1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt_mask.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 62 #include <asm/processor.h> 63 64 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 65 66 /* 67 * Extended scheduling parameters data structure. 68 * 69 * This is needed because the original struct sched_param can not be 70 * altered without introducing ABI issues with legacy applications 71 * (e.g., in sched_getparam()). 72 * 73 * However, the possibility of specifying more than just a priority for 74 * the tasks may be useful for a wide variety of application fields, e.g., 75 * multimedia, streaming, automation and control, and many others. 76 * 77 * This variant (sched_attr) is meant at describing a so-called 78 * sporadic time-constrained task. In such model a task is specified by: 79 * - the activation period or minimum instance inter-arrival time; 80 * - the maximum (or average, depending on the actual scheduling 81 * discipline) computation time of all instances, a.k.a. runtime; 82 * - the deadline (relative to the actual activation time) of each 83 * instance. 84 * Very briefly, a periodic (sporadic) task asks for the execution of 85 * some specific computation --which is typically called an instance-- 86 * (at most) every period. Moreover, each instance typically lasts no more 87 * than the runtime and must be completed by time instant t equal to 88 * the instance activation time + the deadline. 89 * 90 * This is reflected by the actual fields of the sched_attr structure: 91 * 92 * @size size of the structure, for fwd/bwd compat. 93 * 94 * @sched_policy task's scheduling policy 95 * @sched_flags for customizing the scheduler behaviour 96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 97 * @sched_priority task's static priority (SCHED_FIFO/RR) 98 * @sched_deadline representative of the task's deadline 99 * @sched_runtime representative of the task's runtime 100 * @sched_period representative of the task's period 101 * 102 * Given this task model, there are a multiplicity of scheduling algorithms 103 * and policies, that can be used to ensure all the tasks will make their 104 * timing constraints. 105 * 106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 107 * only user of this new interface. More information about the algorithm 108 * available in the scheduling class file or in Documentation/. 109 */ 110 struct sched_attr { 111 u32 size; 112 113 u32 sched_policy; 114 u64 sched_flags; 115 116 /* SCHED_NORMAL, SCHED_BATCH */ 117 s32 sched_nice; 118 119 /* SCHED_FIFO, SCHED_RR */ 120 u32 sched_priority; 121 122 /* SCHED_DEADLINE */ 123 u64 sched_runtime; 124 u64 sched_deadline; 125 u64 sched_period; 126 }; 127 128 struct futex_pi_state; 129 struct robust_list_head; 130 struct bio_list; 131 struct fs_struct; 132 struct perf_event_context; 133 struct blk_plug; 134 struct filename; 135 136 #define VMACACHE_BITS 2 137 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 138 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 139 140 /* 141 * These are the constant used to fake the fixed-point load-average 142 * counting. Some notes: 143 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 144 * a load-average precision of 10 bits integer + 11 bits fractional 145 * - if you want to count load-averages more often, you need more 146 * precision, or rounding will get you. With 2-second counting freq, 147 * the EXP_n values would be 1981, 2034 and 2043 if still using only 148 * 11 bit fractions. 149 */ 150 extern unsigned long avenrun[]; /* Load averages */ 151 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 152 153 #define FSHIFT 11 /* nr of bits of precision */ 154 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 155 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 156 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 157 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 158 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 159 160 #define CALC_LOAD(load,exp,n) \ 161 load *= exp; \ 162 load += n*(FIXED_1-exp); \ 163 load >>= FSHIFT; 164 165 extern unsigned long total_forks; 166 extern int nr_threads; 167 DECLARE_PER_CPU(unsigned long, process_counts); 168 extern int nr_processes(void); 169 extern unsigned long nr_running(void); 170 extern bool single_task_running(void); 171 extern unsigned long nr_iowait(void); 172 extern unsigned long nr_iowait_cpu(int cpu); 173 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 174 175 extern void calc_global_load(unsigned long ticks); 176 extern void update_cpu_load_nohz(void); 177 178 extern unsigned long get_parent_ip(unsigned long addr); 179 180 extern void dump_cpu_task(int cpu); 181 182 struct seq_file; 183 struct cfs_rq; 184 struct task_group; 185 #ifdef CONFIG_SCHED_DEBUG 186 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 187 extern void proc_sched_set_task(struct task_struct *p); 188 extern void 189 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 190 #endif 191 192 /* 193 * Task state bitmask. NOTE! These bits are also 194 * encoded in fs/proc/array.c: get_task_state(). 195 * 196 * We have two separate sets of flags: task->state 197 * is about runnability, while task->exit_state are 198 * about the task exiting. Confusing, but this way 199 * modifying one set can't modify the other one by 200 * mistake. 201 */ 202 #define TASK_RUNNING 0 203 #define TASK_INTERRUPTIBLE 1 204 #define TASK_UNINTERRUPTIBLE 2 205 #define __TASK_STOPPED 4 206 #define __TASK_TRACED 8 207 /* in tsk->exit_state */ 208 #define EXIT_DEAD 16 209 #define EXIT_ZOMBIE 32 210 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 211 /* in tsk->state again */ 212 #define TASK_DEAD 64 213 #define TASK_WAKEKILL 128 214 #define TASK_WAKING 256 215 #define TASK_PARKED 512 216 #define TASK_STATE_MAX 1024 217 218 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWP" 219 220 extern char ___assert_task_state[1 - 2*!!( 221 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 222 223 /* Convenience macros for the sake of set_task_state */ 224 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 225 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 226 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 227 228 /* Convenience macros for the sake of wake_up */ 229 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 230 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 231 232 /* get_task_state() */ 233 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 234 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 235 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 236 237 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 238 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 239 #define task_is_stopped_or_traced(task) \ 240 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 241 #define task_contributes_to_load(task) \ 242 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 243 (task->flags & PF_FROZEN) == 0) 244 245 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 246 247 #define __set_task_state(tsk, state_value) \ 248 do { \ 249 (tsk)->task_state_change = _THIS_IP_; \ 250 (tsk)->state = (state_value); \ 251 } while (0) 252 #define set_task_state(tsk, state_value) \ 253 do { \ 254 (tsk)->task_state_change = _THIS_IP_; \ 255 set_mb((tsk)->state, (state_value)); \ 256 } while (0) 257 258 /* 259 * set_current_state() includes a barrier so that the write of current->state 260 * is correctly serialised wrt the caller's subsequent test of whether to 261 * actually sleep: 262 * 263 * set_current_state(TASK_UNINTERRUPTIBLE); 264 * if (do_i_need_to_sleep()) 265 * schedule(); 266 * 267 * If the caller does not need such serialisation then use __set_current_state() 268 */ 269 #define __set_current_state(state_value) \ 270 do { \ 271 current->task_state_change = _THIS_IP_; \ 272 current->state = (state_value); \ 273 } while (0) 274 #define set_current_state(state_value) \ 275 do { \ 276 current->task_state_change = _THIS_IP_; \ 277 set_mb(current->state, (state_value)); \ 278 } while (0) 279 280 #else 281 282 #define __set_task_state(tsk, state_value) \ 283 do { (tsk)->state = (state_value); } while (0) 284 #define set_task_state(tsk, state_value) \ 285 set_mb((tsk)->state, (state_value)) 286 287 /* 288 * set_current_state() includes a barrier so that the write of current->state 289 * is correctly serialised wrt the caller's subsequent test of whether to 290 * actually sleep: 291 * 292 * set_current_state(TASK_UNINTERRUPTIBLE); 293 * if (do_i_need_to_sleep()) 294 * schedule(); 295 * 296 * If the caller does not need such serialisation then use __set_current_state() 297 */ 298 #define __set_current_state(state_value) \ 299 do { current->state = (state_value); } while (0) 300 #define set_current_state(state_value) \ 301 set_mb(current->state, (state_value)) 302 303 #endif 304 305 /* Task command name length */ 306 #define TASK_COMM_LEN 16 307 308 #include <linux/spinlock.h> 309 310 /* 311 * This serializes "schedule()" and also protects 312 * the run-queue from deletions/modifications (but 313 * _adding_ to the beginning of the run-queue has 314 * a separate lock). 315 */ 316 extern rwlock_t tasklist_lock; 317 extern spinlock_t mmlist_lock; 318 319 struct task_struct; 320 321 #ifdef CONFIG_PROVE_RCU 322 extern int lockdep_tasklist_lock_is_held(void); 323 #endif /* #ifdef CONFIG_PROVE_RCU */ 324 325 extern void sched_init(void); 326 extern void sched_init_smp(void); 327 extern asmlinkage void schedule_tail(struct task_struct *prev); 328 extern void init_idle(struct task_struct *idle, int cpu); 329 extern void init_idle_bootup_task(struct task_struct *idle); 330 331 extern cpumask_var_t cpu_isolated_map; 332 333 extern int runqueue_is_locked(int cpu); 334 335 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 336 extern void nohz_balance_enter_idle(int cpu); 337 extern void set_cpu_sd_state_idle(void); 338 extern int get_nohz_timer_target(int pinned); 339 #else 340 static inline void nohz_balance_enter_idle(int cpu) { } 341 static inline void set_cpu_sd_state_idle(void) { } 342 static inline int get_nohz_timer_target(int pinned) 343 { 344 return smp_processor_id(); 345 } 346 #endif 347 348 /* 349 * Only dump TASK_* tasks. (0 for all tasks) 350 */ 351 extern void show_state_filter(unsigned long state_filter); 352 353 static inline void show_state(void) 354 { 355 show_state_filter(0); 356 } 357 358 extern void show_regs(struct pt_regs *); 359 360 /* 361 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 362 * task), SP is the stack pointer of the first frame that should be shown in the back 363 * trace (or NULL if the entire call-chain of the task should be shown). 