #endif
1318 #ifdef CONFIG_FUTEX
1319 	struct robust_list_head __user *robust_list;
1320 #ifdef CONFIG_COMPAT
1321 	struct compat_robust_list_head __user *compat_robust_list;
1322 #endif
1323 	struct list_head pi_state_list;
1324 	struct futex_pi_state *pi_state_cache;
1325 #endif
1326 #ifdef CONFIG_PERF_EVENTS
1327 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1328 	struct mutex perf_event_mutex;
1329 	struct list_head perf_event_list;
1330 #endif
1331 #ifdef CONFIG_NUMA
1332 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1333 	short il_next;
1334 	short pref_node_fork;
1335 #endif
1336 #ifdef CONFIG_NUMA_BALANCING
1337 	int numa_scan_seq;
1338 	unsigned int numa_scan_period;
1339 	unsigned int numa_scan_period_max;
1340 	int numa_preferred_nid;
1341 	int numa_migrate_deferred;
1342 	unsigned long numa_migrate_retry;
1343 	u64 node_stamp;			/* migration stamp  */
1344 	struct callback_head numa_work;
1345 
1346 	struct list_head numa_entry;
1347 	struct numa_group *numa_group;
1348 
1349 	/*
1350 	 * Exponential decaying average of faults on a per-node basis.
1351 	 * Scheduling placement decisions are made based on the these counts.
1352 	 * The values remain static for the duration of a PTE scan
1353 	 */
1354 	unsigned long *numa_faults;
1355 	unsigned long total_numa_faults;
1356 
1357 	/*
1358 	 * numa_faults_buffer records faults per node during the current
1359 	 * scan window. When the scan completes, the counts in numa_faults
1360 	 * decay and these values are copied.
1361 	 */
1362 	unsigned long *numa_faults_buffer;
1363 
1364 	/*
1365 	 * numa_faults_locality tracks if faults recorded during the last
1366 	 * scan window were remote/local. The task scan period is adapted
1367 	 * based on the locality of the faults with different weights
1368 	 * depending on whether they were shared or private faults
1369 	 */
1370 	unsigned long numa_faults_locality[2];
1371 
1372 	unsigned long numa_pages_migrated;
1373 #endif /* CONFIG_NUMA_BALANCING */
1374 
1375 	struct rcu_head rcu;
1376 
1377 	/*
1378 	 * cache last used pipe for splice
1379 	 */
1380 	struct pipe_inode_info *splice_pipe;
1381 
1382 	struct page_frag task_frag;
1383 
1384 #ifdef	CONFIG_TASK_DELAY_ACCT
1385 	struct task_delay_info *delays;
1386 #endif
1387 #ifdef CONFIG_FAULT_INJECTION
1388 	int make_it_fail;
1389 #endif
1390 	/*
1391 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1392 	 * balance_dirty_pages() for some dirty throttling pause
1393 	 */
1394 	int nr_dirtied;
1395 	int nr_dirtied_pause;
1396 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1397 
1398 #ifdef CONFIG_LATENCYTOP
1399 	int latency_record_count;
1400 	struct latency_record latency_record[LT_SAVECOUNT];
1401 #endif
1402 	/*
1403 	 * time slack values; these are used to round up poll() and
1404 	 * select() etc timeout values. These are in nanoseconds.
1405 	 */
1406 	unsigned long timer_slack_ns;
1407 	unsigned long default_timer_slack_ns;
1408 
1409 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1410 	/* Index of current stored address in ret_stack */
1411 	int curr_ret_stack;
1412 	/* Stack of return addresses for return function tracing */
1413 	struct ftrace_ret_stack	*ret_stack;
1414 	/* time stamp for last schedule */
1415 	unsigned long long ftrace_timestamp;
1416 	/*
1417 	 * Number of functions that haven't been traced
1418 	 * because of depth overrun.
1419 	 */
1420 	atomic_t trace_overrun;
1421 	/* Pause for the tracing */
1422 	atomic_t tracing_graph_pause;
1423 #endif
1424 #ifdef CONFIG_TRACING
1425 	/* state flags for use by tracers */
1426 	unsigned long trace;
1427 	/* bitmask and counter of trace recursion */
1428 	unsigned long trace_recursion;
1429 #endif /* CONFIG_TRACING */
1430 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1431 	struct memcg_batch_info {
1432 		int do_batch;	/* incremented when batch uncharge started */
1433 		struct mem_cgroup *memcg; /* target memcg of uncharge */
1434 		unsigned long nr_pages;	/* uncharged usage */
1435 		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1436 	} memcg_batch;
1437 	unsigned int memcg_kmem_skip_account;
1438 	struct memcg_oom_info {
1439 		struct mem_cgroup *memcg;
1440 		gfp_t gfp_mask;
1441 		int order;
1442 		unsigned int may_oom:1;
1443 	} memcg_oom;
1444 #endif
1445 #ifdef CONFIG_UPROBES
1446 	struct uprobe_task *utask;
1447 #endif
1448 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1449 	unsigned int	sequential_io;
1450 	unsigned int	sequential_io_avg;
1451 #endif
1452 };
1453 
1454 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1455 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1456 
1457 #define TNF_MIGRATED	0x01
1458 #define TNF_NO_GROUP	0x02
1459 #define TNF_SHARED	0x04
1460 #define TNF_FAULT_LOCAL	0x08
1461 
1462 #ifdef CONFIG_NUMA_BALANCING
1463 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1464 extern pid_t task_numa_group_id(struct task_struct *p);
1465 extern void set_numabalancing_state(bool enabled);
1466 extern void task_numa_free(struct task_struct *p);
1467 
1468 extern unsigned int sysctl_numa_balancing_migrate_deferred;
1469 #else
1470 static inline void task_numa_fault(int last_node, int node, int pages,
1471 				   int flags)
1472 {
1473 }
1474 static inline pid_t task_numa_group_id(struct task_struct *p)
1475 {
1476 	return 0;
1477 }
1478 static inline void set_numabalancing_state(bool enabled)
1479 {
1480 }
1481 static inline void task_numa_free(struct task_struct *p)
1482 {
1483 }
1484 #endif
1485 
1486 static inline struct pid *task_pid(struct task_struct *task)
1487 {
1488 	return task->pids[PIDTYPE_PID].pid;
1489 }
1490 
1491 static inline struct pid *task_tgid(struct task_struct *task)
1492 {
1493 	return task->group_leader->pids[PIDTYPE_PID].pid;
1494 }
1495 
1496 /*
1497  * Without tasklist or rcu lock it is not safe to dereference
1498  * the result of task_pgrp/task_session even if task == current,
1499  * we can race with another thread doing sys_setsid/sys_setpgid.
