xref: /linux/include/linux/sched.h (revision 3bd3706251ee8ab67e69d9340ac2abdca217e733)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/signal_types.h>
29 #include <linux/mm_types_task.h>
30 #include <linux/task_io_accounting.h>
31 #include <linux/rseq.h>
32 
33 /* task_struct member predeclarations (sorted alphabetically): */
34 struct audit_context;
35 struct backing_dev_info;
36 struct bio_list;
37 struct blk_plug;
38 struct cfs_rq;
39 struct fs_struct;
40 struct futex_pi_state;
41 struct io_context;
42 struct mempolicy;
43 struct nameidata;
44 struct nsproxy;
45 struct perf_event_context;
46 struct pid_namespace;
47 struct pipe_inode_info;
48 struct rcu_node;
49 struct reclaim_state;
50 struct capture_control;
51 struct robust_list_head;
52 struct sched_attr;
53 struct sched_param;
54 struct seq_file;
55 struct sighand_struct;
56 struct signal_struct;
57 struct task_delay_info;
58 struct task_group;
59 
60 /*
61  * Task state bitmask. NOTE! These bits are also
62  * encoded in fs/proc/array.c: get_task_state().
63  *
64  * We have two separate sets of flags: task->state
65  * is about runnability, while task->exit_state are
66  * about the task exiting. Confusing, but this way
67  * modifying one set can't modify the other one by
68  * mistake.
69  */
70 
71 /* Used in tsk->state: */
72 #define TASK_RUNNING			0x0000
73 #define TASK_INTERRUPTIBLE		0x0001
74 #define TASK_UNINTERRUPTIBLE		0x0002
75 #define __TASK_STOPPED			0x0004
76 #define __TASK_TRACED			0x0008
77 /* Used in tsk->exit_state: */
78 #define EXIT_DEAD			0x0010
79 #define EXIT_ZOMBIE			0x0020
80 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
81 /* Used in tsk->state again: */
82 #define TASK_PARKED			0x0040
83 #define TASK_DEAD			0x0080
84 #define TASK_WAKEKILL			0x0100
85 #define TASK_WAKING			0x0200
86 #define TASK_NOLOAD			0x0400
87 #define TASK_NEW			0x0800
88 #define TASK_STATE_MAX			0x1000
89 
90 /* Convenience macros for the sake of set_current_state: */
91 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
92 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
93 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
94 
95 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
96 
97 /* Convenience macros for the sake of wake_up(): */
98 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
99 
100 /* get_task_state(): */
101 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
102 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
103 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
104 					 TASK_PARKED)
105 
106 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
107 
108 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
109 
110 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
111 
112 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
113 					 (task->flags & PF_FROZEN) == 0 && \
114 					 (task->state & TASK_NOLOAD) == 0)
115 
116 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
117 
118 /*
119  * Special states are those that do not use the normal wait-loop pattern. See
120  * the comment with set_special_state().
121  */
122 #define is_special_task_state(state)				\
123 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
124 
125 #define __set_current_state(state_value)			\
126 	do {							\
127 		WARN_ON_ONCE(is_special_task_state(state_value));\
128 		current->task_state_change = _THIS_IP_;		\
129 		current->state = (state_value);			\
130 	} while (0)
131 
132 #define set_current_state(state_value)				\
133 	do {							\
134 		WARN_ON_ONCE(is_special_task_state(state_value));\
135 		current->task_state_change = _THIS_IP_;		\
136 		smp_store_mb(current->state, (state_value));	\
137 	} while (0)
138 
139 #define set_special_state(state_value)					\
140 	do {								\
141 		unsigned long flags; /* may shadow */			\
142 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
143 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
144 		current->task_state_change = _THIS_IP_;			\
145 		current->state = (state_value);				\
146 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
147 	} while (0)
148 #else
149 /*
150  * set_current_state() includes a barrier so that the write of current->state
151  * is correctly serialised wrt the caller's subsequent test of whether to
152  * actually sleep:
153  *
154  *   for (;;) {
155  *	set_current_state(TASK_UNINTERRUPTIBLE);
156  *	if (!need_sleep)
157  *		break;
158  *
159  *	schedule();
160  *   }
161  *   __set_current_state(TASK_RUNNING);
162  *
163  * If the caller does not need such serialisation (because, for instance, the
164  * condition test and condition change and wakeup are under the same lock) then
165  * use __set_current_state().
166  *
167  * The above is typically ordered against the wakeup, which does:
168  *
169  *   need_sleep = false;
170  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
171  *
172  * where wake_up_state() executes a full memory barrier before accessing the
173  * task state.
174  *
175  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
176  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
177  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
178  *
179  * However, with slightly different timing the wakeup TASK_RUNNING store can
180  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
181  * a problem either because that will result in one extra go around the loop
182  * and our @cond test will save the day.
183  *
184  * Also see the comments of try_to_wake_up().
185  */
186 #define __set_current_state(state_value)				\
187 	current->state = (state_value)
188 
189 #define set_current_state(state_value)					\
190 	smp_store_mb(current->state, (state_value))
191 
192 /*
193  * set_special_state() should be used for those states when the blocking task
194  * can not use the regular condition based wait-loop. In that case we must
195  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
196  * will not collide with our state change.
197  */
198 #define set_special_state(state_value)					\
199 	do {								\
200 		unsigned long flags; /* may shadow */			\
201 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
202 		current->state = (state_value);				\
203 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
204 	} while (0)
205 
206 #endif
207 
208 /* Task command name length: */
209 #define TASK_COMM_LEN			16
210 
211 extern void scheduler_tick(void);
212 
213 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
214 
215 extern long schedule_timeout(long timeout);
216 extern long schedule_timeout_interruptible(long timeout);
217 extern long schedule_timeout_killable(long timeout);
218 extern long schedule_timeout_uninterruptible(long timeout);
219 extern long schedule_timeout_idle(long timeout);
220 asmlinkage void schedule(void);
221 extern void schedule_preempt_disabled(void);
222 
223 extern int __must_check io_schedule_prepare(void);
224 extern void io_schedule_finish(int token);
225 extern long io_schedule_timeout(long timeout);
226 extern void io_schedule(void);
227 
228 /**
229  * struct prev_cputime - snapshot of system and user cputime
230  * @utime: time spent in user mode
231  * @stime: time spent in system mode
232  * @lock: protects the above two fields
233  *
234  * Stores previous user/system time values such that we can guarantee
235  * monotonicity.
236  */
237 struct prev_cputime {
238 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
239 	u64				utime;
240 	u64				stime;
241 	raw_spinlock_t			lock;
242 #endif
243 };
244 
245 /**
246  * struct task_cputime - collected CPU time counts
247  * @utime:		time spent in user mode, in nanoseconds
248  * @stime:		time spent in kernel mode, in nanoseconds
249  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
250  *
251  * This structure groups together three kinds of CPU time that are tracked for
252  * threads and thread groups.  Most things considering CPU time want to group
253  * these counts together and treat all three of them in parallel.
