1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 29 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 30 #define CLONE_IO 0x80000000 /* Clone io context */ 31 32 /* 33 * Scheduling policies 34 */ 35 #define SCHED_NORMAL 0 36 #define SCHED_FIFO 1 37 #define SCHED_RR 2 38 #define SCHED_BATCH 3 39 /* SCHED_ISO: reserved but not implemented yet */ 40 #define SCHED_IDLE 5 41 42 #ifdef __KERNEL__ 43 44 struct sched_param { 45 int sched_priority; 46 }; 47 48 #include <asm/param.h> /* for HZ */ 49 50 #include <linux/capability.h> 51 #include <linux/threads.h> 52 #include <linux/kernel.h> 53 #include <linux/types.h> 54 #include <linux/timex.h> 55 #include <linux/jiffies.h> 56 #include <linux/rbtree.h> 57 #include <linux/thread_info.h> 58 #include <linux/cpumask.h> 59 #include <linux/errno.h> 60 #include <linux/nodemask.h> 61 #include <linux/mm_types.h> 62 63 #include <asm/system.h> 64 #include <asm/page.h> 65 #include <asm/ptrace.h> 66 #include <asm/cputime.h> 67 68 #include <linux/smp.h> 69 #include <linux/sem.h> 70 #include <linux/signal.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compiler.h> 73 #include <linux/completion.h> 74 #include <linux/pid.h> 75 #include <linux/percpu.h> 76 #include <linux/topology.h> 77 #include <linux/proportions.h> 78 #include <linux/seccomp.h> 79 #include <linux/rcupdate.h> 80 #include <linux/rtmutex.h> 81 82 #include <linux/time.h> 83 #include <linux/param.h> 84 #include <linux/resource.h> 85 #include <linux/timer.h> 86 #include <linux/hrtimer.h> 87 #include <linux/task_io_accounting.h> 88 #include <linux/kobject.h> 89 #include <linux/latencytop.h> 90 #include <linux/cred.h> 91 92 #include <asm/processor.h> 93 94 struct mem_cgroup; 95 struct exec_domain; 96 struct futex_pi_state; 97 struct robust_list_head; 98 struct bio; 99 100 /* 101 * List of flags we want to share for kernel threads, 102 * if only because they are not used by them anyway. 103 */ 104 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 105 106 /* 107 * These are the constant used to fake the fixed-point load-average 108 * counting. Some notes: 109 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 110 * a load-average precision of 10 bits integer + 11 bits fractional 111 * - if you want to count load-averages more often, you need more 112 * precision, or rounding will get you. With 2-second counting freq, 113 * the EXP_n values would be 1981, 2034 and 2043 if still using only 114 * 11 bit fractions. 115 */ 116 extern unsigned long avenrun[]; /* Load averages */ 117 118 #define FSHIFT 11 /* nr of bits of precision */ 119 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 120 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 121 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 122 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 123 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 124 125 #define CALC_LOAD(load,exp,n) \ 126 load *= exp; \ 127 load += n*(FIXED_1-exp); \ 128 load >>= FSHIFT; 129 130 extern unsigned long total_forks; 131 extern int nr_threads; 132 DECLARE_PER_CPU(unsigned long, process_counts); 133 extern int nr_processes(void); 134 extern unsigned long nr_running(void); 135 extern unsigned long nr_uninterruptible(void); 136 extern unsigned long nr_active(void); 137 extern unsigned long nr_iowait(void); 138 139 struct seq_file; 140 struct cfs_rq; 141 struct task_group; 142 #ifdef CONFIG_SCHED_DEBUG 143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 144 extern void proc_sched_set_task(struct task_struct *p); 145 extern void 146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 147 #else 148 static inline void 149 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 150 { 151 } 152 static inline void proc_sched_set_task(struct task_struct *p) 153 { 154 } 155 static inline void 156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 157 { 158 } 159 #endif 160 161 extern unsigned long long time_sync_thresh; 162 163 /* 164 * Task state bitmask. NOTE! These bits are also 165 * encoded in fs/proc/array.c: get_task_state(). 166 * 167 * We have two separate sets of flags: task->state 168 * is about runnability, while task->exit_state are 169 * about the task exiting. Confusing, but this way 170 * modifying one set can't modify the other one by 171 * mistake. 172 */ 173 #define TASK_RUNNING 0 174 #define TASK_INTERRUPTIBLE 1 175 #define TASK_UNINTERRUPTIBLE 2 176 #define __TASK_STOPPED 4 177 #define __TASK_TRACED 8 178 /* in tsk->exit_state */ 179 #define EXIT_ZOMBIE 16 180 #define EXIT_DEAD 32 181 /* in tsk->state again */ 182 #define TASK_DEAD 64 183 #define TASK_WAKEKILL 128 184 185 /* Convenience macros for the sake of set_task_state */ 186 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 187 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 188 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 189 190 /* Convenience macros for the sake of wake_up */ 191 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 192 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 193 194 /* get_task_state() */ 195 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 197 __TASK_TRACED) 198 199 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 200 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 201 #define task_is_stopped_or_traced(task) \ 202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 203 #define task_contributes_to_load(task) \ 204 ((task->state & TASK_UNINTERRUPTIBLE) != 0) 205 206 #define __set_task_state(tsk, state_value) \ 207 do { (tsk)->state = (state_value); } while (0) 208 #define set_task_state(tsk, state_value) \ 209 set_mb((tsk)->state, (state_value)) 210 211 /* 212 * set_current_state() includes a barrier so that the write of current->state 213 * is correctly serialised wrt the caller's subsequent test of whether to 214 * actually sleep: 215 * 216 * set_current_state(TASK_UNINTERRUPTIBLE); 217 * if (do_i_need_to_sleep()) 218 * schedule(); 219 * 220 * If the caller does not need such serialisation then use __set_current_state() 221 */ 222 #define __set_current_state(state_value) \ 223 do { current->state = (state_value); } while (0) 224 #define set_current_state(state_value) \ 225 set_mb(current->state, (state_value)) 226 227 /* Task command name length */ 228 #define TASK_COMM_LEN 16 229 230 #include <linux/spinlock.h> 231 232 /* 233 * This serializes "schedule()" and also protects 234 * the run-queue from deletions/modifications (but 235 * _adding_ to the beginning of the run-queue has 236 * a separate lock). 237 */ 238 extern rwlock_t tasklist_lock; 239 extern spinlock_t mmlist_lock; 240 241 struct task_struct; 242 243 extern void sched_init(void); 244 extern void sched_init_smp(void); 245 extern asmlinkage void schedule_tail(struct task_struct *prev); 246 extern void init_idle(struct task_struct *idle, int cpu); 247 extern void init_idle_bootup_task(struct task_struct *idle); 248 249 extern int runqueue_is_locked(void); 250 251 extern cpumask_t nohz_cpu_mask; 252 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 253 extern int select_nohz_load_balancer(int cpu); 254 #else 255 static inline int select_nohz_load_balancer(int cpu) 256 { 257 return 0; 258 } 259 #endif 260 261 extern unsigned long rt_needs_cpu(int cpu); 262 263 /* 264 * Only dump TASK_* tasks. (0 for all tasks) 265 */ 266 extern void show_state_filter(unsigned long state_filter); 267 268 static inline void show_state(void) 269 { 270 show_state_filter(0); 271 } 272 273 extern void show_regs(struct pt_regs *); 274 275 /* 276 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 277 * task), SP is the stack pointer of the first frame that should be shown in the back 278 * trace (or NULL if the entire call-chain of the task should be shown). 