xref: /linux/include/linux/sched.h (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * cloning flags:
6  */
7 #define CSIGNAL		0x000000ff	/* signal mask to be sent at exit */
8 #define CLONE_VM	0x00000100	/* set if VM shared between processes */
9 #define CLONE_FS	0x00000200	/* set if fs info shared between processes */
10 #define CLONE_FILES	0x00000400	/* set if open files shared between processes */
11 #define CLONE_SIGHAND	0x00000800	/* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE	0x00002000	/* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK	0x00004000	/* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT	0x00008000	/* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD	0x00010000	/* Same thread group? */
16 #define CLONE_NEWNS	0x00020000	/* New namespace group? */
17 #define CLONE_SYSVSEM	0x00040000	/* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS	0x00080000	/* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID	0x00100000	/* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID	0x00200000	/* clear the TID in the child */
21 #define CLONE_DETACHED		0x00400000	/* Unused, ignored */
22 #define CLONE_UNTRACED		0x00800000	/* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID	0x01000000	/* set the TID in the child */
24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state)
25    and is now available for re-use. */
26 #define CLONE_NEWUTS		0x04000000	/* New utsname group? */
27 #define CLONE_NEWIPC		0x08000000	/* New ipcs */
28 #define CLONE_NEWUSER		0x10000000	/* New user namespace */
29 #define CLONE_NEWPID		0x20000000	/* New pid namespace */
30 #define CLONE_NEWNET		0x40000000	/* New network namespace */
31 #define CLONE_IO		0x80000000	/* Clone io context */
32 
33 /*
34  * Scheduling policies
35  */
36 #define SCHED_NORMAL		0
37 #define SCHED_FIFO		1
38 #define SCHED_RR		2
39 #define SCHED_BATCH		3
40 /* SCHED_ISO: reserved but not implemented yet */
41 #define SCHED_IDLE		5
42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
43 #define SCHED_RESET_ON_FORK     0x40000000
44 
45 #ifdef __KERNEL__
46 
47 struct sched_param {
48 	int sched_priority;
49 };
50 
51 #include <asm/param.h>	/* for HZ */
52 
53 #include <linux/capability.h>
54 #include <linux/threads.h>
55 #include <linux/kernel.h>
56 #include <linux/types.h>
57 #include <linux/timex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rbtree.h>
60 #include <linux/thread_info.h>
61 #include <linux/cpumask.h>
62 #include <linux/errno.h>
63 #include <linux/nodemask.h>
64 #include <linux/mm_types.h>
65 
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
69 
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/compiler.h>
74 #include <linux/completion.h>
75 #include <linux/pid.h>
76 #include <linux/percpu.h>
77 #include <linux/topology.h>
78 #include <linux/proportions.h>
79 #include <linux/seccomp.h>
80 #include <linux/rcupdate.h>
81 #include <linux/rculist.h>
82 #include <linux/rtmutex.h>
83 
84 #include <linux/time.h>
85 #include <linux/param.h>
86 #include <linux/resource.h>
87 #include <linux/timer.h>
88 #include <linux/hrtimer.h>
89 #include <linux/task_io_accounting.h>
90 #include <linux/latencytop.h>
91 #include <linux/cred.h>
92 #include <linux/llist.h>
93 #include <linux/uidgid.h>
94 
95 #include <asm/processor.h>
96 
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
103 struct blk_plug;
104 
105 /*
106  * List of flags we want to share for kernel threads,
107  * if only because they are not used by them anyway.
108  */
109 #define CLONE_KERNEL	(CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
110 
111 /*
112  * These are the constant used to fake the fixed-point load-average
113  * counting. Some notes:
114  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
115  *    a load-average precision of 10 bits integer + 11 bits fractional
116  *  - if you want to count load-averages more often, you need more
117  *    precision, or rounding will get you. With 2-second counting freq,
118  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
119  *    11 bit fractions.
120  */
121 extern unsigned long avenrun[];		/* Load averages */
122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123 
124 #define FSHIFT		11		/* nr of bits of precision */
125 #define FIXED_1		(1<<FSHIFT)	/* 1.0 as fixed-point */
126 #define LOAD_FREQ	(5*HZ+1)	/* 5 sec intervals */
127 #define EXP_1		1884		/* 1/exp(5sec/1min) as fixed-point */
128 #define EXP_5		2014		/* 1/exp(5sec/5min) */
129 #define EXP_15		2037		/* 1/exp(5sec/15min) */
130 
131 #define CALC_LOAD(load,exp,n) \
132 	load *= exp; \
133 	load += n*(FIXED_1-exp); \
134 	load >>= FSHIFT;
135 
136 extern unsigned long total_forks;
137 extern int nr_threads;
138 DECLARE_PER_CPU(unsigned long, process_counts);
139 extern int nr_processes(void);
140 extern unsigned long nr_running(void);
141 extern unsigned long nr_uninterruptible(void);
142 extern unsigned long nr_iowait(void);
143 extern unsigned long nr_iowait_cpu(int cpu);
144 extern unsigned long this_cpu_load(void);
145 
146 
147 extern void calc_global_load(unsigned long ticks);
148 extern void update_cpu_load_nohz(void);
149 
150 extern unsigned long get_parent_ip(unsigned long addr);
151 
152 struct seq_file;
153 struct cfs_rq;
154 struct task_group;
155 #ifdef CONFIG_SCHED_DEBUG
156 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
157 extern void proc_sched_set_task(struct task_struct *p);
158 extern void
159 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
160 #else
161 static inline void
162 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
163 {
164 }
165 static inline void proc_sched_set_task(struct task_struct *p)
166 {
167 }
168 static inline void
169 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
170 {
171 }
172 #endif
173 
174 /*
175  * Task state bitmask. NOTE! These bits are also
176  * encoded in fs/proc/array.c: get_task_state().
