1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/kcov.h> 18 #include <linux/mutex.h> 19 #include <linux/plist.h> 20 #include <linux/hrtimer.h> 21 #include <linux/seccomp.h> 22 #include <linux/nodemask.h> 23 #include <linux/rcupdate.h> 24 #include <linux/refcount.h> 25 #include <linux/resource.h> 26 #include <linux/latencytop.h> 27 #include <linux/sched/prio.h> 28 #include <linux/sched/types.h> 29 #include <linux/signal_types.h> 30 #include <linux/mm_types_task.h> 31 #include <linux/task_io_accounting.h> 32 #include <linux/posix-timers.h> 33 #include <linux/rseq.h> 34 35 /* task_struct member predeclarations (sorted alphabetically): */ 36 struct audit_context; 37 struct backing_dev_info; 38 struct bio_list; 39 struct blk_plug; 40 struct capture_control; 41 struct cfs_rq; 42 struct fs_struct; 43 struct futex_pi_state; 44 struct io_context; 45 struct mempolicy; 46 struct nameidata; 47 struct nsproxy; 48 struct perf_event_context; 49 struct pid_namespace; 50 struct pipe_inode_info; 51 struct rcu_node; 52 struct reclaim_state; 53 struct robust_list_head; 54 struct root_domain; 55 struct rq; 56 struct sched_attr; 57 struct sched_param; 58 struct seq_file; 59 struct sighand_struct; 60 struct signal_struct; 61 struct task_delay_info; 62 struct task_group; 63 64 /* 65 * Task state bitmask. NOTE! These bits are also 66 * encoded in fs/proc/array.c: get_task_state(). 67 * 68 * We have two separate sets of flags: task->state 69 * is about runnability, while task->exit_state are 70 * about the task exiting. Confusing, but this way 71 * modifying one set can't modify the other one by 72 * mistake. 73 */ 74 75 /* Used in tsk->state: */ 76 #define TASK_RUNNING 0x0000 77 #define TASK_INTERRUPTIBLE 0x0001 78 #define TASK_UNINTERRUPTIBLE 0x0002 79 #define __TASK_STOPPED 0x0004 80 #define __TASK_TRACED 0x0008 81 /* Used in tsk->exit_state: */ 82 #define EXIT_DEAD 0x0010 83 #define EXIT_ZOMBIE 0x0020 84 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 85 /* Used in tsk->state again: */ 86 #define TASK_PARKED 0x0040 87 #define TASK_DEAD 0x0080 88 #define TASK_WAKEKILL 0x0100 89 #define TASK_WAKING 0x0200 90 #define TASK_NOLOAD 0x0400 91 #define TASK_NEW 0x0800 92 #define TASK_STATE_MAX 0x1000 93 94 /* Convenience macros for the sake of set_current_state: */ 95 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 96 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 97 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 98 99 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 100 101 /* Convenience macros for the sake of wake_up(): */ 102 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 103 104 /* get_task_state(): */ 105 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 108 TASK_PARKED) 109 110 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 111 112 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 113 114 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 115 116 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 117 (task->flags & PF_FROZEN) == 0 && \ 118 (task->state & TASK_NOLOAD) == 0) 119 120 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 121 122 /* 123 * Special states are those that do not use the normal wait-loop pattern. See 124 * the comment with set_special_state(). 125 */ 126 #define is_special_task_state(state) \ 127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 128 129 #define __set_current_state(state_value) \ 130 do { \ 131 WARN_ON_ONCE(is_special_task_state(state_value));\ 132 current->task_state_change = _THIS_IP_; \ 133 current->state = (state_value); \ 134 } while (0) 135 136 #define set_current_state(state_value) \ 137 do { \ 138 WARN_ON_ONCE(is_special_task_state(state_value));\ 139 current->task_state_change = _THIS_IP_; \ 140 smp_store_mb(current->state, (state_value)); \ 141 } while (0) 142 143 #define set_special_state(state_value) \ 144 do { \ 145 unsigned long flags; /* may shadow */ \ 146 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 147 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 148 current->task_state_change = _THIS_IP_; \ 149 current->state = (state_value); \ 150 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 151 } while (0) 152 #else 153 /* 154 * set_current_state() includes a barrier so that the write of current->state 155 * is correctly serialised wrt the caller's subsequent test of whether to 156 * actually sleep: 157 * 158 * for (;;) { 159 * set_current_state(TASK_UNINTERRUPTIBLE); 160 * if (!need_sleep) 161 * break; 162 * 163 * schedule(); 164 * } 165 * __set_current_state(TASK_RUNNING); 166 * 167 * If the caller does not need such serialisation (because, for instance, the 168 * condition test and condition change and wakeup are under the same lock) then 169 * use __set_current_state(). 170 * 171 * The above is typically ordered against the wakeup, which does: 172 * 173 * need_sleep = false; 174 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 175 * 176 * where wake_up_state() executes a full memory barrier before accessing the 177 * task state. 178 * 179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 182 * 183 * However, with slightly different timing the wakeup TASK_RUNNING store can 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 185 * a problem either because that will result in one extra go around the loop 186 * and our @cond test will save the day. 187 * 188 * Also see the comments of try_to_wake_up(). 189 */ 190 #define __set_current_state(state_value) \ 191 current->state = (state_value) 192 193 #define set_current_state(state_value) \ 194 smp_store_mb(current->state, (state_value)) 195 196 /* 197 * set_special_state() should be used for those states when the blocking task 198 * can not use the regular condition based wait-loop. In that case we must 199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 200 * will not collide with our state change. 201 */ 202 #define set_special_state(state_value) \ 203 do { \ 204 unsigned long flags; /* may shadow */ \ 205 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 206 current->state = (state_value); \ 207 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 208 } while (0) 209 210 #endif 211 212 /* Task command name length: */ 213 #define TASK_COMM_LEN 16 214 215 extern void scheduler_tick(void); 216 217 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 218 219 extern long schedule_timeout(long timeout); 220 extern long schedule_timeout_interruptible(long timeout); 221 extern long schedule_timeout_killable(long timeout); 222 extern long schedule_timeout_uninterruptible(long timeout); 223 extern long schedule_timeout_idle(long timeout); 224 asmlinkage void schedule(void); 225 extern void schedule_preempt_disabled(void); 226 asmlinkage void preempt_schedule_irq(void); 227 228 extern int __must_check io_schedule_prepare(void); 229 extern void io_schedule_finish(int token); 230 extern long io_schedule_timeout(long timeout); 231 extern void io_schedule(void); 232 233 /** 234 * struct prev_cputime - snapshot of system and user cputime 235 * @utime: time spent in user mode 236 * @stime: time spent in system mode 237 * @lock: protects the above two fields 238 * 239 * Stores previous user/system time values such that we can guarantee 240 * monotonicity. 