364 */ 365 extern void show_stack(struct task_struct *task, unsigned long *sp); 366 367 extern void cpu_init (void); 368 extern void trap_init(void); 369 extern void update_process_times(int user); 370 extern void scheduler_tick(void); 371 372 extern void sched_show_task(struct task_struct *p); 373 374 #ifdef CONFIG_LOCKUP_DETECTOR 375 extern void touch_softlockup_watchdog(void); 376 extern void touch_softlockup_watchdog_sync(void); 377 extern void touch_all_softlockup_watchdogs(void); 378 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 379 void __user *buffer, 380 size_t *lenp, loff_t *ppos); 381 extern unsigned int softlockup_panic; 382 void lockup_detector_init(void); 383 #else 384 static inline void touch_softlockup_watchdog(void) 385 { 386 } 387 static inline void touch_softlockup_watchdog_sync(void) 388 { 389 } 390 static inline void touch_all_softlockup_watchdogs(void) 391 { 392 } 393 static inline void lockup_detector_init(void) 394 { 395 } 396 #endif 397 398 #ifdef CONFIG_DETECT_HUNG_TASK 399 void reset_hung_task_detector(void); 400 #else 401 static inline void reset_hung_task_detector(void) 402 { 403 } 404 #endif 405 406 /* Attach to any functions which should be ignored in wchan output. */ 407 #define __sched __attribute__((__section__(".sched.text"))) 408 409 /* Linker adds these: start and end of __sched functions */ 410 extern char __sched_text_start[], __sched_text_end[]; 411 412 /* Is this address in the __sched functions? */ 413 extern int in_sched_functions(unsigned long addr); 414 415 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 416 extern signed long schedule_timeout(signed long timeout); 417 extern signed long schedule_timeout_interruptible(signed long timeout); 418 extern signed long schedule_timeout_killable(signed long timeout); 419 extern signed long schedule_timeout_uninterruptible(signed long timeout); 420 asmlinkage void schedule(void); 421 extern void schedule_preempt_disabled(void); 422 423 extern long io_schedule_timeout(long timeout); 424 425 static inline void io_schedule(void) 426 { 427 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 428 } 429 430 struct nsproxy; 431 struct user_namespace; 432 433 #ifdef CONFIG_MMU 434 extern void arch_pick_mmap_layout(struct mm_struct *mm); 435 extern unsigned long 436 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 437 unsigned long, unsigned long); 438 extern unsigned long 439 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 440 unsigned long len, unsigned long pgoff, 441 unsigned long flags); 442 #else 443 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 444 #endif 445 446 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 447 #define SUID_DUMP_USER 1 /* Dump as user of process */ 448 #define SUID_DUMP_ROOT 2 /* Dump as root */ 449 450 /* mm flags */ 451 452 /* for SUID_DUMP_* above */ 453 #define MMF_DUMPABLE_BITS 2 454 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 455 456 extern void set_dumpable(struct mm_struct *mm, int value); 457 /* 458 * This returns the actual value of the suid_dumpable flag. For things 459 * that are using this for checking for privilege transitions, it must 460 * test against SUID_DUMP_USER rather than treating it as a boolean 461 * value. 462 */ 463 static inline int __get_dumpable(unsigned long mm_flags) 464 { 465 return mm_flags & MMF_DUMPABLE_MASK; 466 } 467 468 static inline int get_dumpable(struct mm_struct *mm) 469 { 470 return __get_dumpable(mm->flags); 471 } 472 473 /* coredump filter bits */ 474 #define MMF_DUMP_ANON_PRIVATE 2 475 #define MMF_DUMP_ANON_SHARED 3 476 #define MMF_DUMP_MAPPED_PRIVATE 4 477 #define MMF_DUMP_MAPPED_SHARED 5 478 #define MMF_DUMP_ELF_HEADERS 6 479 #define MMF_DUMP_HUGETLB_PRIVATE 7 480 #define MMF_DUMP_HUGETLB_SHARED 8 481 482 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 483 #define MMF_DUMP_FILTER_BITS 7 484 #define MMF_DUMP_FILTER_MASK \ 485 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 486 #define MMF_DUMP_FILTER_DEFAULT \ 487 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 488 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 489 490 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 491 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 492 #else 493 # define MMF_DUMP_MASK_DEFAULT_ELF 0 494 #endif 495 /* leave room for more dump flags */ 496 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 497 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 498 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 499 500 #define MMF_HAS_UPROBES 19 /* has uprobes */ 501 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 502 503 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 504 505 struct sighand_struct { 506 atomic_t count; 507 struct k_sigaction action[_NSIG]; 508 spinlock_t siglock; 509 wait_queue_head_t signalfd_wqh; 510 }; 511 512 struct pacct_struct { 513 int ac_flag; 514 long ac_exitcode; 515 unsigned long ac_mem; 516 cputime_t ac_utime, ac_stime; 517 unsigned long ac_minflt, ac_majflt; 518 }; 519 520 struct cpu_itimer { 521 cputime_t expires; 522 cputime_t incr; 523 u32 error; 524 u32 incr_error; 525 }; 526 527 /** 528 * struct cputime - snaphsot of system and user cputime 529 * @utime: time spent in user mode 530 * @stime: time spent in system mode 531 * 532 * Gathers a generic snapshot of user and system time. 533 */ 534 struct cputime { 535 cputime_t utime; 536 cputime_t stime; 537 }; 538 539 /** 540 * struct task_cputime - collected CPU time counts 541 * @utime: time spent in user mode, in &cputime_t units 542 * @stime: time spent in kernel mode, in &cputime_t units 543 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 544 * 545 * This is an extension of struct cputime that includes the total runtime 546 * spent by the task from the scheduler point of view. 547 * 548 * As a result, this structure groups together three kinds of CPU time 549 * that are tracked for threads and thread groups. Most things considering 550 * CPU time want to group these counts together and treat all three 551 * of them in parallel. 552 */ 553 struct task_cputime { 554 cputime_t utime; 555 cputime_t stime; 556 unsigned long long sum_exec_runtime; 557 }; 558 /* Alternate field names when used to cache expirations. */ 559 #define prof_exp stime 560 #define virt_exp utime 561 #define sched_exp sum_exec_runtime 562 563 #define INIT_CPUTIME \ 564 (struct task_cputime) { \ 565 .utime = 0, \ 566 .stime = 0, \ 567 .sum_exec_runtime = 0, \ 568 } 569 570 #ifdef CONFIG_PREEMPT_COUNT 571 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED) 572 #else 573 #define PREEMPT_DISABLED PREEMPT_ENABLED 574 #endif 575 576 /* 577 * Disable preemption until the scheduler is running. 578 * Reset by start_kernel()->sched_init()->init_idle(). 579 * 580 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 581 * before the scheduler is active -- see should_resched(). 582 */ 583 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE) 584 585 /** 586 * struct thread_group_cputimer - thread group interval timer counts 587 * @cputime: thread group interval timers. 588 * @running: non-zero when there are timers running and 589 * @cputime receives updates. 590 * @lock: lock for fields in this struct. 591 * 592 * This structure contains the version of task_cputime, above, that is 593 * used for thread group CPU timer calculations. 594 */ 595 struct thread_group_cputimer { 596 struct task_cputime cputime; 597 int running; 598 raw_spinlock_t lock; 599 }; 600 601 #include <linux/rwsem.h> 602 struct autogroup; 603 604 /* 605 * NOTE! "signal_struct" does not have its own 606 * locking, because a shared signal_struct always 607 * implies a shared sighand_struct, so locking 608 * sighand_struct is always a proper superset of 609 * the locking of signal_struct. 610 */ 611 struct signal_struct { 612 atomic_t sigcnt; 613 atomic_t live; 614 int nr_threads; 615 struct list_head thread_head; 616 617 wait_queue_head_t wait_chldexit; /* for wait4() */ 618 619 /* current thread group signal load-balancing target: */ 620 struct task_struct *curr_target; 621 622 /* shared signal handling: */ 623 struct sigpending shared_pending; 624 625 /* thread group exit support */ 626 int group_exit_code; 627 /* overloaded: 628 * - notify group_exit_task when ->count is equal to notify_count 629 * - everyone except group_exit_task is stopped during signal delivery 630 * of fatal signals, group_exit_task processes the signal. 631 */ 632 int notify_count; 633 struct task_struct *group_exit_task; 634 635 /* thread group stop support, overloads group_exit_code too */ 636 int group_stop_count; 637 unsigned int flags; /* see SIGNAL_* flags below */ 638 639 /* 640 * PR_SET_CHILD_SUBREAPER marks a process, like a service 641 * manager, to re-parent orphan (double-forking) child processes 642 * to this process instead of 'init'. The service manager is 643 * able to receive SIGCHLD signals and is able to investigate 644 * the process until it calls wait(). All children of this 645 * process will inherit a flag if they should look for a 646 * child_subreaper process at exit. 647 */ 648 unsigned int is_child_subreaper:1; 649 unsigned int has_child_subreaper:1; 650 651 /* POSIX.1b Interval Timers */ 652 int posix_timer_id; 653 struct list_head posix_timers; 654 655 /* ITIMER_REAL timer for the process */ 656 struct hrtimer real_timer; 657 struct pid *leader_pid; 658 ktime_t it_real_incr; 659 660 /* 661 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 662 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 663 * values are defined to 0 and 1 respectively 664 */ 665 struct cpu_itimer it[2]; 666 667 /* 668 * Thread group totals for process CPU timers. 669 * See thread_group_cputimer(), et al, for details. 670 */ 671 struct thread_group_cputimer cputimer; 672 673 /* Earliest-expiration cache. */ 674 struct task_cputime cputime_expires; 675 676 struct list_head cpu_timers[3]; 677 678 struct pid *tty_old_pgrp; 679 680 /* boolean value for session group leader */ 681 int leader; 682 683 struct tty_struct *tty; /* NULL if no tty */ 684 685 #ifdef CONFIG_SCHED_AUTOGROUP 686 struct autogroup *autogroup; 687 #endif 688 /* 689 * Cumulative resource counters for dead threads in the group, 690 * and for reaped dead child processes forked by this group. 691 * Live threads maintain their own counters and add to these 692 * in __exit_signal, except for the group leader. 693 */ 694 seqlock_t stats_lock; 695 cputime_t utime, stime, cutime, cstime; 696 cputime_t gtime; 697 cputime_t cgtime; 698 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 699 struct cputime prev_cputime; 700 #endif 701 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 702 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 703 unsigned long inblock, oublock, cinblock, coublock; 704 unsigned long maxrss, cmaxrss; 705 struct task_io_accounting ioac; 706 707 /* 708 * Cumulative ns of schedule CPU time fo dead threads in the 709 * group, not including a zombie group leader, (This only differs 710 * from jiffies_to_ns(utime + stime) if sched_clock uses something 711 * other than jiffies.) 712 */ 713 unsigned long long sum_sched_runtime; 714 715 /* 716 * We don't bother to synchronize most readers of this at all, 717 * because there is no reader checking a limit that actually needs 718 * to get both rlim_cur and rlim_max atomically, and either one 719 * alone is a single word that can safely be read normally. 720 * getrlimit/setrlimit use task_lock(current->group_leader) to 721 * protect this instead of the siglock, because they really 722 * have no need to disable irqs. 723 */ 724 struct rlimit rlim[RLIM_NLIMITS]; 725 726 #ifdef CONFIG_BSD_PROCESS_ACCT 727 struct pacct_struct pacct; /* per-process accounting information */ 728 #endif 729 #ifdef CONFIG_TASKSTATS 730 struct taskstats *stats; 731 #endif 732 #ifdef CONFIG_AUDIT 733 unsigned audit_tty; 734 unsigned audit_tty_log_passwd; 735 struct tty_audit_buf *tty_audit_buf; 736 #endif 737 #ifdef CONFIG_CGROUPS 738 /* 739 * group_rwsem prevents new tasks from entering the threadgroup and 740 * member tasks from exiting,a more specifically, setting of 741 * PF_EXITING. fork and exit paths are protected with this rwsem 742 * using threadgroup_change_begin/end(). Users which require 743 * threadgroup to remain stable should use threadgroup_[un]lock() 744 * which also takes care of exec path. Currently, cgroup is the 745 * only user. 746 */ 747 struct rw_semaphore group_rwsem; 748 #endif 749 750 oom_flags_t oom_flags; 751 short oom_score_adj; /* OOM kill score adjustment */ 752 short oom_score_adj_min; /* OOM kill score adjustment min value. 753 * Only settable by CAP_SYS_RESOURCE. */ 754 755 struct mutex cred_guard_mutex; /* guard against foreign influences on 756 * credential calculations 757 * (notably. ptrace) */ 758 }; 759 760 /* 761 * Bits in flags field of signal_struct. 762 */ 763 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 764 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 765 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 766 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 767 /* 768 * Pending notifications to parent. 769 */ 770 #define SIGNAL_CLD_STOPPED 0x00000010 771 #define SIGNAL_CLD_CONTINUED 0x00000020 772 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 773 774 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 775 776 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 777 static inline int signal_group_exit(const struct signal_struct *sig) 778 { 779 return (sig->flags & SIGNAL_GROUP_EXIT) || 780 (sig->group_exit_task != NULL); 781 } 782 783 /* 784 * Some day this will be a full-fledged user tracking system.. 