1500  */
1501 static inline struct pid *task_pgrp(struct task_struct *task)
1502 {
1503 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1504 }
1505 
1506 static inline struct pid *task_session(struct task_struct *task)
1507 {
1508 	return task->group_leader->pids[PIDTYPE_SID].pid;
1509 }
1510 
1511 struct pid_namespace;
1512 
1513 /*
1514  * the helpers to get the task's different pids as they are seen
1515  * from various namespaces
1516  *
1517  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1518  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1519  *                     current.
1520  * task_xid_nr_ns()  : id seen from the ns specified;
1521  *
1522  * set_task_vxid()   : assigns a virtual id to a task;
1523  *
1524  * see also pid_nr() etc in include/linux/pid.h
1525  */
1526 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1527 			struct pid_namespace *ns);
1528 
1529 static inline pid_t task_pid_nr(struct task_struct *tsk)
1530 {
1531 	return tsk->pid;
1532 }
1533 
1534 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1535 					struct pid_namespace *ns)
1536 {
1537 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1538 }
1539 
1540 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1541 {
1542 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1543 }
1544 
1545 
1546 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1547 {
1548 	return tsk->tgid;
1549 }
1550 
1551 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1552 
1553 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1554 {
1555 	return pid_vnr(task_tgid(tsk));
1556 }
1557 
1558 
1559 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1560 					struct pid_namespace *ns)
1561 {
1562 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1563 }
1564 
1565 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1566 {
1567 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1568 }
1569 
1570 
1571 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1572 					struct pid_namespace *ns)
1573 {
1574 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1575 }
1576 
1577 static inline pid_t task_session_vnr(struct task_struct *tsk)
1578 {
1579 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1580 }
1581 
1582 /* obsolete, do not use */
1583 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1584 {
1585 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1586 }
1587 
1588 /**
1589  * pid_alive - check that a task structure is not stale
1590  * @p: Task structure to be checked.
1591  *
1592  * Test if a process is not yet dead (at most zombie state)
1593  * If pid_alive fails, then pointers within the task structure
1594  * can be stale and must not be dereferenced.
1595  *
1596  * Return: 1 if the process is alive. 0 otherwise.
1597  */
1598 static inline int pid_alive(struct task_struct *p)
1599 {
1600 	return p->pids[PIDTYPE_PID].pid != NULL;
1601 }
1602 
1603 /**
1604  * is_global_init - check if a task structure is init
1605  * @tsk: Task structure to be checked.
1606  *
1607  * Check if a task structure is the first user space task the kernel created.
1608  *
1609  * Return: 1 if the task structure is init. 0 otherwise.
1610  */
1611 static inline int is_global_init(struct task_struct *tsk)
1612 {
1613 	return tsk->pid == 1;
1614 }
1615 
1616 extern struct pid *cad_pid;
1617 
1618 extern void free_task(struct task_struct *tsk);
1619 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1620 
1621 extern void __put_task_struct(struct task_struct *t);
1622 
1623 static inline void put_task_struct(struct task_struct *t)
1624 {
1625 	if (atomic_dec_and_test(&t->usage))
1626 		__put_task_struct(t);
1627 }
1628 
1629 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1630 extern void task_cputime(struct task_struct *t,
1631 			 cputime_t *utime, cputime_t *stime);
1632 extern void task_cputime_scaled(struct task_struct *t,
1633 				cputime_t *utimescaled, cputime_t *stimescaled);
1634 extern cputime_t task_gtime(struct task_struct *t);
1635 #else
1636 static inline void task_cputime(struct task_struct *t,
1637 				cputime_t *utime, cputime_t *stime)
1638 {
1639 	if (utime)
1640 		*utime = t->utime;
1641 	if (stime)
1642 		*stime = t->stime;
1643 }
1644 
1645 static inline void task_cputime_scaled(struct task_struct *t,
1646 				       cputime_t *utimescaled,
1647 				       cputime_t *stimescaled)
1648 {
1649 	if (utimescaled)
1650 		*utimescaled = t->utimescaled;
1651 	if (stimescaled)
1652 		*stimescaled = t->stimescaled;
1653 }
1654 
1655 static inline cputime_t task_gtime(struct task_struct *t)
1656 {
1657 	return t->gtime;
1658 }
1659 #endif
1660 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1661 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1662 
1663 /*
1664  * Per process flags
1665  */
1666 #define PF_EXITING	0x00000004	/* getting shut down */
1667 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1668 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1669 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1670 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1671 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1672 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1673 #define PF_DUMPCORE	0x00000200	/* dumped core */
1674 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1675 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1676 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1677 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1678 #define PF_USED_ASYNC	0x00004000	/* used async_schedule*(), used by module init */
1679 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1680 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1681 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1682 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1683 #define PF_MEMALLOC_NOIO 0x00080000	/* Allocating memory without IO involved */
1684 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1685 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1686 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1687 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1688 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1689 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1690 #define PF_NO_SETAFFINITY 0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1691 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1692 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1693 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1694 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1695 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1696 
1697 /*
1698  * Only the _current_ task can read/write to tsk->flags, but other
1699  * tasks can access tsk->flags in readonly mode for example
1700  * with tsk_used_math (like during threaded core dumping).