241 */ 242 struct prev_cputime { 243 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 244 u64 utime; 245 u64 stime; 246 raw_spinlock_t lock; 247 #endif 248 }; 249 250 enum vtime_state { 251 /* Task is sleeping or running in a CPU with VTIME inactive: */ 252 VTIME_INACTIVE = 0, 253 /* Task is idle */ 254 VTIME_IDLE, 255 /* Task runs in kernelspace in a CPU with VTIME active: */ 256 VTIME_SYS, 257 /* Task runs in userspace in a CPU with VTIME active: */ 258 VTIME_USER, 259 /* Task runs as guests in a CPU with VTIME active: */ 260 VTIME_GUEST, 261 }; 262 263 struct vtime { 264 seqcount_t seqcount; 265 unsigned long long starttime; 266 enum vtime_state state; 267 unsigned int cpu; 268 u64 utime; 269 u64 stime; 270 u64 gtime; 271 }; 272 273 /* 274 * Utilization clamp constraints. 275 * @UCLAMP_MIN: Minimum utilization 276 * @UCLAMP_MAX: Maximum utilization 277 * @UCLAMP_CNT: Utilization clamp constraints count 278 */ 279 enum uclamp_id { 280 UCLAMP_MIN = 0, 281 UCLAMP_MAX, 282 UCLAMP_CNT 283 }; 284 285 #ifdef CONFIG_SMP 286 extern struct root_domain def_root_domain; 287 extern struct mutex sched_domains_mutex; 288 #endif 289 290 struct sched_info { 291 #ifdef CONFIG_SCHED_INFO 292 /* Cumulative counters: */ 293 294 /* # of times we have run on this CPU: */ 295 unsigned long pcount; 296 297 /* Time spent waiting on a runqueue: */ 298 unsigned long long run_delay; 299 300 /* Timestamps: */ 301 302 /* When did we last run on a CPU? */ 303 unsigned long long last_arrival; 304 305 /* When were we last queued to run? */ 306 unsigned long long last_queued; 307 308 #endif /* CONFIG_SCHED_INFO */ 309 }; 310 311 /* 312 * Integer metrics need fixed point arithmetic, e.g., sched/fair 313 * has a few: load, load_avg, util_avg, freq, and capacity. 314 * 315 * We define a basic fixed point arithmetic range, and then formalize 316 * all these metrics based on that basic range. 317 */ 318 # define SCHED_FIXEDPOINT_SHIFT 10 319 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 320 321 /* Increase resolution of cpu_capacity calculations */ 322 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 323 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 324 325 struct load_weight { 326 unsigned long weight; 327 u32 inv_weight; 328 }; 329 330 /** 331 * struct util_est - Estimation utilization of FAIR tasks 332 * @enqueued: instantaneous estimated utilization of a task/cpu 333 * @ewma: the Exponential Weighted Moving Average (EWMA) 334 * utilization of a task 335 * 336 * Support data structure to track an Exponential Weighted Moving Average 337 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 338 * average each time a task completes an activation. Sample's weight is chosen 339 * so that the EWMA will be relatively insensitive to transient changes to the 340 * task's workload. 341 * 342 * The enqueued attribute has a slightly different meaning for tasks and cpus: 343 * - task: the task's util_avg at last task dequeue time 344 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 345 * Thus, the util_est.enqueued of a task represents the contribution on the 346 * estimated utilization of the CPU where that task is currently enqueued. 347 * 348 * Only for tasks we track a moving average of the past instantaneous 349 * estimated utilization. This allows to absorb sporadic drops in utilization 350 * of an otherwise almost periodic task. 351 */ 352 struct util_est { 353 unsigned int enqueued; 354 unsigned int ewma; 355 #define UTIL_EST_WEIGHT_SHIFT 2 356 } __attribute__((__aligned__(sizeof(u64)))); 357 358 /* 359 * The load_avg/util_avg accumulates an infinite geometric series 360 * (see __update_load_avg() in kernel/sched/fair.c). 361 * 362 * [load_avg definition] 363 * 364 * load_avg = runnable% * scale_load_down(load) 365 * 366 * where runnable% is the time ratio that a sched_entity is runnable. 367 * For cfs_rq, it is the aggregated load_avg of all runnable and 368 * blocked sched_entities. 369 * 370 * [util_avg definition] 371 * 372 * util_avg = running% * SCHED_CAPACITY_SCALE 373 * 374 * where running% is the time ratio that a sched_entity is running on 375 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 376 * and blocked sched_entities. 377 * 378 * load_avg and util_avg don't direcly factor frequency scaling and CPU 379 * capacity scaling. The scaling is done through the rq_clock_pelt that 380 * is used for computing those signals (see update_rq_clock_pelt()) 381 * 382 * N.B., the above ratios (runnable% and running%) themselves are in the 383 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 384 * to as large a range as necessary. This is for example reflected by 385 * util_avg's SCHED_CAPACITY_SCALE. 386 * 387 * [Overflow issue] 388 * 389 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 390 * with the highest load (=88761), always runnable on a single cfs_rq, 391 * and should not overflow as the number already hits PID_MAX_LIMIT. 392 * 393 * For all other cases (including 32-bit kernels), struct load_weight's 394 * weight will overflow first before we do, because: 395 * 396 * Max(load_avg) <= Max(load.weight) 397 * 398 * Then it is the load_weight's responsibility to consider overflow 399 * issues. 400 */ 401 struct sched_avg { 402 u64 last_update_time; 403 u64 load_sum; 404 u64 runnable_load_sum; 405 u32 util_sum; 406 u32 period_contrib; 407 unsigned long load_avg; 408 unsigned long runnable_load_avg; 409 unsigned long util_avg; 410 struct util_est util_est; 411 } ____cacheline_aligned; 412 413 struct sched_statistics { 414 #ifdef CONFIG_SCHEDSTATS 415 u64 wait_start; 416 u64 wait_max; 417 u64 wait_count; 418 u64 wait_sum; 419 u64 iowait_count; 420 u64 iowait_sum; 421 422 u64 sleep_start; 423 u64 sleep_max; 424 s64 sum_sleep_runtime; 425 426 u64 block_start; 427 u64 block_max; 428 u64 exec_max; 429 u64 slice_max; 430 431 u64 nr_migrations_cold; 432 u64 nr_failed_migrations_affine; 433 u64 nr_failed_migrations_running; 434 u64 nr_failed_migrations_hot; 435 u64 nr_forced_migrations; 436 437 u64 nr_wakeups; 438 u64 nr_wakeups_sync; 439 u64 nr_wakeups_migrate; 440 u64 nr_wakeups_local; 441 u64 nr_wakeups_remote; 442 u64 nr_wakeups_affine; 443 u64 nr_wakeups_affine_attempts; 444 u64 nr_wakeups_passive; 445 u64 nr_wakeups_idle; 446 #endif 447 }; 448 449 struct sched_entity { 450 /* For load-balancing: */ 451 struct load_weight load; 452 unsigned long runnable_weight; 453 struct rb_node run_node; 454 struct list_head group_node; 455 unsigned int on_rq; 456 457 u64 exec_start; 458 u64 sum_exec_runtime; 459 u64 vruntime; 460 u64 prev_sum_exec_runtime; 461 462 u64 nr_migrations; 463 464 struct sched_statistics statistics; 465 466 #ifdef CONFIG_FAIR_GROUP_SCHED 467 int depth; 468 struct sched_entity *parent; 469 /* rq on which this entity is (to be) queued: */ 470 struct cfs_rq *cfs_rq; 471 /* rq "owned" by this entity/group: */ 472 struct cfs_rq *my_q; 473 #endif 474 475 #ifdef CONFIG_SMP 476 /* 477 * Per entity load average tracking. 478 * 479 * Put into separate cache line so it does not 480 * collide with read-mostly values above. 481 */ 482 struct sched_avg avg; 483 #endif 484 }; 485 486 struct sched_rt_entity { 487 struct list_head run_list; 488 unsigned long timeout; 489 unsigned long watchdog_stamp; 490 unsigned int time_slice; 491 unsigned short on_rq; 492 unsigned short on_list; 493 494 struct sched_rt_entity *back; 495 #ifdef CONFIG_RT_GROUP_SCHED 496 struct sched_rt_entity *parent; 497 /* rq on which this entity is (to be) queued: */ 498 struct rt_rq *rt_rq; 499 /* rq "owned" by this entity/group: */ 500 struct rt_rq *my_q; 501 #endif 502 } __randomize_layout; 503 504 struct sched_dl_entity { 505 struct rb_node rb_node; 506 507 /* 508 * Original scheduling parameters. Copied here from sched_attr 509 * during sched_setattr(), they will remain the same until 510 * the next sched_setattr(). 