785 */ 786 struct user_struct { 787 atomic_t __count; /* reference count */ 788 atomic_t processes; /* How many processes does this user have? */ 789 atomic_t sigpending; /* How many pending signals does this user have? */ 790 #ifdef CONFIG_INOTIFY_USER 791 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 792 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 793 #endif 794 #ifdef CONFIG_FANOTIFY 795 atomic_t fanotify_listeners; 796 #endif 797 #ifdef CONFIG_EPOLL 798 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 799 #endif 800 #ifdef CONFIG_POSIX_MQUEUE 801 /* protected by mq_lock */ 802 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 803 #endif 804 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 805 806 #ifdef CONFIG_KEYS 807 struct key *uid_keyring; /* UID specific keyring */ 808 struct key *session_keyring; /* UID's default session keyring */ 809 #endif 810 811 /* Hash table maintenance information */ 812 struct hlist_node uidhash_node; 813 kuid_t uid; 814 815 #ifdef CONFIG_PERF_EVENTS 816 atomic_long_t locked_vm; 817 #endif 818 }; 819 820 extern int uids_sysfs_init(void); 821 822 extern struct user_struct *find_user(kuid_t); 823 824 extern struct user_struct root_user; 825 #define INIT_USER (&root_user) 826 827 828 struct backing_dev_info; 829 struct reclaim_state; 830 831 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 832 struct sched_info { 833 /* cumulative counters */ 834 unsigned long pcount; /* # of times run on this cpu */ 835 unsigned long long run_delay; /* time spent waiting on a runqueue */ 836 837 /* timestamps */ 838 unsigned long long last_arrival,/* when we last ran on a cpu */ 839 last_queued; /* when we were last queued to run */ 840 }; 841 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 842 843 #ifdef CONFIG_TASK_DELAY_ACCT 844 struct task_delay_info { 845 spinlock_t lock; 846 unsigned int flags; /* Private per-task flags */ 847 848 /* For each stat XXX, add following, aligned appropriately 849 * 850 * struct timespec XXX_start, XXX_end; 851 * u64 XXX_delay; 852 * u32 XXX_count; 853 * 854 * Atomicity of updates to XXX_delay, XXX_count protected by 855 * single lock above (split into XXX_lock if contention is an issue). 856 */ 857 858 /* 859 * XXX_count is incremented on every XXX operation, the delay 860 * associated with the operation is added to XXX_delay. 861 * XXX_delay contains the accumulated delay time in nanoseconds. 862 */ 863 u64 blkio_start; /* Shared by blkio, swapin */ 864 u64 blkio_delay; /* wait for sync block io completion */ 865 u64 swapin_delay; /* wait for swapin block io completion */ 866 u32 blkio_count; /* total count of the number of sync block */ 867 /* io operations performed */ 868 u32 swapin_count; /* total count of the number of swapin block */ 869 /* io operations performed */ 870 871 u64 freepages_start; 872 u64 freepages_delay; /* wait for memory reclaim */ 873 u32 freepages_count; /* total count of memory reclaim */ 874 }; 875 #endif /* CONFIG_TASK_DELAY_ACCT */ 876 877 static inline int sched_info_on(void) 878 { 879 #ifdef CONFIG_SCHEDSTATS 880 return 1; 881 #elif defined(CONFIG_TASK_DELAY_ACCT) 882 extern int delayacct_on; 883 return delayacct_on; 884 #else 885 return 0; 886 #endif 887 } 888 889 enum cpu_idle_type { 890 CPU_IDLE, 891 CPU_NOT_IDLE, 892 CPU_NEWLY_IDLE, 893 CPU_MAX_IDLE_TYPES 894 }; 895 896 /* 897 * Increase resolution of cpu_capacity calculations 898 */ 899 #define SCHED_CAPACITY_SHIFT 10 900 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 901 902 /* 903 * sched-domains (multiprocessor balancing) declarations: 904 */ 905 #ifdef CONFIG_SMP 906 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 907 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 908 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 909 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 910 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 911 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 912 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 913 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 914 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 915 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 916 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 917 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 918 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 919 #define SD_NUMA 0x4000 /* cross-node balancing */ 920 921 #ifdef CONFIG_SCHED_SMT 922 static inline int cpu_smt_flags(void) 923 { 924 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 925 } 926 #endif 927 928 #ifdef CONFIG_SCHED_MC 929 static inline int cpu_core_flags(void) 930 { 931 return SD_SHARE_PKG_RESOURCES; 932 } 933 #endif 934 935 #ifdef CONFIG_NUMA 936 static inline int cpu_numa_flags(void) 937 { 938 return SD_NUMA; 939 } 940 #endif 941 942 struct sched_domain_attr { 943 int relax_domain_level; 944 }; 945 946 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 947 .relax_domain_level = -1, \ 948 } 949 950 extern int sched_domain_level_max; 951 952 struct sched_group; 953 954 struct sched_domain { 955 /* These fields must be setup */ 956 struct sched_domain *parent; /* top domain must be null terminated */ 957 struct sched_domain *child; /* bottom domain must be null terminated */ 958 struct sched_group *groups; /* the balancing groups of the domain */ 959 unsigned long min_interval; /* Minimum balance interval ms */ 960 unsigned long max_interval; /* Maximum balance interval ms */ 961 unsigned int busy_factor; /* less balancing by factor if busy */ 962 unsigned int imbalance_pct; /* No balance until over watermark */ 963 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 964 unsigned int busy_idx; 965 unsigned int idle_idx; 966 unsigned int newidle_idx; 967 unsigned int wake_idx; 968 unsigned int forkexec_idx; 969 unsigned int smt_gain; 970 971 int nohz_idle; /* NOHZ IDLE status */ 972 int flags; /* See SD_* */ 973 int level; 974 975 /* Runtime fields. */ 976 unsigned long last_balance; /* init to jiffies. units in jiffies */ 977 unsigned int balance_interval; /* initialise to 1. units in ms. */ 978 unsigned int nr_balance_failed; /* initialise to 0 */ 979 980 /* idle_balance() stats */ 981 u64 max_newidle_lb_cost; 982 unsigned long next_decay_max_lb_cost; 983 984 #ifdef CONFIG_SCHEDSTATS 985 /* load_balance() stats */ 986 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 987 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 988 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 989 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 990 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 991 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 992 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 993 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 994 995 /* Active load balancing */ 996 unsigned int alb_count; 997 unsigned int alb_failed; 998 unsigned int alb_pushed; 999 1000 /* SD_BALANCE_EXEC stats */ 1001 unsigned int sbe_count; 1002 unsigned int sbe_balanced; 1003 unsigned int sbe_pushed; 1004 1005 /* SD_BALANCE_FORK stats */ 1006 unsigned int sbf_count; 1007 unsigned int sbf_balanced; 1008 unsigned int sbf_pushed; 1009 1010 /* try_to_wake_up() stats */ 1011 unsigned int ttwu_wake_remote; 1012 unsigned int ttwu_move_affine; 1013 unsigned int ttwu_move_balance; 1014 #endif 1015 #ifdef CONFIG_SCHED_DEBUG 1016 char *name; 1017 #endif 1018 union { 1019 void *private; /* used during construction */ 1020 struct rcu_head rcu; /* used during destruction */ 1021 }; 1022 1023 unsigned int span_weight; 1024 /* 1025 * Span of all CPUs in this domain. 1026 * 1027 * NOTE: this field is variable length. (Allocated dynamically 1028 * by attaching extra space to the end of the structure, 1029 * depending on how many CPUs the kernel has booted up with) 1030 */ 1031 unsigned long span[0]; 1032 }; 1033 1034 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1035 { 1036 return to_cpumask(sd->span); 1037 } 1038 1039 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1040 struct sched_domain_attr *dattr_new); 1041 1042 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1043 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1044 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1045 1046 bool cpus_share_cache(int this_cpu, int that_cpu); 1047 1048 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1049 typedef int (*sched_domain_flags_f)(void); 1050 1051 #define SDTL_OVERLAP 0x01 1052 1053 struct sd_data { 1054 struct sched_domain **__percpu sd; 1055 struct sched_group **__percpu sg; 1056 struct sched_group_capacity **__percpu sgc; 1057 }; 1058 1059 struct sched_domain_topology_level { 1060 sched_domain_mask_f mask; 1061 sched_domain_flags_f sd_flags; 1062 int flags; 1063 int numa_level; 1064 struct sd_data data; 1065 #ifdef CONFIG_SCHED_DEBUG 1066 char *name; 1067 #endif 1068 }; 1069 1070 extern struct sched_domain_topology_level *sched_domain_topology; 1071 1072 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1073 extern void wake_up_if_idle(int cpu); 1074 1075 #ifdef CONFIG_SCHED_DEBUG 1076 # define SD_INIT_NAME(type) .name = #type 1077 #else 1078 # define SD_INIT_NAME(type) 1079 #endif 1080 1081 #else /* CONFIG_SMP */ 1082 1083 struct sched_domain_attr; 1084 1085 static inline void 1086 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1087 struct sched_domain_attr *dattr_new) 1088 { 1089 } 1090 1091 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1092 { 1093 return true; 1094 } 1095 1096 #endif /* !CONFIG_SMP */ 1097 1098 1099 struct io_context; /* See blkdev.h */ 1100 1101 1102 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1103 extern void prefetch_stack(struct task_struct *t); 1104 #else 1105 static inline void prefetch_stack(struct task_struct *t) { } 1106 #endif 1107 1108 struct audit_context; /* See audit.c */ 1109 struct mempolicy; 1110 struct pipe_inode_info; 1111 struct uts_namespace; 1112 1113 struct load_weight { 1114 unsigned long weight; 1115 u32 inv_weight; 1116 }; 1117 1118 struct sched_avg { 1119 u64 last_runnable_update; 1120 s64 decay_count; 1121 /* 1122 * utilization_avg_contrib describes the amount of time that a 1123 * sched_entity is running on a CPU. It is based on running_avg_sum 1124 * and is scaled in the range [0..SCHED_LOAD_SCALE]. 1125 * load_avg_contrib described the amount of time that a sched_entity 1126 * is runnable on a rq. It is based on both runnable_avg_sum and the 1127 * weight of the task. 1128 */ 1129 unsigned long load_avg_contrib, utilization_avg_contrib; 1130 /* 1131 * These sums represent an infinite geometric series and so are bound 1132 * above by 1024/(1-y). Thus we only need a u32 to store them for all 1133 * choices of y < 1-2^(-32)*1024. 1134 * running_avg_sum reflects the time that the sched_entity is 1135 * effectively running on the CPU. 1136 * runnable_avg_sum represents the amount of time a sched_entity is on 1137 * a runqueue which includes the running time that is monitored by 1138 * running_avg_sum. 1139 */ 1140 u32 runnable_avg_sum, avg_period, running_avg_sum; 1141 }; 1142 1143 #ifdef CONFIG_SCHEDSTATS 1144 struct sched_statistics { 1145 u64 wait_start; 1146 u64 wait_max; 1147 u64 wait_count; 1148 u64 wait_sum; 1149 u64 iowait_count; 1150 u64 iowait_sum; 1151 1152 u64 sleep_start; 1153 u64 sleep_max; 1154 s64 sum_sleep_runtime; 1155 1156 u64 block_start; 1157 u64 block_max; 1158 u64 exec_max; 1159 u64 slice_max; 1160 1161 u64 nr_migrations_cold; 1162 u64 nr_failed_migrations_affine; 1163 u64 nr_failed_migrations_running; 1164 u64 nr_failed_migrations_hot; 1165 u64 nr_forced_migrations; 1166 1167 u64 nr_wakeups; 1168 u64 nr_wakeups_sync; 1169 u64 nr_wakeups_migrate; 1170 u64 nr_wakeups_local; 1171 u64 nr_wakeups_remote; 1172 u64 nr_wakeups_affine; 1173 u64 nr_wakeups_affine_attempts; 1174 u64 nr_wakeups_passive; 1175 u64 nr_wakeups_idle; 1176 }; 1177 #endif 1178 1179 struct sched_entity { 1180 struct load_weight load; /* for load-balancing */ 1181 struct rb_node run_node; 1182 struct list_head group_node; 1183 unsigned int on_rq; 1184 1185 u64 exec_start; 1186 u64 sum_exec_runtime; 1187 u64 vruntime; 1188 u64 prev_sum_exec_runtime; 1189 1190 u64 nr_migrations; 1191 1192 #ifdef CONFIG_SCHEDSTATS 1193 struct sched_statistics statistics; 1194 #endif 1195 1196 #ifdef CONFIG_FAIR_GROUP_SCHED 1197 int depth; 1198 struct sched_entity *parent; 1199 /* rq on which this entity is (to be) queued: */ 1200 struct cfs_rq *cfs_rq; 1201 /* rq "owned" by this entity/group: */ 1202 struct cfs_rq *my_q; 1203 #endif 1204 1205 #ifdef CONFIG_SMP 1206 /* Per-entity load-tracking */ 1207 struct sched_avg avg; 1208 #endif 1209 }; 1210 1211 struct sched_rt_entity { 1212 struct list_head run_list; 1213 unsigned long timeout; 1214 unsigned long watchdog_stamp; 1215 unsigned int time_slice; 1216 1217 struct sched_rt_entity *back; 1218 #ifdef CONFIG_RT_GROUP_SCHED 1219 struct sched_rt_entity *parent; 1220 /* rq on which this entity is (to be) queued: */ 1221 struct rt_rq *rt_rq; 1222 /* rq "owned" by this entity/group: */ 1223 struct rt_rq *my_q; 1224 #endif 1225 }; 1226 1227 struct sched_dl_entity { 1228 struct rb_node rb_node; 1229 1230 /* 1231 * Original scheduling parameters. Copied here from sched_attr 1232 * during sched_setattr(), they will remain the same until 1233 * the next sched_setattr(). 