xref: /linux/include/linux/sched.h (revision 460ea8980511c01c1551012b9a6ec6a06d02da59)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <linux/rv.h>
39 #include <linux/livepatch_sched.h>
40 #include <asm/kmap_size.h>
41 
42 /* task_struct member predeclarations (sorted alphabetically): */
43 struct audit_context;
44 struct bio_list;
45 struct blk_plug;
46 struct bpf_local_storage;
47 struct bpf_run_ctx;
48 struct capture_control;
49 struct cfs_rq;
50 struct fs_struct;
51 struct futex_pi_state;
52 struct io_context;
53 struct io_uring_task;
54 struct mempolicy;
55 struct nameidata;
56 struct nsproxy;
57 struct perf_event_context;
58 struct pid_namespace;
59 struct pipe_inode_info;
60 struct rcu_node;
61 struct reclaim_state;
62 struct robust_list_head;
63 struct root_domain;
64 struct rq;
65 struct sched_attr;
66 struct sched_param;
67 struct seq_file;
68 struct sighand_struct;
69 struct signal_struct;
70 struct task_delay_info;
71 struct task_group;
72 struct user_event_mm;
73 
74 /*
75  * Task state bitmask. NOTE! These bits are also
76  * encoded in fs/proc/array.c: get_task_state().
77  *
78  * We have two separate sets of flags: task->state
79  * is about runnability, while task->exit_state are
80  * about the task exiting. Confusing, but this way
81  * modifying one set can't modify the other one by
82  * mistake.
83  */
84 
85 /* Used in tsk->state: */
86 #define TASK_RUNNING			0x00000000
87 #define TASK_INTERRUPTIBLE		0x00000001
88 #define TASK_UNINTERRUPTIBLE		0x00000002
89 #define __TASK_STOPPED			0x00000004
90 #define __TASK_TRACED			0x00000008
91 /* Used in tsk->exit_state: */
92 #define EXIT_DEAD			0x00000010
93 #define EXIT_ZOMBIE			0x00000020
94 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
95 /* Used in tsk->state again: */
96 #define TASK_PARKED			0x00000040
97 #define TASK_DEAD			0x00000080
98 #define TASK_WAKEKILL			0x00000100
99 #define TASK_WAKING			0x00000200
100 #define TASK_NOLOAD			0x00000400
101 #define TASK_NEW			0x00000800
102 #define TASK_RTLOCK_WAIT		0x00001000
103 #define TASK_FREEZABLE			0x00002000
104 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
105 #define TASK_FROZEN			0x00008000
106 #define TASK_STATE_MAX			0x00010000
107 
108 #define TASK_ANY			(TASK_STATE_MAX-1)
109 
110 /*
111  * DO NOT ADD ANY NEW USERS !
112  */
113 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
114 
115 /* Convenience macros for the sake of set_current_state: */
116 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
117 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
118 #define TASK_TRACED			__TASK_TRACED
119 
120 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
121 
122 /* Convenience macros for the sake of wake_up(): */
123 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
124 
125 /* get_task_state(): */
126 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
127 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
128 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
129 					 TASK_PARKED)
130 
131 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
132 
133 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
134 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
135 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
136 
137 /*
138  * Special states are those that do not use the normal wait-loop pattern. See
139  * the comment with set_special_state().
140  */
141 #define is_special_task_state(state)				\
142 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
143 
144 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
145 # define debug_normal_state_change(state_value)				\
146 	do {								\
147 		WARN_ON_ONCE(is_special_task_state(state_value));	\
148 		current->task_state_change = _THIS_IP_;			\
149 	} while (0)
150 
151 # define debug_special_state_change(state_value)			\
152 	do {								\
153 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
154 		current->task_state_change = _THIS_IP_;			\
155 	} while (0)
156 
157 # define debug_rtlock_wait_set_state()					\
158 	do {								 \
159 		current->saved_state_change = current->task_state_change;\
160 		current->task_state_change = _THIS_IP_;			 \
161 	} while (0)
162 
163 # define debug_rtlock_wait_restore_state()				\
164 	do {								 \
165 		current->task_state_change = current->saved_state_change;\
166 	} while (0)
167 
168 #else
169 # define debug_normal_state_change(cond)	do { } while (0)
170 # define debug_special_state_change(cond)	do { } while (0)
171 # define debug_rtlock_wait_set_state()		do { } while (0)
172 # define debug_rtlock_wait_restore_state()	do { } while (0)
173 #endif
174 
175 /*
176  * set_current_state() includes a barrier so that the write of current->state
177  * is correctly serialised wrt the caller's subsequent test of whether to
178  * actually sleep:
179  *
180  *   for (;;) {
181  *	set_current_state(TASK_UNINTERRUPTIBLE);
182  *	if (CONDITION)
183  *	   break;
184  *
185  *	schedule();
186  *   }
187  *   __set_current_state(TASK_RUNNING);
188  *
189  * If the caller does not need such serialisation (because, for instance, the
190  * CONDITION test and condition change and wakeup are under the same lock) then
191  * use __set_current_state().
192  *
193  * The above is typically ordered against the wakeup, which does:
194  *
195  *   CONDITION = 1;
196  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
197  *
198  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
199  * accessing p->state.
200  *
201  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
202  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
203  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
204  *
205  * However, with slightly different timing the wakeup TASK_RUNNING store can
206  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
207  * a problem either because that will result in one extra go around the loop
208  * and our @cond test will save the day.
209  *
210  * Also see the comments of try_to_wake_up().
211  */
212 #define __set_current_state(state_value)				\
213 	do {								\
214 		debug_normal_state_change((state_value));		\
215 		WRITE_ONCE(current->__state, (state_value));		\
216 	} while (0)
217 
218 #define set_current_state(state_value)					\
219 	do {								\
220 		debug_normal_state_change((state_value));		\
221 		smp_store_mb(current->__state, (state_value));		\
222 	} while (0)
223 
224 /*
225  * set_special_state() should be used for those states when the blocking task
226  * can not use the regular condition based wait-loop. In that case we must
227  * serialize against wakeups such that any possible in-flight TASK_RUNNING
228  * stores will not collide with our state change.
229  */
230 #define set_special_state(state_value)					\
231 	do {								\
232 		unsigned long flags; /* may shadow */			\
233 									\
234 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
235 		debug_special_state_change((state_value));		\
236 		WRITE_ONCE(current->__state, (state_value));		\
237 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
238 	} while (0)
239 
240 /*
241  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
242  *
243  * RT's spin/rwlock substitutions are state preserving. The state of the
244  * task when blocking on the lock is saved in task_struct::saved_state and
245  * restored after the lock has been acquired.  These operations are
246  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
247  * lock related wakeups while the task is blocked on the lock are
248  * redirected to operate on task_struct::saved_state to ensure that these
249  * are not dropped. On restore task_struct::saved_state is set to
250  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
251  *
252  * The lock operation looks like this:
253  *
254  *	current_save_and_set_rtlock_wait_state();
255  *	for (;;) {
256  *		if (try_lock())
257  *			break;
258  *		raw_spin_unlock_irq(&lock->wait_lock);
259  *		schedule_rtlock();
260  *		raw_spin_lock_irq(&lock->wait_lock);
261  *		set_current_state(TASK_RTLOCK_WAIT);
262  *	}
263  *	current_restore_rtlock_saved_state();
264  */
265 #define current_save_and_set_rtlock_wait_state()			\
266 	do {								\
267 		lockdep_assert_irqs_disabled();				\
268 		raw_spin_lock(&current->pi_lock);			\
269 		current->saved_state = current->__state;		\
270 		debug_rtlock_wait_set_state();				\
271 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
272 		raw_spin_unlock(&current->pi_lock);			\
273 	} while (0);
274 
275 #define current_restore_rtlock_saved_state()				\
276 	do {								\
277 		lockdep_assert_irqs_disabled();				\
278 		raw_spin_lock(&current->pi_lock);			\
279 		debug_rtlock_wait_restore_state();			\
280 		WRITE_ONCE(current->__state, current->saved_state);	\
281 		current->saved_state = TASK_RUNNING;			\
282 		raw_spin_unlock(&current->pi_lock);			\
283 	} while (0);
284 
285 #define get_current_state()	READ_ONCE(current->__state)
286 
287 /*
288  * Define the task command name length as enum, then it can be visible to
289  * BPF programs.
290  */
291 enum {
292 	TASK_COMM_LEN = 16,
293 };
294 
295 extern void scheduler_tick(void);
296 
297 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
298 
299 extern long schedule_timeout(long timeout);
300 extern long schedule_timeout_interruptible(long timeout);
301 extern long schedule_timeout_killable(long timeout);
302 extern long schedule_timeout_uninterruptible(long timeout);
303 extern long schedule_timeout_idle(long timeout);
304 asmlinkage void schedule(void);
305 extern void schedule_preempt_disabled(void);
306 asmlinkage void preempt_schedule_irq(void);
307 #ifdef CONFIG_PREEMPT_RT
308  extern void schedule_rtlock(void);
309 #endif
310 
311 extern int __must_check io_schedule_prepare(void);
312 extern void io_schedule_finish(int token);
313 extern long io_schedule_timeout(long timeout);
314 extern void io_schedule(void);
315 
316 /**
317  * struct prev_cputime - snapshot of system and user cputime
318  * @utime: time spent in user mode
319  * @stime: time spent in system mode
320  * @lock: protects the above two fields
321  *
322  * Stores previous user/system time values such that we can guarantee
323  * monotonicity.