254  */
255 struct task_cputime {
256 	u64				utime;
257 	u64				stime;
258 	unsigned long long		sum_exec_runtime;
259 };
260 
261 /* Alternate field names when used on cache expirations: */
262 #define virt_exp			utime
263 #define prof_exp			stime
264 #define sched_exp			sum_exec_runtime
265 
266 enum vtime_state {
267 	/* Task is sleeping or running in a CPU with VTIME inactive: */
268 	VTIME_INACTIVE = 0,
269 	/* Task runs in userspace in a CPU with VTIME active: */
270 	VTIME_USER,
271 	/* Task runs in kernelspace in a CPU with VTIME active: */
272 	VTIME_SYS,
273 };
274 
275 struct vtime {
276 	seqcount_t		seqcount;
277 	unsigned long long	starttime;
278 	enum vtime_state	state;
279 	u64			utime;
280 	u64			stime;
281 	u64			gtime;
282 };
283 
284 struct sched_info {
285 #ifdef CONFIG_SCHED_INFO
286 	/* Cumulative counters: */
287 
288 	/* # of times we have run on this CPU: */
289 	unsigned long			pcount;
290 
291 	/* Time spent waiting on a runqueue: */
292 	unsigned long long		run_delay;
293 
294 	/* Timestamps: */
295 
296 	/* When did we last run on a CPU? */
297 	unsigned long long		last_arrival;
298 
299 	/* When were we last queued to run? */
300 	unsigned long long		last_queued;
301 
302 #endif /* CONFIG_SCHED_INFO */
303 };
304 
305 /*
306  * Integer metrics need fixed point arithmetic, e.g., sched/fair
307  * has a few: load, load_avg, util_avg, freq, and capacity.
308  *
309  * We define a basic fixed point arithmetic range, and then formalize
310  * all these metrics based on that basic range.
311  */
312 # define SCHED_FIXEDPOINT_SHIFT		10
313 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
314 
315 struct load_weight {
316 	unsigned long			weight;
317 	u32				inv_weight;
318 };
319 
320 /**
321  * struct util_est - Estimation utilization of FAIR tasks
322  * @enqueued: instantaneous estimated utilization of a task/cpu
323  * @ewma:     the Exponential Weighted Moving Average (EWMA)
324  *            utilization of a task
325  *
326  * Support data structure to track an Exponential Weighted Moving Average
327  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
328  * average each time a task completes an activation. Sample's weight is chosen
329  * so that the EWMA will be relatively insensitive to transient changes to the
330  * task's workload.
331  *
332  * The enqueued attribute has a slightly different meaning for tasks and cpus:
333  * - task:   the task's util_avg at last task dequeue time
334  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
335  * Thus, the util_est.enqueued of a task represents the contribution on the
336  * estimated utilization of the CPU where that task is currently enqueued.
337  *
338  * Only for tasks we track a moving average of the past instantaneous
339  * estimated utilization. This allows to absorb sporadic drops in utilization
340  * of an otherwise almost periodic task.
341  */
342 struct util_est {
343 	unsigned int			enqueued;
344 	unsigned int			ewma;
345 #define UTIL_EST_WEIGHT_SHIFT		2
346 } __attribute__((__aligned__(sizeof(u64))));
347 
348 /*
349  * The load_avg/util_avg accumulates an infinite geometric series
350  * (see __update_load_avg() in kernel/sched/fair.c).
351  *
352  * [load_avg definition]
353  *
354  *   load_avg = runnable% * scale_load_down(load)
355  *
356  * where runnable% is the time ratio that a sched_entity is runnable.
357  * For cfs_rq, it is the aggregated load_avg of all runnable and
358  * blocked sched_entities.
359  *
360  * [util_avg definition]
361  *
362  *   util_avg = running% * SCHED_CAPACITY_SCALE
363  *
364  * where running% is the time ratio that a sched_entity is running on
365  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
366  * and blocked sched_entities.
367  *
368  * load_avg and util_avg don't direcly factor frequency scaling and CPU
369  * capacity scaling. The scaling is done through the rq_clock_pelt that
370  * is used for computing those signals (see update_rq_clock_pelt())
371  *
372  * N.B., the above ratios (runnable% and running%) themselves are in the
373  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
374  * to as large a range as necessary. This is for example reflected by
375  * util_avg's SCHED_CAPACITY_SCALE.
376  *
377  * [Overflow issue]
378  *
379  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
380  * with the highest load (=88761), always runnable on a single cfs_rq,
381  * and should not overflow as the number already hits PID_MAX_LIMIT.
382  *
383  * For all other cases (including 32-bit kernels), struct load_weight's
384  * weight will overflow first before we do, because:
385  *
386  *    Max(load_avg) <= Max(load.weight)
387  *
388  * Then it is the load_weight's responsibility to consider overflow
389  * issues.
390  */
391 struct sched_avg {
392 	u64				last_update_time;
393 	u64				load_sum;
394 	u64				runnable_load_sum;
395 	u32				util_sum;
396 	u32				period_contrib;
397 	unsigned long			load_avg;
398 	unsigned long			runnable_load_avg;
399 	unsigned long			util_avg;
400 	struct util_est			util_est;
401 } ____cacheline_aligned;
402 
403 struct sched_statistics {
404 #ifdef CONFIG_SCHEDSTATS
405 	u64				wait_start;
406 	u64				wait_max;
407 	u64				wait_count;
408 	u64				wait_sum;
409 	u64				iowait_count;
410 	u64				iowait_sum;
411 
412 	u64				sleep_start;
413 	u64				sleep_max;
414 	s64				sum_sleep_runtime;
415 
416 	u64				block_start;
417 	u64				block_max;
418 	u64				exec_max;
419 	u64				slice_max;
420 
421 	u64				nr_migrations_cold;
422 	u64				nr_failed_migrations_affine;
423 	u64				nr_failed_migrations_running;
424 	u64				nr_failed_migrations_hot;
425 	u64				nr_forced_migrations;
426 
427 	u64				nr_wakeups;
428 	u64				nr_wakeups_sync;
429 	u64				nr_wakeups_migrate;
430 	u64				nr_wakeups_local;
431 	u64				nr_wakeups_remote;
432 	u64				nr_wakeups_affine;
433 	u64				nr_wakeups_affine_attempts;
434 	u64				nr_wakeups_passive;
435 	u64				nr_wakeups_idle;
436 #endif
437 };
438 
439 struct sched_entity {
440 	/* For load-balancing: */
441 	struct load_weight		load;
442 	unsigned long			runnable_weight;
443 	struct rb_node			run_node;
444 	struct list_head		group_node;
445 	unsigned int			on_rq;
446 
447 	u64				exec_start;
448 	u64				sum_exec_runtime;
449 	u64				vruntime;
450 	u64				prev_sum_exec_runtime;
451 
452 	u64				nr_migrations;
453 
454 	struct sched_statistics		statistics;
455 
456 #ifdef CONFIG_FAIR_GROUP_SCHED
457 	int				depth;
458 	struct sched_entity		*parent;
459 	/* rq on which this entity is (to be) queued: */
460 	struct cfs_rq			*cfs_rq;
461 	/* rq "owned" by this entity/group: */
462 	struct cfs_rq			*my_q;
463 #endif
464 
465 #ifdef CONFIG_SMP
466 	/*
467 	 * Per entity load average tracking.
468 	 *
469 	 * Put into separate cache line so it does not
470 	 * collide with read-mostly values above.