1234 */ 1235 u64 dl_runtime; /* maximum runtime for each instance */ 1236 u64 dl_deadline; /* relative deadline of each instance */ 1237 u64 dl_period; /* separation of two instances (period) */ 1238 u64 dl_bw; /* dl_runtime / dl_deadline */ 1239 1240 /* 1241 * Actual scheduling parameters. Initialized with the values above, 1242 * they are continously updated during task execution. Note that 1243 * the remaining runtime could be < 0 in case we are in overrun. 1244 */ 1245 s64 runtime; /* remaining runtime for this instance */ 1246 u64 deadline; /* absolute deadline for this instance */ 1247 unsigned int flags; /* specifying the scheduler behaviour */ 1248 1249 /* 1250 * Some bool flags: 1251 * 1252 * @dl_throttled tells if we exhausted the runtime. If so, the 1253 * task has to wait for a replenishment to be performed at the 1254 * next firing of dl_timer. 1255 * 1256 * @dl_new tells if a new instance arrived. If so we must 1257 * start executing it with full runtime and reset its absolute 1258 * deadline; 1259 * 1260 * @dl_boosted tells if we are boosted due to DI. If so we are 1261 * outside bandwidth enforcement mechanism (but only until we 1262 * exit the critical section); 1263 * 1264 * @dl_yielded tells if task gave up the cpu before consuming 1265 * all its available runtime during the last job. 1266 */ 1267 int dl_throttled, dl_new, dl_boosted, dl_yielded; 1268 1269 /* 1270 * Bandwidth enforcement timer. Each -deadline task has its 1271 * own bandwidth to be enforced, thus we need one timer per task. 1272 */ 1273 struct hrtimer dl_timer; 1274 }; 1275 1276 union rcu_special { 1277 struct { 1278 bool blocked; 1279 bool need_qs; 1280 } b; 1281 short s; 1282 }; 1283 struct rcu_node; 1284 1285 enum perf_event_task_context { 1286 perf_invalid_context = -1, 1287 perf_hw_context = 0, 1288 perf_sw_context, 1289 perf_nr_task_contexts, 1290 }; 1291 1292 struct task_struct { 1293 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1294 void *stack; 1295 atomic_t usage; 1296 unsigned int flags; /* per process flags, defined below */ 1297 unsigned int ptrace; 1298 1299 #ifdef CONFIG_SMP 1300 struct llist_node wake_entry; 1301 int on_cpu; 1302 struct task_struct *last_wakee; 1303 unsigned long wakee_flips; 1304 unsigned long wakee_flip_decay_ts; 1305 1306 int wake_cpu; 1307 #endif 1308 int on_rq; 1309 1310 int prio, static_prio, normal_prio; 1311 unsigned int rt_priority; 1312 const struct sched_class *sched_class; 1313 struct sched_entity se; 1314 struct sched_rt_entity rt; 1315 #ifdef CONFIG_CGROUP_SCHED 1316 struct task_group *sched_task_group; 1317 #endif 1318 struct sched_dl_entity dl; 1319 1320 #ifdef CONFIG_PREEMPT_NOTIFIERS 1321 /* list of struct preempt_notifier: */ 1322 struct hlist_head preempt_notifiers; 1323 #endif 1324 1325 #ifdef CONFIG_BLK_DEV_IO_TRACE 1326 unsigned int btrace_seq; 1327 #endif 1328 1329 unsigned int policy; 1330 int nr_cpus_allowed; 1331 cpumask_t cpus_allowed; 1332 1333 #ifdef CONFIG_PREEMPT_RCU 1334 int rcu_read_lock_nesting; 1335 union rcu_special rcu_read_unlock_special; 1336 struct list_head rcu_node_entry; 1337 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1338 #ifdef CONFIG_PREEMPT_RCU 1339 struct rcu_node *rcu_blocked_node; 1340 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1341 #ifdef CONFIG_TASKS_RCU 1342 unsigned long rcu_tasks_nvcsw; 1343 bool rcu_tasks_holdout; 1344 struct list_head rcu_tasks_holdout_list; 1345 int rcu_tasks_idle_cpu; 1346 #endif /* #ifdef CONFIG_TASKS_RCU */ 1347 1348 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1349 struct sched_info sched_info; 1350 #endif 1351 1352 struct list_head tasks; 1353 #ifdef CONFIG_SMP 1354 struct plist_node pushable_tasks; 1355 struct rb_node pushable_dl_tasks; 1356 #endif 1357 1358 struct mm_struct *mm, *active_mm; 1359 #ifdef CONFIG_COMPAT_BRK 1360 unsigned brk_randomized:1; 1361 #endif 1362 /* per-thread vma caching */ 1363 u32 vmacache_seqnum; 1364 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1365 #if defined(SPLIT_RSS_COUNTING) 1366 struct task_rss_stat rss_stat; 1367 #endif 1368 /* task state */ 1369 int exit_state; 1370 int exit_code, exit_signal; 1371 int pdeath_signal; /* The signal sent when the parent dies */ 1372 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1373 1374 /* Used for emulating ABI behavior of previous Linux versions */ 1375 unsigned int personality; 1376 1377 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1378 * execve */ 1379 unsigned in_iowait:1; 1380 1381 /* Revert to default priority/policy when forking */ 1382 unsigned sched_reset_on_fork:1; 1383 unsigned sched_contributes_to_load:1; 1384 1385 #ifdef CONFIG_MEMCG_KMEM 1386 unsigned memcg_kmem_skip_account:1; 1387 #endif 1388 1389 unsigned long atomic_flags; /* Flags needing atomic access. */ 1390 1391 struct restart_block restart_block; 1392 1393 pid_t pid; 1394 pid_t tgid; 1395 1396 #ifdef CONFIG_CC_STACKPROTECTOR 1397 /* Canary value for the -fstack-protector gcc feature */ 1398 unsigned long stack_canary; 1399 #endif 1400 /* 1401 * pointers to (original) parent process, youngest child, younger sibling, 1402 * older sibling, respectively. (p->father can be replaced with 1403 * p->real_parent->pid) 1404 */ 1405 struct task_struct __rcu *real_parent; /* real parent process */ 1406 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1407 /* 1408 * children/sibling forms the list of my natural children 1409 */ 1410 struct list_head children; /* list of my children */ 1411 struct list_head sibling; /* linkage in my parent's children list */ 1412 struct task_struct *group_leader; /* threadgroup leader */ 1413 1414 /* 1415 * ptraced is the list of tasks this task is using ptrace on. 1416 * This includes both natural children and PTRACE_ATTACH targets. 1417 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1418 */ 1419 struct list_head ptraced; 1420 struct list_head ptrace_entry; 1421 1422 /* PID/PID hash table linkage. */ 1423 struct pid_link pids[PIDTYPE_MAX]; 1424 struct list_head thread_group; 1425 struct list_head thread_node; 1426 1427 struct completion *vfork_done; /* for vfork() */ 1428 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1429 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1430 1431 cputime_t utime, stime, utimescaled, stimescaled; 1432 cputime_t gtime; 1433 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 1434 struct cputime prev_cputime; 1435 #endif 1436 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1437 seqlock_t vtime_seqlock; 1438 unsigned long long vtime_snap; 1439 enum { 1440 VTIME_SLEEPING = 0, 1441 VTIME_USER, 1442 VTIME_SYS, 1443 } vtime_snap_whence; 1444 #endif 1445 unsigned long nvcsw, nivcsw; /* context switch counts */ 1446 u64 start_time; /* monotonic time in nsec */ 1447 u64 real_start_time; /* boot based time in nsec */ 1448 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1449 unsigned long min_flt, maj_flt; 1450 1451 struct task_cputime cputime_expires; 1452 struct list_head cpu_timers[3]; 1453 1454 /* process credentials */ 1455 const struct cred __rcu *real_cred; /* objective and real subjective task 1456 * credentials (COW) */ 1457 const struct cred __rcu *cred; /* effective (overridable) subjective task 1458 * credentials (COW) */ 1459 char comm[TASK_COMM_LEN]; /* executable name excluding path 1460 - access with [gs]et_task_comm (which lock 1461 it with task_lock()) 1462 - initialized normally by setup_new_exec */ 1463 /* file system info */ 1464 int link_count, total_link_count; 1465 #ifdef CONFIG_SYSVIPC 1466 /* ipc stuff */ 1467 struct sysv_sem sysvsem; 1468 struct sysv_shm sysvshm; 1469 #endif 1470 #ifdef CONFIG_DETECT_HUNG_TASK 1471 /* hung task detection */ 1472 unsigned long last_switch_count; 1473 #endif 1474 /* CPU-specific state of this task */ 1475 struct thread_struct thread; 1476 /* filesystem information */ 1477 struct fs_struct *fs; 1478 /* open file information */ 1479 struct files_struct *files; 1480 /* namespaces */ 1481 struct nsproxy *nsproxy; 1482 /* signal handlers */ 1483 struct signal_struct *signal; 1484 struct sighand_struct *sighand; 1485 1486 sigset_t blocked, real_blocked; 1487 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1488 struct sigpending pending; 1489 1490 unsigned long sas_ss_sp; 1491 size_t sas_ss_size; 1492 int (*notifier)(void *priv); 1493 void *notifier_data; 1494 sigset_t *notifier_mask; 1495 struct callback_head *task_works; 1496 1497 struct audit_context *audit_context; 1498 #ifdef CONFIG_AUDITSYSCALL 1499 kuid_t loginuid; 1500 unsigned int sessionid; 1501 #endif 1502 struct seccomp seccomp; 1503 1504 /* Thread group tracking */ 1505 u32 parent_exec_id; 1506 u32 self_exec_id; 1507 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1508 * mempolicy */ 1509 spinlock_t alloc_lock; 1510 1511 /* Protection of the PI data structures: */ 1512 raw_spinlock_t pi_lock; 1513 1514 #ifdef CONFIG_RT_MUTEXES 1515 /* PI waiters blocked on a rt_mutex held by this task */ 1516 struct rb_root pi_waiters; 1517 struct rb_node *pi_waiters_leftmost; 1518 /* Deadlock detection and priority inheritance handling */ 1519 struct rt_mutex_waiter *pi_blocked_on; 1520 #endif 1521 1522 #ifdef CONFIG_DEBUG_MUTEXES 1523 /* mutex deadlock detection */ 1524 struct mutex_waiter *blocked_on; 1525 #endif 1526 #ifdef CONFIG_TRACE_IRQFLAGS 1527 unsigned int irq_events; 1528 unsigned long hardirq_enable_ip; 1529 unsigned long hardirq_disable_ip; 1530 unsigned int hardirq_enable_event; 1531 unsigned int hardirq_disable_event; 1532 int hardirqs_enabled; 1533 int hardirq_context; 1534 unsigned long softirq_disable_ip; 1535 unsigned long softirq_enable_ip; 1536 unsigned int softirq_disable_event; 1537 unsigned int softirq_enable_event; 1538 int softirqs_enabled; 1539 int softirq_context; 1540 #endif 1541 #ifdef CONFIG_LOCKDEP 1542 # define MAX_LOCK_DEPTH 48UL 1543 u64 curr_chain_key; 1544 int lockdep_depth; 1545 unsigned int lockdep_recursion; 1546 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1547 gfp_t lockdep_reclaim_gfp; 1548 #endif 1549 1550 /* journalling filesystem info */ 1551 void *journal_info; 1552 1553 /* stacked block device info */ 1554 struct bio_list *bio_list; 1555 1556 #ifdef CONFIG_BLOCK 1557 /* stack plugging */ 1558 struct blk_plug *plug; 1559 #endif 1560 1561 /* VM state */ 1562 struct reclaim_state *reclaim_state; 1563 1564 struct backing_dev_info *backing_dev_info; 1565 1566 struct io_context *io_context; 1567 1568 unsigned long ptrace_message; 1569 siginfo_t *last_siginfo; /* For ptrace use. */ 1570 struct task_io_accounting ioac; 1571 #if defined(CONFIG_TASK_XACCT) 1572 u64 acct_rss_mem1; /* accumulated rss usage */ 1573 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1574 cputime_t acct_timexpd; /* stime + utime since last update */ 1575 #endif 1576 #ifdef CONFIG_CPUSETS 1577 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1578 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1579 int cpuset_mem_spread_rotor; 1580 int cpuset_slab_spread_rotor; 1581 #endif 1582 #ifdef CONFIG_CGROUPS 1583 /* Control Group info protected by css_set_lock */ 1584 struct css_set __rcu *cgroups; 1585 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1586 struct list_head cg_list; 1587 #endif 1588 #ifdef CONFIG_FUTEX 1589 struct robust_list_head __user *robust_list; 1590 #ifdef CONFIG_COMPAT 1591 struct compat_robust_list_head __user *compat_robust_list; 1592 #endif 1593 struct list_head pi_state_list; 1594 struct futex_pi_state *pi_state_cache; 1595 #endif 1596 #ifdef CONFIG_PERF_EVENTS 1597 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1598 struct mutex perf_event_mutex; 1599 struct list_head perf_event_list; 1600 #endif 1601 #ifdef CONFIG_DEBUG_PREEMPT 1602 unsigned long preempt_disable_ip; 1603 #endif 1604 #ifdef CONFIG_NUMA 1605 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1606 short il_next; 1607 short pref_node_fork; 1608 #endif 1609 #ifdef CONFIG_NUMA_BALANCING 1610 int numa_scan_seq; 1611 unsigned int numa_scan_period; 1612 unsigned int numa_scan_period_max; 1613 int numa_preferred_nid; 1614 unsigned long numa_migrate_retry; 1615 u64 node_stamp; /* migration stamp */ 1616 u64 last_task_numa_placement; 1617 u64 last_sum_exec_runtime; 1618 struct callback_head numa_work; 1619 1620 struct list_head numa_entry; 1621 struct numa_group *numa_group; 1622 1623 /* 1624 * numa_faults is an array split into four regions: 1625 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1626 * in this precise order. 