324  */
325 struct prev_cputime {
326 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
327 	u64				utime;
328 	u64				stime;
329 	raw_spinlock_t			lock;
330 #endif
331 };
332 
333 enum vtime_state {
334 	/* Task is sleeping or running in a CPU with VTIME inactive: */
335 	VTIME_INACTIVE = 0,
336 	/* Task is idle */
337 	VTIME_IDLE,
338 	/* Task runs in kernelspace in a CPU with VTIME active: */
339 	VTIME_SYS,
340 	/* Task runs in userspace in a CPU with VTIME active: */
341 	VTIME_USER,
342 	/* Task runs as guests in a CPU with VTIME active: */
343 	VTIME_GUEST,
344 };
345 
346 struct vtime {
347 	seqcount_t		seqcount;
348 	unsigned long long	starttime;
349 	enum vtime_state	state;
350 	unsigned int		cpu;
351 	u64			utime;
352 	u64			stime;
353 	u64			gtime;
354 };
355 
356 /*
357  * Utilization clamp constraints.
358  * @UCLAMP_MIN:	Minimum utilization
359  * @UCLAMP_MAX:	Maximum utilization
360  * @UCLAMP_CNT:	Utilization clamp constraints count
361  */
362 enum uclamp_id {
363 	UCLAMP_MIN = 0,
364 	UCLAMP_MAX,
365 	UCLAMP_CNT
366 };
367 
368 #ifdef CONFIG_SMP
369 extern struct root_domain def_root_domain;
370 extern struct mutex sched_domains_mutex;
371 #endif
372 
373 struct sched_info {
374 #ifdef CONFIG_SCHED_INFO
375 	/* Cumulative counters: */
376 
377 	/* # of times we have run on this CPU: */
378 	unsigned long			pcount;
379 
380 	/* Time spent waiting on a runqueue: */
381 	unsigned long long		run_delay;
382 
383 	/* Timestamps: */
384 
385 	/* When did we last run on a CPU? */
386 	unsigned long long		last_arrival;
387 
388 	/* When were we last queued to run? */
389 	unsigned long long		last_queued;
390 
391 #endif /* CONFIG_SCHED_INFO */
392 };
393 
394 /*
395  * Integer metrics need fixed point arithmetic, e.g., sched/fair
396  * has a few: load, load_avg, util_avg, freq, and capacity.
397  *
398  * We define a basic fixed point arithmetic range, and then formalize
399  * all these metrics based on that basic range.
400  */
401 # define SCHED_FIXEDPOINT_SHIFT		10
402 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
403 
404 /* Increase resolution of cpu_capacity calculations */
405 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
406 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
407 
408 struct load_weight {
409 	unsigned long			weight;
410 	u32				inv_weight;
411 };
412 
413 /**
414  * struct util_est - Estimation utilization of FAIR tasks
415  * @enqueued: instantaneous estimated utilization of a task/cpu
416  * @ewma:     the Exponential Weighted Moving Average (EWMA)
417  *            utilization of a task
418  *
419  * Support data structure to track an Exponential Weighted Moving Average
420  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
421  * average each time a task completes an activation. Sample's weight is chosen
422  * so that the EWMA will be relatively insensitive to transient changes to the
423  * task's workload.
424  *
425  * The enqueued attribute has a slightly different meaning for tasks and cpus:
426  * - task:   the task's util_avg at last task dequeue time
427  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
428  * Thus, the util_est.enqueued of a task represents the contribution on the
429  * estimated utilization of the CPU where that task is currently enqueued.
430  *
431  * Only for tasks we track a moving average of the past instantaneous
432  * estimated utilization. This allows to absorb sporadic drops in utilization
433  * of an otherwise almost periodic task.
434  *
435  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
436  * updates. When a task is dequeued, its util_est should not be updated if its
437  * util_avg has not been updated in the meantime.
438  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
439  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
440  * for a task) it is safe to use MSB.
441  */
442 struct util_est {
443 	unsigned int			enqueued;
444 	unsigned int			ewma;
445 #define UTIL_EST_WEIGHT_SHIFT		2
446 #define UTIL_AVG_UNCHANGED		0x80000000
447 } __attribute__((__aligned__(sizeof(u64))));
448 
449 /*
450  * The load/runnable/util_avg accumulates an infinite geometric series
451  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
452  *
453  * [load_avg definition]
454  *
455  *   load_avg = runnable% * scale_load_down(load)
456  *
457  * [runnable_avg definition]
458  *
459  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
460  *
461  * [util_avg definition]
462  *
463  *   util_avg = running% * SCHED_CAPACITY_SCALE
464  *
465  * where runnable% is the time ratio that a sched_entity is runnable and
466  * running% the time ratio that a sched_entity is running.
467  *
468  * For cfs_rq, they are the aggregated values of all runnable and blocked
469  * sched_entities.
470  *
471  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
472  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
473  * for computing those signals (see update_rq_clock_pelt())
474  *
475  * N.B., the above ratios (runnable% and running%) themselves are in the
476  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
477  * to as large a range as necessary. This is for example reflected by
478  * util_avg's SCHED_CAPACITY_SCALE.
479  *
480  * [Overflow issue]
481  *
482  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
483  * with the highest load (=88761), always runnable on a single cfs_rq,
484  * and should not overflow as the number already hits PID_MAX_LIMIT.
485  *
486  * For all other cases (including 32-bit kernels), struct load_weight's
487  * weight will overflow first before we do, because:
488  *
489  *    Max(load_avg) <= Max(load.weight)
490  *
491  * Then it is the load_weight's responsibility to consider overflow
492  * issues.
493  */
494 struct sched_avg {
495 	u64				last_update_time;
496 	u64				load_sum;
497 	u64				runnable_sum;
498 	u32				util_sum;
499 	u32				period_contrib;
500 	unsigned long			load_avg;
501 	unsigned long			runnable_avg;
502 	unsigned long			util_avg;
503 	struct util_est			util_est;
504 } ____cacheline_aligned;
505 
506 struct sched_statistics {
507 #ifdef CONFIG_SCHEDSTATS
508 	u64				wait_start;
509 	u64				wait_max;
510 	u64				wait_count;
511 	u64				wait_sum;
512 	u64				iowait_count;
513 	u64				iowait_sum;
514 
515 	u64				sleep_start;
516 	u64				sleep_max;
517 	s64				sum_sleep_runtime;
518 
519 	u64				block_start;
520 	u64				block_max;
521 	s64				sum_block_runtime;
522 
523 	u64				exec_max;
524 	u64				slice_max;
525 
526 	u64				nr_migrations_cold;
527 	u64				nr_failed_migrations_affine;
528 	u64				nr_failed_migrations_running;
529 	u64				nr_failed_migrations_hot;
530 	u64				nr_forced_migrations;
531 
532 	u64				nr_wakeups;
533 	u64				nr_wakeups_sync;
534 	u64				nr_wakeups_migrate;
535 	u64				nr_wakeups_local;
536 	u64				nr_wakeups_remote;
537 	u64				nr_wakeups_affine;
538 	u64				nr_wakeups_affine_attempts;
539 	u64				nr_wakeups_passive;
540 	u64				nr_wakeups_idle;
541 
542 #ifdef CONFIG_SCHED_CORE
543 	u64				core_forceidle_sum;
544 #endif
545 #endif /* CONFIG_SCHEDSTATS */
546 } ____cacheline_aligned;
547 
548 struct sched_entity {
549 	/* For load-balancing: */
550 	struct load_weight		load;
551 	struct rb_node			run_node;
552 	struct list_head		group_node;
553 	unsigned int			on_rq;
554 
555 	u64				exec_start;
556 	u64				sum_exec_runtime;
557 	u64				vruntime;
558 	u64				prev_sum_exec_runtime;
559 
560 	u64				nr_migrations;
561 
562 #ifdef CONFIG_FAIR_GROUP_SCHED
563 	int				depth;
564 	struct sched_entity		*parent;
565 	/* rq on which this entity is (to be) queued: */
566 	struct cfs_rq			*cfs_rq;
567 	/* rq "owned" by this entity/group: */
568 	struct cfs_rq			*my_q;
569 	/* cached value of my_q->h_nr_running */
570 	unsigned long			runnable_weight;
571 #endif
572 
573 #ifdef CONFIG_SMP
574 	/*
575 	 * Per entity load average tracking.
576 	 *
577 	 * Put into separate cache line so it does not
578 	 * collide with read-mostly values above.
579 	 */
580 	struct sched_avg		avg;
581 #endif
582 };
583 
584 struct sched_rt_entity {
585 	struct list_head		run_list;
586 	unsigned long			timeout;
587 	unsigned long			watchdog_stamp;
588 	unsigned int			time_slice;
589 	unsigned short			on_rq;
590 	unsigned short			on_list;
591 
592 	struct sched_rt_entity		*back;
593 #ifdef CONFIG_RT_GROUP_SCHED
594 	struct sched_rt_entity		*parent;
595 	/* rq on which this entity is (to be) queued: */
596 	struct rt_rq			*rt_rq;
597 	/* rq "owned" by this entity/group: */
598 	struct rt_rq			*my_q;
599 #endif
600 } __randomize_layout;
601 
602 struct sched_dl_entity {
603 	struct rb_node			rb_node;
604 
605 	/*
606 	 * Original scheduling parameters. Copied here from sched_attr
607 	 * during sched_setattr(), they will remain the same until
608 	 * the next sched_setattr().