471 	 */
472 	struct sched_avg		avg;
473 #endif
474 };
475 
476 struct sched_rt_entity {
477 	struct list_head		run_list;
478 	unsigned long			timeout;
479 	unsigned long			watchdog_stamp;
480 	unsigned int			time_slice;
481 	unsigned short			on_rq;
482 	unsigned short			on_list;
483 
484 	struct sched_rt_entity		*back;
485 #ifdef CONFIG_RT_GROUP_SCHED
486 	struct sched_rt_entity		*parent;
487 	/* rq on which this entity is (to be) queued: */
488 	struct rt_rq			*rt_rq;
489 	/* rq "owned" by this entity/group: */
490 	struct rt_rq			*my_q;
491 #endif
492 } __randomize_layout;
493 
494 struct sched_dl_entity {
495 	struct rb_node			rb_node;
496 
497 	/*
498 	 * Original scheduling parameters. Copied here from sched_attr
499 	 * during sched_setattr(), they will remain the same until
500 	 * the next sched_setattr().
501 	 */
502 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
503 	u64				dl_deadline;	/* Relative deadline of each instance	*/
504 	u64				dl_period;	/* Separation of two instances (period) */
505 	u64				dl_bw;		/* dl_runtime / dl_period		*/
506 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
507 
508 	/*
509 	 * Actual scheduling parameters. Initialized with the values above,
510 	 * they are continuously updated during task execution. Note that
511 	 * the remaining runtime could be < 0 in case we are in overrun.
512 	 */
513 	s64				runtime;	/* Remaining runtime for this instance	*/
514 	u64				deadline;	/* Absolute deadline for this instance	*/
515 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
516 
517 	/*
518 	 * Some bool flags:
519 	 *
520 	 * @dl_throttled tells if we exhausted the runtime. If so, the
521 	 * task has to wait for a replenishment to be performed at the
522 	 * next firing of dl_timer.
523 	 *
524 	 * @dl_boosted tells if we are boosted due to DI. If so we are
525 	 * outside bandwidth enforcement mechanism (but only until we
526 	 * exit the critical section);
527 	 *
528 	 * @dl_yielded tells if task gave up the CPU before consuming
529 	 * all its available runtime during the last job.
530 	 *
531 	 * @dl_non_contending tells if the task is inactive while still
532 	 * contributing to the active utilization. In other words, it
533 	 * indicates if the inactive timer has been armed and its handler
534 	 * has not been executed yet. This flag is useful to avoid race
535 	 * conditions between the inactive timer handler and the wakeup
536 	 * code.
537 	 *
538 	 * @dl_overrun tells if the task asked to be informed about runtime
539 	 * overruns.
540 	 */
541 	unsigned int			dl_throttled      : 1;
542 	unsigned int			dl_boosted        : 1;
543 	unsigned int			dl_yielded        : 1;
544 	unsigned int			dl_non_contending : 1;
545 	unsigned int			dl_overrun	  : 1;
546 
547 	/*
548 	 * Bandwidth enforcement timer. Each -deadline task has its
549 	 * own bandwidth to be enforced, thus we need one timer per task.
550 	 */
551 	struct hrtimer			dl_timer;
552 
553 	/*
554 	 * Inactive timer, responsible for decreasing the active utilization
555 	 * at the "0-lag time". When a -deadline task blocks, it contributes
556 	 * to GRUB's active utilization until the "0-lag time", hence a
557 	 * timer is needed to decrease the active utilization at the correct
558 	 * time.
559 	 */
560 	struct hrtimer inactive_timer;
561 };
562 
563 union rcu_special {
564 	struct {
565 		u8			blocked;
566 		u8			need_qs;
567 		u8			exp_hint; /* Hint for performance. */
568 		u8			pad; /* No garbage from compiler! */
569 	} b; /* Bits. */
570 	u32 s; /* Set of bits. */
571 };
572 
573 enum perf_event_task_context {
574 	perf_invalid_context = -1,
575 	perf_hw_context = 0,
576 	perf_sw_context,
577 	perf_nr_task_contexts,
578 };
579 
580 struct wake_q_node {
581 	struct wake_q_node *next;
582 };
583 
584 struct task_struct {
585 #ifdef CONFIG_THREAD_INFO_IN_TASK
586 	/*
587 	 * For reasons of header soup (see current_thread_info()), this
588 	 * must be the first element of task_struct.
589 	 */
590 	struct thread_info		thread_info;
591 #endif
592 	/* -1 unrunnable, 0 runnable, >0 stopped: */
593 	volatile long			state;
594 
595 	/*
596 	 * This begins the randomizable portion of task_struct. Only
597 	 * scheduling-critical items should be added above here.
598 	 */
599 	randomized_struct_fields_start
600 
601 	void				*stack;
602 	refcount_t			usage;
603 	/* Per task flags (PF_*), defined further below: */
604 	unsigned int			flags;
605 	unsigned int			ptrace;
606 
607 #ifdef CONFIG_SMP
608 	struct llist_node		wake_entry;
609 	int				on_cpu;
610 #ifdef CONFIG_THREAD_INFO_IN_TASK
611 	/* Current CPU: */
612 	unsigned int			cpu;
613 #endif
614 	unsigned int			wakee_flips;
615 	unsigned long			wakee_flip_decay_ts;
616 	struct task_struct		*last_wakee;
617 
618 	/*
619 	 * recent_used_cpu is initially set as the last CPU used by a task
620 	 * that wakes affine another task. Waker/wakee relationships can
621 	 * push tasks around a CPU where each wakeup moves to the next one.
622 	 * Tracking a recently used CPU allows a quick search for a recently
623 	 * used CPU that may be idle.