177  *
178  * We have two separate sets of flags: task->state
179  * is about runnability, while task->exit_state are
180  * about the task exiting. Confusing, but this way
181  * modifying one set can't modify the other one by
182  * mistake.
183  */
184 #define TASK_RUNNING		0
185 #define TASK_INTERRUPTIBLE	1
186 #define TASK_UNINTERRUPTIBLE	2
187 #define __TASK_STOPPED		4
188 #define __TASK_TRACED		8
189 /* in tsk->exit_state */
190 #define EXIT_ZOMBIE		16
191 #define EXIT_DEAD		32
192 /* in tsk->state again */
193 #define TASK_DEAD		64
194 #define TASK_WAKEKILL		128
195 #define TASK_WAKING		256
196 #define TASK_STATE_MAX		512
197 
198 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
199 
200 extern char ___assert_task_state[1 - 2*!!(
201 		sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
202 
203 /* Convenience macros for the sake of set_task_state */
204 #define TASK_KILLABLE		(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
205 #define TASK_STOPPED		(TASK_WAKEKILL | __TASK_STOPPED)
206 #define TASK_TRACED		(TASK_WAKEKILL | __TASK_TRACED)
207 
208 /* Convenience macros for the sake of wake_up */
209 #define TASK_NORMAL		(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
210 #define TASK_ALL		(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
211 
212 /* get_task_state() */
213 #define TASK_REPORT		(TASK_RUNNING | TASK_INTERRUPTIBLE | \
214 				 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
215 				 __TASK_TRACED)
216 
217 #define task_is_traced(task)	((task->state & __TASK_TRACED) != 0)
218 #define task_is_stopped(task)	((task->state & __TASK_STOPPED) != 0)
219 #define task_is_dead(task)	((task)->exit_state != 0)
220 #define task_is_stopped_or_traced(task)	\
221 			((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
222 #define task_contributes_to_load(task)	\
223 				((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
224 				 (task->flags & PF_FROZEN) == 0)
225 
226 #define __set_task_state(tsk, state_value)		\
227 	do { (tsk)->state = (state_value); } while (0)
228 #define set_task_state(tsk, state_value)		\
229 	set_mb((tsk)->state, (state_value))
230 
231 /*
232  * set_current_state() includes a barrier so that the write of current->state
233  * is correctly serialised wrt the caller's subsequent test of whether to
234  * actually sleep:
235  *
236  *	set_current_state(TASK_UNINTERRUPTIBLE);
237  *	if (do_i_need_to_sleep())
238  *		schedule();
239  *
240  * If the caller does not need such serialisation then use __set_current_state()
241  */
242 #define __set_current_state(state_value)			\
243 	do { current->state = (state_value); } while (0)
244 #define set_current_state(state_value)		\
245 	set_mb(current->state, (state_value))
246 
247 /* Task command name length */
248 #define TASK_COMM_LEN 16
249 
250 #include <linux/spinlock.h>
251 
252 /*
253  * This serializes "schedule()" and also protects
254  * the run-queue from deletions/modifications (but
255  * _adding_ to the beginning of the run-queue has
256  * a separate lock).
257  */
258 extern rwlock_t tasklist_lock;
259 extern spinlock_t mmlist_lock;
260 
261 struct task_struct;
262 
263 #ifdef CONFIG_PROVE_RCU
264 extern int lockdep_tasklist_lock_is_held(void);
265 #endif /* #ifdef CONFIG_PROVE_RCU */
266 
267 extern void sched_init(void);
268 extern void sched_init_smp(void);
269 extern asmlinkage void schedule_tail(struct task_struct *prev);
270 extern void init_idle(struct task_struct *idle, int cpu);
271 extern void init_idle_bootup_task(struct task_struct *idle);
272 
273 extern int runqueue_is_locked(int cpu);
274 
275 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
276 extern void select_nohz_load_balancer(int stop_tick);
277 extern void set_cpu_sd_state_idle(void);
278 extern int get_nohz_timer_target(void);
279 #else
280 static inline void select_nohz_load_balancer(int stop_tick) { }
281 static inline void set_cpu_sd_state_idle(void) { }
282 #endif
283 
284 /*
285  * Only dump TASK_* tasks. (0 for all tasks)
286  */
287 extern void show_state_filter(unsigned long state_filter);
288 
289 static inline void show_state(void)
290 {
291 	show_state_filter(0);
292 }
293 
294 extern void show_regs(struct pt_regs *);
295 
296 /*
297  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
298  * task), SP is the stack pointer of the first frame that should be shown in the back
299  * trace (or NULL if the entire call-chain of the task should be shown).