609 	 */
610 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
611 	u64				dl_deadline;	/* Relative deadline of each instance	*/
612 	u64				dl_period;	/* Separation of two instances (period) */
613 	u64				dl_bw;		/* dl_runtime / dl_period		*/
614 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
615 
616 	/*
617 	 * Actual scheduling parameters. Initialized with the values above,
618 	 * they are continuously updated during task execution. Note that
619 	 * the remaining runtime could be < 0 in case we are in overrun.
620 	 */
621 	s64				runtime;	/* Remaining runtime for this instance	*/
622 	u64				deadline;	/* Absolute deadline for this instance	*/
623 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
624 
625 	/*
626 	 * Some bool flags:
627 	 *
628 	 * @dl_throttled tells if we exhausted the runtime. If so, the
629 	 * task has to wait for a replenishment to be performed at the
630 	 * next firing of dl_timer.
631 	 *
632 	 * @dl_yielded tells if task gave up the CPU before consuming
633 	 * all its available runtime during the last job.
634 	 *
635 	 * @dl_non_contending tells if the task is inactive while still
636 	 * contributing to the active utilization. In other words, it
637 	 * indicates if the inactive timer has been armed and its handler
638 	 * has not been executed yet. This flag is useful to avoid race
639 	 * conditions between the inactive timer handler and the wakeup
640 	 * code.
641 	 *
642 	 * @dl_overrun tells if the task asked to be informed about runtime
643 	 * overruns.
644 	 */
645 	unsigned int			dl_throttled      : 1;
646 	unsigned int			dl_yielded        : 1;
647 	unsigned int			dl_non_contending : 1;
648 	unsigned int			dl_overrun	  : 1;
649 
650 	/*
651 	 * Bandwidth enforcement timer. Each -deadline task has its
652 	 * own bandwidth to be enforced, thus we need one timer per task.
653 	 */
654 	struct hrtimer			dl_timer;
655 
656 	/*
657 	 * Inactive timer, responsible for decreasing the active utilization
658 	 * at the "0-lag time". When a -deadline task blocks, it contributes
659 	 * to GRUB's active utilization until the "0-lag time", hence a
660 	 * timer is needed to decrease the active utilization at the correct
661 	 * time.
662 	 */
663 	struct hrtimer inactive_timer;
664 
665 #ifdef CONFIG_RT_MUTEXES
666 	/*
667 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
668 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
669 	 * to (the original one/itself).
670 	 */
671 	struct sched_dl_entity *pi_se;
672 #endif
673 };
674 
675 #ifdef CONFIG_UCLAMP_TASK
676 /* Number of utilization clamp buckets (shorter alias) */
677 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
678 
679 /*
680  * Utilization clamp for a scheduling entity
681  * @value:		clamp value "assigned" to a se
682  * @bucket_id:		bucket index corresponding to the "assigned" value
683  * @active:		the se is currently refcounted in a rq's bucket
684  * @user_defined:	the requested clamp value comes from user-space
685  *
686  * The bucket_id is the index of the clamp bucket matching the clamp value
687  * which is pre-computed and stored to avoid expensive integer divisions from
688  * the fast path.
689  *
690  * The active bit is set whenever a task has got an "effective" value assigned,
691  * which can be different from the clamp value "requested" from user-space.
692  * This allows to know a task is refcounted in the rq's bucket corresponding
693  * to the "effective" bucket_id.
694  *
695  * The user_defined bit is set whenever a task has got a task-specific clamp
696  * value requested from userspace, i.e. the system defaults apply to this task
697  * just as a restriction. This allows to relax default clamps when a less
698  * restrictive task-specific value has been requested, thus allowing to
699  * implement a "nice" semantic. For example, a task running with a 20%
700  * default boost can still drop its own boosting to 0%.
701  */
702 struct uclamp_se {
703 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
704 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
705 	unsigned int active		: 1;
706 	unsigned int user_defined	: 1;
707 };
708 #endif /* CONFIG_UCLAMP_TASK */
709 
710 union rcu_special {
711 	struct {
712 		u8			blocked;
713 		u8			need_qs;
714 		u8			exp_hint; /* Hint for performance. */
715 		u8			need_mb; /* Readers need smp_mb(). */
716 	} b; /* Bits. */
717 	u32 s; /* Set of bits. */
718 };
719 
720 enum perf_event_task_context {
721 	perf_invalid_context = -1,
722 	perf_hw_context = 0,
723 	perf_sw_context,
724 	perf_nr_task_contexts,
725 };
726 
727 struct wake_q_node {
728 	struct wake_q_node *next;
729 };
730 
731 struct kmap_ctrl {
732 #ifdef CONFIG_KMAP_LOCAL
733 	int				idx;
734 	pte_t				pteval[KM_MAX_IDX];
735 #endif
736 };
737 
738 struct task_struct {
739 #ifdef CONFIG_THREAD_INFO_IN_TASK
740 	/*
741 	 * For reasons of header soup (see current_thread_info()), this
742 	 * must be the first element of task_struct.
743 	 */
744 	struct thread_info		thread_info;
745 #endif
746 	unsigned int			__state;
747 
748 #ifdef CONFIG_PREEMPT_RT
749 	/* saved state for "spinlock sleepers" */
750 	unsigned int			saved_state;
751 #endif
752 
753 	/*
754 	 * This begins the randomizable portion of task_struct. Only
755 	 * scheduling-critical items should be added above here.
756 	 */
757 	randomized_struct_fields_start
758 
759 	void				*stack;
760 	refcount_t			usage;
761 	/* Per task flags (PF_*), defined further below: */
762 	unsigned int			flags;
763 	unsigned int			ptrace;
764 
765 #ifdef CONFIG_SMP
766 	int				on_cpu;
767 	struct __call_single_node	wake_entry;
768 	unsigned int			wakee_flips;
769 	unsigned long			wakee_flip_decay_ts;
770 	struct task_struct		*last_wakee;
771 
772 	/*
773 	 * recent_used_cpu is initially set as the last CPU used by a task
774 	 * that wakes affine another task. Waker/wakee relationships can
775 	 * push tasks around a CPU where each wakeup moves to the next one.
776 	 * Tracking a recently used CPU allows a quick search for a recently
777 	 * used CPU that may be idle.
778 	 */
779 	int				recent_used_cpu;
780 	int				wake_cpu;
781 #endif
782 	int				on_rq;
783 
784 	int				prio;
785 	int				static_prio;
786 	int				normal_prio;
787 	unsigned int			rt_priority;
788 
789 	struct sched_entity		se;
790 	struct sched_rt_entity		rt;
791 	struct sched_dl_entity		dl;
792 	const struct sched_class	*sched_class;
793 
794 #ifdef CONFIG_SCHED_CORE
795 	struct rb_node			core_node;
796 	unsigned long			core_cookie;
797 	unsigned int			core_occupation;
798 #endif
799 
800 #ifdef CONFIG_CGROUP_SCHED
801 	struct task_group		*sched_task_group;
802 #endif
803 
804 #ifdef CONFIG_UCLAMP_TASK
805 	/*
806 	 * Clamp values requested for a scheduling entity.
807 	 * Must be updated with task_rq_lock() held.
808 	 */
809 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
810 	/*
811 	 * Effective clamp values used for a scheduling entity.
812 	 * Must be updated with task_rq_lock() held.
813 	 */
814 	struct uclamp_se		uclamp[UCLAMP_CNT];
815 #endif
816 
817 	struct sched_statistics         stats;
818 
819 #ifdef CONFIG_PREEMPT_NOTIFIERS
820 	/* List of struct preempt_notifier: */
821 	struct hlist_head		preempt_notifiers;
822 #endif
823 
824 #ifdef CONFIG_BLK_DEV_IO_TRACE
825 	unsigned int			btrace_seq;
826 #endif
827 
828 	unsigned int			policy;
829 	int				nr_cpus_allowed;
830 	const cpumask_t			*cpus_ptr;
831 	cpumask_t			*user_cpus_ptr;
832 	cpumask_t			cpus_mask;
833 	void				*migration_pending;
834 #ifdef CONFIG_SMP
835 	unsigned short			migration_disabled;
836 #endif
837 	unsigned short			migration_flags;
838 
839 #ifdef CONFIG_PREEMPT_RCU
840 	int				rcu_read_lock_nesting;
841 	union rcu_special		rcu_read_unlock_special;
842 	struct list_head		rcu_node_entry;
843 	struct rcu_node			*rcu_blocked_node;
844 #endif /* #ifdef CONFIG_PREEMPT_RCU */
845 
846 #ifdef CONFIG_TASKS_RCU
847 	unsigned long			rcu_tasks_nvcsw;
848 	u8				rcu_tasks_holdout;
849 	u8				rcu_tasks_idx;
850 	int				rcu_tasks_idle_cpu;
851 	struct list_head		rcu_tasks_holdout_list;
852 #endif /* #ifdef CONFIG_TASKS_RCU */
853 
854 #ifdef CONFIG_TASKS_TRACE_RCU
855 	int				trc_reader_nesting;
856 	int				trc_ipi_to_cpu;
857 	union rcu_special		trc_reader_special;
858 	struct list_head		trc_holdout_list;
859 	struct list_head		trc_blkd_node;
860 	int				trc_blkd_cpu;
861 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
862 
863 	struct sched_info		sched_info;
864 
865 	struct list_head		tasks;
866 #ifdef CONFIG_SMP
867 	struct plist_node		pushable_tasks;
868 	struct rb_node			pushable_dl_tasks;
869 #endif
870 
871 	struct mm_struct		*mm;
872 	struct mm_struct		*active_mm;
873 
874 	int				exit_state;
875 	int				exit_code;
876 	int				exit_signal;
877 	/* The signal sent when the parent dies: */
878 	int				pdeath_signal;
879 	/* JOBCTL_*, siglock protected: */
880 	unsigned long			jobctl;
881 
882 	/* Used for emulating ABI behavior of previous Linux versions: */
883 	unsigned int			personality;
884 
885 	/* Scheduler bits, serialized by scheduler locks: */
886 	unsigned			sched_reset_on_fork:1;
887 	unsigned			sched_contributes_to_load:1;
888 	unsigned			sched_migrated:1;
889 
890 	/* Force alignment to the next boundary: */
891 	unsigned			:0;
892 
893 	/* Unserialized, strictly 'current' */
894 
895 	/*
896 	 * This field must not be in the scheduler word above due to wakelist
897 	 * queueing no longer being serialized by p->on_cpu. However:
898 	 *
899 	 * p->XXX = X;			ttwu()
900 	 * schedule()			  if (p->on_rq && ..) // false
901 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
902 	 *   deactivate_task()		      ttwu_queue_wakelist())
903 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
904 	 *
905 	 * guarantees all stores of 'current' are visible before
906 	 * ->sched_remote_wakeup gets used, so it can be in this word.