1627 * 1628 * faults_memory: Exponential decaying average of faults on a per-node 1629 * basis. Scheduling placement decisions are made based on these 1630 * counts. The values remain static for the duration of a PTE scan. 1631 * faults_cpu: Track the nodes the process was running on when a NUMA 1632 * hinting fault was incurred. 1633 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1634 * during the current scan window. When the scan completes, the counts 1635 * in faults_memory and faults_cpu decay and these values are copied. 1636 */ 1637 unsigned long *numa_faults; 1638 unsigned long total_numa_faults; 1639 1640 /* 1641 * numa_faults_locality tracks if faults recorded during the last 1642 * scan window were remote/local or failed to migrate. The task scan 1643 * period is adapted based on the locality of the faults with different 1644 * weights depending on whether they were shared or private faults 1645 */ 1646 unsigned long numa_faults_locality[3]; 1647 1648 unsigned long numa_pages_migrated; 1649 #endif /* CONFIG_NUMA_BALANCING */ 1650 1651 struct rcu_head rcu; 1652 1653 /* 1654 * cache last used pipe for splice 1655 */ 1656 struct pipe_inode_info *splice_pipe; 1657 1658 struct page_frag task_frag; 1659 1660 #ifdef CONFIG_TASK_DELAY_ACCT 1661 struct task_delay_info *delays; 1662 #endif 1663 #ifdef CONFIG_FAULT_INJECTION 1664 int make_it_fail; 1665 #endif 1666 /* 1667 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1668 * balance_dirty_pages() for some dirty throttling pause 1669 */ 1670 int nr_dirtied; 1671 int nr_dirtied_pause; 1672 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1673 1674 #ifdef CONFIG_LATENCYTOP 1675 int latency_record_count; 1676 struct latency_record latency_record[LT_SAVECOUNT]; 1677 #endif 1678 /* 1679 * time slack values; these are used to round up poll() and 1680 * select() etc timeout values. These are in nanoseconds. 1681 */ 1682 unsigned long timer_slack_ns; 1683 unsigned long default_timer_slack_ns; 1684 1685 #ifdef CONFIG_KASAN 1686 unsigned int kasan_depth; 1687 #endif 1688 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1689 /* Index of current stored address in ret_stack */ 1690 int curr_ret_stack; 1691 /* Stack of return addresses for return function tracing */ 1692 struct ftrace_ret_stack *ret_stack; 1693 /* time stamp for last schedule */ 1694 unsigned long long ftrace_timestamp; 1695 /* 1696 * Number of functions that haven't been traced 1697 * because of depth overrun. 1698 */ 1699 atomic_t trace_overrun; 1700 /* Pause for the tracing */ 1701 atomic_t tracing_graph_pause; 1702 #endif 1703 #ifdef CONFIG_TRACING 1704 /* state flags for use by tracers */ 1705 unsigned long trace; 1706 /* bitmask and counter of trace recursion */ 1707 unsigned long trace_recursion; 1708 #endif /* CONFIG_TRACING */ 1709 #ifdef CONFIG_MEMCG 1710 struct memcg_oom_info { 1711 struct mem_cgroup *memcg; 1712 gfp_t gfp_mask; 1713 int order; 1714 unsigned int may_oom:1; 1715 } memcg_oom; 1716 #endif 1717 #ifdef CONFIG_UPROBES 1718 struct uprobe_task *utask; 1719 #endif 1720 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1721 unsigned int sequential_io; 1722 unsigned int sequential_io_avg; 1723 #endif 1724 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1725 unsigned long task_state_change; 1726 #endif 1727 }; 1728 1729 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1730 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1731 1732 #define TNF_MIGRATED 0x01 1733 #define TNF_NO_GROUP 0x02 1734 #define TNF_SHARED 0x04 1735 #define TNF_FAULT_LOCAL 0x08 1736 #define TNF_MIGRATE_FAIL 0x10 1737 1738 #ifdef CONFIG_NUMA_BALANCING 1739 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1740 extern pid_t task_numa_group_id(struct task_struct *p); 1741 extern void set_numabalancing_state(bool enabled); 1742 extern void task_numa_free(struct task_struct *p); 1743 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1744 int src_nid, int dst_cpu); 1745 #else 1746 static inline void task_numa_fault(int last_node, int node, int pages, 1747 int flags) 1748 { 1749 } 1750 static inline pid_t task_numa_group_id(struct task_struct *p) 1751 { 1752 return 0; 1753 } 1754 static inline void set_numabalancing_state(bool enabled) 1755 { 1756 } 1757 static inline void task_numa_free(struct task_struct *p) 1758 { 1759 } 1760 static inline bool should_numa_migrate_memory(struct task_struct *p, 1761 struct page *page, int src_nid, int dst_cpu) 1762 { 1763 return true; 1764 } 1765 #endif 1766 1767 static inline struct pid *task_pid(struct task_struct *task) 1768 { 1769 return task->pids[PIDTYPE_PID].pid; 1770 } 1771 1772 static inline struct pid *task_tgid(struct task_struct *task) 1773 { 1774 return task->group_leader->pids[PIDTYPE_PID].pid; 1775 } 1776 1777 /* 1778 * Without tasklist or rcu lock it is not safe to dereference 1779 * the result of task_pgrp/task_session even if task == current, 1780 * we can race with another thread doing sys_setsid/sys_setpgid. 1781 */ 1782 static inline struct pid *task_pgrp(struct task_struct *task) 1783 { 1784 return task->group_leader->pids[PIDTYPE_PGID].pid; 1785 } 1786 1787 static inline struct pid *task_session(struct task_struct *task) 1788 { 1789 return task->group_leader->pids[PIDTYPE_SID].pid; 1790 } 1791 1792 struct pid_namespace; 1793 1794 /* 1795 * the helpers to get the task's different pids as they are seen 1796 * from various namespaces 1797 * 1798 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1799 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1800 * current. 1801 * task_xid_nr_ns() : id seen from the ns specified; 1802 * 1803 * set_task_vxid() : assigns a virtual id to a task; 1804 * 1805 * see also pid_nr() etc in include/linux/pid.h 1806 */ 1807 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1808 struct pid_namespace *ns); 1809 1810 static inline pid_t task_pid_nr(struct task_struct *tsk) 1811 { 1812 return tsk->pid; 1813 } 1814 1815 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1816 struct pid_namespace *ns) 1817 { 1818 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1819 } 1820 1821 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1822 { 1823 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1824 } 1825 1826 1827 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1828 { 1829 return tsk->tgid; 1830 } 1831 1832 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1833 1834 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1835 { 1836 return pid_vnr(task_tgid(tsk)); 1837 } 1838 1839 1840 static inline int pid_alive(const struct task_struct *p); 1841 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1842 { 1843 pid_t pid = 0; 1844 1845 rcu_read_lock(); 1846 if (pid_alive(tsk)) 1847 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1848 rcu_read_unlock(); 1849 1850 return pid; 1851 } 1852 1853 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1854 { 1855 return task_ppid_nr_ns(tsk, &init_pid_ns); 1856 } 1857 1858 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1859 struct pid_namespace *ns) 1860 { 1861 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1862 } 1863 1864 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1865 { 1866 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1867 } 1868 1869 1870 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1871 struct pid_namespace *ns) 1872 { 1873 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1874 } 1875 1876 static inline pid_t task_session_vnr(struct task_struct *tsk) 1877 { 1878 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1879 } 1880 1881 /* obsolete, do not use */ 1882 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1883 { 1884 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1885 } 1886 1887 /** 1888 * pid_alive - check that a task structure is not stale 1889 * @p: Task structure to be checked. 1890 * 1891 * Test if a process is not yet dead (at most zombie state) 1892 * If pid_alive fails, then pointers within the task structure 1893 * can be stale and must not be dereferenced. 1894 * 1895 * Return: 1 if the process is alive. 0 otherwise. 1896 */ 1897 static inline int pid_alive(const struct task_struct *p) 1898 { 1899 return p->pids[PIDTYPE_PID].pid != NULL; 1900 } 1901 1902 /** 1903 * is_global_init - check if a task structure is init 1904 * @tsk: Task structure to be checked. 1905 * 1906 * Check if a task structure is the first user space task the kernel created. 1907 * 1908 * Return: 1 if the task structure is init. 0 otherwise. 1909 */ 1910 static inline int is_global_init(struct task_struct *tsk) 1911 { 1912 return tsk->pid == 1; 1913 } 1914 1915 extern struct pid *cad_pid; 1916 1917 extern void free_task(struct task_struct *tsk); 1918 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1919 1920 extern void __put_task_struct(struct task_struct *t); 1921 1922 static inline void put_task_struct(struct task_struct *t) 1923 { 1924 if (atomic_dec_and_test(&t->usage)) 1925 __put_task_struct(t); 1926 } 1927 1928 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1929 extern void task_cputime(struct task_struct *t, 1930 cputime_t *utime, cputime_t *stime); 1931 extern void task_cputime_scaled(struct task_struct *t, 1932 cputime_t *utimescaled, cputime_t *stimescaled); 1933 extern cputime_t task_gtime(struct task_struct *t); 1934 #else 1935 static inline void task_cputime(struct task_struct *t, 1936 cputime_t *utime, cputime_t *stime) 1937 { 1938 if (utime) 1939 *utime = t->utime; 1940 if (stime) 1941 *stime = t->stime; 1942 } 1943 1944 static inline void task_cputime_scaled(struct task_struct *t, 1945 cputime_t *utimescaled, 1946 cputime_t *stimescaled) 1947 { 1948 if (utimescaled) 1949 *utimescaled = t->utimescaled; 1950 if (stimescaled) 1951 *stimescaled = t->stimescaled; 1952 } 1953 1954 static inline cputime_t task_gtime(struct task_struct *t) 1955 { 1956 return t->gtime; 1957 } 1958 #endif 1959 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1960 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1961 1962 /* 1963 * Per process flags 1964 */ 1965 #define PF_EXITING 0x00000004 /* getting shut down */ 1966 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1967 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1968 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1969 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1970 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1971 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1972 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1973 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1974 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1975 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1976 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1977 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1978 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1979 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1980 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1981 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1982 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1983 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1984 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1985 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1986 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1987 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 1988 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1989 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1990 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1991 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 1992 1993 /* 1994 * Only the _current_ task can read/write to tsk->flags, but other 1995 * tasks can access tsk->flags in readonly mode for example 1996 * with tsk_used_math (like during threaded core dumping). 