300  */
301 extern void show_stack(struct task_struct *task, unsigned long *sp);
302 
303 void io_schedule(void);
304 long io_schedule_timeout(long timeout);
305 
306 extern void cpu_init (void);
307 extern void trap_init(void);
308 extern void update_process_times(int user);
309 extern void scheduler_tick(void);
310 
311 extern void sched_show_task(struct task_struct *p);
312 
313 #ifdef CONFIG_LOCKUP_DETECTOR
314 extern void touch_softlockup_watchdog(void);
315 extern void touch_softlockup_watchdog_sync(void);
316 extern void touch_all_softlockup_watchdogs(void);
317 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
318 				  void __user *buffer,
319 				  size_t *lenp, loff_t *ppos);
320 extern unsigned int  softlockup_panic;
321 void lockup_detector_init(void);
322 #else
323 static inline void touch_softlockup_watchdog(void)
324 {
325 }
326 static inline void touch_softlockup_watchdog_sync(void)
327 {
328 }
329 static inline void touch_all_softlockup_watchdogs(void)
330 {
331 }
332 static inline void lockup_detector_init(void)
333 {
334 }
335 #endif
336 
337 #ifdef CONFIG_DETECT_HUNG_TASK
338 extern unsigned int  sysctl_hung_task_panic;
339 extern unsigned long sysctl_hung_task_check_count;
340 extern unsigned long sysctl_hung_task_timeout_secs;
341 extern unsigned long sysctl_hung_task_warnings;
342 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
343 					 void __user *buffer,
344 					 size_t *lenp, loff_t *ppos);
345 #else
346 /* Avoid need for ifdefs elsewhere in the code */
347 enum { sysctl_hung_task_timeout_secs = 0 };
348 #endif
349 
350 /* Attach to any functions which should be ignored in wchan output. */
351 #define __sched		__attribute__((__section__(".sched.text")))
352 
353 /* Linker adds these: start and end of __sched functions */
354 extern char __sched_text_start[], __sched_text_end[];
355 
356 /* Is this address in the __sched functions? */
357 extern int in_sched_functions(unsigned long addr);
358 
359 #define	MAX_SCHEDULE_TIMEOUT	LONG_MAX
360 extern signed long schedule_timeout(signed long timeout);
361 extern signed long schedule_timeout_interruptible(signed long timeout);
362 extern signed long schedule_timeout_killable(signed long timeout);
363 extern signed long schedule_timeout_uninterruptible(signed long timeout);
364 asmlinkage void schedule(void);
365 extern void schedule_preempt_disabled(void);
366 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
367 
368 struct nsproxy;
369 struct user_namespace;
370 
371 /*
372  * Default maximum number of active map areas, this limits the number of vmas
373  * per mm struct. Users can overwrite this number by sysctl but there is a
374  * problem.
375  *
376  * When a program's coredump is generated as ELF format, a section is created
377  * per a vma. In ELF, the number of sections is represented in unsigned short.
378  * This means the number of sections should be smaller than 65535 at coredump.
379  * Because the kernel adds some informative sections to a image of program at
380  * generating coredump, we need some margin. The number of extra sections is
381  * 1-3 now and depends on arch. We use "5" as safe margin, here.
382  */
383 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
384 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
385 
386 extern int sysctl_max_map_count;
387 
388 #include <linux/aio.h>
389 
390 #ifdef CONFIG_MMU
391 extern void arch_pick_mmap_layout(struct mm_struct *mm);
392 extern unsigned long
393 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
394 		       unsigned long, unsigned long);
395 extern unsigned long
396 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
397 			  unsigned long len, unsigned long pgoff,
398 			  unsigned long flags);
399 extern void arch_unmap_area(struct mm_struct *, unsigned long);
400 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
401 #else
402 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
403 #endif
404 
405 
406 extern void set_dumpable(struct mm_struct *mm, int value);
407 extern int get_dumpable(struct mm_struct *mm);
408 
409 /* mm flags */
410 /* dumpable bits */
411 #define MMF_DUMPABLE      0  /* core dump is permitted */
412 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
413 
414 #define MMF_DUMPABLE_BITS 2
415 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
416 
417 /* coredump filter bits */
418 #define MMF_DUMP_ANON_PRIVATE	2
419 #define MMF_DUMP_ANON_SHARED	3
420 #define MMF_DUMP_MAPPED_PRIVATE	4
421 #define MMF_DUMP_MAPPED_SHARED	5
422 #define MMF_DUMP_ELF_HEADERS	6
423 #define MMF_DUMP_HUGETLB_PRIVATE 7
424 #define MMF_DUMP_HUGETLB_SHARED  8
425 
426 #define MMF_DUMP_FILTER_SHIFT	MMF_DUMPABLE_BITS
427 #define MMF_DUMP_FILTER_BITS	7
428 #define MMF_DUMP_FILTER_MASK \
429 	(((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
430 #define MMF_DUMP_FILTER_DEFAULT \
431 	((1 << MMF_DUMP_ANON_PRIVATE) |	(1 << MMF_DUMP_ANON_SHARED) |\
432 	 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
433 
434 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
435 # define MMF_DUMP_MASK_DEFAULT_ELF	(1 << MMF_DUMP_ELF_HEADERS)
436 #else
437 # define MMF_DUMP_MASK_DEFAULT_ELF	0
438 #endif
439 					/* leave room for more dump flags */
440 #define MMF_VM_MERGEABLE	16	/* KSM may merge identical pages */
441 #define MMF_VM_HUGEPAGE		17	/* set when VM_HUGEPAGE is set on vma */
442 #define MMF_EXE_FILE_CHANGED	18	/* see prctl_set_mm_exe_file() */
443 
444 #define MMF_INIT_MASK		(MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
445 
446 struct sighand_struct {
447 	atomic_t		count;
448 	struct k_sigaction	action[_NSIG];
449 	spinlock_t		siglock;
450 	wait_queue_head_t	signalfd_wqh;
451 };
452 
453 struct pacct_struct {
454 	int			ac_flag;
455 	long			ac_exitcode;
456 	unsigned long		ac_mem;
457 	cputime_t		ac_utime, ac_stime;
458 	unsigned long		ac_minflt, ac_majflt;
459 };
460 
461 struct cpu_itimer {
462 	cputime_t expires;
463 	cputime_t incr;
464 	u32 error;
465 	u32 incr_error;
466 };
467 
468 /**
469  * struct task_cputime - collected CPU time counts
470  * @utime:		time spent in user mode, in &cputime_t units
471  * @stime:		time spent in kernel mode, in &cputime_t units
472  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
473  *
474  * This structure groups together three kinds of CPU time that are
475  * tracked for threads and thread groups.  Most things considering
476  * CPU time want to group these counts together and treat all three
477  * of them in parallel.