624 	 */
625 	int				recent_used_cpu;
626 	int				wake_cpu;
627 #endif
628 	int				on_rq;
629 
630 	int				prio;
631 	int				static_prio;
632 	int				normal_prio;
633 	unsigned int			rt_priority;
634 
635 	const struct sched_class	*sched_class;
636 	struct sched_entity		se;
637 	struct sched_rt_entity		rt;
638 #ifdef CONFIG_CGROUP_SCHED
639 	struct task_group		*sched_task_group;
640 #endif
641 	struct sched_dl_entity		dl;
642 
643 #ifdef CONFIG_PREEMPT_NOTIFIERS
644 	/* List of struct preempt_notifier: */
645 	struct hlist_head		preempt_notifiers;
646 #endif
647 
648 #ifdef CONFIG_BLK_DEV_IO_TRACE
649 	unsigned int			btrace_seq;
650 #endif
651 
652 	unsigned int			policy;
653 	int				nr_cpus_allowed;
654 	const cpumask_t			*cpus_ptr;
655 	cpumask_t			cpus_mask;
656 
657 #ifdef CONFIG_PREEMPT_RCU
658 	int				rcu_read_lock_nesting;
659 	union rcu_special		rcu_read_unlock_special;
660 	struct list_head		rcu_node_entry;
661 	struct rcu_node			*rcu_blocked_node;
662 #endif /* #ifdef CONFIG_PREEMPT_RCU */
663 
664 #ifdef CONFIG_TASKS_RCU
665 	unsigned long			rcu_tasks_nvcsw;
666 	u8				rcu_tasks_holdout;
667 	u8				rcu_tasks_idx;
668 	int				rcu_tasks_idle_cpu;
669 	struct list_head		rcu_tasks_holdout_list;
670 #endif /* #ifdef CONFIG_TASKS_RCU */
671 
672 	struct sched_info		sched_info;
673 
674 	struct list_head		tasks;
675 #ifdef CONFIG_SMP
676 	struct plist_node		pushable_tasks;
677 	struct rb_node			pushable_dl_tasks;
678 #endif
679 
680 	struct mm_struct		*mm;
681 	struct mm_struct		*active_mm;
682 
683 	/* Per-thread vma caching: */
684 	struct vmacache			vmacache;
685 
686 #ifdef SPLIT_RSS_COUNTING
687 	struct task_rss_stat		rss_stat;
688 #endif
689 	int				exit_state;
690 	int				exit_code;
691 	int				exit_signal;
692 	/* The signal sent when the parent dies: */
693 	int				pdeath_signal;
694 	/* JOBCTL_*, siglock protected: */
695 	unsigned long			jobctl;
696 
697 	/* Used for emulating ABI behavior of previous Linux versions: */
698 	unsigned int			personality;
699 
700 	/* Scheduler bits, serialized by scheduler locks: */
701 	unsigned			sched_reset_on_fork:1;
702 	unsigned			sched_contributes_to_load:1;
703 	unsigned			sched_migrated:1;
704 	unsigned			sched_remote_wakeup:1;
705 #ifdef CONFIG_PSI
706 	unsigned			sched_psi_wake_requeue:1;
707 #endif
708 
709 	/* Force alignment to the next boundary: */
710 	unsigned			:0;
711 
712 	/* Unserialized, strictly 'current' */
713 
714 	/* Bit to tell LSMs we're in execve(): */
715 	unsigned			in_execve:1;
716 	unsigned			in_iowait:1;
717 #ifndef TIF_RESTORE_SIGMASK
718 	unsigned			restore_sigmask:1;
719 #endif
720 #ifdef CONFIG_MEMCG
721 	unsigned			in_user_fault:1;
722 #endif
723 #ifdef CONFIG_COMPAT_BRK
724 	unsigned			brk_randomized:1;
725 #endif
726 #ifdef CONFIG_CGROUPS
727 	/* disallow userland-initiated cgroup migration */
728 	unsigned			no_cgroup_migration:1;
729 	/* task is frozen/stopped (used by the cgroup freezer) */
730 	unsigned			frozen:1;
731 #endif
732 #ifdef CONFIG_BLK_CGROUP
733 	/* to be used once the psi infrastructure lands upstream. */
734 	unsigned			use_memdelay:1;
735 #endif
736 
737 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
738 
739 	struct restart_block		restart_block;
740 
741 	pid_t				pid;
742 	pid_t				tgid;
743 
744 #ifdef CONFIG_STACKPROTECTOR
745 	/* Canary value for the -fstack-protector GCC feature: */
746 	unsigned long			stack_canary;
747 #endif
748 	/*
749 	 * Pointers to the (original) parent process, youngest child, younger sibling,
750 	 * older sibling, respectively.  (p->father can be replaced with
751 	 * p->real_parent->pid)
752 	 */
753 
754 	/* Real parent process: */
755 	struct task_struct __rcu	*real_parent;
756 
757 	/* Recipient of SIGCHLD, wait4() reports: */
758 	struct task_struct __rcu	*parent;
759 
760 	/*
761 	 * Children/sibling form the list of natural children:
762 	 */
763 	struct list_head		children;
764 	struct list_head		sibling;
765 	struct task_struct		*group_leader;
766 
767 	/*
768 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
769 	 *
770 	 * This includes both natural children and PTRACE_ATTACH targets.
771 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
772 	 */
773 	struct list_head		ptraced;
774 	struct list_head		ptrace_entry;
775 
776 	/* PID/PID hash table linkage. */
777 	struct pid			*thread_pid;
778 	struct hlist_node		pid_links[PIDTYPE_MAX];
779 	struct list_head		thread_group;
780 	struct list_head		thread_node;
781 
782 	struct completion		*vfork_done;
783 
784 	/* CLONE_CHILD_SETTID: */
785 	int __user			*set_child_tid;
786 
787 	/* CLONE_CHILD_CLEARTID: */
788 	int __user			*clear_child_tid;
789 
790 	u64				utime;
791 	u64				stime;
792 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
793 	u64				utimescaled;
794 	u64				stimescaled;
795 #endif
796 	u64				gtime;
797 	struct prev_cputime		prev_cputime;
798 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
799 	struct vtime			vtime;
800 #endif
801 
802 #ifdef CONFIG_NO_HZ_FULL
803 	atomic_t			tick_dep_mask;
804 #endif
805 	/* Context switch counts: */
806 	unsigned long			nvcsw;
807 	unsigned long			nivcsw;
808 
809 	/* Monotonic time in nsecs: */
810 	u64				start_time;
811 
812 	/* Boot based time in nsecs: */
813 	u64				real_start_time;
814 
815 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
816 	unsigned long			min_flt;
817 	unsigned long			maj_flt;
818 
819 #ifdef CONFIG_POSIX_TIMERS
820 	struct task_cputime		cputime_expires;
821 	struct list_head		cpu_timers[3];
822 #endif
823 
824 	/* Process credentials: */
825 
826 	/* Tracer's credentials at attach: */
827 	const struct cred __rcu		*ptracer_cred;
828 
829 	/* Objective and real subjective task credentials (COW): */
830 	const struct cred __rcu		*real_cred;
831 
832 	/* Effective (overridable) subjective task credentials (COW): */
833 	const struct cred __rcu		*cred;
834 
835 	/*
836 	 * executable name, excluding path.