1701  * There is however an exception to this rule during ptrace
1702  * or during fork: the ptracer task is allowed to write to the
1703  * child->flags of its traced child (same goes for fork, the parent
1704  * can write to the child->flags), because we're guaranteed the
1705  * child is not running and in turn not changing child->flags
1706  * at the same time the parent does it.
1707  */
1708 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1709 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1710 #define clear_used_math() clear_stopped_child_used_math(current)
1711 #define set_used_math() set_stopped_child_used_math(current)
1712 #define conditional_stopped_child_used_math(condition, child) \
1713 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1714 #define conditional_used_math(condition) \
1715 	conditional_stopped_child_used_math(condition, current)
1716 #define copy_to_stopped_child_used_math(child) \
1717 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1718 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1719 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1720 #define used_math() tsk_used_math(current)
1721 
1722 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1723 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1724 {
1725 	if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1726 		flags &= ~__GFP_IO;
1727 	return flags;
1728 }
1729 
1730 static inline unsigned int memalloc_noio_save(void)
1731 {
1732 	unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1733 	current->flags |= PF_MEMALLOC_NOIO;
1734 	return flags;
1735 }
1736 
1737 static inline void memalloc_noio_restore(unsigned int flags)
1738 {
1739 	current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1740 }
1741 
1742 /*
1743  * task->jobctl flags
1744  */
1745 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1746 
1747 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1748 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1749 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1750 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1751 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1752 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1753 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1754 
1755 #define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1756 #define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1757 #define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1758 #define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1759 #define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1760 #define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1761 #define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1762 
1763 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1764 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1765 
1766 extern bool task_set_jobctl_pending(struct task_struct *task,
1767 				    unsigned int mask);
1768 extern void task_clear_jobctl_trapping(struct task_struct *task);
1769 extern void task_clear_jobctl_pending(struct task_struct *task,
1770 				      unsigned int mask);
1771 
1772 #ifdef CONFIG_PREEMPT_RCU
1773 
1774 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1775 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1776 
1777 static inline void rcu_copy_process(struct task_struct *p)
1778 {
1779 	p->rcu_read_lock_nesting = 0;
1780 	p->rcu_read_unlock_special = 0;
1781 #ifdef CONFIG_TREE_PREEMPT_RCU
1782 	p->rcu_blocked_node = NULL;
1783 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1784 #ifdef CONFIG_RCU_BOOST
1785 	p->rcu_boost_mutex = NULL;
1786 #endif /* #ifdef CONFIG_RCU_BOOST */
1787 	INIT_LIST_HEAD(&p->rcu_node_entry);
1788 }
1789 
1790 #else
1791 
1792 static inline void rcu_copy_process(struct task_struct *p)
1793 {
1794 }
1795 
1796 #endif
1797 
1798 static inline void tsk_restore_flags(struct task_struct *task,
1799 				unsigned long orig_flags, unsigned long flags)
1800 {
1801 	task->flags &= ~flags;
1802 	task->flags |= orig_flags & flags;
1803 }
1804 
1805 #ifdef CONFIG_SMP
1806 extern void do_set_cpus_allowed(struct task_struct *p,
1807 			       const struct cpumask *new_mask);
1808 
1809 extern int set_cpus_allowed_ptr(struct task_struct *p,
1810 				const struct cpumask *new_mask);
1811 #else
1812 static inline void do_set_cpus_allowed(struct task_struct *p,
1813 				      const struct cpumask *new_mask)
1814 {
1815 }
1816 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1817 				       const struct cpumask *new_mask)
1818 {
1819 	if (!cpumask_test_cpu(0, new_mask))
1820 		return -EINVAL;
1821 	return 0;
1822 }
1823 #endif
1824 
1825 #ifdef CONFIG_NO_HZ_COMMON
1826 void calc_load_enter_idle(void);
1827 void calc_load_exit_idle(void);
1828 #else
1829 static inline void calc_load_enter_idle(void) { }
1830 static inline void calc_load_exit_idle(void) { }
1831 #endif /* CONFIG_NO_HZ_COMMON */
1832 
1833 #ifndef CONFIG_CPUMASK_OFFSTACK
1834 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1835 {
1836 	return set_cpus_allowed_ptr(p, &new_mask);
1837 }
1838 #endif
1839 
1840 /*
1841  * Do not use outside of architecture code which knows its limitations.
1842  *
1843  * sched_clock() has no promise of monotonicity or bounded drift between
1844  * CPUs, use (which you should not) requires disabling IRQs.
1845  *
1846  * Please use one of the three interfaces below.