511 */ 512 u64 dl_runtime; /* Maximum runtime for each instance */ 513 u64 dl_deadline; /* Relative deadline of each instance */ 514 u64 dl_period; /* Separation of two instances (period) */ 515 u64 dl_bw; /* dl_runtime / dl_period */ 516 u64 dl_density; /* dl_runtime / dl_deadline */ 517 518 /* 519 * Actual scheduling parameters. Initialized with the values above, 520 * they are continuously updated during task execution. Note that 521 * the remaining runtime could be < 0 in case we are in overrun. 522 */ 523 s64 runtime; /* Remaining runtime for this instance */ 524 u64 deadline; /* Absolute deadline for this instance */ 525 unsigned int flags; /* Specifying the scheduler behaviour */ 526 527 /* 528 * Some bool flags: 529 * 530 * @dl_throttled tells if we exhausted the runtime. If so, the 531 * task has to wait for a replenishment to be performed at the 532 * next firing of dl_timer. 533 * 534 * @dl_boosted tells if we are boosted due to DI. If so we are 535 * outside bandwidth enforcement mechanism (but only until we 536 * exit the critical section); 537 * 538 * @dl_yielded tells if task gave up the CPU before consuming 539 * all its available runtime during the last job. 540 * 541 * @dl_non_contending tells if the task is inactive while still 542 * contributing to the active utilization. In other words, it 543 * indicates if the inactive timer has been armed and its handler 544 * has not been executed yet. This flag is useful to avoid race 545 * conditions between the inactive timer handler and the wakeup 546 * code. 547 * 548 * @dl_overrun tells if the task asked to be informed about runtime 549 * overruns. 550 */ 551 unsigned int dl_throttled : 1; 552 unsigned int dl_boosted : 1; 553 unsigned int dl_yielded : 1; 554 unsigned int dl_non_contending : 1; 555 unsigned int dl_overrun : 1; 556 557 /* 558 * Bandwidth enforcement timer. Each -deadline task has its 559 * own bandwidth to be enforced, thus we need one timer per task. 560 */ 561 struct hrtimer dl_timer; 562 563 /* 564 * Inactive timer, responsible for decreasing the active utilization 565 * at the "0-lag time". When a -deadline task blocks, it contributes 566 * to GRUB's active utilization until the "0-lag time", hence a 567 * timer is needed to decrease the active utilization at the correct 568 * time. 569 */ 570 struct hrtimer inactive_timer; 571 }; 572 573 #ifdef CONFIG_UCLAMP_TASK 574 /* Number of utilization clamp buckets (shorter alias) */ 575 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 576 577 /* 578 * Utilization clamp for a scheduling entity 579 * @value: clamp value "assigned" to a se 580 * @bucket_id: bucket index corresponding to the "assigned" value 581 * @active: the se is currently refcounted in a rq's bucket 582 * @user_defined: the requested clamp value comes from user-space 583 * 584 * The bucket_id is the index of the clamp bucket matching the clamp value 585 * which is pre-computed and stored to avoid expensive integer divisions from 586 * the fast path. 587 * 588 * The active bit is set whenever a task has got an "effective" value assigned, 589 * which can be different from the clamp value "requested" from user-space. 590 * This allows to know a task is refcounted in the rq's bucket corresponding 591 * to the "effective" bucket_id. 592 * 593 * The user_defined bit is set whenever a task has got a task-specific clamp 594 * value requested from userspace, i.e. the system defaults apply to this task 595 * just as a restriction. This allows to relax default clamps when a less 596 * restrictive task-specific value has been requested, thus allowing to 597 * implement a "nice" semantic. For example, a task running with a 20% 598 * default boost can still drop its own boosting to 0%. 599 */ 600 struct uclamp_se { 601 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 602 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 603 unsigned int active : 1; 604 unsigned int user_defined : 1; 605 }; 606 #endif /* CONFIG_UCLAMP_TASK */ 607 608 union rcu_special { 609 struct { 610 u8 blocked; 611 u8 need_qs; 612 u8 exp_hint; /* Hint for performance. */ 613 u8 deferred_qs; 614 } b; /* Bits. */ 615 u32 s; /* Set of bits. */ 616 }; 617 618 enum perf_event_task_context { 619 perf_invalid_context = -1, 620 perf_hw_context = 0, 621 perf_sw_context, 622 perf_nr_task_contexts, 623 }; 624 625 struct wake_q_node { 626 struct wake_q_node *next; 627 }; 628 629 struct task_struct { 630 #ifdef CONFIG_THREAD_INFO_IN_TASK 631 /* 632 * For reasons of header soup (see current_thread_info()), this 633 * must be the first element of task_struct. 634 */ 635 struct thread_info thread_info; 636 #endif 637 /* -1 unrunnable, 0 runnable, >0 stopped: */ 638 volatile long state; 639 640 /* 641 * This begins the randomizable portion of task_struct. Only 642 * scheduling-critical items should be added above here. 643 */ 644 randomized_struct_fields_start 645 646 void *stack; 647 refcount_t usage; 648 /* Per task flags (PF_*), defined further below: */ 649 unsigned int flags; 650 unsigned int ptrace; 651 652 #ifdef CONFIG_SMP 653 struct llist_node wake_entry; 654 int on_cpu; 655 #ifdef CONFIG_THREAD_INFO_IN_TASK 656 /* Current CPU: */ 657 unsigned int cpu; 658 #endif 659 unsigned int wakee_flips; 660 unsigned long wakee_flip_decay_ts; 661 struct task_struct *last_wakee; 662 663 /* 664 * recent_used_cpu is initially set as the last CPU used by a task 665 * that wakes affine another task. Waker/wakee relationships can 666 * push tasks around a CPU where each wakeup moves to the next one. 667 * Tracking a recently used CPU allows a quick search for a recently 668 * used CPU that may be idle. 669 */ 670 int recent_used_cpu; 671 int wake_cpu; 672 #endif 673 int on_rq; 674 675 int prio; 676 int static_prio; 677 int normal_prio; 678 unsigned int rt_priority; 679 680 const struct sched_class *sched_class; 681 struct sched_entity se; 682 struct sched_rt_entity rt; 683 #ifdef CONFIG_CGROUP_SCHED 684 struct task_group *sched_task_group; 685 #endif 686 struct sched_dl_entity dl; 687 688 #ifdef CONFIG_UCLAMP_TASK 689 /* Clamp values requested for a scheduling entity */ 690 struct uclamp_se uclamp_req[UCLAMP_CNT]; 691 /* Effective clamp values used for a scheduling entity */ 692 struct uclamp_se uclamp[UCLAMP_CNT]; 693 #endif 694 695 #ifdef CONFIG_PREEMPT_NOTIFIERS 696 /* List of struct preempt_notifier: */ 697 struct hlist_head preempt_notifiers; 698 #endif 699 700 #ifdef CONFIG_BLK_DEV_IO_TRACE 701 unsigned int btrace_seq; 702 #endif 703 704 unsigned int policy; 705 int nr_cpus_allowed; 706 const cpumask_t *cpus_ptr; 707 cpumask_t cpus_mask; 708 709 #ifdef CONFIG_PREEMPT_RCU 710 int rcu_read_lock_nesting; 711 union rcu_special rcu_read_unlock_special; 712 struct list_head rcu_node_entry; 713 struct rcu_node *rcu_blocked_node; 714 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 715 716 #ifdef CONFIG_TASKS_RCU 717 unsigned long rcu_tasks_nvcsw; 718 u8 rcu_tasks_holdout; 719 u8 rcu_tasks_idx; 720 int rcu_tasks_idle_cpu; 721 struct list_head rcu_tasks_holdout_list; 722 #endif /* #ifdef CONFIG_TASKS_RCU */ 723 724 struct sched_info sched_info; 725 726 struct list_head tasks; 727 #ifdef CONFIG_SMP 728 struct plist_node pushable_tasks; 729 struct rb_node pushable_dl_tasks; 730 #endif 731 732 struct mm_struct *mm; 733 struct mm_struct *active_mm; 734 735 /* Per-thread vma caching: */ 736 struct vmacache vmacache; 737 738 #ifdef SPLIT_RSS_COUNTING 739 struct task_rss_stat rss_stat; 740 #endif 741 int exit_state; 742 int exit_code; 743 int exit_signal; 744 /* The