279 */ 280 extern void show_stack(struct task_struct *task, unsigned long *sp); 281 282 void io_schedule(void); 283 long io_schedule_timeout(long timeout); 284 285 extern void cpu_init (void); 286 extern void trap_init(void); 287 extern void account_process_tick(struct task_struct *task, int user); 288 extern void update_process_times(int user); 289 extern void scheduler_tick(void); 290 291 extern void sched_show_task(struct task_struct *p); 292 293 #ifdef CONFIG_DETECT_SOFTLOCKUP 294 extern void softlockup_tick(void); 295 extern void touch_softlockup_watchdog(void); 296 extern void touch_all_softlockup_watchdogs(void); 297 extern unsigned int softlockup_panic; 298 extern unsigned long sysctl_hung_task_check_count; 299 extern unsigned long sysctl_hung_task_timeout_secs; 300 extern unsigned long sysctl_hung_task_warnings; 301 extern int softlockup_thresh; 302 #else 303 static inline void softlockup_tick(void) 304 { 305 } 306 static inline void spawn_softlockup_task(void) 307 { 308 } 309 static inline void touch_softlockup_watchdog(void) 310 { 311 } 312 static inline void touch_all_softlockup_watchdogs(void) 313 { 314 } 315 #endif 316 317 318 /* Attach to any functions which should be ignored in wchan output. */ 319 #define __sched __attribute__((__section__(".sched.text"))) 320 321 /* Linker adds these: start and end of __sched functions */ 322 extern char __sched_text_start[], __sched_text_end[]; 323 324 /* Is this address in the __sched functions? */ 325 extern int in_sched_functions(unsigned long addr); 326 327 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 328 extern signed long schedule_timeout(signed long timeout); 329 extern signed long schedule_timeout_interruptible(signed long timeout); 330 extern signed long schedule_timeout_killable(signed long timeout); 331 extern signed long schedule_timeout_uninterruptible(signed long timeout); 332 asmlinkage void schedule(void); 333 334 struct nsproxy; 335 struct user_namespace; 336 337 /* Maximum number of active map areas.. This is a random (large) number */ 338 #define DEFAULT_MAX_MAP_COUNT 65536 339 340 extern int sysctl_max_map_count; 341 342 #include <linux/aio.h> 343 344 extern unsigned long 345 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 346 unsigned long, unsigned long); 347 extern unsigned long 348 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 349 unsigned long len, unsigned long pgoff, 350 unsigned long flags); 351 extern void arch_unmap_area(struct mm_struct *, unsigned long); 352 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 353 354 #if USE_SPLIT_PTLOCKS 355 /* 356 * The mm counters are not protected by its page_table_lock, 357 * so must be incremented atomically. 358 */ 359 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 360 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 361 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 362 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 363 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 364 365 #else /* !USE_SPLIT_PTLOCKS */ 366 /* 367 * The mm counters are protected by its page_table_lock, 368 * so can be incremented directly. 369 */ 370 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 371 #define get_mm_counter(mm, member) ((mm)->_##member) 372 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 373 #define inc_mm_counter(mm, member) (mm)->_##member++ 374 #define dec_mm_counter(mm, member) (mm)->_##member-- 375 376 #endif /* !USE_SPLIT_PTLOCKS */ 377 378 #define get_mm_rss(mm) \ 379 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 380 #define update_hiwater_rss(mm) do { \ 381 unsigned long _rss = get_mm_rss(mm); \ 382 if ((mm)->hiwater_rss < _rss) \ 383 (mm)->hiwater_rss = _rss; \ 384 } while (0) 385 #define update_hiwater_vm(mm) do { \ 386 if ((mm)->hiwater_vm < (mm)->total_vm) \ 387 (mm)->hiwater_vm = (mm)->total_vm; \ 388 } while (0) 389 390 extern void set_dumpable(struct mm_struct *mm, int value); 391 extern int get_dumpable(struct mm_struct *mm); 392 393 /* mm flags */ 394 /* dumpable bits */ 395 #define MMF_DUMPABLE 0 /* core dump is permitted */ 396 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 397 #define MMF_DUMPABLE_BITS 2 398 399 /* coredump filter bits */ 400 #define MMF_DUMP_ANON_PRIVATE 2 401 #define MMF_DUMP_ANON_SHARED 3 402 #define MMF_DUMP_MAPPED_PRIVATE 4 403 #define MMF_DUMP_MAPPED_SHARED 5 404 #define MMF_DUMP_ELF_HEADERS 6 405 #define MMF_DUMP_HUGETLB_PRIVATE 7 406 #define MMF_DUMP_HUGETLB_SHARED 8 407 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 408 #define MMF_DUMP_FILTER_BITS 7 409 #define MMF_DUMP_FILTER_MASK \ 410 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 411 #define MMF_DUMP_FILTER_DEFAULT \ 412 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 413 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 414 415 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 416 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 417 #else 418 # define MMF_DUMP_MASK_DEFAULT_ELF 0 419 #endif 420 421 struct sighand_struct { 422 atomic_t count; 423 struct k_sigaction action[_NSIG]; 424 spinlock_t siglock; 425 wait_queue_head_t signalfd_wqh; 426 }; 427 428 struct pacct_struct { 429 int ac_flag; 430 long ac_exitcode; 431 unsigned long ac_mem; 432 cputime_t ac_utime, ac_stime; 433 unsigned long ac_minflt, ac_majflt; 434 }; 435 436 /** 437 * struct task_cputime - collected CPU time counts 438 * @utime: time spent in user mode, in &cputime_t units 439 * @stime: time spent in kernel mode, in &cputime_t units 440 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 441 * 442 * This structure groups together three kinds of CPU time that are 443 * tracked for threads and thread groups. Most things considering 444 * CPU time want to group these counts together and treat all three 445 * of them in parallel. 446 */ 447 struct task_cputime { 448 cputime_t utime; 449 cputime_t stime; 450 unsigned long long sum_exec_runtime; 451 }; 452 /* Alternate field names when used to cache expirations. */ 453 #define prof_exp stime 454 #define virt_exp utime 455 #define sched_exp sum_exec_runtime 456 457 /** 458 * struct thread_group_cputime - thread group interval timer counts 459 * @totals: thread group interval timers; substructure for 460 * uniprocessor kernel, per-cpu for SMP kernel. 461 * 462 * This structure contains the version of task_cputime, above, that is 463 * used for thread group CPU clock calculations. 464 */ 465 struct thread_group_cputime { 466 struct task_cputime *totals; 467 }; 468 469 /* 470 * NOTE! "signal_struct" does not have it's own 471 * locking, because a shared signal_struct always 472 * implies a shared sighand_struct, so locking 473 * sighand_struct is always a proper superset of 474 * the locking of signal_struct. 475 */ 476 struct signal_struct { 477 atomic_t count; 478 atomic_t live; 479 480 wait_queue_head_t wait_chldexit; /* for wait4() */ 481 482 /* current thread group signal load-balancing target: */ 483 struct task_struct *curr_target; 484 485 /* shared signal handling: */ 486 struct sigpending shared_pending; 487 488 /* thread group exit support */ 489 int group_exit_code; 490 /* overloaded: 491 * - notify group_exit_task when ->count is equal to notify_count 492 * - everyone except group_exit_task is stopped during signal delivery 493 * of fatal signals, group_exit_task processes the signal. 494 */ 495 int notify_count; 496 struct task_struct *group_exit_task; 497 498 /* thread group stop support, overloads group_exit_code too */ 499 int group_stop_count; 500 unsigned int flags; /* see SIGNAL_* flags below */ 501 502 /* POSIX.1b Interval Timers */ 503 struct list_head posix_timers; 504 505 /* ITIMER_REAL timer for the process */ 506 struct hrtimer real_timer; 507 struct pid *leader_pid; 508 ktime_t it_real_incr; 509 510 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 511 cputime_t it_prof_expires, it_virt_expires; 512 cputime_t it_prof_incr, it_virt_incr; 513 514 /* 515 * Thread group totals for process CPU clocks. 516 * See thread_group_cputime(), et al, for details. 517 */ 518 struct thread_group_cputime cputime; 519 520 /* Earliest-expiration cache. */ 521 struct task_cputime cputime_expires; 522 523 struct list_head cpu_timers[3]; 524 525 /* job control IDs */ 526 527 /* 528 * pgrp and session fields are deprecated. 529 * use the task_session_Xnr and task_pgrp_Xnr routines below 530 */ 531 532 union { 533 pid_t pgrp __deprecated; 534 pid_t __pgrp; 535 }; 536 537 struct pid *tty_old_pgrp; 538 539 union { 540 pid_t session __deprecated; 541 pid_t __session; 542 }; 543 544 /* boolean value for session group leader */ 545 int leader; 546 547 struct tty_struct *tty; /* NULL if no tty */ 548 549 /* 550 * Cumulative resource counters for dead threads in the group, 551 * and for reaped dead child processes forked by this group. 552 * Live threads maintain their own counters and add to these 553 * in __exit_signal, except for the group leader. 554 */ 555 cputime_t cutime, cstime; 556 cputime_t gtime; 557 cputime_t cgtime; 558 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 559 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 560 unsigned long inblock, oublock, cinblock, coublock; 561 struct task_io_accounting ioac; 562 563 /* 564 * We don't bother to synchronize most readers of this at all, 565 * because there is no reader checking a limit that actually needs 566 * to get both rlim_cur and rlim_max atomically, and either one 567 * alone is a single word that can safely be read normally. 568 * getrlimit/setrlimit use task_lock(current->group_leader) to 569 * protect this instead of the siglock, because they really 570 * have no need to disable irqs. 571 */ 572 struct rlimit rlim[RLIM_NLIMITS]; 573 574 /* keep the process-shared keyrings here so that they do the right 575 * thing in threads created with CLONE_THREAD */ 576 #ifdef CONFIG_KEYS 577 struct key *session_keyring; /* keyring inherited over fork */ 578 struct key *process_keyring; /* keyring private to this process */ 579 #endif 580 #ifdef CONFIG_BSD_PROCESS_ACCT 581 struct pacct_struct pacct; /* per-process accounting information */ 582 #endif 583 #ifdef CONFIG_TASKSTATS 584 struct taskstats *stats; 585 #endif 586 #ifdef CONFIG_AUDIT 587 unsigned audit_tty; 588 struct tty_audit_buf *tty_audit_buf; 589 #endif 590 }; 591 592 /* Context switch must be unlocked if interrupts are to be enabled */ 593 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 594 # define __ARCH_WANT_UNLOCKED_CTXSW 595 #endif 596 597 /* 598 * Bits in flags field of signal_struct. 