1847  */
1848 extern unsigned long long notrace sched_clock(void);
1849 /*
1850  * See the comment in kernel/sched/clock.c
1851  */
1852 extern u64 cpu_clock(int cpu);
1853 extern u64 local_clock(void);
1854 extern u64 sched_clock_cpu(int cpu);
1855 
1856 
1857 extern void sched_clock_init(void);
1858 
1859 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1860 static inline void sched_clock_tick(void)
1861 {
1862 }
1863 
1864 static inline void sched_clock_idle_sleep_event(void)
1865 {
1866 }
1867 
1868 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1869 {
1870 }
1871 #else
1872 /*
1873  * Architectures can set this to 1 if they have specified
1874  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1875  * but then during bootup it turns out that sched_clock()
1876  * is reliable after all:
1877  */
1878 extern int sched_clock_stable;
1879 
1880 extern void sched_clock_tick(void);
1881 extern void sched_clock_idle_sleep_event(void);
1882 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1883 #endif
1884 
1885 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1886 /*
1887  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1888  * The reason for this explicit opt-in is not to have perf penalty with
1889  * slow sched_clocks.
1890  */
1891 extern void enable_sched_clock_irqtime(void);
1892 extern void disable_sched_clock_irqtime(void);
1893 #else
1894 static inline void enable_sched_clock_irqtime(void) {}
1895 static inline void disable_sched_clock_irqtime(void) {}
1896 #endif
1897 
1898 extern unsigned long long
1899 task_sched_runtime(struct task_struct *task);
1900 
1901 /* sched_exec is called by processes performing an exec */
1902 #ifdef CONFIG_SMP
1903 extern void sched_exec(void);
1904 #else
1905 #define sched_exec()   {}
1906 #endif
1907 
1908 extern void sched_clock_idle_sleep_event(void);
1909 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1910 
1911 #ifdef CONFIG_HOTPLUG_CPU
1912 extern void idle_task_exit(void);
1913 #else
1914 static inline void idle_task_exit(void) {}
1915 #endif
1916 
1917 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1918 extern void wake_up_nohz_cpu(int cpu);
1919 #else
1920 static inline void wake_up_nohz_cpu(int cpu) { }
1921 #endif
1922 
1923 #ifdef CONFIG_NO_HZ_FULL
1924 extern bool sched_can_stop_tick(void);
1925 extern u64 scheduler_tick_max_deferment(void);
1926 #else
1927 static inline bool sched_can_stop_tick(void) { return false; }
1928 #endif
1929 
1930 #ifdef CONFIG_SCHED_AUTOGROUP
1931 extern void sched_autogroup_create_attach(struct task_struct *p);
1932 extern void sched_autogroup_detach(struct task_struct *p);
1933 extern void sched_autogroup_fork(struct signal_struct *sig);
1934 extern void sched_autogroup_exit(struct signal_struct *sig);
1935 #ifdef CONFIG_PROC_FS
1936 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1937 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1938 #endif
1939 #else
1940 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1941 static inline void sched_autogroup_detach(struct task_struct *p) { }
1942 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1943 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1944 #endif
1945 
1946 extern bool yield_to(struct task_struct *p, bool preempt);
1947 extern void set_user_nice(struct task_struct *p, long nice);
1948 extern int task_prio(const struct task_struct *p);
1949 extern int task_nice(const struct task_struct *p);
1950 extern int can_nice(const struct task_struct *p, const int nice);
1951 extern int task_curr(const struct task_struct *p);
1952 extern int idle_cpu(int cpu);
1953 extern int sched_setscheduler(struct task_struct *, int,
1954 			      const struct sched_param *);
1955 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1956 				      const struct sched_param *);
1957 extern struct task_struct *idle_task(int cpu);
1958 /**
1959  * is_idle_task - is the specified task an idle task?
1960  * @p: the task in question.
1961  *
1962  * Return: 1 if @p is an idle task. 0 otherwise.
1963  */
1964 static inline bool is_idle_task(const struct task_struct *p)
1965 {
1966 	return p->pid == 0;
1967 }
1968 extern struct task_struct *curr_task(int cpu);
1969 extern void set_curr_task(int cpu, struct task_struct *p);
1970 
1971 void yield(void);
1972 
1973 /*
1974  * The default (Linux) execution domain.