907 	 */
908 	unsigned			sched_remote_wakeup:1;
909 
910 	/* Bit to tell LSMs we're in execve(): */
911 	unsigned			in_execve:1;
912 	unsigned			in_iowait:1;
913 #ifndef TIF_RESTORE_SIGMASK
914 	unsigned			restore_sigmask:1;
915 #endif
916 #ifdef CONFIG_MEMCG
917 	unsigned			in_user_fault:1;
918 #endif
919 #ifdef CONFIG_LRU_GEN
920 	/* whether the LRU algorithm may apply to this access */
921 	unsigned			in_lru_fault:1;
922 #endif
923 #ifdef CONFIG_COMPAT_BRK
924 	unsigned			brk_randomized:1;
925 #endif
926 #ifdef CONFIG_CGROUPS
927 	/* disallow userland-initiated cgroup migration */
928 	unsigned			no_cgroup_migration:1;
929 	/* task is frozen/stopped (used by the cgroup freezer) */
930 	unsigned			frozen:1;
931 #endif
932 #ifdef CONFIG_BLK_CGROUP
933 	unsigned			use_memdelay:1;
934 #endif
935 #ifdef CONFIG_PSI
936 	/* Stalled due to lack of memory */
937 	unsigned			in_memstall:1;
938 #endif
939 #ifdef CONFIG_PAGE_OWNER
940 	/* Used by page_owner=on to detect recursion in page tracking. */
941 	unsigned			in_page_owner:1;
942 #endif
943 #ifdef CONFIG_EVENTFD
944 	/* Recursion prevention for eventfd_signal() */
945 	unsigned			in_eventfd:1;
946 #endif
947 #ifdef CONFIG_IOMMU_SVA
948 	unsigned			pasid_activated:1;
949 #endif
950 #ifdef	CONFIG_CPU_SUP_INTEL
951 	unsigned			reported_split_lock:1;
952 #endif
953 #ifdef CONFIG_TASK_DELAY_ACCT
954 	/* delay due to memory thrashing */
955 	unsigned                        in_thrashing:1;
956 #endif
957 
958 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
959 
960 	struct restart_block		restart_block;
961 
962 	pid_t				pid;
963 	pid_t				tgid;
964 
965 #ifdef CONFIG_STACKPROTECTOR
966 	/* Canary value for the -fstack-protector GCC feature: */
967 	unsigned long			stack_canary;
968 #endif
969 	/*
970 	 * Pointers to the (original) parent process, youngest child, younger sibling,
971 	 * older sibling, respectively.  (p->father can be replaced with
972 	 * p->real_parent->pid)
973 	 */
974 
975 	/* Real parent process: */
976 	struct task_struct __rcu	*real_parent;
977 
978 	/* Recipient of SIGCHLD, wait4() reports: */
979 	struct task_struct __rcu	*parent;
980 
981 	/*
982 	 * Children/sibling form the list of natural children:
983 	 */
984 	struct list_head		children;
985 	struct list_head		sibling;
986 	struct task_struct		*group_leader;
987 
988 	/*
989 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
990 	 *
991 	 * This includes both natural children and PTRACE_ATTACH targets.
992 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
993 	 */
994 	struct list_head		ptraced;
995 	struct list_head		ptrace_entry;
996 
997 	/* PID/PID hash table linkage. */
998 	struct pid			*thread_pid;
999 	struct hlist_node		pid_links[PIDTYPE_MAX];
1000 	struct list_head		thread_group;
1001 	struct list_head		thread_node;
1002 
1003 	struct completion		*vfork_done;
1004 
1005 	/* CLONE_CHILD_SETTID: */
1006 	int __user			*set_child_tid;
1007 
1008 	/* CLONE_CHILD_CLEARTID: */
1009 	int __user			*clear_child_tid;
1010 
1011 	/* PF_KTHREAD | PF_IO_WORKER */
1012 	void				*worker_private;
1013 
1014 	u64				utime;
1015 	u64				stime;
1016 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1017 	u64				utimescaled;
1018 	u64				stimescaled;
1019 #endif
1020 	u64				gtime;
1021 	struct prev_cputime		prev_cputime;
1022 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1023 	struct vtime			vtime;
1024 #endif
1025 
1026 #ifdef CONFIG_NO_HZ_FULL
1027 	atomic_t			tick_dep_mask;
1028 #endif
1029 	/* Context switch counts: */
1030 	unsigned long			nvcsw;
1031 	unsigned long			nivcsw;
1032 
1033 	/* Monotonic time in nsecs: */
1034 	u64				start_time;
1035 
1036 	/* Boot based time in nsecs: */
1037 	u64				start_boottime;
1038 
1039 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1040 	unsigned long			min_flt;
1041 	unsigned long			maj_flt;
1042 
1043 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1044 	struct posix_cputimers		posix_cputimers;
1045 
1046 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1047 	struct posix_cputimers_work	posix_cputimers_work;
1048 #endif
1049 
1050 	/* Process credentials: */
1051 
1052 	/* Tracer's credentials at attach: */
1053 	const struct cred __rcu		*ptracer_cred;
1054 
1055 	/* Objective and real subjective task credentials (COW): */
1056 	const struct cred __rcu		*real_cred;
1057 
1058 	/* Effective (overridable) subjective task credentials (COW): */
1059 	const struct cred __rcu		*cred;
1060 
1061 #ifdef CONFIG_KEYS
1062 	/* Cached requested key. */
1063 	struct key			*cached_requested_key;
1064 #endif
1065 
1066 	/*
1067 	 * executable name, excluding path.