signal sent when the parent dies: */ 745 int pdeath_signal; 746 /* JOBCTL_*, siglock protected: */ 747 unsigned long jobctl; 748 749 /* Used for emulating ABI behavior of previous Linux versions: */ 750 unsigned int personality; 751 752 /* Scheduler bits, serialized by scheduler locks: */ 753 unsigned sched_reset_on_fork:1; 754 unsigned sched_contributes_to_load:1; 755 unsigned sched_migrated:1; 756 unsigned sched_remote_wakeup:1; 757 #ifdef CONFIG_PSI 758 unsigned sched_psi_wake_requeue:1; 759 #endif 760 761 /* Force alignment to the next boundary: */ 762 unsigned :0; 763 764 /* Unserialized, strictly 'current' */ 765 766 /* Bit to tell LSMs we're in execve(): */ 767 unsigned in_execve:1; 768 unsigned in_iowait:1; 769 #ifndef TIF_RESTORE_SIGMASK 770 unsigned restore_sigmask:1; 771 #endif 772 #ifdef CONFIG_MEMCG 773 unsigned in_user_fault:1; 774 #endif 775 #ifdef CONFIG_COMPAT_BRK 776 unsigned brk_randomized:1; 777 #endif 778 #ifdef CONFIG_CGROUPS 779 /* disallow userland-initiated cgroup migration */ 780 unsigned no_cgroup_migration:1; 781 /* task is frozen/stopped (used by the cgroup freezer) */ 782 unsigned frozen:1; 783 #endif 784 #ifdef CONFIG_BLK_CGROUP 785 /* to be used once the psi infrastructure lands upstream. */ 786 unsigned use_memdelay:1; 787 #endif 788 789 unsigned long atomic_flags; /* Flags requiring atomic access. */ 790 791 struct restart_block restart_block; 792 793 pid_t pid; 794 pid_t tgid; 795 796 #ifdef CONFIG_STACKPROTECTOR 797 /* Canary value for the -fstack-protector GCC feature: */ 798 unsigned long stack_canary; 799 #endif 800 /* 801 * Pointers to the (original) parent process, youngest child, younger sibling, 802 * older sibling, respectively. (p->father can be replaced with 803 * p->real_parent->pid) 804 */ 805 806 /* Real parent process: */ 807 struct task_struct __rcu *real_parent; 808 809 /* Recipient of SIGCHLD, wait4() reports: */ 810 struct task_struct __rcu *parent; 811 812 /* 813 * Children/sibling form the list of natural children: 814 */ 815 struct list_head children; 816 struct list_head sibling; 817 struct task_struct *group_leader; 818 819 /* 820 * 'ptraced' is the list of tasks this task is using ptrace() on. 821 * 822 * This includes both natural children and PTRACE_ATTACH targets. 823 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 824 */ 825 struct list_head ptraced; 826 struct list_head ptrace_entry; 827 828 /* PID/PID hash table linkage. */ 829 struct pid *thread_pid; 830 struct hlist_node pid_links[PIDTYPE_MAX]; 831 struct list_head thread_group; 832 struct list_head thread_node; 833 834 struct completion *vfork_done; 835 836 /* CLONE_CHILD_SETTID: */ 837 int __user *set_child_tid; 838 839 /* CLONE_CHILD_CLEARTID: */ 840 int __user *clear_child_tid; 841 842 u64 utime; 843 u64 stime; 844 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 845 u64 utimescaled; 846 u64 stimescaled; 847 #endif 848 u64 gtime; 849 struct prev_cputime prev_cputime; 850 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 851 struct vtime vtime; 852 #endif 853 854 #ifdef CONFIG_NO_HZ_FULL 855 atomic_t tick_dep_mask; 856 #endif 857 /* Context switch counts: */ 858 unsigned long nvcsw; 859 unsigned long nivcsw; 860 861 /* Monotonic time in nsecs: */ 862 u64 start_time; 863 864 /* Boot based time in nsecs: */ 865 u64 real_start_time; 866 867 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 868 unsigned long min_flt; 869 unsigned long maj_flt; 870 871 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 872 struct posix_cputimers posix_cputimers; 873 874 /* Process credentials: */ 875 876 /* Tracer's credentials at attach: */ 877 const struct cred __rcu *ptracer_cred; 878 879 /* Objective and real subjective task credentials (COW): */ 880 const struct cred __rcu *real_cred; 881 882 /* Effective (overridable) subjective task credentials (COW): */ 883 const struct cred __rcu *cred; 884 885 #ifdef CONFIG_KEYS 886 /* Cached requested key. */ 887 struct key *cached_requested_key; 888 #endif 889 890 /* 891 * executable name, excluding path. 892 * 893 * - normally initialized setup_new_exec() 894 * - access it with [gs]et_task_comm() 895 * - lock it with task_lock() 896 */ 897 char comm[TASK_COMM_LEN]; 898 899 struct nameidata *nameidata; 900 901 #ifdef CONFIG_SYSVIPC 902 struct sysv_sem sysvsem; 903 struct sysv_shm sysvshm; 904 #endif 905 #ifdef CONFIG_DETECT_HUNG_TASK 906 unsigned long last_switch_count; 907 unsigned long last_switch_time; 908 #endif 909 /* Filesystem information: */ 910 struct fs_struct *fs; 911 912 /* Open file information: */ 913 struct files_struct *files; 914 915 /* Namespaces: */ 916 struct nsproxy *nsproxy; 917 918 /* Signal handlers: */ 919 struct signal_struct *signal; 920 struct sighand_struct *sighand; 921 sigset_t blocked; 922 sigset_t real_blocked; 923 /* Restored if set_restore_sigmask() was used: */ 924 sigset_t saved_sigmask; 925 struct sigpending pending; 926 unsigned long sas_ss_sp; 927 size_t sas_ss_size; 928 unsigned int sas_ss_flags; 929 930 struct callback_head *task_works; 931 932 #ifdef CONFIG_AUDIT 933 #ifdef CONFIG_AUDITSYSCALL 934 struct audit_context *audit_context; 935 #endif 936 kuid_t loginuid; 937 unsigned int sessionid; 938 #endif 939 struct seccomp seccomp; 940 941 /* Thread group tracking: */ 942 u32 parent_exec_id; 943 u32 self_exec_id; 944 945 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 946 spinlock_t alloc_lock; 947 948 /* Protection of the PI data structures: */ 949 raw_spinlock_t pi_lock; 950 951 struct wake_q_node wake_q; 952 953 #ifdef CONFIG_RT_MUTEXES 954 /* PI waiters blocked on a rt_mutex held by this task: */ 955 struct rb_root_cached pi_waiters; 956 /* Updated under owner's pi_lock and rq lock */ 957 struct task_struct *pi_top_task; 958 /* Deadlock detection and priority inheritance handling: */ 959 struct rt_mutex_waiter *pi_blocked_on; 960 #endif 961 962 #ifdef CONFIG_DEBUG_MUTEXES 963 /* Mutex deadlock detection: */ 964 struct mutex_waiter *blocked_on; 965 #endif 966 967 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 968 int non_block_count; 969 #endif 970 971 #ifdef CONFIG_TRACE_IRQFLAGS 972 unsigned int irq_events; 973 unsigned long hardirq_enable_ip; 974 unsigned long hardirq_disable_ip; 975 unsigned int hardirq_enable_event; 976 unsigned int hardirq_disable_event; 977 int hardirqs_enabled; 978 int hardirq_context; 979 unsigned long softirq_disable_ip; 980 unsigned long softirq_enable_ip; 981 unsigned int softirq_disable_event; 982 unsigned int softirq_enable_event; 983 int softirqs_enabled; 984 int softirq_context; 985 #endif 986 987 #ifdef CONFIG_LOCKDEP 988 # define MAX_LOCK_DEPTH 48UL 989 u64 curr_chain_key; 990 int lockdep_depth; 991 unsigned int lockdep_recursion; 992 struct held_lock held_locks[MAX_LOCK_DEPTH]; 993 #endif 994 995 #ifdef CONFIG_UBSAN 996 unsigned int in_ubsan; 997 #endif 998 999 /* Journalling filesystem info: */ 1000 void *journal_info; 1001 1002 /* Stacked block device info: */ 1003 struct bio_list *bio_list; 1004 1005 #ifdef CONFIG_BLOCK 1006 /* Stack plugging: */ 1007 struct blk_plug *plug; 1008 #endif 1009 1010 /* VM state: */ 1011 struct reclaim_state *reclaim_state; 1012 1013 struct backing_dev_info *backing_dev_info; 1014 1015 struct io_context *io_context; 1016 1017 #ifdef CONFIG_COMPACTION 1018 struct capture_control *capture_control; 1019 #endif 1020 /* Ptrace state: */ 1021 unsigned long ptrace_message; 1022 kernel_siginfo_t *last_siginfo; 1023 1024 struct task_io_accounting ioac; 1025 #ifdef CONFIG_PSI 1026 /* Pressure stall state */ 1027 unsigned int