599 */ 600 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 601 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 602 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 603 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 604 /* 605 * Pending notifications to parent. 606 */ 607 #define SIGNAL_CLD_STOPPED 0x00000010 608 #define SIGNAL_CLD_CONTINUED 0x00000020 609 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 610 611 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 612 613 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 614 static inline int signal_group_exit(const struct signal_struct *sig) 615 { 616 return (sig->flags & SIGNAL_GROUP_EXIT) || 617 (sig->group_exit_task != NULL); 618 } 619 620 /* 621 * Some day this will be a full-fledged user tracking system.. 622 */ 623 struct user_struct { 624 atomic_t __count; /* reference count */ 625 atomic_t processes; /* How many processes does this user have? */ 626 atomic_t files; /* How many open files does this user have? */ 627 atomic_t sigpending; /* How many pending signals does this user have? */ 628 #ifdef CONFIG_INOTIFY_USER 629 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 630 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 631 #endif 632 #ifdef CONFIG_POSIX_MQUEUE 633 /* protected by mq_lock */ 634 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 635 #endif 636 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 637 638 #ifdef CONFIG_KEYS 639 struct key *uid_keyring; /* UID specific keyring */ 640 struct key *session_keyring; /* UID's default session keyring */ 641 #endif 642 643 /* Hash table maintenance information */ 644 struct hlist_node uidhash_node; 645 uid_t uid; 646 647 #ifdef CONFIG_USER_SCHED 648 struct task_group *tg; 649 #ifdef CONFIG_SYSFS 650 struct kobject kobj; 651 struct work_struct work; 652 #endif 653 #endif 654 }; 655 656 extern int uids_sysfs_init(void); 657 658 extern struct user_struct *find_user(uid_t); 659 660 extern struct user_struct root_user; 661 #define INIT_USER (&root_user) 662 663 struct backing_dev_info; 664 struct reclaim_state; 665 666 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 667 struct sched_info { 668 /* cumulative counters */ 669 unsigned long pcount; /* # of times run on this cpu */ 670 unsigned long long cpu_time, /* time spent on the cpu */ 671 run_delay; /* time spent waiting on a runqueue */ 672 673 /* timestamps */ 674 unsigned long long last_arrival,/* when we last ran on a cpu */ 675 last_queued; /* when we were last queued to run */ 676 #ifdef CONFIG_SCHEDSTATS 677 /* BKL stats */ 678 unsigned int bkl_count; 679 #endif 680 }; 681 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 682 683 #ifdef CONFIG_TASK_DELAY_ACCT 684 struct task_delay_info { 685 spinlock_t lock; 686 unsigned int flags; /* Private per-task flags */ 687 688 /* For each stat XXX, add following, aligned appropriately 689 * 690 * struct timespec XXX_start, XXX_end; 691 * u64 XXX_delay; 692 * u32 XXX_count; 693 * 694 * Atomicity of updates to XXX_delay, XXX_count protected by 695 * single lock above (split into XXX_lock if contention is an issue). 696 */ 697 698 /* 699 * XXX_count is incremented on every XXX operation, the delay 700 * associated with the operation is added to XXX_delay. 701 * XXX_delay contains the accumulated delay time in nanoseconds. 702 */ 703 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 704 u64 blkio_delay; /* wait for sync block io completion */ 705 u64 swapin_delay; /* wait for swapin block io completion */ 706 u32 blkio_count; /* total count of the number of sync block */ 707 /* io operations performed */ 708 u32 swapin_count; /* total count of the number of swapin block */ 709 /* io operations performed */ 710 711 struct timespec freepages_start, freepages_end; 712 u64 freepages_delay; /* wait for memory reclaim */ 713 u32 freepages_count; /* total count of memory reclaim */ 714 }; 715 #endif /* CONFIG_TASK_DELAY_ACCT */ 716 717 static inline int sched_info_on(void) 718 { 719 #ifdef CONFIG_SCHEDSTATS 720 return 1; 721 #elif defined(CONFIG_TASK_DELAY_ACCT) 722 extern int delayacct_on; 723 return delayacct_on; 724 #else 725 return 0; 726 #endif 727 } 728 729 enum cpu_idle_type { 730 CPU_IDLE, 731 CPU_NOT_IDLE, 732 CPU_NEWLY_IDLE, 733 CPU_MAX_IDLE_TYPES 734 }; 735 736 /* 737 * sched-domains (multiprocessor balancing) declarations: 738 */ 739 740 /* 741 * Increase resolution of nice-level calculations: 742 */ 743 #define SCHED_LOAD_SHIFT 10 744 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 745 746 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE 747 748 #ifdef CONFIG_SMP 749 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 750 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 751 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 752 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 753 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 754 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 755 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 756 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 757 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 758 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */ 759 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */ 760 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */ 761 762 #define BALANCE_FOR_MC_POWER \ 763 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0) 764 765 #define BALANCE_FOR_PKG_POWER \ 766 ((sched_mc_power_savings || sched_smt_power_savings) ? \ 767 SD_POWERSAVINGS_BALANCE : 0) 768 769 #define test_sd_parent(sd, flag) ((sd->parent && \ 770 (sd->parent->flags & flag)) ? 1 : 0) 771 772 773 struct sched_group { 774 struct sched_group *next; /* Must be a circular list */ 775 cpumask_t cpumask; 776 777 /* 778 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 779 * single CPU. This is read only (except for setup, hotplug CPU). 780 * Note : Never change cpu_power without recompute its reciprocal 781 */ 782 unsigned int __cpu_power; 783 /* 784 * reciprocal value of cpu_power to avoid expensive divides 785 * (see include/linux/reciprocal_div.h) 786 */ 787 u32 reciprocal_cpu_power; 788 }; 789 790 enum sched_domain_level { 791 SD_LV_NONE = 0, 792 SD_LV_SIBLING, 793 SD_LV_MC, 794 SD_LV_CPU, 795 SD_LV_NODE, 796 SD_LV_ALLNODES, 797 SD_LV_MAX 798 }; 799 800 struct sched_domain_attr { 801 int relax_domain_level; 802 }; 803 804 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 805 .relax_domain_level = -1, \ 806 } 807 808 struct sched_domain { 809 /* These fields must be setup */ 810 struct sched_domain *parent; /* top domain must be null terminated */ 811 struct sched_domain *child; /* bottom domain must be null terminated */ 812 struct sched_group *groups; /* the balancing groups of the domain */ 813 cpumask_t span; /* span of all CPUs in this domain */ 814 unsigned long min_interval; /* Minimum balance interval ms */ 815 unsigned long max_interval; /* Maximum balance interval ms */ 816 unsigned int busy_factor; /* less balancing by factor if busy */ 817 unsigned int imbalance_pct; /* No balance until over watermark */ 818 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 819 unsigned int busy_idx; 820 unsigned int idle_idx; 821 unsigned int newidle_idx; 822 unsigned int wake_idx; 823 unsigned int forkexec_idx; 824 int flags; /* See SD_* */ 825 enum sched_domain_level level; 826 827 /* Runtime fields. */ 828 unsigned long last_balance; /* init to jiffies. units in jiffies */ 829 unsigned int balance_interval; /* initialise to 1. units in ms. */ 830 unsigned int nr_balance_failed; /* initialise to 0 */ 831 832 u64 last_update; 833 834 #ifdef CONFIG_SCHEDSTATS 835 /* load_balance() stats */ 836 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 837 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 838 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 839 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 840 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 841 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 842 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 843 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 844 845 /* Active load balancing */ 846 unsigned int alb_count; 847 unsigned int alb_failed; 848 unsigned int alb_pushed; 849 850 /* SD_BALANCE_EXEC stats */ 851 unsigned int sbe_count; 852 unsigned int sbe_balanced; 853 unsigned int sbe_pushed; 854 855 /* SD_BALANCE_FORK stats */ 856 unsigned int sbf_count; 857 unsigned int sbf_balanced; 858 unsigned int sbf_pushed; 859 860 /* try_to_wake_up() stats */ 861 unsigned int ttwu_wake_remote; 862 unsigned int ttwu_move_affine; 863 unsigned int ttwu_move_balance; 864 #endif 865 #ifdef CONFIG_SCHED_DEBUG 866 char *name; 867 #endif 868 }; 869 870 