1975  */
1976 extern struct exec_domain	default_exec_domain;
1977 
1978 union thread_union {
1979 	struct thread_info thread_info;
1980 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1981 };
1982 
1983 #ifndef __HAVE_ARCH_KSTACK_END
1984 static inline int kstack_end(void *addr)
1985 {
1986 	/* Reliable end of stack detection:
1987 	 * Some APM bios versions misalign the stack
1988 	 */
1989 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1990 }
1991 #endif
1992 
1993 extern union thread_union init_thread_union;
1994 extern struct task_struct init_task;
1995 
1996 extern struct   mm_struct init_mm;
1997 
1998 extern struct pid_namespace init_pid_ns;
1999 
2000 /*
2001  * find a task by one of its numerical ids
2002  *
2003  * find_task_by_pid_ns():
2004  *      finds a task by its pid in the specified namespace
2005  * find_task_by_vpid():
2006  *      finds a task by its virtual pid
2007  *
2008  * see also find_vpid() etc in include/linux/pid.h
2009  */
2010 
2011 extern struct task_struct *find_task_by_vpid(pid_t nr);
2012 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2013 		struct pid_namespace *ns);
2014 
2015 /* per-UID process charging. */
2016 extern struct user_struct * alloc_uid(kuid_t);
2017 static inline struct user_struct *get_uid(struct user_struct *u)
2018 {
2019 	atomic_inc(&u->__count);
2020 	return u;
2021 }
2022 extern void free_uid(struct user_struct *);
2023 
2024 #include <asm/current.h>
2025 
2026 extern void xtime_update(unsigned long ticks);
2027 
2028 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2029 extern int wake_up_process(struct task_struct *tsk);
2030 extern void wake_up_new_task(struct task_struct *tsk);
2031 #ifdef CONFIG_SMP
2032  extern void kick_process(struct task_struct *tsk);
2033 #else
2034  static inline void kick_process(struct task_struct *tsk) { }
2035 #endif
2036 extern void sched_fork(unsigned long clone_flags, struct task_struct *p);
2037 extern void sched_dead(struct task_struct *p);
2038 
2039 extern void proc_caches_init(void);
2040 extern void flush_signals(struct task_struct *);
2041 extern void __flush_signals(struct task_struct *);
2042 extern void ignore_signals(struct task_struct *);
2043 extern void flush_signal_handlers(struct task_struct *, int force_default);
2044 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2045 
2046 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2047 {
2048 	unsigned long flags;
2049 	int ret;
2050 
2051 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2052 	ret = dequeue_signal(tsk, mask, info);
2053 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2054 
2055 	return ret;
2056 }
2057 
2058 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2059 			      sigset_t *mask);
2060 extern void unblock_all_signals(void);
2061 extern void release_task(struct task_struct * p);
2062 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2063 extern int force_sigsegv(int, struct task_struct *);
2064 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2065 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2066 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2067 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2068 				const struct cred *, u32);
2069 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2070 extern int kill_pid(struct pid *pid, int sig, int priv);
2071 extern int kill_proc_info(int, struct siginfo *, pid_t);
2072 extern __must_check bool do_notify_parent(struct task_struct *, int);
2073 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2074 extern void force_sig(int, struct task_struct *);
2075 extern int send_sig(int, struct task_struct *, int);
2076 extern int zap_other_threads(struct task_struct *p);
2077 extern struct sigqueue *sigqueue_alloc(void);
2078 extern void sigqueue_free(struct sigqueue *);
2079 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2080 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2081 
2082 static inline void restore_saved_sigmask(void)
2083 {
2084 	if (test_and_clear_restore_sigmask())
2085 		__set_current_blocked(&current->saved_sigmask);
2086 }
2087 
2088 static inline sigset_t *sigmask_to_save(void)
2089 {
2090 	sigset_t *res = &current->blocked;
2091 	if (unlikely(test_restore_sigmask()))
2092 		res = &current->saved_sigmask;
2093 	return res;
2094 }
2095 
2096 static inline int kill_cad_pid(int sig, int priv)
2097 {
2098 	return kill_pid(cad_pid, sig, priv);
2099 }
2100 
2101 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2102 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2103 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2104 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2105 
2106 /*
2107  * True if we are on the alternate signal stack.
2108  */
2109 static inline int on_sig_stack(unsigned long sp)
2110 {
2111 #ifdef CONFIG_STACK_GROWSUP
2112 	return sp >= current->sas_ss_sp &&
2113 		sp - current->sas_ss_sp < current->sas_ss_size;
2114 #else
2115 	return sp > current->sas_ss_sp &&
2116 		sp - current->sas_ss_sp <= current->sas_ss_size;
2117 #endif
2118 }
2119 
2120 static inline int sas_ss_flags(unsigned long sp)
2121 {
2122 	return (current->sas_ss_size == 0 ? SS_DISABLE
2123 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2124 }
2125 
2126 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2127 {
2128 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2129 #ifdef CONFIG_STACK_GROWSUP
2130 		return current->sas_ss_sp;
2131 #else
2132 		return current->sas_ss_sp + current->sas_ss_size;
2133 #endif
2134 	return sp;
2135 }
2136 
2137 /*
2138  * Routines for handling mm_structs
2139  */
2140 extern struct mm_struct * mm_alloc(void);
2141 
2142 /* mmdrop drops the mm and the page tables */
2143 extern void __mmdrop(struct mm_struct *);
2144 static inline void mmdrop(struct mm_struct * mm)
2145 {
2146 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2147 		__mmdrop(mm);
2148 }
2149 
2150 /* mmput gets rid of the mappings and all user-space */
2151 extern void mmput(struct mm_struct *);
2152 /* Grab a reference to a task's mm, if it is not already going away */
2153 extern struct mm_struct *get_task_mm(struct task_struct *task);
2154 /*
2155  * Grab a reference to a task's mm, if it is not already going away
2156  * and ptrace_may_access with the mode parameter passed to it
2157  * succeeds.