478  */
479 struct task_cputime {
480 	cputime_t utime;
481 	cputime_t stime;
482 	unsigned long long sum_exec_runtime;
483 };
484 /* Alternate field names when used to cache expirations. */
485 #define prof_exp	stime
486 #define virt_exp	utime
487 #define sched_exp	sum_exec_runtime
488 
489 #define INIT_CPUTIME	\
490 	(struct task_cputime) {					\
491 		.utime = 0,					\
492 		.stime = 0,					\
493 		.sum_exec_runtime = 0,				\
494 	}
495 
496 /*
497  * Disable preemption until the scheduler is running.
498  * Reset by start_kernel()->sched_init()->init_idle().
499  *
500  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
501  * before the scheduler is active -- see should_resched().
502  */
503 #define INIT_PREEMPT_COUNT	(1 + PREEMPT_ACTIVE)
504 
505 /**
506  * struct thread_group_cputimer - thread group interval timer counts
507  * @cputime:		thread group interval timers.
508  * @running:		non-zero when there are timers running and
509  * 			@cputime receives updates.
510  * @lock:		lock for fields in this struct.
511  *
512  * This structure contains the version of task_cputime, above, that is
513  * used for thread group CPU timer calculations.
514  */
515 struct thread_group_cputimer {
516 	struct task_cputime cputime;
517 	int running;
518 	raw_spinlock_t lock;
519 };
520 
521 #include <linux/rwsem.h>
522 struct autogroup;
523 
524 /*
525  * NOTE! "signal_struct" does not have its own
526  * locking, because a shared signal_struct always
527  * implies a shared sighand_struct, so locking
528  * sighand_struct is always a proper superset of
529  * the locking of signal_struct.
530  */
531 struct signal_struct {
532 	atomic_t		sigcnt;
533 	atomic_t		live;
534 	int			nr_threads;
535 
536 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
537 
538 	/* current thread group signal load-balancing target: */
539 	struct task_struct	*curr_target;
540 
541 	/* shared signal handling: */
542 	struct sigpending	shared_pending;
543 
544 	/* thread group exit support */
545 	int			group_exit_code;
546 	/* overloaded:
547 	 * - notify group_exit_task when ->count is equal to notify_count
548 	 * - everyone except group_exit_task is stopped during signal delivery
549 	 *   of fatal signals, group_exit_task processes the signal.
550 	 */
551 	int			notify_count;
552 	struct task_struct	*group_exit_task;
553 
554 	/* thread group stop support, overloads group_exit_code too */
555 	int			group_stop_count;
556 	unsigned int		flags; /* see SIGNAL_* flags below */
557 
558 	/*
559 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
560 	 * manager, to re-parent orphan (double-forking) child processes
561 	 * to this process instead of 'init'. The service manager is
562 	 * able to receive SIGCHLD signals and is able to investigate
563 	 * the process until it calls wait(). All children of this
564 	 * process will inherit a flag if they should look for a
565 	 * child_subreaper process at exit.
566 	 */
567 	unsigned int		is_child_subreaper:1;
568 	unsigned int		has_child_subreaper:1;
569 
570 	/* POSIX.1b Interval Timers */
571 	struct list_head posix_timers;
572 
573 	/* ITIMER_REAL timer for the process */
574 	struct hrtimer real_timer;
575 	struct pid *leader_pid;
576 	ktime_t it_real_incr;
577 
578 	/*
579 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
580 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
581 	 * values are defined to 0 and 1 respectively
582 	 */
583 	struct cpu_itimer it[2];
584 
585 	/*
586 	 * Thread group totals for process CPU timers.
587 	 * See thread_group_cputimer(), et al, for details.
588 	 */
589 	struct thread_group_cputimer cputimer;
590 
591 	/* Earliest-expiration cache. */
592 	struct task_cputime cputime_expires;
593 
594 	struct list_head cpu_timers[3];
595 
596 	struct pid *tty_old_pgrp;
597 
598 	/* boolean value for session group leader */
599 	int leader;
600 
601 	struct tty_struct *tty; /* NULL if no tty */
602 
603 #ifdef CONFIG_SCHED_AUTOGROUP
604 	struct autogroup *autogroup;
605 #endif
606 	/*
607 	 * Cumulative resource counters for dead threads in the group,
608 	 * and for reaped dead child processes forked by this group.
609 	 * Live threads maintain their own counters and add to these
610 	 * in __exit_signal, except for the group leader.
611 	 */
612 	cputime_t utime, stime, cutime, cstime;
613 	cputime_t gtime;
614 	cputime_t cgtime;
615 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
616 	cputime_t prev_utime, prev_stime;
617 #endif
618 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
619 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
620 	unsigned long inblock, oublock, cinblock, coublock;
621 	unsigned long maxrss, cmaxrss;
622 	struct task_io_accounting ioac;
623 
624 	/*
625 	 * Cumulative ns of schedule CPU time fo dead threads in the
626 	 * group, not including a zombie group leader, (This only differs
627 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
628 	 * other than jiffies.)
629 	 */
630 	unsigned long long sum_sched_runtime;
631 
632 	/*
633 	 * We don't bother to synchronize most readers of this at all,
634 	 * because there is no reader checking a limit that actually needs
635 	 * to get both rlim_cur and rlim_max atomically, and either one
636 	 * alone is a single word that can safely be read normally.
637 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
638 	 * protect this instead of the siglock, because they really
639 	 * have no need to disable irqs.