1068 	 *
1069 	 * - normally initialized setup_new_exec()
1070 	 * - access it with [gs]et_task_comm()
1071 	 * - lock it with task_lock()
1072 	 */
1073 	char				comm[TASK_COMM_LEN];
1074 
1075 	struct nameidata		*nameidata;
1076 
1077 #ifdef CONFIG_SYSVIPC
1078 	struct sysv_sem			sysvsem;
1079 	struct sysv_shm			sysvshm;
1080 #endif
1081 #ifdef CONFIG_DETECT_HUNG_TASK
1082 	unsigned long			last_switch_count;
1083 	unsigned long			last_switch_time;
1084 #endif
1085 	/* Filesystem information: */
1086 	struct fs_struct		*fs;
1087 
1088 	/* Open file information: */
1089 	struct files_struct		*files;
1090 
1091 #ifdef CONFIG_IO_URING
1092 	struct io_uring_task		*io_uring;
1093 #endif
1094 
1095 	/* Namespaces: */
1096 	struct nsproxy			*nsproxy;
1097 
1098 	/* Signal handlers: */
1099 	struct signal_struct		*signal;
1100 	struct sighand_struct __rcu		*sighand;
1101 	sigset_t			blocked;
1102 	sigset_t			real_blocked;
1103 	/* Restored if set_restore_sigmask() was used: */
1104 	sigset_t			saved_sigmask;
1105 	struct sigpending		pending;
1106 	unsigned long			sas_ss_sp;
1107 	size_t				sas_ss_size;
1108 	unsigned int			sas_ss_flags;
1109 
1110 	struct callback_head		*task_works;
1111 
1112 #ifdef CONFIG_AUDIT
1113 #ifdef CONFIG_AUDITSYSCALL
1114 	struct audit_context		*audit_context;
1115 #endif
1116 	kuid_t				loginuid;
1117 	unsigned int			sessionid;
1118 #endif
1119 	struct seccomp			seccomp;
1120 	struct syscall_user_dispatch	syscall_dispatch;
1121 
1122 	/* Thread group tracking: */
1123 	u64				parent_exec_id;
1124 	u64				self_exec_id;
1125 
1126 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1127 	spinlock_t			alloc_lock;
1128 
1129 	/* Protection of the PI data structures: */
1130 	raw_spinlock_t			pi_lock;
1131 
1132 	struct wake_q_node		wake_q;
1133 
1134 #ifdef CONFIG_RT_MUTEXES
1135 	/* PI waiters blocked on a rt_mutex held by this task: */
1136 	struct rb_root_cached		pi_waiters;
1137 	/* Updated under owner's pi_lock and rq lock */
1138 	struct task_struct		*pi_top_task;
1139 	/* Deadlock detection and priority inheritance handling: */
1140 	struct rt_mutex_waiter		*pi_blocked_on;
1141 #endif
1142 
1143 #ifdef CONFIG_DEBUG_MUTEXES
1144 	/* Mutex deadlock detection: */
1145 	struct mutex_waiter		*blocked_on;
1146 #endif
1147 
1148 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1149 	int				non_block_count;
1150 #endif
1151 
1152 #ifdef CONFIG_TRACE_IRQFLAGS
1153 	struct irqtrace_events		irqtrace;
1154 	unsigned int			hardirq_threaded;
1155 	u64				hardirq_chain_key;
1156 	int				softirqs_enabled;
1157 	int				softirq_context;
1158 	int				irq_config;
1159 #endif
1160 #ifdef CONFIG_PREEMPT_RT
1161 	int				softirq_disable_cnt;
1162 #endif
1163 
1164 #ifdef CONFIG_LOCKDEP
1165 # define MAX_LOCK_DEPTH			48UL
1166 	u64				curr_chain_key;
1167 	int				lockdep_depth;
1168 	unsigned int			lockdep_recursion;
1169 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1170 #endif
1171 
1172 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1173 	unsigned int			in_ubsan;
1174 #endif
1175 
1176 	/* Journalling filesystem info: */
1177 	void				*journal_info;
1178 
1179 	/* Stacked block device info: */
1180 	struct bio_list			*bio_list;
1181 
1182 	/* Stack plugging: */
1183 	struct blk_plug			*plug;
1184 
1185 	/* VM state: */
1186 	struct reclaim_state		*reclaim_state;
1187 
1188 	struct io_context		*io_context;
1189 
1190 #ifdef CONFIG_COMPACTION
1191 	struct capture_control		*capture_control;
1192 #endif
1193 	/* Ptrace state: */
1194 	unsigned long			ptrace_message;
1195 	kernel_siginfo_t		*last_siginfo;
1196 
1197 	struct task_io_accounting	ioac;
1198 #ifdef CONFIG_PSI
1199 	/* Pressure stall state */
1200 	unsigned int			psi_flags;
1201 #endif
1202 #ifdef CONFIG_TASK_XACCT
1203 	/* Accumulated RSS usage: */
1204 	u64				acct_rss_mem1;
1205 	/* Accumulated virtual memory usage: */
1206 	u64				acct_vm_mem1;
1207 	/* stime + utime since last update: */
1208 	u64				acct_timexpd;
1209 #endif
1210 #ifdef CONFIG_CPUSETS
1211 	/* Protected by ->alloc_lock: */
1212 	nodemask_t			mems_allowed;
1213 	/* Sequence number to catch updates: */
1214 	seqcount_spinlock_t		mems_allowed_seq;
1215 	int				cpuset_mem_spread_rotor;
1216 	int				cpuset_slab_spread_rotor;
1217 #endif
1218 #ifdef CONFIG_CGROUPS
1219 	/* Control Group info protected by css_set_lock: */
1220 	struct css_set __rcu		*cgroups;
1221 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1222 	struct list_head		cg_list;
1223 #endif
1224 #ifdef CONFIG_X86_CPU_RESCTRL
1225 	u32				closid;
1226 	u32				rmid;
1227 #endif
1228 #ifdef CONFIG_FUTEX
1229 	struct robust_list_head __user	*robust_list;
1230 #ifdef CONFIG_COMPAT
1231 	struct compat_robust_list_head __user *compat_robust_list;
1232 #endif
1233 	struct list_head		pi_state_list;
1234 	struct futex_pi_state		*pi_state_cache;
1235 	struct mutex			futex_exit_mutex;
1236 	unsigned int			futex_state;
1237 #endif
1238 #ifdef CONFIG_PERF_EVENTS
1239 	struct perf_event_context	*perf_event_ctxp;
1240 	struct mutex			perf_event_mutex;
1241 	struct list_head		perf_event_list;
1242 #endif
1243 #ifdef CONFIG_DEBUG_PREEMPT
1244 	unsigned long			preempt_disable_ip;
1245 #endif
1246 #ifdef CONFIG_NUMA
1247 	/* Protected by alloc_lock: */
1248 	struct mempolicy		*mempolicy;
1249 	short				il_prev;
1250 	short				pref_node_fork;
1251 #endif
1252 #ifdef CONFIG_NUMA_BALANCING
1253 	int				numa_scan_seq;
1254 	unsigned int			numa_scan_period;
1255 	unsigned int			numa_scan_period_max;
1256 	int				numa_preferred_nid;
1257 	unsigned long			numa_migrate_retry;
1258 	/* Migration stamp: */
1259 	u64				node_stamp;
1260 	u64				last_task_numa_placement;
1261 	u64				last_sum_exec_runtime;
1262 	struct callback_head		numa_work;
1263 
1264 	/*
1265 	 * This pointer is only modified for current in syscall and
1266 	 * pagefault context (and for tasks being destroyed), so it can be read
1267 	 * from any of the following contexts:
1268 	 *  - RCU read-side critical section
1269 	 *  - current->numa_group from everywhere
1270 	 *  - task's runqueue locked, task not running
1271 	 */
1272 	struct numa_group __rcu		*numa_group;
1273 
1274 	/*
1275 	 * numa_faults is an array split into four regions:
1276 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1277 	 * in this precise order.
1278 	 *
1279 	 * faults_memory: Exponential decaying average of faults on a per-node
1280 	 * basis. Scheduling placement decisions are made based on these
1281 	 * counts. The values remain static for the duration of a PTE scan.
1282 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1283 	 * hinting fault was incurred.
1284 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1285 	 * during the current scan window. When the scan completes, the counts
1286 	 * in faults_memory and faults_cpu decay and these values are copied.
1287 	 */
1288 	unsigned long			*numa_faults;
1289 	unsigned long			total_numa_faults;
1290 
1291 	/*
1292 	 * numa_faults_locality tracks if faults recorded during the last
1293 	 * scan window were remote/local or failed to migrate. The task scan
1294 	 * period is adapted based on the locality of the faults with different
1295 	 * weights depending on whether they were shared or private faults
1296 	 */
1297 	unsigned long			numa_faults_locality[3];
1298 
1299 	unsigned long			numa_pages_migrated;
1300 #endif /* CONFIG_NUMA_BALANCING */
1301 
1302 #ifdef CONFIG_RSEQ
1303 	struct rseq __user *rseq;
1304 	u32 rseq_len;
1305 	u32 rseq_sig;
1306 	/*
1307 	 * RmW on rseq_event_mask must be performed atomically
1308 	 * with respect to preemption.
1309 	 */
1310 	unsigned long rseq_event_mask;
1311 #endif
1312 
1313 #ifdef CONFIG_SCHED_MM_CID
1314 	int				mm_cid;		/* Current cid in mm */
1315 	int				last_mm_cid;	/* Most recent cid in mm */
1316 	int				migrate_from_cpu;
1317 	int				mm_cid_active;	/* Whether cid bitmap is active */
1318 	struct callback_head		cid_work;
1319 #endif
1320 
1321 	struct tlbflush_unmap_batch	tlb_ubc;
1322 
1323 	/* Cache last used pipe for splice(): */
1324 	struct pipe_inode_info		*splice_pipe;
1325 
1326 	struct page_frag		task_frag;
1327 
1328 #ifdef CONFIG_TASK_DELAY_ACCT
1329 	struct task_delay_info		*delays;
1330 #endif
1331 
1332 #ifdef CONFIG_FAULT_INJECTION
1333 	int				make_it_fail;
1334 	unsigned int			fail_nth;
1335 #endif
1336 	/*
1337 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1338 	 * balance_dirty_pages() for a dirty throttling pause:
1339 	 */
1340 	int				nr_dirtied;
1341 	int				nr_dirtied_pause;
1342 	/* Start of a write-and-pause period: */
1343 	unsigned long			dirty_paused_when;
1344 
1345 #ifdef CONFIG_LATENCYTOP
1346 	int				latency_record_count;
1347 	struct latency_record		latency_record[LT_SAVECOUNT];
1348 #endif
1349 	/*
1350 	 * Time slack values; these are used to round up poll() and
1351 	 * select() etc timeout values. These are in nanoseconds.