837 	 *
838 	 * - normally initialized setup_new_exec()
839 	 * - access it with [gs]et_task_comm()
840 	 * - lock it with task_lock()
841 	 */
842 	char				comm[TASK_COMM_LEN];
843 
844 	struct nameidata		*nameidata;
845 
846 #ifdef CONFIG_SYSVIPC
847 	struct sysv_sem			sysvsem;
848 	struct sysv_shm			sysvshm;
849 #endif
850 #ifdef CONFIG_DETECT_HUNG_TASK
851 	unsigned long			last_switch_count;
852 	unsigned long			last_switch_time;
853 #endif
854 	/* Filesystem information: */
855 	struct fs_struct		*fs;
856 
857 	/* Open file information: */
858 	struct files_struct		*files;
859 
860 	/* Namespaces: */
861 	struct nsproxy			*nsproxy;
862 
863 	/* Signal handlers: */
864 	struct signal_struct		*signal;
865 	struct sighand_struct		*sighand;
866 	sigset_t			blocked;
867 	sigset_t			real_blocked;
868 	/* Restored if set_restore_sigmask() was used: */
869 	sigset_t			saved_sigmask;
870 	struct sigpending		pending;
871 	unsigned long			sas_ss_sp;
872 	size_t				sas_ss_size;
873 	unsigned int			sas_ss_flags;
874 
875 	struct callback_head		*task_works;
876 
877 #ifdef CONFIG_AUDIT
878 #ifdef CONFIG_AUDITSYSCALL
879 	struct audit_context		*audit_context;
880 #endif
881 	kuid_t				loginuid;
882 	unsigned int			sessionid;
883 #endif
884 	struct seccomp			seccomp;
885 
886 	/* Thread group tracking: */
887 	u32				parent_exec_id;
888 	u32				self_exec_id;
889 
890 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
891 	spinlock_t			alloc_lock;
892 
893 	/* Protection of the PI data structures: */
894 	raw_spinlock_t			pi_lock;
895 
896 	struct wake_q_node		wake_q;
897 
898 #ifdef CONFIG_RT_MUTEXES
899 	/* PI waiters blocked on a rt_mutex held by this task: */
900 	struct rb_root_cached		pi_waiters;
901 	/* Updated under owner's pi_lock and rq lock */
902 	struct task_struct		*pi_top_task;
903 	/* Deadlock detection and priority inheritance handling: */
904 	struct rt_mutex_waiter		*pi_blocked_on;
905 #endif
906 
907 #ifdef CONFIG_DEBUG_MUTEXES
908 	/* Mutex deadlock detection: */
909 	struct mutex_waiter		*blocked_on;
910 #endif
911 
912 #ifdef CONFIG_TRACE_IRQFLAGS
913 	unsigned int			irq_events;
914 	unsigned long			hardirq_enable_ip;
915 	unsigned long			hardirq_disable_ip;
916 	unsigned int			hardirq_enable_event;
917 	unsigned int			hardirq_disable_event;
918 	int				hardirqs_enabled;
919 	int				hardirq_context;
920 	unsigned long			softirq_disable_ip;
921 	unsigned long			softirq_enable_ip;
922 	unsigned int			softirq_disable_event;
923 	unsigned int			softirq_enable_event;
924 	int				softirqs_enabled;
925 	int				softirq_context;
926 #endif
927 
928 #ifdef CONFIG_LOCKDEP
929 # define MAX_LOCK_DEPTH			48UL
930 	u64				curr_chain_key;
931 	int				lockdep_depth;
932 	unsigned int			lockdep_recursion;
933 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
934 #endif
935 
936 #ifdef CONFIG_UBSAN
937 	unsigned int			in_ubsan;
938 #endif
939 
940 	/* Journalling filesystem info: */
941 	void				*journal_info;
942 
943 	/* Stacked block device info: */
944 	struct bio_list			*bio_list;
945 
946 #ifdef CONFIG_BLOCK
947 	/* Stack plugging: */
948 	struct blk_plug			*plug;
949 #endif
950 
951 	/* VM state: */
952 	struct reclaim_state		*reclaim_state;
953 
954 	struct backing_dev_info		*backing_dev_info;
955 
956 	struct io_context		*io_context;
957 
958 #ifdef CONFIG_COMPACTION
959 	struct capture_control		*capture_control;
960 #endif
961 	/* Ptrace state: */
962 	unsigned long			ptrace_message;
963 	kernel_siginfo_t		*last_siginfo;
964 
965 	struct task_io_accounting	ioac;
966 #ifdef CONFIG_PSI
967 	/* Pressure stall state */
968 	unsigned int			psi_flags;
969 #endif
970 #ifdef CONFIG_TASK_XACCT
971 	/* Accumulated RSS usage: */
972 	u64				acct_rss_mem1;
973 	/* Accumulated virtual memory usage: */
974 	u64				acct_vm_mem1;
975 	/* stime + utime since last update: */
976 	u64				acct_timexpd;
977 #endif
978 #ifdef CONFIG_CPUSETS
979 	/* Protected by ->alloc_lock: */
980 	nodemask_t			mems_allowed;
981 	/* Seqence number to catch updates: */
982 	seqcount_t			mems_allowed_seq;
983 	int				cpuset_mem_spread_rotor;
984 	int				cpuset_slab_spread_rotor;
985 #endif
986 #ifdef CONFIG_CGROUPS
987 	/* Control Group info protected by css_set_lock: */
988 	struct css_set __rcu		*cgroups;
989 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
990 	struct list_head		cg_list;
991 #endif
992 #ifdef CONFIG_X86_CPU_RESCTRL
993 	u32				closid;
994 	u32				rmid;
995 #endif
996 #ifdef CONFIG_FUTEX
997 	struct robust_list_head __user	*robust_list;
998 #ifdef CONFIG_COMPAT
999 	struct compat_robust_list_head __user *compat_robust_list;
1000 #endif
1001 	struct list_head		pi_state_list;
1002 	struct futex_pi_state		*pi_state_cache;
1003 #endif
1004 #ifdef CONFIG_PERF_EVENTS
1005 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1006 	struct mutex			perf_event_mutex;
1007 	struct list_head		perf_event_list;
1008 #endif
1009 #ifdef CONFIG_DEBUG_PREEMPT
1010 	unsigned long			preempt_disable_ip;
1011 #endif
1012 #ifdef CONFIG_NUMA
1013 	/* Protected by alloc_lock: */
1014 	struct mempolicy		*mempolicy;
1015 	short				il_prev;
1016 	short				pref_node_fork;
1017 #endif
1018 #ifdef CONFIG_NUMA_BALANCING
1019 	int				numa_scan_seq;
1020 	unsigned int			numa_scan_period;
1021 	unsigned int			numa_scan_period_max;
1022 	int				numa_preferred_nid;
1023 	unsigned long			numa_migrate_retry;
1024 	/* Migration stamp: */
1025 	u64				node_stamp;
1026 	u64				last_task_numa_placement;
1027 	u64				last_sum_exec_runtime;
1028 	struct callback_head		numa_work;
1029 
1030 	struct numa_group		*numa_group;
1031 
1032 	/*
1033 	 * numa_faults is an array split into four regions:
1034 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1035 	 * in this precise order.
1036 	 *
1037 	 * faults_memory: Exponential decaying average of faults on a per-node
1038 	 * basis. Scheduling placement decisions are made based on these
1039 	 * counts. The values remain static for the duration of a PTE scan.
1040 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1041 	 * hinting fault was incurred.
1042 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1043 	 * during the current scan window. When the scan completes, the counts
1044 	 * in faults_memory and faults_cpu decay and these values are copied.
1045 	 */
1046 	unsigned long			*numa_faults;
1047 	unsigned long			total_numa_faults;
1048 
1049 	/*
1050 	 * numa_faults_locality tracks if faults recorded during the last
1051 	 * scan window were remote/local or failed to migrate. The task scan
1052 	 * period is adapted based on the locality of the faults with different
1053 	 * weights depending on whether they were shared or private faults
1054 	 */
1055 	unsigned long			numa_faults_locality[3];
1056 
1057 	unsigned long			numa_pages_migrated;
1058 #endif /* CONFIG_NUMA_BALANCING */
1059 
1060 #ifdef CONFIG_RSEQ
1061 	struct rseq __user *rseq;
1062 	u32 rseq_sig;
1063 	/*
1064 	 * RmW on rseq_event_mask must be performed atomically
1065 	 * with respect to preemption.
1066 	 */
1067 	unsigned long rseq_event_mask;
1068 #endif
1069 
1070 	struct tlbflush_unmap_batch	tlb_ubc;
1071 
1072 	struct rcu_head			rcu;
1073 
1074 	/* Cache last used pipe for splice(): */
1075 	struct pipe_inode_info		*splice_pipe;
1076 
1077 	struct page_frag		task_frag;
1078 
1079 #ifdef CONFIG_TASK_DELAY_ACCT
1080 	struct task_delay_info		*delays;
1081 #endif
1082 
1083 #ifdef CONFIG_FAULT_INJECTION
1084 	int				make_it_fail;
1085 	unsigned int			fail_nth;
1086 #endif
1087 	/*
1088 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1089 	 * balance_dirty_pages() for a dirty throttling pause:
1090 	 */
1091 	int				nr_dirtied;
1092 	int				nr_dirtied_pause;
1093 	/* Start of a write-and-pause period: */
1094 	unsigned long			dirty_paused_when;
1095 
1096 #ifdef CONFIG_LATENCYTOP
1097 	int				latency_record_count;
1098 	struct latency_record		latency_record[LT_SAVECOUNT];
1099 #endif
1100 	/*
1101 	 * Time slack values; these are used to round up poll() and
1102 	 * select() etc timeout values. These are in nanoseconds.