psi_flags; 1028 #endif 1029 #ifdef CONFIG_TASK_XACCT 1030 /* Accumulated RSS usage: */ 1031 u64 acct_rss_mem1; 1032 /* Accumulated virtual memory usage: */ 1033 u64 acct_vm_mem1; 1034 /* stime + utime since last update: */ 1035 u64 acct_timexpd; 1036 #endif 1037 #ifdef CONFIG_CPUSETS 1038 /* Protected by ->alloc_lock: */ 1039 nodemask_t mems_allowed; 1040 /* Seqence number to catch updates: */ 1041 seqcount_t mems_allowed_seq; 1042 int cpuset_mem_spread_rotor; 1043 int cpuset_slab_spread_rotor; 1044 #endif 1045 #ifdef CONFIG_CGROUPS 1046 /* Control Group info protected by css_set_lock: */ 1047 struct css_set __rcu *cgroups; 1048 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1049 struct list_head cg_list; 1050 #endif 1051 #ifdef CONFIG_X86_CPU_RESCTRL 1052 u32 closid; 1053 u32 rmid; 1054 #endif 1055 #ifdef CONFIG_FUTEX 1056 struct robust_list_head __user *robust_list; 1057 #ifdef CONFIG_COMPAT 1058 struct compat_robust_list_head __user *compat_robust_list; 1059 #endif 1060 struct list_head pi_state_list; 1061 struct futex_pi_state *pi_state_cache; 1062 struct mutex futex_exit_mutex; 1063 unsigned int futex_state; 1064 #endif 1065 #ifdef CONFIG_PERF_EVENTS 1066 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1067 struct mutex perf_event_mutex; 1068 struct list_head perf_event_list; 1069 #endif 1070 #ifdef CONFIG_DEBUG_PREEMPT 1071 unsigned long preempt_disable_ip; 1072 #endif 1073 #ifdef CONFIG_NUMA 1074 /* Protected by alloc_lock: */ 1075 struct mempolicy *mempolicy; 1076 short il_prev; 1077 short pref_node_fork; 1078 #endif 1079 #ifdef CONFIG_NUMA_BALANCING 1080 int numa_scan_seq; 1081 unsigned int numa_scan_period; 1082 unsigned int numa_scan_period_max; 1083 int numa_preferred_nid; 1084 unsigned long numa_migrate_retry; 1085 /* Migration stamp: */ 1086 u64 node_stamp; 1087 u64 last_task_numa_placement; 1088 u64 last_sum_exec_runtime; 1089 struct callback_head numa_work; 1090 1091 /* 1092 * This pointer is only modified for current in syscall and 1093 * pagefault context (and for tasks being destroyed), so it can be read 1094 * from any of the following contexts: 1095 * - RCU read-side critical section 1096 * - current->numa_group from everywhere 1097 * - task's runqueue locked, task not running 1098 */ 1099 struct numa_group __rcu *numa_group; 1100 1101 /* 1102 * numa_faults is an array split into four regions: 1103 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1104 * in this precise order. 1105 * 1106 * faults_memory: Exponential decaying average of faults on a per-node 1107 * basis. Scheduling placement decisions are made based on these 1108 * counts. The values remain static for the duration of a PTE scan. 1109 * faults_cpu: Track the nodes the process was running on when a NUMA 1110 * hinting fault was incurred. 1111 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1112 * during the current scan window. When the scan completes, the counts 1113 * in faults_memory and faults_cpu decay and these values are copied. 1114 */ 1115 unsigned long *numa_faults; 1116 unsigned long total_numa_faults; 1117 1118 /* 1119 * numa_faults_locality tracks if faults recorded during the last 1120 * scan window were remote/local or failed to migrate. The task scan 1121 * period is adapted based on the locality of the faults with different 1122 * weights depending on whether they were shared or private faults 1123 */ 1124 unsigned long numa_faults_locality[3]; 1125 1126 unsigned long numa_pages_migrated; 1127 #endif /* CONFIG_NUMA_BALANCING */ 1128 1129 #ifdef CONFIG_RSEQ 1130 struct rseq __user *rseq; 1131 u32 rseq_sig; 1132 /* 1133 * RmW on rseq_event_mask must be performed atomically 1134 * with respect to preemption. 1135 */ 1136 unsigned long rseq_event_mask; 1137 #endif 1138 1139 struct tlbflush_unmap_batch tlb_ubc; 1140 1141 union { 1142 refcount_t rcu_users; 1143 struct rcu_head rcu; 1144 }; 1145 1146 /* Cache last used pipe for splice(): */ 1147 struct pipe_inode_info *splice_pipe; 1148 1149 struct page_frag task_frag; 1150 1151 #ifdef CONFIG_TASK_DELAY_ACCT 1152 struct task_delay_info *delays; 1153 #endif 1154 1155 #ifdef CONFIG_FAULT_INJECTION 1156 int make_it_fail; 1157 unsigned int fail_nth; 1158 #endif 1159 /* 1160 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1161 * balance_dirty_pages() for a dirty throttling pause: 1162 */ 1163 int nr_dirtied; 1164 int nr_dirtied_pause; 1165 /* Start of a write-and-pause period: */ 1166 unsigned long dirty_paused_when; 1167 1168 #ifdef CONFIG_LATENCYTOP 1169 int latency_record_count; 1170 struct latency_record latency_record[LT_SAVECOUNT]; 1171 #endif 1172 /* 1173 * Time slack values; these are used to round up poll() and 1174 * select() etc timeout values. These are in nanoseconds. 1175 */ 1176 u64 timer_slack_ns; 1177 u64 default_timer_slack_ns; 1178 1179 #ifdef CONFIG_KASAN 1180 unsigned int kasan_depth; 1181 #endif 1182 1183 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1184 /* Index of current stored address in ret_stack: */ 1185 int curr_ret_stack; 1186 int curr_ret_depth; 1187 1188 /* Stack of return addresses for return function tracing: */ 1189 struct ftrace_ret_stack *ret_stack; 1190 1191 /* Timestamp for last schedule: */ 1192 unsigned long long ftrace_timestamp; 1193 1194 /* 1195 * Number of functions that haven't been traced 1196 * because of depth overrun: 1197 */ 1198 atomic_t trace_overrun; 1199 1200 /* Pause tracing: */ 1201 atomic_t tracing_graph_pause; 1202 #endif 1203 1204 #ifdef CONFIG_TRACING 1205 /* State flags for use by tracers: */ 1206 unsigned long trace; 1207 1208 /* Bitmask and counter of trace recursion: */ 1209 unsigned long trace_recursion; 1210 #endif /* CONFIG_TRACING */ 1211 1212 #ifdef CONFIG_KCOV 1213 /* Coverage collection mode enabled for this task (0 if disabled): */ 1214 unsigned int kcov_mode; 1215 1216 /* Size of the kcov_area: */ 1217 unsigned int kcov_size; 1218 1219 /* Buffer for coverage collection: */ 1220 void *kcov_area; 1221 1222 /* KCOV descriptor wired with this task or NULL: */ 1223 struct kcov *kcov; 1224 #endif 1225 1226 #ifdef CONFIG_MEMCG 1227 struct mem_cgroup *memcg_in_oom; 1228 gfp_t memcg_oom_gfp_mask; 1229 int memcg_oom_order; 1230 1231 /* Number of pages to reclaim on returning to userland: */ 1232 unsigned int memcg_nr_pages_over_high; 1233 1234 /* Used by memcontrol for targeted memcg charge: */ 1235 struct mem_cgroup *active_memcg; 1236 #endif 1237 1238 #ifdef CONFIG_BLK_CGROUP 1239 struct request_queue *throttle_queue; 1240 #endif 1241 1242 #ifdef CONFIG_UPROBES 1243 struct uprobe_task *utask; 1244 #endif 1245 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1246 unsigned int sequential_io; 1247 unsigned int sequential_io_avg; 1248 #endif 1249 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1250 unsigned long task_state_change; 1251 #endif 1252 int pagefault_disabled; 1253 #ifdef CONFIG_MMU 1254 struct task_struct *oom_reaper_list; 1255 #endif 1256 #ifdef CONFIG_VMAP_STACK 1257 struct vm_struct *stack_vm_area; 1258 #endif 1259 #ifdef CONFIG_THREAD_INFO_IN_TASK 1260 /* A live task holds one reference: */ 1261 refcount_t stack_refcount; 1262 #endif 1263 #ifdef CONFIG_LIVEPATCH 1264 int patch_state; 1265 #endif 1266 #ifdef CONFIG_SECURITY 1267 /* Used by LSM modules for access restriction: */ 1268 void *security; 1269 #endif 1270 1271 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1272 unsigned long lowest_stack; 1273 unsigned long prev_lowest_stack; 1274 #endif 1275 1276 /* 1277 * New fields for task_struct should be added above here, so that 1278 * they are included in the randomized portion of task_struct. 