1352 	 */
1353 	u64				timer_slack_ns;
1354 	u64				default_timer_slack_ns;
1355 
1356 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1357 	unsigned int			kasan_depth;
1358 #endif
1359 
1360 #ifdef CONFIG_KCSAN
1361 	struct kcsan_ctx		kcsan_ctx;
1362 #ifdef CONFIG_TRACE_IRQFLAGS
1363 	struct irqtrace_events		kcsan_save_irqtrace;
1364 #endif
1365 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1366 	int				kcsan_stack_depth;
1367 #endif
1368 #endif
1369 
1370 #ifdef CONFIG_KMSAN
1371 	struct kmsan_ctx		kmsan_ctx;
1372 #endif
1373 
1374 #if IS_ENABLED(CONFIG_KUNIT)
1375 	struct kunit			*kunit_test;
1376 #endif
1377 
1378 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1379 	/* Index of current stored address in ret_stack: */
1380 	int				curr_ret_stack;
1381 	int				curr_ret_depth;
1382 
1383 	/* Stack of return addresses for return function tracing: */
1384 	struct ftrace_ret_stack		*ret_stack;
1385 
1386 	/* Timestamp for last schedule: */
1387 	unsigned long long		ftrace_timestamp;
1388 
1389 	/*
1390 	 * Number of functions that haven't been traced
1391 	 * because of depth overrun:
1392 	 */
1393 	atomic_t			trace_overrun;
1394 
1395 	/* Pause tracing: */
1396 	atomic_t			tracing_graph_pause;
1397 #endif
1398 
1399 #ifdef CONFIG_TRACING
1400 	/* Bitmask and counter of trace recursion: */
1401 	unsigned long			trace_recursion;
1402 #endif /* CONFIG_TRACING */
1403 
1404 #ifdef CONFIG_KCOV
1405 	/* See kernel/kcov.c for more details. */
1406 
1407 	/* Coverage collection mode enabled for this task (0 if disabled): */
1408 	unsigned int			kcov_mode;
1409 
1410 	/* Size of the kcov_area: */
1411 	unsigned int			kcov_size;
1412 
1413 	/* Buffer for coverage collection: */
1414 	void				*kcov_area;
1415 
1416 	/* KCOV descriptor wired with this task or NULL: */
1417 	struct kcov			*kcov;
1418 
1419 	/* KCOV common handle for remote coverage collection: */
1420 	u64				kcov_handle;
1421 
1422 	/* KCOV sequence number: */
1423 	int				kcov_sequence;
1424 
1425 	/* Collect coverage from softirq context: */
1426 	unsigned int			kcov_softirq;
1427 #endif
1428 
1429 #ifdef CONFIG_MEMCG
1430 	struct mem_cgroup		*memcg_in_oom;
1431 	gfp_t				memcg_oom_gfp_mask;
1432 	int				memcg_oom_order;
1433 
1434 	/* Number of pages to reclaim on returning to userland: */
1435 	unsigned int			memcg_nr_pages_over_high;
1436 
1437 	/* Used by memcontrol for targeted memcg charge: */
1438 	struct mem_cgroup		*active_memcg;
1439 #endif
1440 
1441 #ifdef CONFIG_BLK_CGROUP
1442 	struct gendisk			*throttle_disk;
1443 #endif
1444 
1445 #ifdef CONFIG_UPROBES
1446 	struct uprobe_task		*utask;
1447 #endif
1448 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1449 	unsigned int			sequential_io;
1450 	unsigned int			sequential_io_avg;
1451 #endif
1452 	struct kmap_ctrl		kmap_ctrl;
1453 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1454 	unsigned long			task_state_change;
1455 # ifdef CONFIG_PREEMPT_RT
1456 	unsigned long			saved_state_change;
1457 # endif
1458 #endif
1459 	struct rcu_head			rcu;
1460 	refcount_t			rcu_users;
1461 	int				pagefault_disabled;
1462 #ifdef CONFIG_MMU
1463 	struct task_struct		*oom_reaper_list;
1464 	struct timer_list		oom_reaper_timer;
1465 #endif
1466 #ifdef CONFIG_VMAP_STACK
1467 	struct vm_struct		*stack_vm_area;
1468 #endif
1469 #ifdef CONFIG_THREAD_INFO_IN_TASK
1470 	/* A live task holds one reference: */
1471 	refcount_t			stack_refcount;
1472 #endif
1473 #ifdef CONFIG_LIVEPATCH
1474 	int patch_state;
1475 #endif
1476 #ifdef CONFIG_SECURITY
1477 	/* Used by LSM modules for access restriction: */
1478 	void				*security;
1479 #endif
1480 #ifdef CONFIG_BPF_SYSCALL
1481 	/* Used by BPF task local storage */
1482 	struct bpf_local_storage __rcu	*bpf_storage;
1483 	/* Used for BPF run context */
1484 	struct bpf_run_ctx		*bpf_ctx;
1485 #endif
1486 
1487 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1488 	unsigned long			lowest_stack;
1489 	unsigned long			prev_lowest_stack;
1490 #endif
1491 
1492 #ifdef CONFIG_X86_MCE
1493 	void __user			*mce_vaddr;
1494 	__u64				mce_kflags;
1495 	u64				mce_addr;
1496 	__u64				mce_ripv : 1,
1497 					mce_whole_page : 1,
1498 					__mce_reserved : 62;
1499 	struct callback_head		mce_kill_me;
1500 	int				mce_count;
1501 #endif
1502 
1503 #ifdef CONFIG_KRETPROBES
1504 	struct llist_head               kretprobe_instances;
1505 #endif
1506 #ifdef CONFIG_RETHOOK
1507 	struct llist_head               rethooks;
1508 #endif
1509 
1510 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1511 	/*
1512 	 * If L1D flush is supported on mm context switch
1513 	 * then we use this callback head to queue kill work
1514 	 * to kill tasks that are not running on SMT disabled
1515 	 * cores
1516 	 */
1517 	struct callback_head		l1d_flush_kill;
1518 #endif
1519 
1520 #ifdef CONFIG_RV
1521 	/*
1522 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1523 	 * If we find justification for more monitors, we can think
1524 	 * about adding more or developing a dynamic method. So far,
1525 	 * none of these are justified.
1526 	 */
1527 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1528 #endif
1529 
1530 #ifdef CONFIG_USER_EVENTS
1531 	struct user_event_mm		*user_event_mm;
1532 #endif
1533 
1534 	/*
1535 	 * New fields for task_struct should be added above here, so that
1536 	 * they are included in the randomized portion of task_struct.
1537 	 */
1538 	randomized_struct_fields_end
1539 
1540 	/* CPU-specific state of this task: */
1541 	struct thread_struct		thread;
1542 
1543 	/*
1544 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1545 	 * structure.  It *MUST* be at the end of 'task_struct'.
1546 	 *
1547 	 * Do not put anything below here!
1548 	 */
1549 };
1550 
1551 static inline struct pid *task_pid(struct task_struct *task)
1552 {
1553 	return task->thread_pid;
1554 }
1555 
1556 /*
1557  * the helpers to get the task's different pids as they are seen
1558  * from various namespaces
1559  *
1560  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1561  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1562  *                     current.
1563  * task_xid_nr_ns()  : id seen from the ns specified;
1564  *
1565  * see also pid_nr() etc in include/linux/pid.h
1566  */
1567 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1568 
1569 static inline pid_t task_pid_nr(struct task_struct *tsk)
1570 {
1571 	return tsk->pid;
1572 }
1573 
1574 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1575 {
1576 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1577 }
1578 
1579 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1580 {
1581 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1582 }
1583 
1584 
1585 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1586 {
1587 	return tsk->tgid;
1588 }
1589 
1590 /**
1591  * pid_alive - check that a task structure is not stale
1592  * @p: Task structure to be checked.
1593  *
1594  * Test if a process is not yet dead (at most zombie state)
1595  * If pid_alive fails, then pointers within the task structure
1596  * can be stale and must not be dereferenced.
1597  *
1598  * Return: 1 if the process is alive. 0 otherwise.
1599  */
1600 static inline int pid_alive(const struct task_struct *p)
1601 {
1602 	return p->thread_pid != NULL;
1603 }
1604 
1605 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1606 {
1607 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1608 }
1609 
1610 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1611 {
1612 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1613 }
1614 
1615 
1616 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1617 {
1618 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1619 }
1620 
1621 static inline pid_t task_session_vnr(struct task_struct *tsk)
1622 {
1623 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1624 }
1625 
1626 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1627 {
1628 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1629 }
1630 
1631 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1632 {
1633 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1634 }
1635 
1636 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1637 {
1638 	pid_t pid = 0;
1639 
1640 	rcu_read_lock();
1641 	if (pid_alive(tsk))
1642 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1643 	rcu_read_unlock();
1644 
1645 	return pid;
1646 }
1647 
1648 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1649 {
1650 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1651 }
1652 
1653 /* Obsolete, do not use: */
1654 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1655 {
1656 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1657 }
1658 
1659 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1660 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1661 
1662 static inline unsigned int __task_state_index(unsigned int tsk_state,
1663 					      unsigned int tsk_exit_state)
1664 {
1665 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1666 
1667 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1668 
1669 	if (tsk_state == TASK_IDLE)
1670 		state = TASK_REPORT_IDLE;
1671 
1672 	/*
1673 	 * We're lying here, but rather than expose a completely new task state
1674 	 * to userspace, we can make this appear as if the task has gone through
1675 	 * a regular rt_mutex_lock() call.
1676 	 */
1677 	if (tsk_state == TASK_RTLOCK_WAIT)
1678 		state = TASK_UNINTERRUPTIBLE;
1679 
1680 	return fls(state);
1681 }
1682 
1683 static inline unsigned int task_state_index(struct task_struct *tsk)
1684 {
1685 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1686 }
1687 
1688 static inline char task_index_to_char(unsigned int state)
1689 {
1690 	static const char state_char[] = "RSDTtXZPI";
1691 
1692 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1693 
1694 	return state_char[state];
1695 }
1696 
1697 static inline char task_state_to_char(struct task_struct *tsk)
1698 {
1699 	return task_index_to_char(task_state_index(tsk));
1700 }
1701 
1702 /**
1703  * is_global_init - check if a task structure is init. Since init
1704  * is free to have sub-threads we need to check tgid.
1705  * @tsk: Task structure to be checked.
1706  *
1707  * Check if a task structure is the first user space task the kernel created.
1708  *
1709  * Return: 1 if the task structure is init. 0 otherwise.