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, 871 struct sched_domain_attr *dattr_new); 872 extern int arch_reinit_sched_domains(void); 873 874 #else /* CONFIG_SMP */ 875 876 struct sched_domain_attr; 877 878 static inline void 879 partition_sched_domains(int ndoms_new, cpumask_t *doms_new, 880 struct sched_domain_attr *dattr_new) 881 { 882 } 883 #endif /* !CONFIG_SMP */ 884 885 struct io_context; /* See blkdev.h */ 886 #define NGROUPS_SMALL 32 887 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t))) 888 struct group_info { 889 int ngroups; 890 atomic_t usage; 891 gid_t small_block[NGROUPS_SMALL]; 892 int nblocks; 893 gid_t *blocks[0]; 894 }; 895 896 /* 897 * get_group_info() must be called with the owning task locked (via task_lock()) 898 * when task != current. The reason being that the vast majority of callers are 899 * looking at current->group_info, which can not be changed except by the 900 * current task. Changing current->group_info requires the task lock, too. 901 */ 902 #define get_group_info(group_info) do { \ 903 atomic_inc(&(group_info)->usage); \ 904 } while (0) 905 906 #define put_group_info(group_info) do { \ 907 if (atomic_dec_and_test(&(group_info)->usage)) \ 908 groups_free(group_info); \ 909 } while (0) 910 911 extern struct group_info *groups_alloc(int gidsetsize); 912 extern void groups_free(struct group_info *group_info); 913 extern int set_current_groups(struct group_info *group_info); 914 extern int groups_search(struct group_info *group_info, gid_t grp); 915 /* access the groups "array" with this macro */ 916 #define GROUP_AT(gi, i) \ 917 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 918 919 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 920 extern void prefetch_stack(struct task_struct *t); 921 #else 922 static inline void prefetch_stack(struct task_struct *t) { } 923 #endif 924 925 struct audit_context; /* See audit.c */ 926 struct mempolicy; 927 struct pipe_inode_info; 928 struct uts_namespace; 929 930 struct rq; 931 struct sched_domain; 932 933 struct sched_class { 934 const struct sched_class *next; 935 936 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup); 937 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep); 938 void (*yield_task) (struct rq *rq); 939 940 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int sync); 941 942 struct task_struct * (*pick_next_task) (struct rq *rq); 943 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 944 945 #ifdef CONFIG_SMP 946 int (*select_task_rq)(struct task_struct *p, int sync); 947 948 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu, 949 struct rq *busiest, unsigned long max_load_move, 950 struct sched_domain *sd, enum cpu_idle_type idle, 951 int *all_pinned, int *this_best_prio); 952 953 int (*move_one_task) (struct rq *this_rq, int this_cpu, 954 struct rq *busiest, struct sched_domain *sd, 955 enum cpu_idle_type idle); 956 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 957 void (*post_schedule) (struct rq *this_rq); 958 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); 959 960 void (*set_cpus_allowed)(struct task_struct *p, 961 const cpumask_t *newmask); 962 963 void (*rq_online)(struct rq *rq); 964 void (*rq_offline)(struct rq *rq); 965 #endif 966 967 void (*set_curr_task) (struct rq *rq); 968 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 969 void (*task_new) (struct rq *rq, struct task_struct *p); 970 971 void (*switched_from) (struct rq *this_rq, struct task_struct *task, 972 int running); 973 void (*switched_to) (struct rq *this_rq, struct task_struct *task, 974 int running); 975 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 976 int oldprio, int running); 977 978 #ifdef CONFIG_FAIR_GROUP_SCHED 979 void (*moved_group) (struct task_struct *p); 980 #endif 981 }; 982 983 struct load_weight { 984 unsigned long weight, inv_weight; 985 }; 986 987 /* 988 * CFS stats for a schedulable entity (task, task-group etc) 989 * 990 * Current field usage histogram: 991 * 992 * 4 se->block_start 993 * 4 se->run_node 994 * 4 se->sleep_start 995 * 6 se->load.weight 996 */ 997 struct sched_entity { 998 struct load_weight load; /* for load-balancing */ 999 struct rb_node run_node; 1000 struct list_head group_node; 1001 unsigned int on_rq; 1002 1003 u64 exec_start; 1004 u64 sum_exec_runtime; 1005 u64 vruntime; 1006 u64 prev_sum_exec_runtime; 1007 1008 u64 last_wakeup; 1009 u64 avg_overlap; 1010 1011 #ifdef CONFIG_SCHEDSTATS 1012 u64 wait_start; 1013 u64 wait_max; 1014 u64 wait_count; 1015 u64 wait_sum; 1016 1017 u64 sleep_start; 1018 u64 sleep_max; 1019 s64 sum_sleep_runtime; 1020 1021 u64 block_start; 1022 u64 block_max; 1023 u64 exec_max; 1024 u64 slice_max; 1025 1026 u64 nr_migrations; 1027 u64 nr_migrations_cold; 1028 u64 nr_failed_migrations_affine; 1029 u64 nr_failed_migrations_running; 1030 u64 nr_failed_migrations_hot; 1031 u64 nr_forced_migrations; 1032 u64 nr_forced2_migrations; 1033 1034 u64 nr_wakeups; 1035 u64 nr_wakeups_sync; 1036 u64 nr_wakeups_migrate; 1037 u64 nr_wakeups_local; 1038 u64 nr_wakeups_remote; 1039 u64 nr_wakeups_affine; 1040 u64 nr_wakeups_affine_attempts; 1041 u64 nr_wakeups_passive; 1042 u64 nr_wakeups_idle; 1043 #endif 1044 1045 #ifdef CONFIG_FAIR_GROUP_SCHED 1046 struct sched_entity *parent; 1047 /* rq on which this entity is (to be) queued: */ 1048 struct cfs_rq *cfs_rq; 1049 /* rq "owned" by this entity/group: */ 1050 struct cfs_rq *my_q; 1051 #endif 1052 }; 1053 1054 struct sched_rt_entity { 1055 struct list_head run_list; 1056 unsigned long timeout; 1057 unsigned int time_slice; 1058 int nr_cpus_allowed; 1059 1060 struct sched_rt_entity *back; 1061 #ifdef CONFIG_RT_GROUP_SCHED 1062 struct sched_rt_entity *parent; 1063 /* rq on which this entity is (to be) queued: */ 1064 struct rt_rq *rt_rq; 1065 /* rq "owned" by this entity/group: */ 1066 struct rt_rq *my_q; 1067 #endif 1068 }; 1069 1070 struct task_struct { 1071 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1072 void *stack; 1073 atomic_t usage; 1074 unsigned int flags; /* per process flags, defined below */ 1075 unsigned int ptrace; 1076 1077 int lock_depth; /* BKL lock depth */ 1078 1079 #ifdef CONFIG_SMP 1080 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 1081 int oncpu; 1082 #endif 1083 #endif 1084 1085 int prio, static_prio, normal_prio; 1086 unsigned int rt_priority; 1087 const struct sched_class *sched_class; 1088 struct sched_entity se; 1089 struct sched_rt_entity rt; 1090 1091 #ifdef CONFIG_PREEMPT_NOTIFIERS 1092 /* list of struct preempt_notifier: */ 1093 struct hlist_head preempt_notifiers; 1094 #endif 1095 1096 /* 1097 * fpu_counter contains the number of consecutive context switches 1098 * that the FPU is used. If this is over a threshold, the lazy fpu 1099 * saving becomes unlazy to save the trap. This is an unsigned char 1100 * so that after 256 times the counter wraps and the behavior turns 1101 * lazy again; this to deal with bursty apps that only use FPU for 1102 * a short time 1103 */ 1104 unsigned char fpu_counter; 1105 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */ 1106 #ifdef CONFIG_BLK_DEV_IO_TRACE 1107 unsigned int btrace_seq; 1108 #endif 1109 1110 unsigned int policy; 1111 cpumask_t cpus_allowed; 1112 1113 #ifdef CONFIG_PREEMPT_RCU 1114 int rcu_read_lock_nesting; 1115 int rcu_flipctr_idx; 1116 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1117 1118 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1119 struct sched_info sched_info; 1120 #endif 1121 1122 struct list_head tasks; 1123 1124 struct mm_struct *mm, *active_mm; 1125 1126 /* task state */ 1127 struct linux_binfmt *binfmt; 1128 int exit_state; 1129 int exit_code, exit_signal; 1130 int pdeath_signal; /* The signal sent when the parent dies */ 1131 /* ??? */ 1132 unsigned int personality; 1133 unsigned did_exec:1; 1134 pid_t pid; 1135 pid_t tgid; 1136 1137 #ifdef CONFIG_CC_STACKPROTECTOR 1138 /* Canary value for the -fstack-protector gcc feature */ 1139 unsigned long stack_canary; 1140 #endif 1141 /* 1142 * pointers to (original) parent process, youngest child, younger sibling, 1143 * older sibling, respectively. (p->father can be replaced with 1144 * p->real_parent->pid) 1145 */ 1146 struct task_struct *real_parent; /* real parent process */ 1147 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ 1148 /* 1149 * children/sibling forms the list of my natural children 1150 */ 1151 struct list_head children; /* list of my children */ 1152 struct list_head sibling; /* linkage in my parent's children list */ 1153 struct task_struct *group_leader; /* threadgroup leader */ 1154 1155 /* 1156 * ptraced is the list of tasks this task is using ptrace on. 1157 * This includes both natural children and PTRACE_ATTACH targets. 