1279 */ 1280 randomized_struct_fields_end 1281 1282 /* CPU-specific state of this task: */ 1283 struct thread_struct thread; 1284 1285 /* 1286 * WARNING: on x86, 'thread_struct' contains a variable-sized 1287 * structure. It *MUST* be at the end of 'task_struct'. 1288 * 1289 * Do not put anything below here! 1290 */ 1291 }; 1292 1293 static inline struct pid *task_pid(struct task_struct *task) 1294 { 1295 return task->thread_pid; 1296 } 1297 1298 /* 1299 * the helpers to get the task's different pids as they are seen 1300 * from various namespaces 1301 * 1302 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1303 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1304 * current. 1305 * task_xid_nr_ns() : id seen from the ns specified; 1306 * 1307 * see also pid_nr() etc in include/linux/pid.h 1308 */ 1309 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1310 1311 static inline pid_t task_pid_nr(struct task_struct *tsk) 1312 { 1313 return tsk->pid; 1314 } 1315 1316 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1317 { 1318 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1319 } 1320 1321 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1322 { 1323 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1324 } 1325 1326 1327 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1328 { 1329 return tsk->tgid; 1330 } 1331 1332 /** 1333 * pid_alive - check that a task structure is not stale 1334 * @p: Task structure to be checked. 1335 * 1336 * Test if a process is not yet dead (at most zombie state) 1337 * If pid_alive fails, then pointers within the task structure 1338 * can be stale and must not be dereferenced. 1339 * 1340 * Return: 1 if the process is alive. 0 otherwise. 1341 */ 1342 static inline int pid_alive(const struct task_struct *p) 1343 { 1344 return p->thread_pid != NULL; 1345 } 1346 1347 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1348 { 1349 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1350 } 1351 1352 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1353 { 1354 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1355 } 1356 1357 1358 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1359 { 1360 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1361 } 1362 1363 static inline pid_t task_session_vnr(struct task_struct *tsk) 1364 { 1365 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1366 } 1367 1368 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1369 { 1370 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1371 } 1372 1373 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1374 { 1375 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1376 } 1377 1378 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1379 { 1380 pid_t pid = 0; 1381 1382 rcu_read_lock(); 1383 if (pid_alive(tsk)) 1384 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1385 rcu_read_unlock(); 1386 1387 return pid; 1388 } 1389 1390 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1391 { 1392 return task_ppid_nr_ns(tsk, &init_pid_ns); 1393 } 1394 1395 /* Obsolete, do not use: */ 1396 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1397 { 1398 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1399 } 1400 1401 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1402 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1403 1404 static inline unsigned int task_state_index(struct task_struct *tsk) 1405 { 1406 unsigned int tsk_state = READ_ONCE(tsk->state); 1407 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1408 1409 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1410 1411 if (tsk_state == TASK_IDLE) 1412 state = TASK_REPORT_IDLE; 1413 1414 return fls(state); 1415 } 1416 1417 static inline char task_index_to_char(unsigned int state) 1418 { 1419 static const char state_char[] = "RSDTtXZPI"; 1420 1421 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1422 1423 return state_char[state]; 1424 } 1425 1426 static inline char task_state_to_char(struct task_struct *tsk) 1427 { 1428 return task_index_to_char(task_state_index(tsk)); 1429 } 1430 1431 /** 1432 * is_global_init - check if a task structure is init. Since init 1433 * is free to have sub-threads we need to check tgid. 1434 * @tsk: Task structure to be checked. 1435 * 1436 * Check if a task structure is the first user space task the kernel created. 1437 * 1438 * Return: 1 if the task structure is init. 0 otherwise. 1439 */ 1440 static inline int is_global_init(struct task_struct *tsk) 1441 { 1442 return task_tgid_nr(tsk) == 1; 1443 } 1444 1445 extern struct pid *cad_pid; 1446 1447 /* 1448 * Per process flags 1449 */ 1450 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1451 #define PF_EXITING 0x00000004 /* Getting shut down */ 1452 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1453 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1454 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1455 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1456 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1457 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1458 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1459 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1460 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1461 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1462 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1463 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1464 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1465 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1466 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1467 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1468 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1469 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1470 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1471 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1472 #define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */ 1473 #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */ 1474 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1475 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1476 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ 1477 #define PF_IO_WORKER 0x20000000 /* Task is an IO worker */ 1478 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1479 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1480 1481 /* 1482 * Only the _current_ task can read/write to tsk->flags, but other 1483 * tasks can access tsk->flags in readonly mode for example 1484 * with tsk_used_math (like during threaded core dumping). 