640 	 */
641 	struct rlimit rlim[RLIM_NLIMITS];
642 
643 #ifdef CONFIG_BSD_PROCESS_ACCT
644 	struct pacct_struct pacct;	/* per-process accounting information */
645 #endif
646 #ifdef CONFIG_TASKSTATS
647 	struct taskstats *stats;
648 #endif
649 #ifdef CONFIG_AUDIT
650 	unsigned audit_tty;
651 	struct tty_audit_buf *tty_audit_buf;
652 #endif
653 #ifdef CONFIG_CGROUPS
654 	/*
655 	 * group_rwsem prevents new tasks from entering the threadgroup and
656 	 * member tasks from exiting,a more specifically, setting of
657 	 * PF_EXITING.  fork and exit paths are protected with this rwsem
658 	 * using threadgroup_change_begin/end().  Users which require
659 	 * threadgroup to remain stable should use threadgroup_[un]lock()
660 	 * which also takes care of exec path.  Currently, cgroup is the
661 	 * only user.
662 	 */
663 	struct rw_semaphore group_rwsem;
664 #endif
665 
666 	int oom_adj;		/* OOM kill score adjustment (bit shift) */
667 	int oom_score_adj;	/* OOM kill score adjustment */
668 	int oom_score_adj_min;	/* OOM kill score adjustment minimum value.
669 				 * Only settable by CAP_SYS_RESOURCE. */
670 
671 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
672 					 * credential calculations
673 					 * (notably. ptrace) */
674 };
675 
676 /* Context switch must be unlocked if interrupts are to be enabled */
677 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
678 # define __ARCH_WANT_UNLOCKED_CTXSW
679 #endif
680 
681 /*
682  * Bits in flags field of signal_struct.
683  */
684 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
685 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
686 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
687 /*
688  * Pending notifications to parent.
689  */
690 #define SIGNAL_CLD_STOPPED	0x00000010
691 #define SIGNAL_CLD_CONTINUED	0x00000020
692 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
693 
694 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
695 
696 /* If true, all threads except ->group_exit_task have pending SIGKILL */
697 static inline int signal_group_exit(const struct signal_struct *sig)
698 {
699 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
700 		(sig->group_exit_task != NULL);
701 }
702 
703 /*
704  * Some day this will be a full-fledged user tracking system..
705  */
706 struct user_struct {
707 	atomic_t __count;	/* reference count */
708 	atomic_t processes;	/* How many processes does this user have? */
709 	atomic_t files;		/* How many open files does this user have? */
710 	atomic_t sigpending;	/* How many pending signals does this user have? */
711 #ifdef CONFIG_INOTIFY_USER
712 	atomic_t inotify_watches; /* How many inotify watches does this user have? */
713 	atomic_t inotify_devs;	/* How many inotify devs does this user have opened? */
714 #endif
715 #ifdef CONFIG_FANOTIFY
716 	atomic_t fanotify_listeners;
717 #endif
718 #ifdef CONFIG_EPOLL
719 	atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
720 #endif
721 #ifdef CONFIG_POSIX_MQUEUE
722 	/* protected by mq_lock	*/
723 	unsigned long mq_bytes;	/* How many bytes can be allocated to mqueue? */
724 #endif
725 	unsigned long locked_shm; /* How many pages of mlocked shm ? */
726 
727 #ifdef CONFIG_KEYS
728 	struct key *uid_keyring;	/* UID specific keyring */
729 	struct key *session_keyring;	/* UID's default session keyring */
730 #endif
731 
732 	/* Hash table maintenance information */
733 	struct hlist_node uidhash_node;
734 	kuid_t uid;
735 
736 #ifdef CONFIG_PERF_EVENTS
737 	atomic_long_t locked_vm;
738 #endif
739 };
740 
741 extern int uids_sysfs_init(void);
742 
743 extern struct user_struct *find_user(kuid_t);
744 
745 extern struct user_struct root_user;
746 #define INIT_USER (&root_user)
747 
748 
749 struct backing_dev_info;
750 struct reclaim_state;
751 
752 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
753 struct sched_info {
754 	/* cumulative counters */
755 	unsigned long pcount;	      /* # of times run on this cpu */
756 	unsigned long long run_delay; /* time spent waiting on a runqueue */
757 
758 	/* timestamps */
759 	unsigned long long last_arrival,/* when we last ran on a cpu */
760 			   last_queued;	/* when we were last queued to run */
761 };
762 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
763 
764 #ifdef CONFIG_TASK_DELAY_ACCT
765 struct task_delay_info {
766 	spinlock_t	lock;
767 	unsigned int	flags;	/* Private per-task flags */
768 
769 	/* For each stat XXX, add following, aligned appropriately
770 	 *
771 	 * struct timespec XXX_start, XXX_end;
772 	 * u64 XXX_delay;
773 	 * u32 XXX_count;
774 	 *
775 	 * Atomicity of updates to XXX_delay, XXX_count protected by
776 	 * single lock above (split into XXX_lock if contention is an issue).
777 	 */
778 
779 	/*
780 	 * XXX_count is incremented on every XXX operation, the delay
781 	 * associated with the operation is added to XXX_delay.
782 	 * XXX_delay contains the accumulated delay time in nanoseconds.