2158  */
2159 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2160 /* Remove the current tasks stale references to the old mm_struct */
2161 extern void mm_release(struct task_struct *, struct mm_struct *);
2162 /* Allocate a new mm structure and copy contents from tsk->mm */
2163 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2164 
2165 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2166 			struct task_struct *);
2167 extern void flush_thread(void);
2168 extern void exit_thread(void);
2169 
2170 extern void exit_files(struct task_struct *);
2171 extern void __cleanup_sighand(struct sighand_struct *);
2172 
2173 extern void exit_itimers(struct signal_struct *);
2174 extern void flush_itimer_signals(void);
2175 
2176 extern void do_group_exit(int);
2177 
2178 extern int allow_signal(int);
2179 extern int disallow_signal(int);
2180 
2181 extern int do_execve(const char *,
2182 		     const char __user * const __user *,
2183 		     const char __user * const __user *);
2184 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2185 struct task_struct *fork_idle(int);
2186 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2187 
2188 extern void set_task_comm(struct task_struct *tsk, char *from);
2189 extern char *get_task_comm(char *to, struct task_struct *tsk);
2190 
2191 #ifdef CONFIG_SMP
2192 void scheduler_ipi(void);
2193 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2194 #else
2195 static inline void scheduler_ipi(void) { }
2196 static inline unsigned long wait_task_inactive(struct task_struct *p,
2197 					       long match_state)
2198 {
2199 	return 1;
2200 }
2201 #endif
2202 
2203 #define next_task(p) \
2204 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2205 
2206 #define for_each_process(p) \
2207 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2208 
2209 extern bool current_is_single_threaded(void);
2210 
2211 /*
2212  * Careful: do_each_thread/while_each_thread is a double loop so
2213  *          'break' will not work as expected - use goto instead.
2214  */
2215 #define do_each_thread(g, t) \
2216 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2217 
2218 #define while_each_thread(g, t) \
2219 	while ((t = next_thread(t)) != g)
2220 
2221 static inline int get_nr_threads(struct task_struct *tsk)
2222 {
2223 	return tsk->signal->nr_threads;
2224 }
2225 
2226 static inline bool thread_group_leader(struct task_struct *p)
2227 {
2228 	return p->exit_signal >= 0;
2229 }
2230 
2231 /* Do to the insanities of de_thread it is possible for a process
2232  * to have the pid of the thread group leader without actually being
2233  * the thread group leader.  For iteration through the pids in proc
2234  * all we care about is that we have a task with the appropriate
2235  * pid, we don't actually care if we have the right task.
2236  */
2237 static inline bool has_group_leader_pid(struct task_struct *p)
2238 {
2239 	return task_pid(p) == p->signal->leader_pid;
2240 }
2241 
2242 static inline
2243 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2244 {
2245 	return p1->signal == p2->signal;
2246 }
2247 
2248 static inline struct task_struct *next_thread(const struct task_struct *p)
2249 {
2250 	return list_entry_rcu(p->thread_group.next,
2251 			      struct task_struct, thread_group);
2252 }
2253 
2254 static inline int thread_group_empty(struct task_struct *p)
2255 {
2256 	return list_empty(&p->thread_group);
2257 }
2258 
2259 #define delay_group_leader(p) \
2260 		(thread_group_leader(p) && !thread_group_empty(p))
2261 
2262 /*
2263  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2264  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2265  * pins the final release of task.io_context.  Also protects ->cpuset and
2266  * ->cgroup.subsys[]. And ->vfork_done.
2267  *
2268  * Nests both inside and outside of read_lock(&tasklist_lock).
2269  * It must not be nested with write_lock_irq(&tasklist_lock),
2270  * neither inside nor outside.
2271  */
2272 static inline void task_lock(struct task_struct *p)
2273 {
2274 	spin_lock(&p->alloc_lock);
2275 }
2276 
2277 static inline void task_unlock(struct task_struct *p)
2278 {
2279 	spin_unlock(&p->alloc_lock);
2280 }
2281 
2282 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2283 							unsigned long *flags);
2284 
2285 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2286 						       unsigned long *flags)
2287 {
2288 	struct sighand_struct *ret;
2289 
2290 	ret = __lock_task_sighand(tsk, flags);
2291 	(void)__cond_lock(&tsk->sighand->siglock, ret);
2292 	return ret;
2293 }
2294 
2295 static inline void unlock_task_sighand(struct task_struct *tsk,
2296 						unsigned long *flags)
2297 {
2298 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2299 }
2300 
2301 #ifdef CONFIG_CGROUPS
2302 static inline void threadgroup_change_begin(struct task_struct *tsk)
2303 {
2304 	down_read(&tsk->signal->group_rwsem);
2305 }
2306 static inline void threadgroup_change_end(struct task_struct *tsk)
2307 {
2308 	up_read(&tsk->signal->group_rwsem);
2309 }
2310 
2311 /**
2312  * threadgroup_lock - lock threadgroup
2313  * @tsk: member task of the threadgroup to lock
2314  *
2315  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2316  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2317  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2318  * needs to stay stable across blockable operations.
2319  *
2320  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2321  * synchronization.  While held, no new task will be added to threadgroup
2322  * and no existing live task will have its PF_EXITING set.
2323  *
2324  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2325  * sub-thread becomes a new leader.
2326  */
2327 static inline void threadgroup_lock(struct task_struct *tsk)
2328 {
2329 	down_write(&tsk->signal->group_rwsem);
2330 }
2331 
2332 /**
2333  * threadgroup_unlock - unlock threadgroup
2334  * @tsk: member task of the threadgroup to unlock
2335  *
2336  * Reverse threadgroup_lock().