1103 	 */
1104 	u64				timer_slack_ns;
1105 	u64				default_timer_slack_ns;
1106 
1107 #ifdef CONFIG_KASAN
1108 	unsigned int			kasan_depth;
1109 #endif
1110 
1111 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1112 	/* Index of current stored address in ret_stack: */
1113 	int				curr_ret_stack;
1114 	int				curr_ret_depth;
1115 
1116 	/* Stack of return addresses for return function tracing: */
1117 	struct ftrace_ret_stack		*ret_stack;
1118 
1119 	/* Timestamp for last schedule: */
1120 	unsigned long long		ftrace_timestamp;
1121 
1122 	/*
1123 	 * Number of functions that haven't been traced
1124 	 * because of depth overrun:
1125 	 */
1126 	atomic_t			trace_overrun;
1127 
1128 	/* Pause tracing: */
1129 	atomic_t			tracing_graph_pause;
1130 #endif
1131 
1132 #ifdef CONFIG_TRACING
1133 	/* State flags for use by tracers: */
1134 	unsigned long			trace;
1135 
1136 	/* Bitmask and counter of trace recursion: */
1137 	unsigned long			trace_recursion;
1138 #endif /* CONFIG_TRACING */
1139 
1140 #ifdef CONFIG_KCOV
1141 	/* Coverage collection mode enabled for this task (0 if disabled): */
1142 	unsigned int			kcov_mode;
1143 
1144 	/* Size of the kcov_area: */
1145 	unsigned int			kcov_size;
1146 
1147 	/* Buffer for coverage collection: */
1148 	void				*kcov_area;
1149 
1150 	/* KCOV descriptor wired with this task or NULL: */
1151 	struct kcov			*kcov;
1152 #endif
1153 
1154 #ifdef CONFIG_MEMCG
1155 	struct mem_cgroup		*memcg_in_oom;
1156 	gfp_t				memcg_oom_gfp_mask;
1157 	int				memcg_oom_order;
1158 
1159 	/* Number of pages to reclaim on returning to userland: */
1160 	unsigned int			memcg_nr_pages_over_high;
1161 
1162 	/* Used by memcontrol for targeted memcg charge: */
1163 	struct mem_cgroup		*active_memcg;
1164 #endif
1165 
1166 #ifdef CONFIG_BLK_CGROUP
1167 	struct request_queue		*throttle_queue;
1168 #endif
1169 
1170 #ifdef CONFIG_UPROBES
1171 	struct uprobe_task		*utask;
1172 #endif
1173 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1174 	unsigned int			sequential_io;
1175 	unsigned int			sequential_io_avg;
1176 #endif
1177 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1178 	unsigned long			task_state_change;
1179 #endif
1180 	int				pagefault_disabled;
1181 #ifdef CONFIG_MMU
1182 	struct task_struct		*oom_reaper_list;
1183 #endif
1184 #ifdef CONFIG_VMAP_STACK
1185 	struct vm_struct		*stack_vm_area;
1186 #endif
1187 #ifdef CONFIG_THREAD_INFO_IN_TASK
1188 	/* A live task holds one reference: */
1189 	refcount_t			stack_refcount;
1190 #endif
1191 #ifdef CONFIG_LIVEPATCH
1192 	int patch_state;
1193 #endif
1194 #ifdef CONFIG_SECURITY
1195 	/* Used by LSM modules for access restriction: */
1196 	void				*security;
1197 #endif
1198 
1199 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1200 	unsigned long			lowest_stack;
1201 	unsigned long			prev_lowest_stack;
1202 #endif
1203 
1204 	/*
1205 	 * New fields for task_struct should be added above here, so that
1206 	 * they are included in the randomized portion of task_struct.
1207 	 */
1208 	randomized_struct_fields_end
1209 
1210 	/* CPU-specific state of this task: */
1211 	struct thread_struct		thread;
1212 
1213 	/*
1214 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1215 	 * structure.  It *MUST* be at the end of 'task_struct'.
1216 	 *
1217 	 * Do not put anything below here!
1218 	 */
1219 };
1220 
1221 static inline struct pid *task_pid(struct task_struct *task)
1222 {
1223 	return task->thread_pid;
1224 }
1225 
1226 /*
1227  * the helpers to get the task's different pids as they are seen
1228  * from various namespaces
1229  *
1230  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1231  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1232  *                     current.
1233  * task_xid_nr_ns()  : id seen from the ns specified;
1234  *
1235  * see also pid_nr() etc in include/linux/pid.h
1236  */
1237 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1238 
1239 static inline pid_t task_pid_nr(struct task_struct *tsk)
1240 {
1241 	return tsk->pid;
1242 }
1243 
1244 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1245 {
1246 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1247 }
1248 
1249 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1250 {
1251 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1252 }
1253 
1254 
1255 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1256 {
1257 	return tsk->tgid;
1258 }
1259 
1260 /**
1261  * pid_alive - check that a task structure is not stale
1262  * @p: Task structure to be checked.
1263  *
1264  * Test if a process is not yet dead (at most zombie state)
1265  * If pid_alive fails, then pointers within the task structure
1266  * can be stale and must not be dereferenced.
1267  *
1268  * Return: 1 if the process is alive. 0 otherwise.
1269  */
1270 static inline int pid_alive(const struct task_struct *p)
1271 {
1272 	return p->thread_pid != NULL;
1273 }
1274 
1275 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1276 {
1277 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1278 }
1279 
1280 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1281 {
1282 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1283 }
1284 
1285 
1286 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1287 {
1288 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1289 }
1290 
1291 static inline pid_t task_session_vnr(struct task_struct *tsk)
1292 {
1293 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1294 }
1295 
1296 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1297 {
1298 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1299 }
1300 
1301 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1302 {
1303 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1304 }
1305 
1306 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1307 {
1308 	pid_t pid = 0;
1309 
1310 	rcu_read_lock();
1311 	if (pid_alive(tsk))
1312 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1313 	rcu_read_unlock();
1314 
1315 	return pid;
1316 }
1317 
1318 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1319 {
1320 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1321 }
1322 
1323 /* Obsolete, do not use: */
1324 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1325 {
1326 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1327 }
1328 
1329 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1330 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1331 
1332 static inline unsigned int task_state_index(struct task_struct *tsk)
1333 {
1334 	unsigned int tsk_state = READ_ONCE(tsk->state);
1335 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1336 
1337 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1338 
1339 	if (tsk_state == TASK_IDLE)
1340 		state = TASK_REPORT_IDLE;
1341 
1342 	return fls(state);
1343 }
1344 
1345 static inline char task_index_to_char(unsigned int state)
1346 {
1347 	static const char state_char[] = "RSDTtXZPI";
1348 
1349 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1350 
1351 	return state_char[state];
1352 }
1353 
1354 static inline char task_state_to_char(struct task_struct *tsk)
1355 {
1356 	return task_index_to_char(task_state_index(tsk));
1357 }
1358 
1359 /**
1360  * is_global_init - check if a task structure is init. Since init
1361  * is free to have sub-threads we need to check tgid.