783 	 */
784 	struct timespec blkio_start, blkio_end;	/* Shared by blkio, swapin */
785 	u64 blkio_delay;	/* wait for sync block io completion */
786 	u64 swapin_delay;	/* wait for swapin block io completion */
787 	u32 blkio_count;	/* total count of the number of sync block */
788 				/* io operations performed */
789 	u32 swapin_count;	/* total count of the number of swapin block */
790 				/* io operations performed */
791 
792 	struct timespec freepages_start, freepages_end;
793 	u64 freepages_delay;	/* wait for memory reclaim */
794 	u32 freepages_count;	/* total count of memory reclaim */
795 };
796 #endif	/* CONFIG_TASK_DELAY_ACCT */
797 
798 static inline int sched_info_on(void)
799 {
800 #ifdef CONFIG_SCHEDSTATS
801 	return 1;
802 #elif defined(CONFIG_TASK_DELAY_ACCT)
803 	extern int delayacct_on;
804 	return delayacct_on;
805 #else
806 	return 0;
807 #endif
808 }
809 
810 enum cpu_idle_type {
811 	CPU_IDLE,
812 	CPU_NOT_IDLE,
813 	CPU_NEWLY_IDLE,
814 	CPU_MAX_IDLE_TYPES
815 };
816 
817 /*
818  * Increase resolution of nice-level calculations for 64-bit architectures.
819  * The extra resolution improves shares distribution and load balancing of
820  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
821  * hierarchies, especially on larger systems. This is not a user-visible change
822  * and does not change the user-interface for setting shares/weights.
823  *
824  * We increase resolution only if we have enough bits to allow this increased
825  * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
826  * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
827  * increased costs.
828  */
829 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
830 # define SCHED_LOAD_RESOLUTION	10
831 # define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
832 # define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
833 #else
834 # define SCHED_LOAD_RESOLUTION	0
835 # define scale_load(w)		(w)
836 # define scale_load_down(w)	(w)
837 #endif
838 
839 #define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
840 #define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
841 
842 /*
843  * Increase resolution of cpu_power calculations
844  */
845 #define SCHED_POWER_SHIFT	10
846 #define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)
847 
848 /*
849  * sched-domains (multiprocessor balancing) declarations:
850  */
851 #ifdef CONFIG_SMP
852 #define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
853 #define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
854 #define SD_BALANCE_EXEC		0x0004	/* Balance on exec */
855 #define SD_BALANCE_FORK		0x0008	/* Balance on fork, clone */
856 #define SD_BALANCE_WAKE		0x0010  /* Balance on wakeup */
857 #define SD_WAKE_AFFINE		0x0020	/* Wake task to waking CPU */
858 #define SD_PREFER_LOCAL		0x0040  /* Prefer to keep tasks local to this domain */
859 #define SD_SHARE_CPUPOWER	0x0080	/* Domain members share cpu power */
860 #define SD_SHARE_PKG_RESOURCES	0x0200	/* Domain members share cpu pkg resources */
861 #define SD_SERIALIZE		0x0400	/* Only a single load balancing instance */
862 #define SD_ASYM_PACKING		0x0800  /* Place busy groups earlier in the domain */
863 #define SD_PREFER_SIBLING	0x1000	/* Prefer to place tasks in a sibling domain */
864 #define SD_OVERLAP		0x2000	/* sched_domains of this level overlap */
865 
866 extern int __weak arch_sd_sibiling_asym_packing(void);
867 
868 struct sched_group_power {
869 	atomic_t ref;
870 	/*
871 	 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
872 	 * single CPU.
873 	 */
874 	unsigned int power, power_orig;
875 	unsigned long next_update;
876 	/*
877 	 * Number of busy cpus in this group.
878 	 */
879 	atomic_t nr_busy_cpus;
880 
881 	unsigned long cpumask[0]; /* iteration mask */
882 };
883 
884 struct sched_group {
885 	struct sched_group *next;	/* Must be a circular list */
886 	atomic_t ref;
887 
888 	unsigned int group_weight;
889 	struct sched_group_power *sgp;
890 
891 	/*
892 	 * The CPUs this group covers.
893 	 *
894 	 * NOTE: this field is variable length. (Allocated dynamically
895 	 * by attaching extra space to the end of the structure,
896 	 * depending on how many CPUs the kernel has booted up with)
897 	 */
898 	unsigned long cpumask[0];
899 };
900 
901 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
902 {
903 	return to_cpumask(sg->cpumask);
904 }
905 
906 /*
907  * cpumask masking which cpus in the group are allowed to iterate up the domain
908  * tree.
909  */
910 static inline struct cpumask *sched_group_mask(struct sched_group *sg)
911 {
912 	return to_cpumask(sg->sgp->cpumask);
913 }
914 
915 /**
916  * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
917  * @group: The group whose first cpu is to be returned.