1710  */
1711 static inline int is_global_init(struct task_struct *tsk)
1712 {
1713 	return task_tgid_nr(tsk) == 1;
1714 }
1715 
1716 extern struct pid *cad_pid;
1717 
1718 /*
1719  * Per process flags
1720  */
1721 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1722 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1723 #define PF_EXITING		0x00000004	/* Getting shut down */
1724 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1725 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1726 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1727 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1728 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1729 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1730 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1731 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1732 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1733 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1734 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1735 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1736 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1737 #define PF__HOLE__00010000	0x00010000
1738 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1739 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1740 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1741 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1742 						 * I am cleaning dirty pages from some other bdi. */
1743 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1744 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1745 #define PF__HOLE__00800000	0x00800000
1746 #define PF__HOLE__01000000	0x01000000
1747 #define PF__HOLE__02000000	0x02000000
1748 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1749 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1750 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1751 #define PF__HOLE__20000000	0x20000000
1752 #define PF__HOLE__40000000	0x40000000
1753 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1754 
1755 /*
1756  * Only the _current_ task can read/write to tsk->flags, but other
1757  * tasks can access tsk->flags in readonly mode for example
1758  * with tsk_used_math (like during threaded core dumping).
1759  * There is however an exception to this rule during ptrace
1760  * or during fork: the ptracer task is allowed to write to the
1761  * child->flags of its traced child (same goes for fork, the parent
1762  * can write to the child->flags), because we're guaranteed the
1763  * child is not running and in turn not changing child->flags
1764  * at the same time the parent does it.
1765  */
1766 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1767 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1768 #define clear_used_math()			clear_stopped_child_used_math(current)
1769 #define set_used_math()				set_stopped_child_used_math(current)
1770 
1771 #define conditional_stopped_child_used_math(condition, child) \
1772 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1773 
1774 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1775 
1776 #define copy_to_stopped_child_used_math(child) \
1777 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1778 
1779 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1780 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1781 #define used_math()				tsk_used_math(current)
1782 
1783 static __always_inline bool is_percpu_thread(void)
1784 {
1785 #ifdef CONFIG_SMP
1786 	return (current->flags & PF_NO_SETAFFINITY) &&
1787 		(current->nr_cpus_allowed  == 1);
1788 #else
1789 	return true;
1790 #endif
1791 }
1792 
1793 /* Per-process atomic flags. */
1794 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1795 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1796 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1797 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1798 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1799 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1800 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1801 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1802 
1803 #define TASK_PFA_TEST(name, func)					\
1804 	static inline bool task_##func(struct task_struct *p)		\
1805 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1806 
1807 #define TASK_PFA_SET(name, func)					\
1808 	static inline void task_set_##func(struct task_struct *p)	\
1809 	{ set_bit(PFA_##name, &p->atomic_flags); }
1810 
1811 #define TASK_PFA_CLEAR(name, func)					\
1812 	static inline void task_clear_##func(struct task_struct *p)	\
1813 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1814 
1815 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1816 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1817 
1818 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1819 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1820 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1821 
1822 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1823 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1824 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1825 
1826 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1827 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1828 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1829 
1830 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1831 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1832 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1833 
1834 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1835 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1836 
1837 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1838 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1839 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1840 
1841 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1842 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1843 
1844 static inline void
1845 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1846 {
1847 	current->flags &= ~flags;
1848 	current->flags |= orig_flags & flags;
1849 }
1850 
1851 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1852 extern int task_can_attach(struct task_struct *p);
1853 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1854 extern void dl_bw_free(int cpu, u64 dl_bw);
1855 #ifdef CONFIG_SMP
1856 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1857 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1858 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1859 extern void release_user_cpus_ptr(struct task_struct *p);
1860 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1861 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1862 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1863 #else
1864 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1865 {
1866 }
1867 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1868 {
1869 	if (!cpumask_test_cpu(0, new_mask))
1870 		return -EINVAL;
1871 	return 0;
1872 }
1873 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1874 {
1875 	if (src->user_cpus_ptr)
1876 		return -EINVAL;
1877 	return 0;
1878 }
1879 static inline void release_user_cpus_ptr(struct task_struct *p)
1880 {
1881 	WARN_ON(p->user_cpus_ptr);
1882 }
1883 
1884 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1885 {
1886 	return 0;
1887 }
1888 #endif
1889 
1890 extern int yield_to(struct task_struct *p, bool preempt);
1891 extern void set_user_nice(struct task_struct *p, long nice);
1892 extern int task_prio(const struct task_struct *p);
1893 
1894 /**
1895  * task_nice - return the nice value of a given task.
1896  * @p: the task in question.
1897  *
1898  * Return: The nice value [ -20 ... 0 ... 19 ].
1899  */
1900 static inline int task_nice(const struct task_struct *p)
1901 {
1902 	return PRIO_TO_NICE((p)->static_prio);
1903 }
1904 
1905 extern int can_nice(const struct task_struct *p, const int nice);
1906 extern int task_curr(const struct task_struct *p);
1907 extern int idle_cpu(int cpu);
1908 extern int available_idle_cpu(int cpu);
1909 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1910 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1911 extern void sched_set_fifo(struct task_struct *p);
1912 extern void sched_set_fifo_low(struct task_struct *p);
1913 extern void sched_set_normal(struct task_struct *p, int nice);
1914 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1915 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1916 extern struct task_struct *idle_task(int cpu);
1917 
1918 /**
1919  * is_idle_task - is the specified task an idle task?
1920  * @p: the task in question.
1921  *
1922  * Return: 1 if @p is an idle task. 0 otherwise.
1923  */
1924 static __always_inline bool is_idle_task(const struct task_struct *p)
1925 {
1926 	return !!(p->flags & PF_IDLE);
1927 }
1928 
1929 extern struct task_struct *curr_task(int cpu);
1930 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1931 
1932 void yield(void);
1933 
1934 union thread_union {
1935 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1936 	struct task_struct task;
1937 #endif
1938 #ifndef CONFIG_THREAD_INFO_IN_TASK
1939 	struct thread_info thread_info;
1940 #endif
1941 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1942 };
1943 
1944 #ifndef CONFIG_THREAD_INFO_IN_TASK
1945 extern struct thread_info init_thread_info;
1946 #endif
1947 
1948 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1949 
1950 #ifdef CONFIG_THREAD_INFO_IN_TASK
1951 # define task_thread_info(task)	(&(task)->thread_info)
1952 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1953 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1954 #endif
1955 
1956 /*
1957  * find a task by one of its numerical ids
1958  *
1959  * find_task_by_pid_ns():
1960  *      finds a task by its pid in the specified namespace
1961  * find_task_by_vpid():
1962  *      finds a task by its virtual pid
1963  *
1964  * see also find_vpid() etc in include/linux/pid.h
1965  */
1966 
1967 extern struct task_struct *find_task_by_vpid(pid_t nr);
1968 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1969 
1970 /*
1971  * find a task by its virtual pid and get the task struct
1972  */
1973 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1974 
1975 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1976 extern int wake_up_process(struct task_struct *tsk);
1977 extern void wake_up_new_task(struct task_struct *tsk);
1978 
1979 #ifdef CONFIG_SMP
1980 extern void kick_process(struct task_struct *tsk);
1981 #else
1982 static inline void kick_process(struct task_struct *tsk) { }
1983 #endif
1984 
1985 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1986 
1987 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1988 {
1989 	__set_task_comm(tsk, from, false);
1990 }
1991 
1992 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1993 #define get_task_comm(buf, tsk) ({			\
1994 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1995 	__get_task_comm(buf, sizeof(buf), tsk);		\
1996 })
1997 
1998 #ifdef CONFIG_SMP
1999 static __always_inline void scheduler_ipi(void)
2000 {
2001 	/*
2002 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2003 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2004 	 * this IPI.
2005 	 */
2006 	preempt_fold_need_resched();
2007 }
2008 #else
2009 static inline void scheduler_ipi(void) { }
2010 #endif
2011 
2012 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2013 
2014 /*
2015  * Set thread flags in other task's structures.
2016  * See asm/thread_info.h for TIF_xxxx flags available:
2017  */
2018 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2019 {
2020 	set_ti_thread_flag(task_thread_info(tsk), flag);
2021 }
2022 
2023 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2024 {
2025 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2026 }
2027 
2028 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2029 					  bool value)
2030 {
2031 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2032 }
2033 
2034 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2035 {
2036 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2037 }
2038 
2039 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2040 {
2041 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2042 }
2043 
2044 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2045 {
2046 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2047 }
2048 
2049 static inline void set_tsk_need_resched(struct task_struct *tsk)
2050 {
2051 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2052 }
2053 
2054 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2055 {
2056 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2057 }
2058 
2059 static inline int test_tsk_need_resched(struct task_struct *tsk)
2060 {
2061 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2062 }
2063 
2064 /*
2065  * cond_resched() and cond_resched_lock(): latency reduction via
2066  * explicit rescheduling in places that are safe. The return
2067  * value indicates whether a reschedule was done in fact.