1362  * @tsk: Task structure to be checked.
1363  *
1364  * Check if a task structure is the first user space task the kernel created.
1365  *
1366  * Return: 1 if the task structure is init. 0 otherwise.
1367  */
1368 static inline int is_global_init(struct task_struct *tsk)
1369 {
1370 	return task_tgid_nr(tsk) == 1;
1371 }
1372 
1373 extern struct pid *cad_pid;
1374 
1375 /*
1376  * Per process flags
1377  */
1378 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1379 #define PF_EXITING		0x00000004	/* Getting shut down */
1380 #define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
1381 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1382 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1383 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1384 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1385 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1386 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1387 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1388 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1389 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1390 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1391 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1392 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1393 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1394 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1395 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1396 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1397 #define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
1398 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1399 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1400 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1401 #define PF_MEMSTALL		0x01000000	/* Stalled due to lack of memory */
1402 #define PF_UMH			0x02000000	/* I'm an Usermodehelper process */
1403 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1404 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1405 #define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1406 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1407 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1408 
1409 /*
1410  * Only the _current_ task can read/write to tsk->flags, but other
1411  * tasks can access tsk->flags in readonly mode for example
1412  * with tsk_used_math (like during threaded core dumping).
1413  * There is however an exception to this rule during ptrace
1414  * or during fork: the ptracer task is allowed to write to the
1415  * child->flags of its traced child (same goes for fork, the parent
1416  * can write to the child->flags), because we're guaranteed the
1417  * child is not running and in turn not changing child->flags
1418  * at the same time the parent does it.
1419  */
1420 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1421 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1422 #define clear_used_math()			clear_stopped_child_used_math(current)
1423 #define set_used_math()				set_stopped_child_used_math(current)
1424 
1425 #define conditional_stopped_child_used_math(condition, child) \
1426 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1427 
1428 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1429 
1430 #define copy_to_stopped_child_used_math(child) \
1431 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1432 
1433 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1434 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1435 #define used_math()				tsk_used_math(current)
1436 
1437 static inline bool is_percpu_thread(void)
1438 {
1439 #ifdef CONFIG_SMP
1440 	return (current->flags & PF_NO_SETAFFINITY) &&
1441 		(current->nr_cpus_allowed  == 1);
1442 #else
1443 	return true;
1444 #endif
1445 }
1446 
1447 /* Per-process atomic flags. */
1448 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1449 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1450 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1451 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1452 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1453 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1454 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1455 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1456 
1457 #define TASK_PFA_TEST(name, func)					\
1458 	static inline bool task_##func(struct task_struct *p)		\
1459 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1460 
1461 #define TASK_PFA_SET(name, func)					\
1462 	static inline void task_set_##func(struct task_struct *p)	\
1463 	{ set_bit(PFA_##name, &p->atomic_flags); }
1464 
1465 #define TASK_PFA_CLEAR(name, func)					\
1466 	static inline void task_clear_##func(struct task_struct *p)	\
1467 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1468 
1469 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1470 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1471 
1472 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1473 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1474 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1475 
1476 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1477 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1478 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1479 
1480 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1481 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1482 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1483 
1484 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1485 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1486 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1487 
1488 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1489 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1490 
1491 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1492 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1493 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1494 
1495 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1496 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1497 
1498 static inline void
1499 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1500 {
1501 	current->flags &= ~flags;
1502 	current->flags |= orig_flags & flags;
1503 }
1504 
1505 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1506 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1507 #ifdef CONFIG_SMP
1508 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1509 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1510 #else
1511 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1512 {
1513 }
1514 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1515 {
1516 	if (!cpumask_test_cpu(0, new_mask))
1517 		return -EINVAL;
1518 	return 0;
1519 }
1520 #endif
1521 
1522 #ifndef cpu_relax_yield
1523 #define cpu_relax_yield() cpu_relax()
1524 #endif
1525 
1526 extern int yield_to(struct task_struct *p, bool preempt);
1527 extern void set_user_nice(struct task_struct *p, long nice);
1528 extern int task_prio(const struct task_struct *p);
1529 
1530 /**
1531  * task_nice - return the nice value of a given task.
1532  * @p: the task in question.
1533  *
1534  * Return: The nice value [ -20 ... 0 ... 19 ].
1535  */
1536 static inline int task_nice(const struct task_struct *p)
1537 {
1538 	return PRIO_TO_NICE((p)->static_prio);
1539 }
1540 
1541 extern int can_nice(const struct task_struct *p, const int nice);
1542 extern int task_curr(const struct task_struct *p);
1543 extern int idle_cpu(int cpu);
1544 extern int available_idle_cpu(int cpu);
1545 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1546 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1547 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1548 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1549 extern struct task_struct *idle_task(int cpu);
1550 
1551 /**
1552  * is_idle_task - is the specified task an idle task?
1553  * @p: the task in question.
1554  *
1555  * Return: 1 if @p is an idle task. 0 otherwise.
1556  */
1557 static inline bool is_idle_task(const struct task_struct *p)
1558 {
1559 	return !!(p->flags & PF_IDLE);
1560 }
1561 
1562 extern struct task_struct *curr_task(int cpu);
1563 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1564 
1565 void yield(void);
1566 
1567 union thread_union {
1568 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1569 	struct task_struct task;
1570 #endif
1571 #ifndef CONFIG_THREAD_INFO_IN_TASK
1572 	struct thread_info thread_info;
1573 #endif
1574 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1575 };
1576 
1577 #ifndef CONFIG_THREAD_INFO_IN_TASK
1578 extern struct thread_info init_thread_info;
1579 #endif
1580 
1581 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1582 
1583 #ifdef CONFIG_THREAD_INFO_IN_TASK
1584 static inline struct thread_info *task_thread_info(struct task_struct *task)
1585 {
1586 	return &task->thread_info;
1587 }
1588 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1589 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1590 #endif
1591 
1592 /*
1593  * find a task by one of its numerical ids
1594  *
1595  * find_task_by_pid_ns():
1596  *      finds a task by its pid in the specified namespace
1597  * find_task_by_vpid():
1598  *      finds a task by its virtual pid
1599  *
1600  * see also find_vpid() etc in include/linux/pid.h
1601  */
1602 
1603 extern struct task_struct *find_task_by_vpid(pid_t nr);
1604 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1605 
1606 /*
1607  * find a task by its virtual pid and get the task struct
1608  */
1609 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1610 
1611 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1612 extern int wake_up_process(struct task_struct *tsk);
1613 extern void wake_up_new_task(struct task_struct *tsk);
1614 
1615 #ifdef CONFIG_SMP
1616 extern void kick_process(struct task_struct *tsk);
1617 #else
1618 static inline void kick_process(struct task_struct *tsk) { }
1619 #endif
1620 
1621 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1622 
1623 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1624 {
1625 	__set_task_comm(tsk, from, false);
1626 }
1627 
1628 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1629 #define get_task_comm(buf, tsk) ({			\
1630 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1631 	__get_task_comm(buf, sizeof(buf), tsk);		\
1632 })
1633 
1634 #ifdef CONFIG_SMP
1635 void scheduler_ipi(void);
1636 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1637 #else
1638 static inline void scheduler_ipi(void) { }
1639 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1640 {
1641 	return 1;
1642 }
1643 #endif
1644 
1645 /*
1646  * Set thread flags in other task's structures.