918  */
919 static inline unsigned int group_first_cpu(struct sched_group *group)
920 {
921 	return cpumask_first(sched_group_cpus(group));
922 }
923 
924 struct sched_domain_attr {
925 	int relax_domain_level;
926 };
927 
928 #define SD_ATTR_INIT	(struct sched_domain_attr) {	\
929 	.relax_domain_level = -1,			\
930 }
931 
932 extern int sched_domain_level_max;
933 
934 struct sched_domain {
935 	/* These fields must be setup */
936 	struct sched_domain *parent;	/* top domain must be null terminated */
937 	struct sched_domain *child;	/* bottom domain must be null terminated */
938 	struct sched_group *groups;	/* the balancing groups of the domain */
939 	unsigned long min_interval;	/* Minimum balance interval ms */
940 	unsigned long max_interval;	/* Maximum balance interval ms */
941 	unsigned int busy_factor;	/* less balancing by factor if busy */
942 	unsigned int imbalance_pct;	/* No balance until over watermark */
943 	unsigned int cache_nice_tries;	/* Leave cache hot tasks for # tries */
944 	unsigned int busy_idx;
945 	unsigned int idle_idx;
946 	unsigned int newidle_idx;
947 	unsigned int wake_idx;
948 	unsigned int forkexec_idx;
949 	unsigned int smt_gain;
950 	int flags;			/* See SD_* */
951 	int level;
952 
953 	/* Runtime fields. */
954 	unsigned long last_balance;	/* init to jiffies. units in jiffies */
955 	unsigned int balance_interval;	/* initialise to 1. units in ms. */
956 	unsigned int nr_balance_failed; /* initialise to 0 */
957 
958 	u64 last_update;
959 
960 #ifdef CONFIG_SCHEDSTATS
961 	/* load_balance() stats */
962 	unsigned int lb_count[CPU_MAX_IDLE_TYPES];
963 	unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
964 	unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
965 	unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
966 	unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
967 	unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
968 	unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
969 	unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
970 
971 	/* Active load balancing */
972 	unsigned int alb_count;
973 	unsigned int alb_failed;
974 	unsigned int alb_pushed;
975 
976 	/* SD_BALANCE_EXEC stats */
977 	unsigned int sbe_count;
978 	unsigned int sbe_balanced;
979 	unsigned int sbe_pushed;
980 
981 	/* SD_BALANCE_FORK stats */
982 	unsigned int sbf_count;
983 	unsigned int sbf_balanced;
984 	unsigned int sbf_pushed;
985 
986 	/* try_to_wake_up() stats */
987 	unsigned int ttwu_wake_remote;
988 	unsigned int ttwu_move_affine;
989 	unsigned int ttwu_move_balance;
990 #endif
991 #ifdef CONFIG_SCHED_DEBUG
992 	char *name;
993 #endif
994 	union {
995 		void *private;		/* used during construction */
996 		struct rcu_head rcu;	/* used during destruction */
997 	};
998 
999 	unsigned int span_weight;
1000 	/*
1001 	 * Span of all CPUs in this domain.
1002 	 *
1003 	 * NOTE: this field is variable length. (Allocated dynamically
1004 	 * by attaching extra space to the end of the structure,
1005 	 * depending on how many CPUs the kernel has booted up with)
1006 	 */
1007 	unsigned long span[0];
1008 };
1009 
1010 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1011 {
1012 	return to_cpumask(sd->span);
1013 }
1014 
1015 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1016 				    struct sched_domain_attr *dattr_new);
1017 
1018 /* Allocate an array of sched domains, for partition_sched_domains(). */
1019 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1020 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1021 
1022 /* Test a flag in parent sched domain */
1023 static inline int test_sd_parent(struct sched_domain *sd, int flag)
1024 {
1025 	if (sd->parent && (sd->parent->flags & flag))
1026 		return 1;
1027 
1028 	return 0;
1029 }
1030 
1031 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
1032 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
1033 
1034 bool cpus_share_cache(int this_cpu, int that_cpu);
1035 
1036 #else /* CONFIG_SMP */
1037 
1038 struct sched_domain_attr;
1039 
1040 static inline void
1041 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1042 			struct sched_domain_attr *dattr_new)
1043 {
1044 }
1045 
1046 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1047 {
1048 	return true;
1049 }
1050 
1051 #endif	/* !CONFIG_SMP */
1052 
1053 
1054 struct io_context;			/* See blkdev.h */
1055 
1056 
1057 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1058 extern void prefetch_stack(struct task_struct *t);
1059 #else
1060 static inline void prefetch_stack(struct task_struct *t) { }
1061 #endif
1062 
1063 struct audit_context;		/* See audit.c */
1064 struct mempolicy;
1065 struct pipe_inode_info;
1066 struct uts_namespace;
1067 
1068 struct rq;
1069 struct sched_domain;
1070 
1071 /*
1072  * wake flags
1073  */
1074 #define WF_SYNC		0x01		/* waker goes to sleep after wakup */
1075 #define WF_FORK		0x02		/* child wakeup after fork */
1076 #define WF_MIGRATED	0x04		/* internal use, task got migrated */
1077 
1078 #define ENQUEUE_WAKEUP		1
1079 #define ENQUEUE_HEAD		2
1080 #ifdef CONFIG_SMP
1081 #define ENQUEUE_WAKING		4	/* sched_class::task_waking was called */
1082 #else
1083 #define ENQUEUE_WAKING		0
1084 #endif
1085 
1086 #define DEQUEUE_SLEEP		1
1087 
1088 struct sched_class {
1089 	const struct sched_class *next;
1090 
1091 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1092 	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1093 	void (*yield_task) (struct rq *rq);
1094 	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1095 
1096 	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1097 