1158 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1159 */ 1160 struct list_head ptraced; 1161 struct list_head ptrace_entry; 1162 1163 /* PID/PID hash table linkage. */ 1164 struct pid_link pids[PIDTYPE_MAX]; 1165 struct list_head thread_group; 1166 1167 struct completion *vfork_done; /* for vfork() */ 1168 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1169 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1170 1171 cputime_t utime, stime, utimescaled, stimescaled; 1172 cputime_t gtime; 1173 cputime_t prev_utime, prev_stime; 1174 unsigned long nvcsw, nivcsw; /* context switch counts */ 1175 struct timespec start_time; /* monotonic time */ 1176 struct timespec real_start_time; /* boot based time */ 1177 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1178 unsigned long min_flt, maj_flt; 1179 1180 struct task_cputime cputime_expires; 1181 struct list_head cpu_timers[3]; 1182 1183 /* process credentials */ 1184 uid_t uid,euid,suid,fsuid; 1185 gid_t gid,egid,sgid,fsgid; 1186 struct group_info *group_info; 1187 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset; 1188 struct user_struct *user; 1189 unsigned securebits; 1190 #ifdef CONFIG_KEYS 1191 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 1192 struct key *request_key_auth; /* assumed request_key authority */ 1193 struct key *thread_keyring; /* keyring private to this thread */ 1194 #endif 1195 char comm[TASK_COMM_LEN]; /* executable name excluding path 1196 - access with [gs]et_task_comm (which lock 1197 it with task_lock()) 1198 - initialized normally by flush_old_exec */ 1199 /* file system info */ 1200 int link_count, total_link_count; 1201 #ifdef CONFIG_SYSVIPC 1202 /* ipc stuff */ 1203 struct sysv_sem sysvsem; 1204 #endif 1205 #ifdef CONFIG_DETECT_SOFTLOCKUP 1206 /* hung task detection */ 1207 unsigned long last_switch_timestamp; 1208 unsigned long last_switch_count; 1209 #endif 1210 /* CPU-specific state of this task */ 1211 struct thread_struct thread; 1212 /* filesystem information */ 1213 struct fs_struct *fs; 1214 /* open file information */ 1215 struct files_struct *files; 1216 /* namespaces */ 1217 struct nsproxy *nsproxy; 1218 /* signal handlers */ 1219 struct signal_struct *signal; 1220 struct sighand_struct *sighand; 1221 1222 sigset_t blocked, real_blocked; 1223 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1224 struct sigpending pending; 1225 1226 unsigned long sas_ss_sp; 1227 size_t sas_ss_size; 1228 int (*notifier)(void *priv); 1229 void *notifier_data; 1230 sigset_t *notifier_mask; 1231 #ifdef CONFIG_SECURITY 1232 void *security; 1233 #endif 1234 struct audit_context *audit_context; 1235 #ifdef CONFIG_AUDITSYSCALL 1236 uid_t loginuid; 1237 unsigned int sessionid; 1238 #endif 1239 seccomp_t seccomp; 1240 1241 /* Thread group tracking */ 1242 u32 parent_exec_id; 1243 u32 self_exec_id; 1244 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 1245 spinlock_t alloc_lock; 1246 1247 /* Protection of the PI data structures: */ 1248 spinlock_t pi_lock; 1249 1250 #ifdef CONFIG_RT_MUTEXES 1251 /* PI waiters blocked on a rt_mutex held by this task */ 1252 struct plist_head pi_waiters; 1253 /* Deadlock detection and priority inheritance handling */ 1254 struct rt_mutex_waiter *pi_blocked_on; 1255 #endif 1256 1257 #ifdef CONFIG_DEBUG_MUTEXES 1258 /* mutex deadlock detection */ 1259 struct mutex_waiter *blocked_on; 1260 #endif 1261 #ifdef CONFIG_TRACE_IRQFLAGS 1262 unsigned int irq_events; 1263 int hardirqs_enabled; 1264 unsigned long hardirq_enable_ip; 1265 unsigned int hardirq_enable_event; 1266 unsigned long hardirq_disable_ip; 1267 unsigned int hardirq_disable_event; 1268 int softirqs_enabled; 1269 unsigned long softirq_disable_ip; 1270 unsigned int softirq_disable_event; 1271 unsigned long softirq_enable_ip; 1272 unsigned int softirq_enable_event; 1273 int hardirq_context; 1274 int softirq_context; 1275 #endif 1276 #ifdef CONFIG_LOCKDEP 1277 # define MAX_LOCK_DEPTH 48UL 1278 u64 curr_chain_key; 1279 int lockdep_depth; 1280 unsigned int lockdep_recursion; 1281 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1282 #endif 1283 1284 /* journalling filesystem info */ 1285 void *journal_info; 1286 1287 /* stacked block device info */ 1288 struct bio *bio_list, **bio_tail; 1289 1290 /* VM state */ 1291 struct reclaim_state *reclaim_state; 1292 1293 struct backing_dev_info *backing_dev_info; 1294 1295 struct io_context *io_context; 1296 1297 unsigned long ptrace_message; 1298 siginfo_t *last_siginfo; /* For ptrace use. */ 1299 struct task_io_accounting ioac; 1300 #if defined(CONFIG_TASK_XACCT) 1301 u64 acct_rss_mem1; /* accumulated rss usage */ 1302 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1303 cputime_t acct_timexpd; /* stime + utime since last update */ 1304 #endif 1305 #ifdef CONFIG_CPUSETS 1306 nodemask_t mems_allowed; 1307 int cpuset_mems_generation; 1308 int cpuset_mem_spread_rotor; 1309 #endif 1310 #ifdef CONFIG_CGROUPS 1311 /* Control Group info protected by css_set_lock */ 1312 struct css_set *cgroups; 1313 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1314 struct list_head cg_list; 1315 #endif 1316 #ifdef CONFIG_FUTEX 1317 struct robust_list_head __user *robust_list; 1318 #ifdef CONFIG_COMPAT 1319 struct compat_robust_list_head __user *compat_robust_list; 1320 #endif 1321 struct list_head pi_state_list; 1322 struct futex_pi_state *pi_state_cache; 1323 #endif 1324 #ifdef CONFIG_NUMA 1325 struct mempolicy *mempolicy; 1326 short il_next; 1327 #endif 1328 atomic_t fs_excl; /* holding fs exclusive resources */ 1329 struct rcu_head rcu; 1330 1331 /* 1332 * cache last used pipe for splice 1333 */ 1334 struct pipe_inode_info *splice_pipe; 1335 #ifdef CONFIG_TASK_DELAY_ACCT 1336 struct task_delay_info *delays; 1337 #endif 1338 #ifdef CONFIG_FAULT_INJECTION 1339 int make_it_fail; 1340 #endif 1341 struct prop_local_single dirties; 1342 #ifdef CONFIG_LATENCYTOP 1343 int latency_record_count; 1344 struct latency_record latency_record[LT_SAVECOUNT]; 1345 #endif 1346 /* 1347 * time slack values; these are used to round up poll() and 1348 * select() etc timeout values. These are in nanoseconds. 1349 */ 1350 unsigned long timer_slack_ns; 1351 unsigned long default_timer_slack_ns; 1352 }; 1353 1354 /* 1355 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1356 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1357 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1358 * values are inverted: lower p->prio value means higher priority. 1359 * 1360 * The MAX_USER_RT_PRIO value allows the actual maximum 1361 * RT priority to be separate from the value exported to 1362 * user-space. This allows kernel threads to set their 1363 * priority to a value higher than any user task. Note: 1364 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1365 */ 1366 1367 #define MAX_USER_RT_PRIO 100 1368 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1369 1370 #define MAX_PRIO (MAX_RT_PRIO + 40) 1371 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1372 1373 static inline int rt_prio(int prio) 1374 { 1375 if (unlikely(prio < MAX_RT_PRIO)) 1376 return 1; 1377 return 0; 1378 } 1379 1380 static inline int rt_task(struct task_struct *p) 1381 { 1382 return rt_prio(p->prio); 1383 } 1384 1385 static inline void set_task_session(struct task_struct *tsk, pid_t session) 1386 { 1387 tsk->signal->__session = session; 1388 } 1389 1390 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp) 1391 { 1392 tsk->signal->__pgrp = pgrp; 1393 } 1394 1395 static inline struct pid *task_pid(struct task_struct *task) 1396 { 1397 return task->pids[PIDTYPE_PID].pid; 1398 } 1399 1400 static inline struct pid *task_tgid(struct task_struct *task) 1401 { 1402 return task->group_leader->pids[PIDTYPE_PID].pid; 1403 } 1404 1405 static inline struct pid *task_pgrp(struct task_struct *task) 1406 { 1407 return task->group_leader->pids[PIDTYPE_PGID].pid; 1408 } 1409 1410 static inline struct pid *task_session(struct task_struct *task) 1411 { 1412 return task->group_leader->pids[PIDTYPE_SID].pid; 1413 } 1414 1415 struct pid_namespace; 1416 1417 /* 1418 * the helpers to get the task's different pids as they are seen 1419 * from various namespaces 1420 * 1421 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1422 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1423 * current. 1424 * task_xid_nr_ns() : id seen from the ns specified; 1425 * 1426 * set_task_vxid() : assigns a virtual id to a task; 1427 * 1428 * see also pid_nr() etc in include/linux/pid.h 1429 */ 1430 1431 static inline pid_t task_pid_nr(struct task_struct *tsk) 1432 { 1433 return tsk->pid; 1434 } 1435 1436 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1437 1438 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1439 { 1440 return pid_vnr(task_pid(tsk)); 1441 } 1442 1443 1444 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1445 { 1446 return tsk->tgid; 1447 } 1448 1449 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1450 1451 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1452 { 1453 return pid_vnr(task_tgid(tsk)); 1454 } 1455 1456 1457 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1458 { 1459 return tsk->signal->__pgrp; 1460 } 1461 1462 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1463 1464 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1465 { 1466 return pid_vnr(task_pgrp(tsk)); 1467 } 1468 1469 1470 static inline pid_t task_session_nr(struct task_struct *tsk) 1471 { 1472 return tsk->signal->__session; 1473 } 1474 1475 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1476 1477 static inline pid_t task_session_vnr(struct task_struct *tsk) 1478 { 1479 return pid_vnr(task_session(tsk)); 1480 } 1481 1482 1483 /** 1484 * pid_alive - check that a task structure is not stale 1485 * @p: Task structure to be checked. 