1997 * There is however an exception to this rule during ptrace 1998 * or during fork: the ptracer task is allowed to write to the 1999 * child->flags of its traced child (same goes for fork, the parent 2000 * can write to the child->flags), because we're guaranteed the 2001 * child is not running and in turn not changing child->flags 2002 * at the same time the parent does it. 2003 */ 2004 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2005 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2006 #define clear_used_math() clear_stopped_child_used_math(current) 2007 #define set_used_math() set_stopped_child_used_math(current) 2008 #define conditional_stopped_child_used_math(condition, child) \ 2009 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2010 #define conditional_used_math(condition) \ 2011 conditional_stopped_child_used_math(condition, current) 2012 #define copy_to_stopped_child_used_math(child) \ 2013 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2014 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2015 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2016 #define used_math() tsk_used_math(current) 2017 2018 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2019 * __GFP_FS is also cleared as it implies __GFP_IO. 2020 */ 2021 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2022 { 2023 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2024 flags &= ~(__GFP_IO | __GFP_FS); 2025 return flags; 2026 } 2027 2028 static inline unsigned int memalloc_noio_save(void) 2029 { 2030 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2031 current->flags |= PF_MEMALLOC_NOIO; 2032 return flags; 2033 } 2034 2035 static inline void memalloc_noio_restore(unsigned int flags) 2036 { 2037 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2038 } 2039 2040 /* Per-process atomic flags. */ 2041 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2042 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2043 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2044 2045 2046 #define TASK_PFA_TEST(name, func) \ 2047 static inline bool task_##func(struct task_struct *p) \ 2048 { return test_bit(PFA_##name, &p->atomic_flags); } 2049 #define TASK_PFA_SET(name, func) \ 2050 static inline void task_set_##func(struct task_struct *p) \ 2051 { set_bit(PFA_##name, &p->atomic_flags); } 2052 #define TASK_PFA_CLEAR(name, func) \ 2053 static inline void task_clear_##func(struct task_struct *p) \ 2054 { clear_bit(PFA_##name, &p->atomic_flags); } 2055 2056 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2057 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2058 2059 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2060 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2061 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2062 2063 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2064 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2065 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2066 2067 /* 2068 * task->jobctl flags 2069 */ 2070 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2071 2072 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2073 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2074 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2075 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2076 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2077 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2078 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2079 2080 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 2081 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 2082 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 2083 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 2084 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 2085 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 2086 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 2087 2088 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2089 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2090 2091 extern bool task_set_jobctl_pending(struct task_struct *task, 2092 unsigned int mask); 2093 extern void task_clear_jobctl_trapping(struct task_struct *task); 2094 extern void task_clear_jobctl_pending(struct task_struct *task, 2095 unsigned int mask); 2096 2097 static inline void rcu_copy_process(struct task_struct *p) 2098 { 2099 #ifdef CONFIG_PREEMPT_RCU 2100 p->rcu_read_lock_nesting = 0; 2101 p->rcu_read_unlock_special.s = 0; 2102 p->rcu_blocked_node = NULL; 2103 INIT_LIST_HEAD(&p->rcu_node_entry); 2104 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2105 #ifdef CONFIG_TASKS_RCU 2106 p->rcu_tasks_holdout = false; 2107 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2108 p->rcu_tasks_idle_cpu = -1; 2109 #endif /* #ifdef CONFIG_TASKS_RCU */ 2110 } 2111 2112 static inline void tsk_restore_flags(struct task_struct *task, 2113 unsigned long orig_flags, unsigned long flags) 2114 { 2115 task->flags &= ~flags; 2116 task->flags |= orig_flags & flags; 2117 } 2118 2119 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2120 const struct cpumask *trial); 2121 extern int task_can_attach(struct task_struct *p, 2122 const struct cpumask *cs_cpus_allowed); 2123 #ifdef CONFIG_SMP 2124 extern void do_set_cpus_allowed(struct task_struct *p, 2125 const struct cpumask *new_mask); 2126 2127 extern int set_cpus_allowed_ptr(struct task_struct *p, 2128 const struct cpumask *new_mask); 2129 #else 2130 static inline void do_set_cpus_allowed(struct task_struct *p, 2131 const struct cpumask *new_mask) 2132 { 2133 } 2134 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2135 const struct cpumask *new_mask) 2136 { 2137 if (!cpumask_test_cpu(0, new_mask)) 2138 return -EINVAL; 2139 return 0; 2140 } 2141 #endif 2142 2143 #ifdef CONFIG_NO_HZ_COMMON 2144 void calc_load_enter_idle(void); 2145 void calc_load_exit_idle(void); 2146 #else 2147 static inline void calc_load_enter_idle(void) { } 2148 static inline void calc_load_exit_idle(void) { } 2149 #endif /* CONFIG_NO_HZ_COMMON */ 2150 2151 #ifndef CONFIG_CPUMASK_OFFSTACK 2152 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 2153 { 2154 return set_cpus_allowed_ptr(p, &new_mask); 2155 } 2156 #endif 2157 2158 /* 2159 * Do not use outside of architecture code which knows its limitations. 2160 * 2161 * sched_clock() has no promise of monotonicity or bounded drift between 2162 * CPUs, use (which you should not) requires disabling IRQs. 2163 * 2164 * Please use one of the three interfaces below. 2165 */ 2166 extern unsigned long long notrace sched_clock(void); 2167 /* 2168 * See the comment in kernel/sched/clock.c 2169 */ 2170 extern u64 cpu_clock(int cpu); 2171 extern u64 local_clock(void); 2172 extern u64 running_clock(void); 2173 extern u64 sched_clock_cpu(int cpu); 2174 2175 2176 extern void sched_clock_init(void); 2177 2178 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2179 static inline void sched_clock_tick(void) 2180 { 2181 } 2182 2183 static inline void sched_clock_idle_sleep_event(void) 2184 { 2185 } 2186 2187 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2188 { 2189 } 2190 #else 2191 /* 2192 * Architectures can set this to 1 if they have specified 2193 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2194 * but then during bootup it turns out that sched_clock() 2195 * is reliable after all: 2196 */ 2197 extern int sched_clock_stable(void); 2198 extern void set_sched_clock_stable(void); 2199 extern void clear_sched_clock_stable(void); 2200 2201 extern void sched_clock_tick(void); 2202 extern void sched_clock_idle_sleep_event(void); 2203 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2204 #endif 2205 2206 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2207 /* 2208 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2209 * The reason for this explicit opt-in is not to have perf penalty with 2210 * slow sched_clocks. 2211 */ 2212 extern void enable_sched_clock_irqtime(void); 2213 extern void disable_sched_clock_irqtime(void); 2214 #else 2215 static inline void enable_sched_clock_irqtime(void) {} 2216 static inline void disable_sched_clock_irqtime(void) {} 2217 #endif 2218 2219 extern unsigned long long 2220 task_sched_runtime(struct task_struct *task); 2221 2222 /* sched_exec is called by processes performing an exec */ 2223 #ifdef CONFIG_SMP 2224 extern void sched_exec(void); 2225 #else 2226 #define sched_exec() {} 2227 #endif 2228 2229 extern void sched_clock_idle_sleep_event(void); 2230 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2231 2232 #ifdef CONFIG_HOTPLUG_CPU 2233 extern void idle_task_exit(void); 2234 #else 2235 static inline void idle_task_exit(void) {} 2236 #endif 2237 2238 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2239 extern void wake_up_nohz_cpu(int cpu); 2240 #else 2241 static inline void wake_up_nohz_cpu(int cpu) { } 2242 #endif 2243 2244 #ifdef CONFIG_NO_HZ_FULL 2245 extern bool sched_can_stop_tick(void); 2246 extern u64 scheduler_tick_max_deferment(void); 2247 #else 2248 static inline bool sched_can_stop_tick(void) { return false; } 2249 #endif 2250 2251 #ifdef CONFIG_SCHED_AUTOGROUP 2252 extern void sched_autogroup_create_attach(struct task_struct *p); 2253 extern void sched_autogroup_detach(struct task_struct *p); 2254 extern void sched_autogroup_fork(struct signal_struct *sig); 2255 extern void sched_autogroup_exit(struct signal_struct *sig); 2256 #ifdef CONFIG_PROC_FS 2257 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2258 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2259 #endif 2260 #else 2261 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2262 static inline void sched_autogroup_detach(struct task_struct *p) { } 2263 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2264 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2265 #endif 2266 2267 extern int yield_to(struct task_struct *p, bool preempt); 2268 extern void set_user_nice(struct task_struct *p, long nice); 2269 extern int task_prio(const struct task_struct *p); 2270 /** 2271 * task_nice - return the nice value of a given task. 2272 * @p: the task in question. 2273 * 2274 * Return: The nice value [ -20 ... 0 ... 19 ]. 2275 */ 2276 static inline int task_nice(const struct task_struct *p) 2277 { 2278 return PRIO_TO_NICE((p)->static_prio); 2279 } 2280 extern int can_nice(const struct task_struct *p, const int nice); 2281 extern int task_curr(const struct task_struct *p); 2282 extern int idle_cpu(int cpu); 2283 extern int sched_setscheduler(struct task_struct *, int, 2284 const struct sched_param *); 2285 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2286 const struct sched_param *); 2287 extern int sched_setattr(struct task_struct *, 2288 const struct sched_attr *); 2289 extern struct task_struct *idle_task(int cpu); 2290 /** 2291 * is_idle_task - is the specified task an idle task? 2292 * @p: the task in question. 