1485 * There is however an exception to this rule during ptrace 1486 * or during fork: the ptracer task is allowed to write to the 1487 * child->flags of its traced child (same goes for fork, the parent 1488 * can write to the child->flags), because we're guaranteed the 1489 * child is not running and in turn not changing child->flags 1490 * at the same time the parent does it. 1491 */ 1492 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1493 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1494 #define clear_used_math() clear_stopped_child_used_math(current) 1495 #define set_used_math() set_stopped_child_used_math(current) 1496 1497 #define conditional_stopped_child_used_math(condition, child) \ 1498 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1499 1500 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1501 1502 #define copy_to_stopped_child_used_math(child) \ 1503 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1504 1505 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1506 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1507 #define used_math() tsk_used_math(current) 1508 1509 static inline bool is_percpu_thread(void) 1510 { 1511 #ifdef CONFIG_SMP 1512 return (current->flags & PF_NO_SETAFFINITY) && 1513 (current->nr_cpus_allowed == 1); 1514 #else 1515 return true; 1516 #endif 1517 } 1518 1519 /* Per-process atomic flags. */ 1520 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1521 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1522 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1523 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1524 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1525 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1526 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1527 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1528 1529 #define TASK_PFA_TEST(name, func) \ 1530 static inline bool task_##func(struct task_struct *p) \ 1531 { return test_bit(PFA_##name, &p->atomic_flags); } 1532 1533 #define TASK_PFA_SET(name, func) \ 1534 static inline void task_set_##func(struct task_struct *p) \ 1535 { set_bit(PFA_##name, &p->atomic_flags); } 1536 1537 #define TASK_PFA_CLEAR(name, func) \ 1538 static inline void task_clear_##func(struct task_struct *p) \ 1539 { clear_bit(PFA_##name, &p->atomic_flags); } 1540 1541 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1542 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1543 1544 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1545 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1546 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1547 1548 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1549 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1550 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1551 1552 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1553 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1554 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1555 1556 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1557 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1558 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1559 1560 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1561 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1562 1563 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1564 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1565 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1566 1567 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1568 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1569 1570 static inline void 1571 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1572 { 1573 current->flags &= ~flags; 1574 current->flags |= orig_flags & flags; 1575 } 1576 1577 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1578 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1579 #ifdef CONFIG_SMP 1580 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1581 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1582 #else 1583 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1584 { 1585 } 1586 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1587 { 1588 if (!cpumask_test_cpu(0, new_mask)) 1589 return -EINVAL; 1590 return 0; 1591 } 1592 #endif 1593 1594 extern int yield_to(struct task_struct *p, bool preempt); 1595 extern void set_user_nice(struct task_struct *p, long nice); 1596 extern int task_prio(const struct task_struct *p); 1597 1598 /** 1599 * task_nice - return the nice value of a given task. 1600 * @p: the task in question. 1601 * 1602 * Return: The nice value [ -20 ... 0 ... 19 ]. 1603 */ 1604 static inline int task_nice(const struct task_struct *p) 1605 { 1606 return PRIO_TO_NICE((p)->static_prio); 1607 } 1608 1609 extern int can_nice(const struct task_struct *p, const int nice); 1610 extern int task_curr(const struct task_struct *p); 1611 extern int idle_cpu(int cpu); 1612 extern int available_idle_cpu(int cpu); 1613 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1614 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1615 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1616 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1617 extern struct task_struct *idle_task(int cpu); 1618 1619 /** 1620 * is_idle_task - is the specified task an idle task? 1621 * @p: the task in question. 1622 * 1623 * Return: 1 if @p is an idle task. 0 otherwise. 1624 */ 1625 static inline bool is_idle_task(const struct task_struct *p) 1626 { 1627 return !!(p->flags & PF_IDLE); 1628 } 1629 1630 extern struct task_struct *curr_task(int cpu); 1631 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1632 1633 void yield(void); 1634 1635 union thread_union { 1636 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1637 struct task_struct task; 1638 #endif 1639 #ifndef CONFIG_THREAD_INFO_IN_TASK 1640 struct thread_info thread_info; 1641 #endif 1642 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1643 }; 1644 1645 #ifndef CONFIG_THREAD_INFO_IN_TASK 1646 extern struct thread_info init_thread_info; 1647 #endif 1648 1649 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1650 1651 #ifdef CONFIG_THREAD_INFO_IN_TASK 1652 static inline struct thread_info *task_thread_info(struct task_struct *task) 1653 { 1654 return &task->thread_info; 1655 } 1656 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1657 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1658 #endif 1659 1660 /* 1661 * find a task by one of its numerical ids 1662 * 1663 * find_task_by_pid_ns(): 1664 * finds a task by its pid in the specified namespace 1665 * find_task_by_vpid(): 1666 * finds a task by its virtual pid 1667 * 1668 * see also find_vpid() etc in include/linux/pid.h 1669 */ 1670 1671 extern struct task_struct *find_task_by_vpid(pid_t nr); 1672 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1673 1674 /* 1675 * find a task by its virtual pid and get the task struct 1676 */ 1677 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1678 1679 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1680 extern int wake_up_process(struct task_struct *tsk); 1681 extern void wake_up_new_task(struct task_struct *tsk); 1682 1683 #ifdef CONFIG_SMP 1684 extern void kick_process(struct task_struct *tsk); 1685 #else 1686 static inline void kick_process(struct task_struct *tsk) { } 1687 #endif 1688 1689 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1690 1691 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1692 { 1693 __set_task_comm(tsk, from, false); 1694 } 1695 1696 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1697 #define get_task_comm(buf, tsk) ({ \ 1698 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1699 __get_task_comm(buf, sizeof(buf), tsk); \ 1700 }) 1701 1702 #ifdef CONFIG_SMP 1703 void scheduler_ipi(void); 1704 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1705 #else 1706 static inline void scheduler_ipi(void) { } 1707 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1708 { 1709 return 1; 1710 } 1711 #endif 1712 1713 /* 1714 * Set thread flags in other task's structures. 