1486 * 1487 * Test if a process is not yet dead (at most zombie state) 1488 * If pid_alive fails, then pointers within the task structure 1489 * can be stale and must not be dereferenced. 1490 */ 1491 static inline int pid_alive(struct task_struct *p) 1492 { 1493 return p->pids[PIDTYPE_PID].pid != NULL; 1494 } 1495 1496 /** 1497 * is_global_init - check if a task structure is init 1498 * @tsk: Task structure to be checked. 1499 * 1500 * Check if a task structure is the first user space task the kernel created. 1501 */ 1502 static inline int is_global_init(struct task_struct *tsk) 1503 { 1504 return tsk->pid == 1; 1505 } 1506 1507 /* 1508 * is_container_init: 1509 * check whether in the task is init in its own pid namespace. 1510 */ 1511 extern int is_container_init(struct task_struct *tsk); 1512 1513 extern struct pid *cad_pid; 1514 1515 extern void free_task(struct task_struct *tsk); 1516 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1517 1518 extern void __put_task_struct(struct task_struct *t); 1519 1520 static inline void put_task_struct(struct task_struct *t) 1521 { 1522 if (atomic_dec_and_test(&t->usage)) 1523 __put_task_struct(t); 1524 } 1525 1526 extern cputime_t task_utime(struct task_struct *p); 1527 extern cputime_t task_stime(struct task_struct *p); 1528 extern cputime_t task_gtime(struct task_struct *p); 1529 1530 /* 1531 * Per process flags 1532 */ 1533 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 1534 /* Not implemented yet, only for 486*/ 1535 #define PF_STARTING 0x00000002 /* being created */ 1536 #define PF_EXITING 0x00000004 /* getting shut down */ 1537 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1538 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1539 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1540 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1541 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1542 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1543 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1544 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 1545 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1546 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1547 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1548 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1549 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1550 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1551 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1552 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1553 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1554 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1555 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1556 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1557 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1558 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1559 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1560 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */ 1561 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ 1562 1563 /* 1564 * Only the _current_ task can read/write to tsk->flags, but other 1565 * tasks can access tsk->flags in readonly mode for example 1566 * with tsk_used_math (like during threaded core dumping). 1567 * There is however an exception to this rule during ptrace 1568 * or during fork: the ptracer task is allowed to write to the 1569 * child->flags of its traced child (same goes for fork, the parent 1570 * can write to the child->flags), because we're guaranteed the 1571 * child is not running and in turn not changing child->flags 1572 * at the same time the parent does it. 1573 */ 1574 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1575 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1576 #define clear_used_math() clear_stopped_child_used_math(current) 1577 #define set_used_math() set_stopped_child_used_math(current) 1578 #define conditional_stopped_child_used_math(condition, child) \ 1579 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1580 #define conditional_used_math(condition) \ 1581 conditional_stopped_child_used_math(condition, current) 1582 #define copy_to_stopped_child_used_math(child) \ 1583 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1584 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1585 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1586 #define used_math() tsk_used_math(current) 1587 1588 #ifdef CONFIG_SMP 1589 extern int set_cpus_allowed_ptr(struct task_struct *p, 1590 const cpumask_t *new_mask); 1591 #else 1592 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1593 const cpumask_t *new_mask) 1594 { 1595 if (!cpu_isset(0, *new_mask)) 1596 return -EINVAL; 1597 return 0; 1598 } 1599 #endif 1600 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1601 { 1602 return set_cpus_allowed_ptr(p, &new_mask); 1603 } 1604 1605 extern unsigned long long sched_clock(void); 1606 1607 extern void sched_clock_init(void); 1608 extern u64 sched_clock_cpu(int cpu); 1609 1610 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1611 static inline void sched_clock_tick(void) 1612 { 1613 } 1614 1615 static inline void sched_clock_idle_sleep_event(void) 1616 { 1617 } 1618 1619 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1620 { 1621 } 1622 #else 1623 extern void sched_clock_tick(void); 1624 extern void sched_clock_idle_sleep_event(void); 1625 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1626 #endif 1627 1628 /* 1629 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu 1630 * clock constructed from sched_clock(): 1631 */ 1632 extern unsigned long long cpu_clock(int cpu); 1633 1634 extern unsigned long long 1635 task_sched_runtime(struct task_struct *task); 1636 extern unsigned long long thread_group_sched_runtime(struct task_struct *task); 1637 1638 /* sched_exec is called by processes performing an exec */ 1639 #ifdef CONFIG_SMP 1640 extern void sched_exec(void); 1641 #else 1642 #define sched_exec() {} 1643 #endif 1644 1645 extern void sched_clock_idle_sleep_event(void); 1646 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1647 1648 #ifdef CONFIG_HOTPLUG_CPU 1649 extern void idle_task_exit(void); 1650 #else 1651 static inline void idle_task_exit(void) {} 1652 #endif 1653 1654 extern void sched_idle_next(void); 1655 1656 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1657 extern void wake_up_idle_cpu(int cpu); 1658 #else 1659 static inline void wake_up_idle_cpu(int cpu) { } 1660 #endif 1661 1662 #ifdef CONFIG_SCHED_DEBUG 1663 extern unsigned int sysctl_sched_latency; 1664 extern unsigned int sysctl_sched_min_granularity; 1665 extern unsigned int sysctl_sched_wakeup_granularity; 1666 extern unsigned int sysctl_sched_child_runs_first; 1667 extern unsigned int sysctl_sched_features; 1668 extern unsigned int sysctl_sched_migration_cost; 1669 extern unsigned int sysctl_sched_nr_migrate; 1670 extern unsigned int sysctl_sched_shares_ratelimit; 1671 extern unsigned int sysctl_sched_shares_thresh; 1672 1673 int sched_nr_latency_handler(struct ctl_table *table, int write, 1674 struct file *file, void __user *buffer, size_t *length, 1675 loff_t *ppos); 1676 #endif 1677 extern unsigned int sysctl_sched_rt_period; 1678 extern int sysctl_sched_rt_runtime; 1679 1680 int sched_rt_handler(struct ctl_table *table, int write, 1681 struct file *filp, void __user *buffer, size_t *lenp, 1682 loff_t *ppos); 1683 1684 extern unsigned int sysctl_sched_compat_yield; 1685 1686 #ifdef CONFIG_RT_MUTEXES 1687 extern int rt_mutex_getprio(struct task_struct *p); 1688 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1689 extern void rt_mutex_adjust_pi(struct task_struct *p); 1690 #else 1691 static inline int rt_mutex_getprio(struct task_struct *p) 1692 { 1693 return p->normal_prio; 1694 } 1695 # define rt_mutex_adjust_pi(p) do { } while (0) 1696 #endif 1697 1698 extern void set_user_nice(struct task_struct *p, long nice); 1699 extern int task_prio(const struct task_struct *p); 1700 extern int task_nice(const struct task_struct *p); 1701 extern int can_nice(const struct task_struct *p, const int nice); 1702 extern int task_curr(const struct task_struct *p); 1703 extern int idle_cpu(int cpu); 1704 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1705 extern int sched_setscheduler_nocheck(struct task_struct *, int, 1706 struct sched_param *); 1707 extern struct task_struct *idle_task(int cpu); 1708 extern struct task_struct *curr_task(int cpu); 1709 extern void set_curr_task(int cpu, struct task_struct *p); 1710 1711 void yield(void); 1712 1713 /* 1714 * The default (Linux) execution domain. 