2293 * 2294 * Return: 1 if @p is an idle task. 0 otherwise. 2295 */ 2296 static inline bool is_idle_task(const struct task_struct *p) 2297 { 2298 return p->pid == 0; 2299 } 2300 extern struct task_struct *curr_task(int cpu); 2301 extern void set_curr_task(int cpu, struct task_struct *p); 2302 2303 void yield(void); 2304 2305 union thread_union { 2306 struct thread_info thread_info; 2307 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2308 }; 2309 2310 #ifndef __HAVE_ARCH_KSTACK_END 2311 static inline int kstack_end(void *addr) 2312 { 2313 /* Reliable end of stack detection: 2314 * Some APM bios versions misalign the stack 2315 */ 2316 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2317 } 2318 #endif 2319 2320 extern union thread_union init_thread_union; 2321 extern struct task_struct init_task; 2322 2323 extern struct mm_struct init_mm; 2324 2325 extern struct pid_namespace init_pid_ns; 2326 2327 /* 2328 * find a task by one of its numerical ids 2329 * 2330 * find_task_by_pid_ns(): 2331 * finds a task by its pid in the specified namespace 2332 * find_task_by_vpid(): 2333 * finds a task by its virtual pid 2334 * 2335 * see also find_vpid() etc in include/linux/pid.h 2336 */ 2337 2338 extern struct task_struct *find_task_by_vpid(pid_t nr); 2339 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2340 struct pid_namespace *ns); 2341 2342 /* per-UID process charging. */ 2343 extern struct user_struct * alloc_uid(kuid_t); 2344 static inline struct user_struct *get_uid(struct user_struct *u) 2345 { 2346 atomic_inc(&u->__count); 2347 return u; 2348 } 2349 extern void free_uid(struct user_struct *); 2350 2351 #include <asm/current.h> 2352 2353 extern void xtime_update(unsigned long ticks); 2354 2355 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2356 extern int wake_up_process(struct task_struct *tsk); 2357 extern void wake_up_new_task(struct task_struct *tsk); 2358 #ifdef CONFIG_SMP 2359 extern void kick_process(struct task_struct *tsk); 2360 #else 2361 static inline void kick_process(struct task_struct *tsk) { } 2362 #endif 2363 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2364 extern void sched_dead(struct task_struct *p); 2365 2366 extern void proc_caches_init(void); 2367 extern void flush_signals(struct task_struct *); 2368 extern void __flush_signals(struct task_struct *); 2369 extern void ignore_signals(struct task_struct *); 2370 extern void flush_signal_handlers(struct task_struct *, int force_default); 2371 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2372 2373 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2374 { 2375 unsigned long flags; 2376 int ret; 2377 2378 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2379 ret = dequeue_signal(tsk, mask, info); 2380 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2381 2382 return ret; 2383 } 2384 2385 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2386 sigset_t *mask); 2387 extern void unblock_all_signals(void); 2388 extern void release_task(struct task_struct * p); 2389 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2390 extern int force_sigsegv(int, struct task_struct *); 2391 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2392 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2393 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2394 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2395 const struct cred *, u32); 2396 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2397 extern int kill_pid(struct pid *pid, int sig, int priv); 2398 extern int kill_proc_info(int, struct siginfo *, pid_t); 2399 extern __must_check bool do_notify_parent(struct task_struct *, int); 2400 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2401 extern void force_sig(int, struct task_struct *); 2402 extern int send_sig(int, struct task_struct *, int); 2403 extern int zap_other_threads(struct task_struct *p); 2404 extern struct sigqueue *sigqueue_alloc(void); 2405 extern void sigqueue_free(struct sigqueue *); 2406 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2407 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2408 2409 static inline void restore_saved_sigmask(void) 2410 { 2411 if (test_and_clear_restore_sigmask()) 2412 __set_current_blocked(¤t->saved_sigmask); 2413 } 2414 2415 static inline sigset_t *sigmask_to_save(void) 2416 { 2417 sigset_t *res = ¤t->blocked; 2418 if (unlikely(test_restore_sigmask())) 2419 res = ¤t->saved_sigmask; 2420 return res; 2421 } 2422 2423 static inline int kill_cad_pid(int sig, int priv) 2424 { 2425 return kill_pid(cad_pid, sig, priv); 2426 } 2427 2428 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2429 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2430 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2431 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2432 2433 /* 2434 * True if we are on the alternate signal stack. 2435 */ 2436 static inline int on_sig_stack(unsigned long sp) 2437 { 2438 #ifdef CONFIG_STACK_GROWSUP 2439 return sp >= current->sas_ss_sp && 2440 sp - current->sas_ss_sp < current->sas_ss_size; 2441 #else 2442 return sp > current->sas_ss_sp && 2443 sp - current->sas_ss_sp <= current->sas_ss_size; 2444 #endif 2445 } 2446 2447 static inline int sas_ss_flags(unsigned long sp) 2448 { 2449 if (!current->sas_ss_size) 2450 return SS_DISABLE; 2451 2452 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2453 } 2454 2455 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2456 { 2457 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2458 #ifdef CONFIG_STACK_GROWSUP 2459 return current->sas_ss_sp; 2460 #else 2461 return current->sas_ss_sp + current->sas_ss_size; 2462 #endif 2463 return sp; 2464 } 2465 2466 /* 2467 * Routines for handling mm_structs 2468 */ 2469 extern struct mm_struct * mm_alloc(void); 2470 2471 /* mmdrop drops the mm and the page tables */ 2472 extern void __mmdrop(struct mm_struct *); 2473 static inline void mmdrop(struct mm_struct * mm) 2474 { 2475 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2476 __mmdrop(mm); 2477 } 2478 2479 /* mmput gets rid of the mappings and all user-space */ 2480 extern void mmput(struct mm_struct *); 2481 /* Grab a reference to a task's mm, if it is not already going away */ 2482 extern struct mm_struct *get_task_mm(struct task_struct *task); 2483 /* 2484 * Grab a reference to a task's mm, if it is not already going away 2485 * and ptrace_may_access with the mode parameter passed to it 2486 * succeeds. 2487 */ 2488 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2489 /* Remove the current tasks stale references to the old mm_struct */ 2490 extern void mm_release(struct task_struct *, struct mm_struct *); 2491 2492 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2493 struct task_struct *); 2494 extern void flush_thread(void); 2495 extern void exit_thread(void); 2496 2497 extern void exit_files(struct task_struct *); 2498 extern void __cleanup_sighand(struct sighand_struct *); 2499 2500 extern void exit_itimers(struct signal_struct *); 2501 extern void flush_itimer_signals(void); 2502 2503 extern void do_group_exit(int); 2504 2505 extern int do_execve(struct filename *, 2506 const char __user * const __user *, 2507 const char __user * const __user *); 2508 extern int do_execveat(int, struct filename *, 2509 const char __user * const __user *, 2510 const char __user * const __user *, 2511 int); 2512 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2513 struct task_struct *fork_idle(int); 2514 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2515 2516 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2517 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2518 { 2519 __set_task_comm(tsk, from, false); 2520 } 2521 extern char *get_task_comm(char *to, struct task_struct *tsk); 2522 2523 #ifdef CONFIG_SMP 2524 void scheduler_ipi(void); 2525 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2526 #else 2527 static inline void scheduler_ipi(void) { } 2528 static inline unsigned long wait_task_inactive(struct task_struct *p, 2529 long match_state) 2530 { 2531 return 1; 2532 } 2533 #endif 2534 2535 #define next_task(p) \ 2536 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2537 2538 #define for_each_process(p) \ 2539 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2540 2541 extern bool current_is_single_threaded(void); 2542 2543 /* 2544 * Careful: do_each_thread/while_each_thread is a double loop so 2545 * 'break' will not work as expected - use goto instead. 2546 */ 2547 #define do_each_thread(g, t) \ 2548 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2549 2550 #define while_each_thread(g, t) \ 2551 while ((t = next_thread(t)) != g) 2552 2553 #define __for_each_thread(signal, t) \ 2554 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2555 2556 #define for_each_thread(p, t) \ 2557 __for_each_thread((p)->signal, t) 2558 2559 /* Careful: this is a double loop, 'break' won't work as expected. */ 2560 #define for_each_process_thread(p, t) \ 2561 for_each_process(p) for_each_thread(p, t) 2562 2563 static inline int get_nr_threads(struct task_struct *tsk) 2564 { 2565 return tsk->signal->nr_threads; 2566 } 2567 2568 static inline bool thread_group_leader(struct task_struct *p) 2569 { 2570 return p->exit_signal >= 0; 2571 } 2572 2573 /* Do to the insanities of de_thread it is possible for a process 2574 * to have the pid of the thread group leader without actually being 2575 * the thread group leader. For iteration through the pids in proc 2576 * all we care about is that we have a task with the appropriate 2577 * pid, we don't actually care if we have the right task. 2578 */ 2579 static inline bool has_group_leader_pid(struct task_struct *p) 2580 { 2581 return task_pid(p) == p->signal->leader_pid; 2582 } 2583 2584 static inline 2585 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2586 { 2587 return p1->signal == p2->signal; 2588 } 2589 2590 static inline struct task_struct *next_thread(const struct task_struct *p) 2591 { 2592 return list_entry_rcu(p->thread_group.next, 2593 struct task_struct, thread_group); 2594 } 2595 2596 static inline int thread_group_empty(struct task_struct *p) 2597 { 2598 return list_empty(&p->thread_group); 2599 } 2600 2601 #define delay_group_leader(p) \ 2602 (thread_group_leader(p) && !thread_group_empty(p)) 2603 2604 /* 2605 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2606 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2607 * pins the final release of task.io_context. Also protects ->cpuset and 2608 * ->cgroup.subsys[]. And ->vfork_done. 2609 * 2610 * Nests both inside and outside of read_lock(&tasklist_lock). 2611 * It must not be nested with write_lock_irq(&tasklist_lock), 2612 * neither inside nor outside. 2613 */ 2614 static inline void task_lock(struct task_struct *p) 2615 { 2616 spin_lock(&p->alloc_lock); 2617 } 2618 2619 static inline void task_unlock(struct task_struct *p) 2620 { 2621 spin_unlock(&p->alloc_lock); 2622 } 2623 2624 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2625 unsigned long *flags); 2626 2627 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2628 unsigned long *flags) 2629 { 2630 struct sighand_struct *ret; 2631 2632 ret = __lock_task_sighand(tsk, flags); 2633 (void)__cond_lock(&tsk->sighand->siglock, ret); 2634 return ret; 2635 } 2636 2637 static inline void unlock_task_sighand(struct task_struct *tsk, 2638 unsigned long *flags) 2639 { 2640 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2641 } 2642 2643 #ifdef CONFIG_CGROUPS 2644 static inline void threadgroup_change_begin(struct task_struct *tsk) 2645 { 2646 down_read(&tsk->signal->group_rwsem); 2647 } 2648 static inline void threadgroup_change_end(struct task_struct *tsk) 2649 { 2650 up_read(&tsk->signal->group_rwsem); 2651 } 2652 2653 /** 2654 * threadgroup_lock - lock threadgroup 2655 * @tsk: member task of the threadgroup to lock 2656 * 2657 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2658 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2659 * change ->group_leader/pid. This is useful for cases where the threadgroup 2660 * needs to stay stable across blockable operations. 