2068  * cond_resched_lock() will drop the spinlock before scheduling,
2069  */
2070 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2071 extern int __cond_resched(void);
2072 
2073 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2074 
2075 void sched_dynamic_klp_enable(void);
2076 void sched_dynamic_klp_disable(void);
2077 
2078 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2079 
2080 static __always_inline int _cond_resched(void)
2081 {
2082 	return static_call_mod(cond_resched)();
2083 }
2084 
2085 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2086 
2087 extern int dynamic_cond_resched(void);
2088 
2089 static __always_inline int _cond_resched(void)
2090 {
2091 	return dynamic_cond_resched();
2092 }
2093 
2094 #else /* !CONFIG_PREEMPTION */
2095 
2096 static inline int _cond_resched(void)
2097 {
2098 	klp_sched_try_switch();
2099 	return __cond_resched();
2100 }
2101 
2102 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2103 
2104 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2105 
2106 static inline int _cond_resched(void)
2107 {
2108 	klp_sched_try_switch();
2109 	return 0;
2110 }
2111 
2112 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2113 
2114 #define cond_resched() ({			\
2115 	__might_resched(__FILE__, __LINE__, 0);	\
2116 	_cond_resched();			\
2117 })
2118 
2119 extern int __cond_resched_lock(spinlock_t *lock);
2120 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2121 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2122 
2123 #define MIGHT_RESCHED_RCU_SHIFT		8
2124 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2125 
2126 #ifndef CONFIG_PREEMPT_RT
2127 /*
2128  * Non RT kernels have an elevated preempt count due to the held lock,
2129  * but are not allowed to be inside a RCU read side critical section
2130  */
2131 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2132 #else
2133 /*
2134  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2135  * cond_resched*lock() has to take that into account because it checks for
2136  * preempt_count() and rcu_preempt_depth().
2137  */
2138 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2139 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2140 #endif
2141 
2142 #define cond_resched_lock(lock) ({						\
2143 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2144 	__cond_resched_lock(lock);						\
2145 })
2146 
2147 #define cond_resched_rwlock_read(lock) ({					\
2148 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2149 	__cond_resched_rwlock_read(lock);					\
2150 })
2151 
2152 #define cond_resched_rwlock_write(lock) ({					\
2153 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2154 	__cond_resched_rwlock_write(lock);					\
2155 })
2156 
2157 static inline void cond_resched_rcu(void)
2158 {
2159 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2160 	rcu_read_unlock();
2161 	cond_resched();
2162 	rcu_read_lock();
2163 #endif
2164 }
2165 
2166 #ifdef CONFIG_PREEMPT_DYNAMIC
2167 
2168 extern bool preempt_model_none(void);
2169 extern bool preempt_model_voluntary(void);
2170 extern bool preempt_model_full(void);
2171 
2172 #else
2173 
2174 static inline bool preempt_model_none(void)
2175 {
2176 	return IS_ENABLED(CONFIG_PREEMPT_NONE);
2177 }
2178 static inline bool preempt_model_voluntary(void)
2179 {
2180 	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2181 }
2182 static inline bool preempt_model_full(void)
2183 {
2184 	return IS_ENABLED(CONFIG_PREEMPT);
2185 }
2186 
2187 #endif
2188 
2189 static inline bool preempt_model_rt(void)
2190 {
2191 	return IS_ENABLED(CONFIG_PREEMPT_RT);
2192 }
2193 
2194 /*
2195  * Does the preemption model allow non-cooperative preemption?
2196  *
2197  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2198  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2199  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2200  * PREEMPT_NONE model.
2201  */
2202 static inline bool preempt_model_preemptible(void)
2203 {
2204 	return preempt_model_full() || preempt_model_rt();
2205 }
2206 
2207 /*
2208  * Does a critical section need to be broken due to another
2209  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2210  * but a general need for low latency)
2211  */
2212 static inline int spin_needbreak(spinlock_t *lock)
2213 {
2214 #ifdef CONFIG_PREEMPTION
2215 	return spin_is_contended(lock);
2216 #else
2217 	return 0;
2218 #endif
2219 }
2220 
2221 /*
2222  * Check if a rwlock is contended.
2223  * Returns non-zero if there is another task waiting on the rwlock.
2224  * Returns zero if the lock is not contended or the system / underlying
2225  * rwlock implementation does not support contention detection.
2226  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2227  * for low latency.
2228  */
2229 static inline int rwlock_needbreak(rwlock_t *lock)
2230 {
2231 #ifdef CONFIG_PREEMPTION
2232 	return rwlock_is_contended(lock);
2233 #else
2234 	return 0;
2235 #endif
2236 }
2237 
2238 static __always_inline bool need_resched(void)
2239 {
2240 	return unlikely(tif_need_resched());
2241 }
2242 
2243 /*
2244  * Wrappers for p->thread_info->cpu access. No-op on UP.
2245  */
2246 #ifdef CONFIG_SMP
2247 
2248 static inline unsigned int task_cpu(const struct task_struct *p)
2249 {
2250 	return READ_ONCE(task_thread_info(p)->cpu);
2251 }
2252 
2253 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2254 
2255 #else
2256 
2257 static inline unsigned int task_cpu(const struct task_struct *p)
2258 {
2259 	return 0;
2260 }
2261 
2262 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2263 {
2264 }
2265 
2266 #endif /* CONFIG_SMP */
2267 
2268 extern bool sched_task_on_rq(struct task_struct *p);
2269 extern unsigned long get_wchan(struct task_struct *p);
2270 extern struct task_struct *cpu_curr_snapshot(int cpu);
2271 
2272 /*
2273  * In order to reduce various lock holder preemption latencies provide an
2274  * interface to see if a vCPU is currently running or not.
2275  *
2276  * This allows us to terminate optimistic spin loops and block, analogous to
2277  * the native optimistic spin heuristic of testing if the lock owner task is
2278  * running or not.
2279  */
2280 #ifndef vcpu_is_preempted
2281 static inline bool vcpu_is_preempted(int cpu)
2282 {
2283 	return false;
2284 }
2285 #endif
2286 
2287 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2288 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2289 
2290 #ifndef TASK_SIZE_OF
2291 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2292 #endif
2293 
2294 #ifdef CONFIG_SMP
2295 static inline bool owner_on_cpu(struct task_struct *owner)
2296 {
2297 	/*
2298 	 * As lock holder preemption issue, we both skip spinning if
2299 	 * task is not on cpu or its cpu is preempted
2300 	 */
2301 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2302 }
2303 
2304 /* Returns effective CPU energy utilization, as seen by the scheduler */
2305 unsigned long sched_cpu_util(int cpu);
2306 #endif /* CONFIG_SMP */
2307 
2308 #ifdef CONFIG_RSEQ
2309 
2310 /*
2311  * Map the event mask on the user-space ABI enum rseq_cs_flags
2312  * for direct mask checks.
2313  */
2314 enum rseq_event_mask_bits {
2315 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2316 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2317 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2318 };
2319 
2320 enum rseq_event_mask {
2321 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2322 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2323 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2324 };
2325 
2326 static inline void rseq_set_notify_resume(struct task_struct *t)
2327 {
2328 	if (t->rseq)
2329 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2330 }
2331 
2332 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2333 
2334 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2335 					     struct pt_regs *regs)
2336 {
2337 	if (current->rseq)
2338 		__rseq_handle_notify_resume(ksig, regs);
2339 }
2340 
2341 static inline void rseq_signal_deliver(struct ksignal *ksig,
2342 				       struct pt_regs *regs)
2343 {
2344 	preempt_disable();
2345 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2346 	preempt_enable();
2347 	rseq_handle_notify_resume(ksig, regs);
2348 }
2349 
2350 /* rseq_preempt() requires preemption to be disabled. */
2351 static inline void rseq_preempt(struct task_struct *t)
2352 {
2353 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2354 	rseq_set_notify_resume(t);
2355 }
2356 
2357 /* rseq_migrate() requires preemption to be disabled. */
2358 static inline void rseq_migrate(struct task_struct *t)
2359 {
2360 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2361 	rseq_set_notify_resume(t);
2362 }
2363 
2364 /*
2365  * If parent process has a registered restartable sequences area, the
2366  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2367  */
2368 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2369 {
2370 	if (clone_flags & CLONE_VM) {
2371 		t->rseq = NULL;
2372 		t->rseq_len = 0;
2373 		t->rseq_sig = 0;
2374 		t->rseq_event_mask = 0;
2375 	} else {
2376 		t->rseq = current->rseq;
2377 		t->rseq_len = current->rseq_len;
2378 		t->rseq_sig = current->rseq_sig;
2379 		t->rseq_event_mask = current->rseq_event_mask;
2380 	}
2381 }
2382 
2383 static inline void rseq_execve(struct task_struct *t)
2384 {
2385 	t->rseq = NULL;
2386 	t->rseq_len = 0;
2387 	t->rseq_sig = 0;
2388 	t->rseq_event_mask = 0;
2389 }
2390 
2391 #else
2392 
2393 static inline void rseq_set_notify_resume(struct task_struct *t)
2394 {
2395 }
2396 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2397 					     struct pt_regs *regs)
2398 {
2399 }
2400 static inline void rseq_signal_deliver(struct ksignal *ksig,
2401 				       struct pt_regs *regs)
2402 {
2403 }
2404 static inline void rseq_preempt(struct task_struct *t)
2405 {
2406 }
2407 static inline void rseq_migrate(struct task_struct *t)
2408 {
2409 }
2410 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2411 {
2412 }
2413 static inline void rseq_execve(struct task_struct *t)
2414 {
2415 }
2416 
2417 #endif
2418 
2419 #ifdef CONFIG_DEBUG_RSEQ
2420 
2421 void rseq_syscall(struct pt_regs *regs);
2422 
2423 #else
2424 
2425 static inline void rseq_syscall(struct pt_regs *regs)
2426 {
2427 }
2428 
2429 #endif
2430 
2431 #ifdef CONFIG_SCHED_CORE
2432 extern void sched_core_free(struct task_struct *tsk);
2433 extern void sched_core_fork(struct task_struct *p);
2434 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2435 				unsigned long uaddr);
2436 #else
2437 static inline void sched_core_free(struct task_struct *tsk) { }
2438 static inline void sched_core_fork(struct task_struct *p) { }
2439 #endif
2440 
2441 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2442 
2443 #endif
2444