2337  */
2338 static inline void threadgroup_unlock(struct task_struct *tsk)
2339 {
2340 	up_write(&tsk->signal->group_rwsem);
2341 }
2342 #else
2343 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2344 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2345 static inline void threadgroup_lock(struct task_struct *tsk) {}
2346 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2347 #endif
2348 
2349 #ifndef __HAVE_THREAD_FUNCTIONS
2350 
2351 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2352 #define task_stack_page(task)	((task)->stack)
2353 
2354 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2355 {
2356 	*task_thread_info(p) = *task_thread_info(org);
2357 	task_thread_info(p)->task = p;
2358 }
2359 
2360 static inline unsigned long *end_of_stack(struct task_struct *p)
2361 {
2362 	return (unsigned long *)(task_thread_info(p) + 1);
2363 }
2364 
2365 #endif
2366 
2367 static inline int object_is_on_stack(void *obj)
2368 {
2369 	void *stack = task_stack_page(current);
2370 
2371 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2372 }
2373 
2374 extern void thread_info_cache_init(void);
2375 
2376 #ifdef CONFIG_DEBUG_STACK_USAGE
2377 static inline unsigned long stack_not_used(struct task_struct *p)
2378 {
2379 	unsigned long *n = end_of_stack(p);
2380 
2381 	do { 	/* Skip over canary */
2382 		n++;
2383 	} while (!*n);
2384 
2385 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2386 }
2387 #endif
2388 
2389 /* set thread flags in other task's structures
2390  * - see asm/thread_info.h for TIF_xxxx flags available
2391  */
2392 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2393 {
2394 	set_ti_thread_flag(task_thread_info(tsk), flag);
2395 }
2396 
2397 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2398 {
2399 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2400 }
2401 
2402 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2403 {
2404 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2405 }
2406 
2407 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2408 {
2409 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2410 }
2411 
2412 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2413 {
2414 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2415 }
2416 
2417 static inline void set_tsk_need_resched(struct task_struct *tsk)
2418 {
2419 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2420 }
2421 
2422 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2423 {
2424 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2425 }
2426 
2427 static inline int test_tsk_need_resched(struct task_struct *tsk)
2428 {
2429 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2430 }
2431 
2432 static inline int restart_syscall(void)
2433 {
2434 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2435 	return -ERESTARTNOINTR;
2436 }
2437 
2438 static inline int signal_pending(struct task_struct *p)
2439 {
2440 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2441 }
2442 
2443 static inline int __fatal_signal_pending(struct task_struct *p)
2444 {
2445 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2446 }
2447 
2448 static inline int fatal_signal_pending(struct task_struct *p)
2449 {
2450 	return signal_pending(p) && __fatal_signal_pending(p);
2451 }
2452 
2453 static inline int signal_pending_state(long state, struct task_struct *p)
2454 {
2455 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2456 		return 0;
2457 	if (!signal_pending(p))
2458 		return 0;
2459 
2460 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2461 }
2462 
2463 /*
2464  * cond_resched() and cond_resched_lock(): latency reduction via
2465  * explicit rescheduling in places that are safe. The return
2466  * value indicates whether a reschedule was done in fact.
2467  * cond_resched_lock() will drop the spinlock before scheduling,
2468  * cond_resched_softirq() will enable bhs before scheduling.
2469  */
2470 extern int _cond_resched(void);
2471 
2472 #define cond_resched() ({			\
2473 	__might_sleep(__FILE__, __LINE__, 0);	\
2474 	_cond_resched();			\
2475 })
2476 
2477 extern int __cond_resched_lock(spinlock_t *lock);
2478 
2479 #ifdef CONFIG_PREEMPT_COUNT
2480 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2481 #else
2482 #define PREEMPT_LOCK_OFFSET	0
2483 #endif
2484 
2485 #define cond_resched_lock(lock) ({				\
2486 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2487 	__cond_resched_lock(lock);				\
2488 })
2489 
2490 extern int __cond_resched_softirq(void);
2491 
2492 #define cond_resched_softirq() ({					\
2493 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2494 	__cond_resched_softirq();					\
2495 })
2496 
2497 static inline void cond_resched_rcu(void)
2498 {
2499 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2500 	rcu_read_unlock();
2501 	cond_resched();
2502 	rcu_read_lock();
2503 #endif
2504 }
2505 
2506 /*
2507  * Does a critical section need to be broken due to another
2508  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2509  * but a general need for low latency)
2510  */
2511 static inline int spin_needbreak(spinlock_t *lock)
2512 {
2513 #ifdef CONFIG_PREEMPT
2514 	return spin_is_contended(lock);
2515 #else
2516 	return 0;
2517 #endif
2518 }
2519 
2520 /*
2521  * Idle thread specific functions to determine the need_resched
2522  * polling state. We have two versions, one based on TS_POLLING in
2523  * thread_info.status and one based on TIF_POLLING_NRFLAG in
2524  * thread_info.flags
2525  */
2526 #ifdef TS_POLLING
2527 static inline int tsk_is_polling(struct task_struct *p)
2528 {
2529 	return task_thread_info(p)->status & TS_POLLING;
2530 }
2531 static inline void __current_set_polling(void)
2532 {
2533 	current_thread_info()->status |= TS_POLLING;
2534 }
2535 
2536 static inline bool __must_check current_set_polling_and_test(void)
2537 {
2538 	__current_set_polling();
2539 
2540 	/*
2541 	 * Polling state must be visible before we test NEED_RESCHED,
2542 	 * paired by resched_task()
2543 	 */
2544 	smp_mb();
2545 
2546 	return unlikely(tif_need_resched());
2547 }
2548 
2549 static inline void __current_clr_polling(void)
2550 {
2551 	current_thread_info()->status &= ~TS_POLLING;
2552 }
2553 
2554 static inline bool __must_check current_clr_polling_and_test(void)
2555 {
2556 	__current_clr_polling();
2557 
2558 	/*
2559 	 * Polling state must be visible before we test NEED_RESCHED,
2560 	 * paired by resched_task()
2561 	 */
2562 	smp_mb();
2563 
2564 	return unlikely(tif_need_resched());
2565 }
2566 #elif defined(TIF_POLLING_NRFLAG)
2567 static inline int tsk_is_polling(struct task_struct *p)
2568 {
2569 	return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2570 }
2571 
2572 static inline void __current_set_polling(void)
2573 {
2574 	set_thread_flag(TIF_POLLING_NRFLAG);
2575 }
2576 
2577 static inline bool __must_check current_set_polling_and_test(void)
2578 {
2579 	__current_set_polling();
2580 
2581 	/*
2582 	 * Polling state must be visible before we test NEED_RESCHED,
2583 	 * paired by resched_task()
2584 	 *
2585 	 * XXX: assumes set/clear bit are identical barrier wise.