2661 * 2662 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2663 * synchronization. While held, no new task will be added to threadgroup 2664 * and no existing live task will have its PF_EXITING set. 2665 * 2666 * de_thread() does threadgroup_change_{begin|end}() when a non-leader 2667 * sub-thread becomes a new leader. 2668 */ 2669 static inline void threadgroup_lock(struct task_struct *tsk) 2670 { 2671 down_write(&tsk->signal->group_rwsem); 2672 } 2673 2674 /** 2675 * threadgroup_unlock - unlock threadgroup 2676 * @tsk: member task of the threadgroup to unlock 2677 * 2678 * Reverse threadgroup_lock(). 2679 */ 2680 static inline void threadgroup_unlock(struct task_struct *tsk) 2681 { 2682 up_write(&tsk->signal->group_rwsem); 2683 } 2684 #else 2685 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2686 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2687 static inline void threadgroup_lock(struct task_struct *tsk) {} 2688 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2689 #endif 2690 2691 #ifndef __HAVE_THREAD_FUNCTIONS 2692 2693 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2694 #define task_stack_page(task) ((task)->stack) 2695 2696 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2697 { 2698 *task_thread_info(p) = *task_thread_info(org); 2699 task_thread_info(p)->task = p; 2700 } 2701 2702 /* 2703 * Return the address of the last usable long on the stack. 2704 * 2705 * When the stack grows down, this is just above the thread 2706 * info struct. Going any lower will corrupt the threadinfo. 2707 * 2708 * When the stack grows up, this is the highest address. 2709 * Beyond that position, we corrupt data on the next page. 2710 */ 2711 static inline unsigned long *end_of_stack(struct task_struct *p) 2712 { 2713 #ifdef CONFIG_STACK_GROWSUP 2714 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2715 #else 2716 return (unsigned long *)(task_thread_info(p) + 1); 2717 #endif 2718 } 2719 2720 #endif 2721 #define task_stack_end_corrupted(task) \ 2722 (*(end_of_stack(task)) != STACK_END_MAGIC) 2723 2724 static inline int object_is_on_stack(void *obj) 2725 { 2726 void *stack = task_stack_page(current); 2727 2728 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2729 } 2730 2731 extern void thread_info_cache_init(void); 2732 2733 #ifdef CONFIG_DEBUG_STACK_USAGE 2734 static inline unsigned long stack_not_used(struct task_struct *p) 2735 { 2736 unsigned long *n = end_of_stack(p); 2737 2738 do { /* Skip over canary */ 2739 n++; 2740 } while (!*n); 2741 2742 return (unsigned long)n - (unsigned long)end_of_stack(p); 2743 } 2744 #endif 2745 extern void set_task_stack_end_magic(struct task_struct *tsk); 2746 2747 /* set thread flags in other task's structures 2748 * - see asm/thread_info.h for TIF_xxxx flags available 2749 */ 2750 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2751 { 2752 set_ti_thread_flag(task_thread_info(tsk), flag); 2753 } 2754 2755 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2756 { 2757 clear_ti_thread_flag(task_thread_info(tsk), flag); 2758 } 2759 2760 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2761 { 2762 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2763 } 2764 2765 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2766 { 2767 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2768 } 2769 2770 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2771 { 2772 return test_ti_thread_flag(task_thread_info(tsk), flag); 2773 } 2774 2775 static inline void set_tsk_need_resched(struct task_struct *tsk) 2776 { 2777 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2778 } 2779 2780 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2781 { 2782 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2783 } 2784 2785 static inline int test_tsk_need_resched(struct task_struct *tsk) 2786 { 2787 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2788 } 2789 2790 static inline int restart_syscall(void) 2791 { 2792 set_tsk_thread_flag(current, TIF_SIGPENDING); 2793 return -ERESTARTNOINTR; 2794 } 2795 2796 static inline int signal_pending(struct task_struct *p) 2797 { 2798 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2799 } 2800 2801 static inline int __fatal_signal_pending(struct task_struct *p) 2802 { 2803 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2804 } 2805 2806 static inline int fatal_signal_pending(struct task_struct *p) 2807 { 2808 return signal_pending(p) && __fatal_signal_pending(p); 2809 } 2810 2811 static inline int signal_pending_state(long state, struct task_struct *p) 2812 { 2813 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2814 return 0; 2815 if (!signal_pending(p)) 2816 return 0; 2817 2818 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2819 } 2820 2821 /* 2822 * cond_resched() and cond_resched_lock(): latency reduction via 2823 * explicit rescheduling in places that are safe. The return 2824 * value indicates whether a reschedule was done in fact. 2825 * cond_resched_lock() will drop the spinlock before scheduling, 2826 * cond_resched_softirq() will enable bhs before scheduling. 2827 */ 2828 extern int _cond_resched(void); 2829 2830 #define cond_resched() ({ \ 2831 ___might_sleep(__FILE__, __LINE__, 0); \ 2832 _cond_resched(); \ 2833 }) 2834 2835 extern int __cond_resched_lock(spinlock_t *lock); 2836 2837 #ifdef CONFIG_PREEMPT_COUNT 2838 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2839 #else 2840 #define PREEMPT_LOCK_OFFSET 0 2841 #endif 2842 2843 #define cond_resched_lock(lock) ({ \ 2844 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2845 __cond_resched_lock(lock); \ 2846 }) 2847 2848 extern int __cond_resched_softirq(void); 2849 2850 #define cond_resched_softirq() ({ \ 2851 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2852 __cond_resched_softirq(); \ 2853 }) 2854 2855 static inline void cond_resched_rcu(void) 2856 { 2857 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2858 rcu_read_unlock(); 2859 cond_resched(); 2860 rcu_read_lock(); 2861 #endif 2862 } 2863 2864 /* 2865 * Does a critical section need to be broken due to another 2866 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2867 * but a general need for low latency) 2868 */ 2869 static inline int spin_needbreak(spinlock_t *lock) 2870 { 2871 #ifdef CONFIG_PREEMPT 2872 return spin_is_contended(lock); 2873 #else 2874 return 0; 2875 #endif 2876 } 2877 2878 /* 2879 * Idle thread specific functions to determine the need_resched 2880 * polling state. 2881 */ 2882 #ifdef TIF_POLLING_NRFLAG 2883 static inline int tsk_is_polling(struct task_struct *p) 2884 { 2885 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 2886 } 2887 2888 static inline void __current_set_polling(void) 2889 { 2890 set_thread_flag(TIF_POLLING_NRFLAG); 2891 } 2892 2893 static inline bool __must_check current_set_polling_and_test(void) 2894 { 2895 __current_set_polling(); 2896 2897 /* 2898 * Polling state must be visible before we test NEED_RESCHED, 2899 * paired by resched_curr() 2900 */ 2901 smp_mb__after_atomic(); 2902 2903 return unlikely(tif_need_resched()); 2904 } 2905 2906 static inline void __current_clr_polling(void) 2907 { 2908 clear_thread_flag(TIF_POLLING_NRFLAG); 2909 } 2910 2911 static inline bool __must_check current_clr_polling_and_test(void) 2912 { 2913 __current_clr_polling(); 2914 2915 /* 2916 * Polling state must be visible before we test NEED_RESCHED, 2917 * paired by resched_curr() 2918 */ 2919 smp_mb__after_atomic(); 2920 2921 return unlikely(tif_need_resched()); 2922 } 2923 2924 #else 2925 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 2926 static inline void __current_set_polling(void) { } 2927 static inline void __current_clr_polling(void) { } 2928 2929 static inline bool __must_check current_set_polling_and_test(void) 2930 { 2931 return unlikely(tif_need_resched()); 2932 } 2933 static inline bool __must_check current_clr_polling_and_test(void) 2934 { 2935 return unlikely(tif_need_resched()); 2936 } 2937 #endif 2938 2939 static inline void current_clr_polling(void) 2940 { 2941 __current_clr_polling(); 2942 2943 /* 2944 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 2945 * Once the bit is cleared, we'll get IPIs with every new 2946 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 2947 * fold. 2948 */ 2949 smp_mb(); /* paired with resched_curr() */ 2950 2951 preempt_fold_need_resched(); 2952 } 2953 2954 static __always_inline bool need_resched(void) 2955 { 2956 return unlikely(tif_need_resched()); 2957 } 2958 2959 /* 2960 * Thread group CPU time accounting. 2961 */ 2962 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2963 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2964 2965 static inline void thread_group_cputime_init(struct signal_struct *sig) 2966 { 2967 raw_spin_lock_init(&sig->cputimer.lock); 2968 } 2969 2970 /* 2971 * Reevaluate whether the task has signals pending delivery. 2972 * Wake the task if so. 2973 * This is required every time the blocked sigset_t changes. 2974 * callers must hold sighand->siglock. 2975 */ 2976 extern void recalc_sigpending_and_wake(struct task_struct *t); 2977 extern void recalc_sigpending(void); 2978 2979 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2980 2981 static inline void signal_wake_up(struct task_struct *t, bool resume) 2982 { 2983 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2984 } 2985 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2986 { 2987 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2988 } 2989 2990 /* 2991 * Wrappers for p->thread_info->cpu access. No-op on UP. 2992 */ 2993 #ifdef CONFIG_SMP 2994 2995 static inline unsigned int task_cpu(const struct task_struct *p) 2996 { 2997 return task_thread_info(p)->cpu; 2998 } 2999 3000 static inline int task_node(const struct task_struct *p) 3001 { 3002 return cpu_to_node(task_cpu(p)); 3003 } 3004 3005 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3006 3007 #else 3008 3009 static inline unsigned int task_cpu(const struct task_struct *p) 3010 { 3011 return 0; 3012 } 3013 3014 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3015 { 3016 } 3017 3018 #endif /* CONFIG_SMP */ 3019 3020 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3021 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3022 3023 #ifdef CONFIG_CGROUP_SCHED 3024 extern struct task_group root_task_group; 3025 #endif /* CONFIG_CGROUP_SCHED */ 3026 3027 extern int task_can_switch_user(struct user_struct *up, 3028 struct task_struct *tsk); 3029 3030 #ifdef CONFIG_TASK_XACCT 3031 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3032 { 3033 tsk->ioac.rchar += amt; 3034 } 3035 3036 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3037 { 3038 tsk->ioac.wchar += amt; 3039 } 3040 3041 static inline void inc_syscr(struct task_struct *tsk) 3042 { 3043 tsk->ioac.syscr++; 3044 } 3045 3046 static inline void inc_syscw(struct task_struct *tsk) 3047 { 3048 tsk->ioac.syscw++; 3049 } 3050 #else 3051 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3052 { 3053 } 3054 3055 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3056 { 3057 } 3058 3059 static inline void inc_syscr(struct task_struct *tsk) 3060 { 3061 } 3062 3063 static inline void inc_syscw(struct task_struct *tsk) 3064 { 3065 } 3066 #endif 3067 3068 #ifndef TASK_SIZE_OF 3069 #define TASK_SIZE_OF(tsk) TASK_SIZE 3070 #endif 3071 3072 #ifdef CONFIG_MEMCG 3073 extern void mm_update_next_owner(struct mm_struct *mm); 3074 #else 3075 static inline void mm_update_next_owner(struct mm_struct *mm) 3076 { 3077 } 3078 #endif /* CONFIG_MEMCG */ 3079 3080 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3081 unsigned int limit) 3082 { 3083 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 3084 } 3085 3086 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3087 unsigned int limit) 3088 { 3089 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 3090 } 3091 3092 static inline unsigned long rlimit(unsigned int limit) 3093 { 3094 return task_rlimit(current, limit); 3095 } 3096 3097 static inline unsigned long rlimit_max(unsigned int limit) 3098 { 3099 return task_rlimit_max(current, limit); 3100 } 3101 3102 #endif 3103