1715 */ 1716 extern struct exec_domain default_exec_domain; 1717 1718 union thread_union { 1719 struct thread_info thread_info; 1720 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1721 }; 1722 1723 #ifndef __HAVE_ARCH_KSTACK_END 1724 static inline int kstack_end(void *addr) 1725 { 1726 /* Reliable end of stack detection: 1727 * Some APM bios versions misalign the stack 1728 */ 1729 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1730 } 1731 #endif 1732 1733 extern union thread_union init_thread_union; 1734 extern struct task_struct init_task; 1735 1736 extern struct mm_struct init_mm; 1737 1738 extern struct pid_namespace init_pid_ns; 1739 1740 /* 1741 * find a task by one of its numerical ids 1742 * 1743 * find_task_by_pid_type_ns(): 1744 * it is the most generic call - it finds a task by all id, 1745 * type and namespace specified 1746 * find_task_by_pid_ns(): 1747 * finds a task by its pid in the specified namespace 1748 * find_task_by_vpid(): 1749 * finds a task by its virtual pid 1750 * 1751 * see also find_vpid() etc in include/linux/pid.h 1752 */ 1753 1754 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid, 1755 struct pid_namespace *ns); 1756 1757 extern struct task_struct *find_task_by_vpid(pid_t nr); 1758 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 1759 struct pid_namespace *ns); 1760 1761 extern void __set_special_pids(struct pid *pid); 1762 1763 /* per-UID process charging. */ 1764 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); 1765 static inline struct user_struct *get_uid(struct user_struct *u) 1766 { 1767 atomic_inc(&u->__count); 1768 return u; 1769 } 1770 extern void free_uid(struct user_struct *); 1771 extern void switch_uid(struct user_struct *); 1772 extern void release_uids(struct user_namespace *ns); 1773 1774 #include <asm/current.h> 1775 1776 extern void do_timer(unsigned long ticks); 1777 1778 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1779 extern int wake_up_process(struct task_struct *tsk); 1780 extern void wake_up_new_task(struct task_struct *tsk, 1781 unsigned long clone_flags); 1782 #ifdef CONFIG_SMP 1783 extern void kick_process(struct task_struct *tsk); 1784 #else 1785 static inline void kick_process(struct task_struct *tsk) { } 1786 #endif 1787 extern void sched_fork(struct task_struct *p, int clone_flags); 1788 extern void sched_dead(struct task_struct *p); 1789 1790 extern int in_group_p(gid_t); 1791 extern int in_egroup_p(gid_t); 1792 1793 extern void proc_caches_init(void); 1794 extern void flush_signals(struct task_struct *); 1795 extern void ignore_signals(struct task_struct *); 1796 extern void flush_signal_handlers(struct task_struct *, int force_default); 1797 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1798 1799 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1800 { 1801 unsigned long flags; 1802 int ret; 1803 1804 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1805 ret = dequeue_signal(tsk, mask, info); 1806 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1807 1808 return ret; 1809 } 1810 1811 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1812 sigset_t *mask); 1813 extern void unblock_all_signals(void); 1814 extern void release_task(struct task_struct * p); 1815 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1816 extern int force_sigsegv(int, struct task_struct *); 1817 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1818 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 1819 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 1820 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); 1821 extern int kill_pgrp(struct pid *pid, int sig, int priv); 1822 extern int kill_pid(struct pid *pid, int sig, int priv); 1823 extern int kill_proc_info(int, struct siginfo *, pid_t); 1824 extern int do_notify_parent(struct task_struct *, int); 1825 extern void force_sig(int, struct task_struct *); 1826 extern void force_sig_specific(int, struct task_struct *); 1827 extern int send_sig(int, struct task_struct *, int); 1828 extern void zap_other_threads(struct task_struct *p); 1829 extern struct sigqueue *sigqueue_alloc(void); 1830 extern void sigqueue_free(struct sigqueue *); 1831 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 1832 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1833 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1834 1835 static inline int kill_cad_pid(int sig, int priv) 1836 { 1837 return kill_pid(cad_pid, sig, priv); 1838 } 1839 1840 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 1841 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 1842 #define SEND_SIG_PRIV ((struct siginfo *) 1) 1843 #define SEND_SIG_FORCED ((struct siginfo *) 2) 1844 1845 static inline int is_si_special(const struct siginfo *info) 1846 { 1847 return info <= SEND_SIG_FORCED; 1848 } 1849 1850 /* True if we are on the alternate signal stack. */ 1851 1852 static inline int on_sig_stack(unsigned long sp) 1853 { 1854 return (sp - current->sas_ss_sp < current->sas_ss_size); 1855 } 1856 1857 static inline int sas_ss_flags(unsigned long sp) 1858 { 1859 return (current->sas_ss_size == 0 ? SS_DISABLE 1860 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1861 } 1862 1863 /* 1864 * Routines for handling mm_structs 1865 */ 1866 extern struct mm_struct * mm_alloc(void); 1867 1868 /* mmdrop drops the mm and the page tables */ 1869 extern void __mmdrop(struct mm_struct *); 1870 static inline void mmdrop(struct mm_struct * mm) 1871 { 1872 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 1873 __mmdrop(mm); 1874 } 1875 1876 /* mmput gets rid of the mappings and all user-space */ 1877 extern void mmput(struct mm_struct *); 1878 /* Grab a reference to a task's mm, if it is not already going away */ 1879 extern struct mm_struct *get_task_mm(struct task_struct *task); 1880 /* Remove the current tasks stale references to the old mm_struct */ 1881 extern void mm_release(struct task_struct *, struct mm_struct *); 1882 /* Allocate a new mm structure and copy contents from tsk->mm */ 1883 extern struct mm_struct *dup_mm(struct task_struct *tsk); 1884 1885 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1886 extern void flush_thread(void); 1887 extern void exit_thread(void); 1888 1889 extern void exit_files(struct task_struct *); 1890 extern void __cleanup_signal(struct signal_struct *); 1891 extern void __cleanup_sighand(struct sighand_struct *); 1892 1893 extern void exit_itimers(struct signal_struct *); 1894 extern void flush_itimer_signals(void); 1895 1896 extern NORET_TYPE void do_group_exit(int); 1897 1898 extern void daemonize(const char *, ...); 1899 extern int allow_signal(int); 1900 extern int disallow_signal(int); 1901 1902 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1903 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1904 struct task_struct *fork_idle(int); 1905 1906 extern void set_task_comm(struct task_struct *tsk, char *from); 1907 extern char *get_task_comm(char *to, struct task_struct *tsk); 1908 1909 #ifdef CONFIG_SMP 1910 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1911 #else 1912 static inline unsigned long wait_task_inactive(struct task_struct *p, 1913 long match_state) 1914 { 1915 return 1; 1916 } 1917 #endif 1918 1919 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1920 1921 #define for_each_process(p) \ 1922 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1923 1924 /* 1925 * Careful: do_each_thread/while_each_thread is a double loop so 1926 * 'break' will not work as expected - use goto instead. 1927 */ 1928 #define do_each_thread(g, t) \ 1929 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1930 1931 #define while_each_thread(g, t) \ 1932 while ((t = next_thread(t)) != g) 1933 1934 /* de_thread depends on thread_group_leader not being a pid based check */ 1935 #define thread_group_leader(p) (p == p->group_leader) 1936 1937 /* Do to the insanities of de_thread it is possible for a process 1938 * to have the pid of the thread group leader without actually being 1939 * the thread group leader. For iteration through the pids in proc 1940 * all we care about is that we have a task with the appropriate 1941 * pid, we don't actually care if we have the right task. 1942 */ 1943 static inline int has_group_leader_pid(struct task_struct *p) 1944 { 1945 return p->pid == p->tgid; 1946 } 1947 1948 static inline 1949 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 1950 { 1951 return p1->tgid == p2->tgid; 1952 } 1953 1954 static inline struct task_struct *next_thread(const struct task_struct *p) 1955 { 1956 return list_entry(rcu_dereference(p->thread_group.next), 1957 struct task_struct, thread_group); 1958 } 1959 1960 static inline int thread_group_empty(struct task_struct *p) 1961 { 1962 return list_empty(&p->thread_group); 1963 } 1964 1965 #define delay_group_leader(p) \ 1966 (thread_group_leader(p) && !thread_group_empty(p)) 1967 1968 /* 1969 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1970 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1971 * pins the final release of task.io_context. Also protects ->cpuset and 1972 * ->cgroup.subsys[]. 