2586 	 */
2587 	smp_mb__after_clear_bit();
2588 
2589 	return unlikely(tif_need_resched());
2590 }
2591 
2592 static inline void __current_clr_polling(void)
2593 {
2594 	clear_thread_flag(TIF_POLLING_NRFLAG);
2595 }
2596 
2597 static inline bool __must_check current_clr_polling_and_test(void)
2598 {
2599 	__current_clr_polling();
2600 
2601 	/*
2602 	 * Polling state must be visible before we test NEED_RESCHED,
2603 	 * paired by resched_task()
2604 	 */
2605 	smp_mb__after_clear_bit();
2606 
2607 	return unlikely(tif_need_resched());
2608 }
2609 
2610 #else
2611 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2612 static inline void __current_set_polling(void) { }
2613 static inline void __current_clr_polling(void) { }
2614 
2615 static inline bool __must_check current_set_polling_and_test(void)
2616 {
2617 	return unlikely(tif_need_resched());
2618 }
2619 static inline bool __must_check current_clr_polling_and_test(void)
2620 {
2621 	return unlikely(tif_need_resched());
2622 }
2623 #endif
2624 
2625 static __always_inline bool need_resched(void)
2626 {
2627 	return unlikely(tif_need_resched());
2628 }
2629 
2630 /*
2631  * Thread group CPU time accounting.
2632  */
2633 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2634 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2635 
2636 static inline void thread_group_cputime_init(struct signal_struct *sig)
2637 {
2638 	raw_spin_lock_init(&sig->cputimer.lock);
2639 }
2640 
2641 /*
2642  * Reevaluate whether the task has signals pending delivery.
2643  * Wake the task if so.
2644  * This is required every time the blocked sigset_t changes.
2645  * callers must hold sighand->siglock.
2646  */
2647 extern void recalc_sigpending_and_wake(struct task_struct *t);
2648 extern void recalc_sigpending(void);
2649 
2650 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2651 
2652 static inline void signal_wake_up(struct task_struct *t, bool resume)
2653 {
2654 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2655 }
2656 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2657 {
2658 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2659 }
2660 
2661 /*
2662  * Wrappers for p->thread_info->cpu access. No-op on UP.
2663  */
2664 #ifdef CONFIG_SMP
2665 
2666 static inline unsigned int task_cpu(const struct task_struct *p)
2667 {
2668 	return task_thread_info(p)->cpu;
2669 }
2670 
2671 static inline int task_node(const struct task_struct *p)
2672 {
2673 	return cpu_to_node(task_cpu(p));
2674 }
2675 
2676 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2677 
2678 #else
2679 
2680 static inline unsigned int task_cpu(const struct task_struct *p)
2681 {
2682 	return 0;
2683 }
2684 
2685 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2686 {
2687 }
2688 
2689 #endif /* CONFIG_SMP */
2690 
2691 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2692 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2693 
2694 #ifdef CONFIG_CGROUP_SCHED
2695 extern struct task_group root_task_group;
2696 #endif /* CONFIG_CGROUP_SCHED */
2697 
2698 extern int task_can_switch_user(struct user_struct *up,
2699 					struct task_struct *tsk);
2700 
2701 #ifdef CONFIG_TASK_XACCT
2702 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2703 {
2704 	tsk->ioac.rchar += amt;
2705 }
2706 
2707 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2708 {
2709 	tsk->ioac.wchar += amt;
2710 }
2711 
2712 static inline void inc_syscr(struct task_struct *tsk)
2713 {
2714 	tsk->ioac.syscr++;
2715 }
2716 
2717 static inline void inc_syscw(struct task_struct *tsk)
2718 {
2719 	tsk->ioac.syscw++;
2720 }
2721 #else
2722 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2723 {
2724 }
2725 
2726 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2727 {
2728 }
2729 
2730 static inline void inc_syscr(struct task_struct *tsk)
2731 {
2732 }
2733 
2734 static inline void inc_syscw(struct task_struct *tsk)
2735 {
2736 }
2737 #endif
2738 
2739 #ifndef TASK_SIZE_OF
2740 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2741 #endif
2742 
2743 #ifdef CONFIG_MM_OWNER
2744 extern void mm_update_next_owner(struct mm_struct *mm);
2745 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2746 #else
2747 static inline void mm_update_next_owner(struct mm_struct *mm)
2748 {
2749 }
2750 
2751 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2752 {
2753 }
2754 #endif /* CONFIG_MM_OWNER */
2755 
2756 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2757 		unsigned int limit)
2758 {
2759 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2760 }
2761 
2762 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2763 		unsigned int limit)
2764 {
2765 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2766 }
2767 
2768 static inline unsigned long rlimit(unsigned int limit)
2769 {
2770 	return task_rlimit(current, limit);
2771 }
2772 
2773 static inline unsigned long rlimit_max(unsigned int limit)
2774 {
2775 	return task_rlimit_max(current, limit);
2776 }
2777 
2778 #endif
2779