1715 * See asm/thread_info.h for TIF_xxxx flags available: 1716 */ 1717 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1718 { 1719 set_ti_thread_flag(task_thread_info(tsk), flag); 1720 } 1721 1722 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1723 { 1724 clear_ti_thread_flag(task_thread_info(tsk), flag); 1725 } 1726 1727 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1728 bool value) 1729 { 1730 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1731 } 1732 1733 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1734 { 1735 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1736 } 1737 1738 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1739 { 1740 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1741 } 1742 1743 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1744 { 1745 return test_ti_thread_flag(task_thread_info(tsk), flag); 1746 } 1747 1748 static inline void set_tsk_need_resched(struct task_struct *tsk) 1749 { 1750 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1751 } 1752 1753 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1754 { 1755 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1756 } 1757 1758 static inline int test_tsk_need_resched(struct task_struct *tsk) 1759 { 1760 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1761 } 1762 1763 /* 1764 * cond_resched() and cond_resched_lock(): latency reduction via 1765 * explicit rescheduling in places that are safe. The return 1766 * value indicates whether a reschedule was done in fact. 1767 * cond_resched_lock() will drop the spinlock before scheduling, 1768 */ 1769 #ifndef CONFIG_PREEMPTION 1770 extern int _cond_resched(void); 1771 #else 1772 static inline int _cond_resched(void) { return 0; } 1773 #endif 1774 1775 #define cond_resched() ({ \ 1776 ___might_sleep(__FILE__, __LINE__, 0); \ 1777 _cond_resched(); \ 1778 }) 1779 1780 extern int __cond_resched_lock(spinlock_t *lock); 1781 1782 #define cond_resched_lock(lock) ({ \ 1783 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1784 __cond_resched_lock(lock); \ 1785 }) 1786 1787 static inline void cond_resched_rcu(void) 1788 { 1789 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1790 rcu_read_unlock(); 1791 cond_resched(); 1792 rcu_read_lock(); 1793 #endif 1794 } 1795 1796 /* 1797 * Does a critical section need to be broken due to another 1798 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 1799 * but a general need for low latency) 1800 */ 1801 static inline int spin_needbreak(spinlock_t *lock) 1802 { 1803 #ifdef CONFIG_PREEMPTION 1804 return spin_is_contended(lock); 1805 #else 1806 return 0; 1807 #endif 1808 } 1809 1810 static __always_inline bool need_resched(void) 1811 { 1812 return unlikely(tif_need_resched()); 1813 } 1814 1815 /* 1816 * Wrappers for p->thread_info->cpu access. No-op on UP. 1817 */ 1818 #ifdef CONFIG_SMP 1819 1820 static inline unsigned int task_cpu(const struct task_struct *p) 1821 { 1822 #ifdef CONFIG_THREAD_INFO_IN_TASK 1823 return READ_ONCE(p->cpu); 1824 #else 1825 return READ_ONCE(task_thread_info(p)->cpu); 1826 #endif 1827 } 1828 1829 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1830 1831 #else 1832 1833 static inline unsigned int task_cpu(const struct task_struct *p) 1834 { 1835 return 0; 1836 } 1837 1838 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1839 { 1840 } 1841 1842 #endif /* CONFIG_SMP */ 1843 1844 /* 1845 * In order to reduce various lock holder preemption latencies provide an 1846 * interface to see if a vCPU is currently running or not. 1847 * 1848 * This allows us to terminate optimistic spin loops and block, analogous to 1849 * the native optimistic spin heuristic of testing if the lock owner task is 1850 * running or not. 1851 */ 1852 #ifndef vcpu_is_preempted 1853 static inline bool vcpu_is_preempted(int cpu) 1854 { 1855 return false; 1856 } 1857 #endif 1858 1859 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1860 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1861 1862 #ifndef TASK_SIZE_OF 1863 #define TASK_SIZE_OF(tsk) TASK_SIZE 1864 #endif 1865 1866 #ifdef CONFIG_RSEQ 1867 1868 /* 1869 * Map the event mask on the user-space ABI enum rseq_cs_flags 1870 * for direct mask checks. 1871 */ 1872 enum rseq_event_mask_bits { 1873 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1874 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1875 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1876 }; 1877 1878 enum rseq_event_mask { 1879 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1880 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1881 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1882 }; 1883 1884 static inline void rseq_set_notify_resume(struct task_struct *t) 1885 { 1886 if (t->rseq) 1887 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1888 } 1889 1890 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1891 1892 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1893 struct pt_regs *regs) 1894 { 1895 if (current->rseq) 1896 __rseq_handle_notify_resume(ksig, regs); 1897 } 1898 1899 static inline void rseq_signal_deliver(struct ksignal *ksig, 1900 struct pt_regs *regs) 1901 { 1902 preempt_disable(); 1903 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 1904 preempt_enable(); 1905 rseq_handle_notify_resume(ksig, regs); 1906 } 1907 1908 /* rseq_preempt() requires preemption to be disabled. */ 1909 static inline void rseq_preempt(struct task_struct *t) 1910 { 1911 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1912 rseq_set_notify_resume(t); 1913 } 1914 1915 /* rseq_migrate() requires preemption to be disabled. */ 1916 static inline void rseq_migrate(struct task_struct *t) 1917 { 1918 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1919 rseq_set_notify_resume(t); 1920 } 1921 1922 /* 1923 * If parent process has a registered restartable sequences area, the 1924 * child inherits. Only applies when forking a process, not a thread. 1925 */ 1926 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1927 { 1928 if (clone_flags & CLONE_THREAD) { 1929 t->rseq = NULL; 1930 t->rseq_sig = 0; 1931 t->rseq_event_mask = 0; 1932 } else { 1933 t->rseq = current->rseq; 1934 t->rseq_sig = current->rseq_sig; 1935 t->rseq_event_mask = current->rseq_event_mask; 1936 } 1937 } 1938 1939 static inline void rseq_execve(struct task_struct *t) 1940 { 1941 t->rseq = NULL; 1942 t->rseq_sig = 0; 1943 t->rseq_event_mask = 0; 1944 } 1945 1946 #else 1947 1948 static inline void rseq_set_notify_resume(struct task_struct *t) 1949 { 1950 } 1951 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1952 struct pt_regs *regs) 1953 { 1954 } 1955 static inline void rseq_signal_deliver(struct ksignal *ksig, 1956 struct pt_regs *regs) 1957 { 1958 } 1959 static inline void rseq_preempt(struct task_struct *t) 1960 { 1961 } 1962 static inline void rseq_migrate(struct task_struct *t) 1963 { 1964 } 1965 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1966 { 1967 } 1968 static inline void rseq_execve(struct task_struct *t) 1969 { 1970 } 1971 1972 #endif 1973 1974 void __exit_umh(struct task_struct *tsk); 1975 1976 static inline void exit_umh(struct task_struct *tsk) 1977 { 1978 if (unlikely(tsk->flags & PF_UMH)) 1979 __exit_umh(tsk); 1980 } 1981 1982 #ifdef CONFIG_DEBUG_RSEQ 1983 1984 void rseq_syscall(struct pt_regs *regs); 1985 1986 #else 1987 1988 static inline void rseq_syscall(struct pt_regs *regs) 1989 { 1990 } 1991 1992 #endif 1993 1994 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 1995 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 1996 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 1997 1998 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 1999 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 2000 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 2001 2002 int sched_trace_rq_cpu(struct rq *rq); 2003 2004 const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 2005 2006 #endif 2007