1973 * 1974 * Nests both inside and outside of read_lock(&tasklist_lock). 1975 * It must not be nested with write_lock_irq(&tasklist_lock), 1976 * neither inside nor outside. 1977 */ 1978 static inline void task_lock(struct task_struct *p) 1979 { 1980 spin_lock(&p->alloc_lock); 1981 } 1982 1983 static inline void task_unlock(struct task_struct *p) 1984 { 1985 spin_unlock(&p->alloc_lock); 1986 } 1987 1988 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1989 unsigned long *flags); 1990 1991 static inline void unlock_task_sighand(struct task_struct *tsk, 1992 unsigned long *flags) 1993 { 1994 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1995 } 1996 1997 #ifndef __HAVE_THREAD_FUNCTIONS 1998 1999 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2000 #define task_stack_page(task) ((task)->stack) 2001 2002 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2003 { 2004 *task_thread_info(p) = *task_thread_info(org); 2005 task_thread_info(p)->task = p; 2006 } 2007 2008 static inline unsigned long *end_of_stack(struct task_struct *p) 2009 { 2010 return (unsigned long *)(task_thread_info(p) + 1); 2011 } 2012 2013 #endif 2014 2015 static inline int object_is_on_stack(void *obj) 2016 { 2017 void *stack = task_stack_page(current); 2018 2019 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2020 } 2021 2022 extern void thread_info_cache_init(void); 2023 2024 /* set thread flags in other task's structures 2025 * - see asm/thread_info.h for TIF_xxxx flags available 2026 */ 2027 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2028 { 2029 set_ti_thread_flag(task_thread_info(tsk), flag); 2030 } 2031 2032 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2033 { 2034 clear_ti_thread_flag(task_thread_info(tsk), flag); 2035 } 2036 2037 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2038 { 2039 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2040 } 2041 2042 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2043 { 2044 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2045 } 2046 2047 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2048 { 2049 return test_ti_thread_flag(task_thread_info(tsk), flag); 2050 } 2051 2052 static inline void set_tsk_need_resched(struct task_struct *tsk) 2053 { 2054 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2055 } 2056 2057 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2058 { 2059 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2060 } 2061 2062 static inline int test_tsk_need_resched(struct task_struct *tsk) 2063 { 2064 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2065 } 2066 2067 static inline int signal_pending(struct task_struct *p) 2068 { 2069 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2070 } 2071 2072 extern int __fatal_signal_pending(struct task_struct *p); 2073 2074 static inline int fatal_signal_pending(struct task_struct *p) 2075 { 2076 return signal_pending(p) && __fatal_signal_pending(p); 2077 } 2078 2079 static inline int signal_pending_state(long state, struct task_struct *p) 2080 { 2081 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2082 return 0; 2083 if (!signal_pending(p)) 2084 return 0; 2085 2086 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2087 } 2088 2089 static inline int need_resched(void) 2090 { 2091 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2092 } 2093 2094 /* 2095 * cond_resched() and cond_resched_lock(): latency reduction via 2096 * explicit rescheduling in places that are safe. The return 2097 * value indicates whether a reschedule was done in fact. 2098 * cond_resched_lock() will drop the spinlock before scheduling, 2099 * cond_resched_softirq() will enable bhs before scheduling. 2100 */ 2101 extern int _cond_resched(void); 2102 #ifdef CONFIG_PREEMPT_BKL 2103 static inline int cond_resched(void) 2104 { 2105 return 0; 2106 } 2107 #else 2108 static inline int cond_resched(void) 2109 { 2110 return _cond_resched(); 2111 } 2112 #endif 2113 extern int cond_resched_lock(spinlock_t * lock); 2114 extern int cond_resched_softirq(void); 2115 static inline int cond_resched_bkl(void) 2116 { 2117 return _cond_resched(); 2118 } 2119 2120 /* 2121 * Does a critical section need to be broken due to another 2122 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2123 * but a general need for low latency) 2124 */ 2125 static inline int spin_needbreak(spinlock_t *lock) 2126 { 2127 #ifdef CONFIG_PREEMPT 2128 return spin_is_contended(lock); 2129 #else 2130 return 0; 2131 #endif 2132 } 2133 2134 /* 2135 * Thread group CPU time accounting. 2136 */ 2137 2138 extern int thread_group_cputime_alloc(struct task_struct *); 2139 extern void thread_group_cputime(struct task_struct *, struct task_cputime *); 2140 2141 static inline void thread_group_cputime_init(struct signal_struct *sig) 2142 { 2143 sig->cputime.totals = NULL; 2144 } 2145 2146 static inline int thread_group_cputime_clone_thread(struct task_struct *curr) 2147 { 2148 if (curr->signal->cputime.totals) 2149 return 0; 2150 return thread_group_cputime_alloc(curr); 2151 } 2152 2153 static inline void thread_group_cputime_free(struct signal_struct *sig) 2154 { 2155 free_percpu(sig->cputime.totals); 2156 } 2157 2158 /* 2159 * Reevaluate whether the task has signals pending delivery. 2160 * Wake the task if so. 2161 * This is required every time the blocked sigset_t changes. 2162 * callers must hold sighand->siglock. 2163 */ 2164 extern void recalc_sigpending_and_wake(struct task_struct *t); 2165 extern void recalc_sigpending(void); 2166 2167 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2168 2169 /* 2170 * Wrappers for p->thread_info->cpu access. No-op on UP. 2171 */ 2172 #ifdef CONFIG_SMP 2173 2174 static inline unsigned int task_cpu(const struct task_struct *p) 2175 { 2176 return task_thread_info(p)->cpu; 2177 } 2178 2179 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2180 2181 #else 2182 2183 static inline unsigned int task_cpu(const struct task_struct *p) 2184 { 2185 return 0; 2186 } 2187 2188 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2189 { 2190 } 2191 2192 #endif /* CONFIG_SMP */ 2193 2194 extern void arch_pick_mmap_layout(struct mm_struct *mm); 2195 2196 #ifdef CONFIG_TRACING 2197 extern void 2198 __trace_special(void *__tr, void *__data, 2199 unsigned long arg1, unsigned long arg2, unsigned long arg3); 2200 #else 2201 static inline void 2202 __trace_special(void *__tr, void *__data, 2203 unsigned long arg1, unsigned long arg2, unsigned long arg3) 2204 { 2205 } 2206 #endif 2207 2208 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask); 2209 extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 2210 2211 extern int sched_mc_power_savings, sched_smt_power_savings; 2212 2213 extern void normalize_rt_tasks(void); 2214 2215 #ifdef CONFIG_GROUP_SCHED 2216 2217 extern struct task_group init_task_group; 2218 #ifdef CONFIG_USER_SCHED 2219 extern struct task_group root_task_group; 2220 #endif 2221 2222 extern struct task_group *sched_create_group(struct task_group *parent); 2223 extern void sched_destroy_group(struct task_group *tg); 2224 extern void sched_move_task(struct task_struct *tsk); 2225 #ifdef CONFIG_FAIR_GROUP_SCHED 2226 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2227 extern unsigned long sched_group_shares(struct task_group *tg); 2228 #endif 2229 #ifdef CONFIG_RT_GROUP_SCHED 2230 extern int sched_group_set_rt_runtime(struct task_group *tg, 2231 long rt_runtime_us); 2232 extern long sched_group_rt_runtime(struct task_group *tg); 2233 extern int sched_group_set_rt_period(struct task_group *tg, 2234 long rt_period_us); 2235 extern long sched_group_rt_period(struct task_group *tg); 2236 #endif 2237 #endif 2238 2239 #ifdef CONFIG_TASK_XACCT 2240 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2241 { 2242 tsk->ioac.rchar += amt; 2243 } 2244 2245 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2246 { 2247 tsk->ioac.wchar += amt; 2248 } 2249 2250 static inline void inc_syscr(struct task_struct *tsk) 2251 { 2252 tsk->ioac.syscr++; 2253 } 2254 2255 static inline void inc_syscw(struct task_struct *tsk) 2256 { 2257 tsk->ioac.syscw++; 2258 } 2259 #else 2260 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2261 { 2262 } 2263 2264 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2265 { 2266 } 2267 2268 static inline void inc_syscr(struct task_struct *tsk) 2269 { 2270 } 2271 2272 static inline void inc_syscw(struct task_struct *tsk) 2273 { 2274 } 2275 #endif 2276 2277 #ifndef TASK_SIZE_OF 2278 #define TASK_SIZE_OF(tsk) TASK_SIZE 2279 #endif 2280 2281 #ifdef CONFIG_MM_OWNER 2282 extern void mm_update_next_owner(struct mm_struct *mm); 2283 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2284 #else 2285 static inline void mm_update_next_owner(struct mm_struct *mm) 2286 { 2287 } 2288 2289 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2290 { 2291 } 2292 #endif /* CONFIG_MM_OWNER */ 2293 2294 #define TASK_STATE_TO_CHAR_STR "RSDTtZX" 2295 2296 #endif /* __KERNEL__ */ 2297 2298 #endif 2299