1647  * See asm/thread_info.h for TIF_xxxx flags available:
1648  */
1649 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1650 {
1651 	set_ti_thread_flag(task_thread_info(tsk), flag);
1652 }
1653 
1654 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1655 {
1656 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1657 }
1658 
1659 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1660 					  bool value)
1661 {
1662 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1663 }
1664 
1665 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1666 {
1667 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1668 }
1669 
1670 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1671 {
1672 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1673 }
1674 
1675 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1676 {
1677 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1678 }
1679 
1680 static inline void set_tsk_need_resched(struct task_struct *tsk)
1681 {
1682 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1683 }
1684 
1685 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1686 {
1687 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1688 }
1689 
1690 static inline int test_tsk_need_resched(struct task_struct *tsk)
1691 {
1692 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1693 }
1694 
1695 /*
1696  * cond_resched() and cond_resched_lock(): latency reduction via
1697  * explicit rescheduling in places that are safe. The return
1698  * value indicates whether a reschedule was done in fact.
1699  * cond_resched_lock() will drop the spinlock before scheduling,
1700  */
1701 #ifndef CONFIG_PREEMPT
1702 extern int _cond_resched(void);
1703 #else
1704 static inline int _cond_resched(void) { return 0; }
1705 #endif
1706 
1707 #define cond_resched() ({			\
1708 	___might_sleep(__FILE__, __LINE__, 0);	\
1709 	_cond_resched();			\
1710 })
1711 
1712 extern int __cond_resched_lock(spinlock_t *lock);
1713 
1714 #define cond_resched_lock(lock) ({				\
1715 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1716 	__cond_resched_lock(lock);				\
1717 })
1718 
1719 static inline void cond_resched_rcu(void)
1720 {
1721 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1722 	rcu_read_unlock();
1723 	cond_resched();
1724 	rcu_read_lock();
1725 #endif
1726 }
1727 
1728 /*
1729  * Does a critical section need to be broken due to another
1730  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1731  * but a general need for low latency)
1732  */
1733 static inline int spin_needbreak(spinlock_t *lock)
1734 {
1735 #ifdef CONFIG_PREEMPT
1736 	return spin_is_contended(lock);
1737 #else
1738 	return 0;
1739 #endif
1740 }
1741 
1742 static __always_inline bool need_resched(void)
1743 {
1744 	return unlikely(tif_need_resched());
1745 }
1746 
1747 /*
1748  * Wrappers for p->thread_info->cpu access. No-op on UP.
1749  */
1750 #ifdef CONFIG_SMP
1751 
1752 static inline unsigned int task_cpu(const struct task_struct *p)
1753 {
1754 #ifdef CONFIG_THREAD_INFO_IN_TASK
1755 	return READ_ONCE(p->cpu);
1756 #else
1757 	return READ_ONCE(task_thread_info(p)->cpu);
1758 #endif
1759 }
1760 
1761 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1762 
1763 #else
1764 
1765 static inline unsigned int task_cpu(const struct task_struct *p)
1766 {
1767 	return 0;
1768 }
1769 
1770 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1771 {
1772 }
1773 
1774 #endif /* CONFIG_SMP */
1775 
1776 /*
1777  * In order to reduce various lock holder preemption latencies provide an
1778  * interface to see if a vCPU is currently running or not.
1779  *
1780  * This allows us to terminate optimistic spin loops and block, analogous to
1781  * the native optimistic spin heuristic of testing if the lock owner task is
1782  * running or not.
1783  */
1784 #ifndef vcpu_is_preempted
1785 # define vcpu_is_preempted(cpu)	false
1786 #endif
1787 
1788 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1789 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1790 
1791 #ifndef TASK_SIZE_OF
1792 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1793 #endif
1794 
1795 #ifdef CONFIG_RSEQ
1796 
1797 /*
1798  * Map the event mask on the user-space ABI enum rseq_cs_flags
1799  * for direct mask checks.
1800  */
1801 enum rseq_event_mask_bits {
1802 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1803 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1804 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1805 };
1806 
1807 enum rseq_event_mask {
1808 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
1809 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
1810 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
1811 };
1812 
1813 static inline void rseq_set_notify_resume(struct task_struct *t)
1814 {
1815 	if (t->rseq)
1816 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1817 }
1818 
1819 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1820 
1821 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1822 					     struct pt_regs *regs)
1823 {
1824 	if (current->rseq)
1825 		__rseq_handle_notify_resume(ksig, regs);
1826 }
1827 
1828 static inline void rseq_signal_deliver(struct ksignal *ksig,
1829 				       struct pt_regs *regs)
1830 {
1831 	preempt_disable();
1832 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1833 	preempt_enable();
1834 	rseq_handle_notify_resume(ksig, regs);
1835 }
1836 
1837 /* rseq_preempt() requires preemption to be disabled. */
1838 static inline void rseq_preempt(struct task_struct *t)
1839 {
1840 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1841 	rseq_set_notify_resume(t);
1842 }
1843 
1844 /* rseq_migrate() requires preemption to be disabled. */
1845 static inline void rseq_migrate(struct task_struct *t)
1846 {
1847 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1848 	rseq_set_notify_resume(t);
1849 }
1850 
1851 /*
1852  * If parent process has a registered restartable sequences area, the
1853  * child inherits. Only applies when forking a process, not a thread.
1854  */
1855 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1856 {
1857 	if (clone_flags & CLONE_THREAD) {
1858 		t->rseq = NULL;
1859 		t->rseq_sig = 0;
1860 		t->rseq_event_mask = 0;
1861 	} else {
1862 		t->rseq = current->rseq;
1863 		t->rseq_sig = current->rseq_sig;
1864 		t->rseq_event_mask = current->rseq_event_mask;
1865 	}
1866 }
1867 
1868 static inline void rseq_execve(struct task_struct *t)
1869 {
1870 	t->rseq = NULL;
1871 	t->rseq_sig = 0;
1872 	t->rseq_event_mask = 0;
1873 }
1874 
1875 #else
1876 
1877 static inline void rseq_set_notify_resume(struct task_struct *t)
1878 {
1879 }
1880 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1881 					     struct pt_regs *regs)
1882 {
1883 }
1884 static inline void rseq_signal_deliver(struct ksignal *ksig,
1885 				       struct pt_regs *regs)
1886 {
1887 }
1888 static inline void rseq_preempt(struct task_struct *t)
1889 {
1890 }
1891 static inline void rseq_migrate(struct task_struct *t)
1892 {
1893 }
1894 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1895 {
1896 }
1897 static inline void rseq_execve(struct task_struct *t)
1898 {
1899 }
1900 
1901 #endif
1902 
1903 void __exit_umh(struct task_struct *tsk);
1904 
1905 static inline void exit_umh(struct task_struct *tsk)
1906 {
1907 	if (unlikely(tsk->flags & PF_UMH))
1908 		__exit_umh(tsk);
1909 }
1910 
1911 #ifdef CONFIG_DEBUG_RSEQ
1912 
1913 void rseq_syscall(struct pt_regs *regs);
1914 
1915 #else
1916 
1917 static inline void rseq_syscall(struct pt_regs *regs)
1918 {
1919 }
1920 
1921 #endif
1922 
1923 #endif
1924