1098 	struct task_struct * (*pick_next_task) (struct rq *rq);
1099 	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1100 
1101 #ifdef CONFIG_SMP
1102 	int  (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1103 
1104 	void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1105 	void (*post_schedule) (struct rq *this_rq);
1106 	void (*task_waking) (struct task_struct *task);
1107 	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1108 
1109 	void (*set_cpus_allowed)(struct task_struct *p,
1110 				 const struct cpumask *newmask);
1111 
1112 	void (*rq_online)(struct rq *rq);
1113 	void (*rq_offline)(struct rq *rq);
1114 #endif
1115 
1116 	void (*set_curr_task) (struct rq *rq);
1117 	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1118 	void (*task_fork) (struct task_struct *p);
1119 
1120 	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1121 	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1122 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1123 			     int oldprio);
1124 
1125 	unsigned int (*get_rr_interval) (struct rq *rq,
1126 					 struct task_struct *task);
1127 
1128 #ifdef CONFIG_FAIR_GROUP_SCHED
1129 	void (*task_move_group) (struct task_struct *p, int on_rq);
1130 #endif
1131 };
1132 
1133 struct load_weight {
1134 	unsigned long weight, inv_weight;
1135 };
1136 
1137 #ifdef CONFIG_SCHEDSTATS
1138 struct sched_statistics {
1139 	u64			wait_start;
1140 	u64			wait_max;
1141 	u64			wait_count;
1142 	u64			wait_sum;
1143 	u64			iowait_count;
1144 	u64			iowait_sum;
1145 
1146 	u64			sleep_start;
1147 	u64			sleep_max;
1148 	s64			sum_sleep_runtime;
1149 
1150 	u64			block_start;
1151 	u64			block_max;
1152 	u64			exec_max;
1153 	u64			slice_max;
1154 
1155 	u64			nr_migrations_cold;
1156 	u64			nr_failed_migrations_affine;
1157 	u64			nr_failed_migrations_running;
1158 	u64			nr_failed_migrations_hot;
1159 	u64			nr_forced_migrations;
1160 
1161 	u64			nr_wakeups;
1162 	u64			nr_wakeups_sync;
1163 	u64			nr_wakeups_migrate;
1164 	u64			nr_wakeups_local;
1165 	u64			nr_wakeups_remote;
1166 	u64			nr_wakeups_affine;
1167 	u64			nr_wakeups_affine_attempts;
1168 	u64			nr_wakeups_passive;
1169 	u64			nr_wakeups_idle;
1170 };
1171 #endif
1172 
1173 struct sched_entity {
1174 	struct load_weight	load;		/* for load-balancing */
1175 	struct rb_node		run_node;
1176 	struct list_head	group_node;
1177 	unsigned int		on_rq;
1178 
1179 	u64			exec_start;
1180 	u64			sum_exec_runtime;
1181 	u64			vruntime;
1182 	u64			prev_sum_exec_runtime;
1183 
1184 	u64			nr_migrations;
1185 
1186 #ifdef CONFIG_SCHEDSTATS
1187 	struct sched_statistics statistics;
1188 #endif
1189 
1190 #ifdef CONFIG_FAIR_GROUP_SCHED
1191 	struct sched_entity	*parent;
1192 	/* rq on which this entity is (to be) queued: */
1193 	struct cfs_rq		*cfs_rq;
1194 	/* rq "owned" by this entity/group: */
1195 	struct cfs_rq		*my_q;
1196 #endif
1197 };
1198 
1199 struct sched_rt_entity {
1200 	struct list_head run_list;
1201 	unsigned long timeout;
1202 	unsigned int time_slice;
1203 
1204 	struct sched_rt_entity *back;
1205 #ifdef CONFIG_RT_GROUP_SCHED
1206 	struct sched_rt_entity	*parent;
1207 	/* rq on which this entity is (to be) queued: */
1208 	struct rt_rq		*rt_rq;
1209 	/* rq "owned" by this entity/group: */
1210 	struct rt_rq		*my_q;
1211 #endif
1212 };
1213 
1214 /*
1215  * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1216  * Timeslices get refilled after they expire.
1217  */
1218 #define RR_TIMESLICE		(100 * HZ / 1000)
1219 
1220 struct rcu_node;
1221 
1222 enum perf_event_task_context {
1223 	perf_invalid_context = -1,
1224 	perf_hw_context = 0,
1225 	perf_sw_context,
1226 	perf_nr_task_contexts,
1227 };
1228 
1229 struct task_struct {
1230 	volatile long state;	/* -1 unrunnable, 0 runnable, >0 stopped */
1231 	void *stack;
1232 	atomic_t usage;
1233 	unsigned int flags;	/* per process flags, defined below */
1234 	unsigned int ptrace;
1235 
1236 #ifdef CONFIG_SMP
1237 	struct llist_node wake_entry;
1238 	int on_cpu;
1239 #endif
1240 	int on_rq;
1241 
1242 	int prio, static_prio, normal_prio;
1243 	unsigned int rt_priority;
1244 	const struct sched_class *sched_class;
1245 	struct sched_entity se;
1246 	struct sched_rt_entity rt;
1247 
1248 #ifdef CONFIG_PREEMPT_NOTIFIERS
1249 	/* list of struct preempt_notifier: */
1250 	struct hlist_head preempt_notifiers;
1251 #endif
1252 
1253 	/*
1254 	 * fpu_counter contains the number of consecutive context switches
1255 	 * that the FPU is used. If this is over a threshold, the lazy fpu
1256 	 * saving becomes unlazy to save the trap. This is an unsigned char
1257 	 * so that after 256 times the counter wraps and the behavior turns
1258 	 * lazy again; this to deal with bursty apps that only use FPU for
1259 	 * a short time
1260 	 */
1261 	unsigned char fpu_counter;
1262 #ifdef CONFIG_BLK_DEV_IO_TRACE
1263 	unsigned int btrace_seq;
1264 #endif
1265 
1266 	unsigned int policy;
1267 	int nr_cpus_allowed;
1268 	cpumask_t cpus_allowed;
1269 
1270 #ifdef CONFIG_PREEMPT_RCU
1271 	int rcu_read_lock_nesting;
1272 	char rcu_read_unlock_special;
1273 	struct list_head rcu_node_entry;
1274 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1275 #ifdef CONFIG_TREE_PREEMPT_RCU
1276 	struct rcu_node *rcu_blocked_node;
1277 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1278 #ifdef CONFIG_RCU_BOOST
1279 	struct rt_mutex *rcu_boost_mutex;
1280 #endif /* #ifdef CONFIG_RCU_BOOST */
1281 
1282 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1283 	struct sched_info sched_info;
1284 #endif
1285 
1286 	struct list_head tasks;
1287 #ifdef CONFIG_SMP
1288 	struct plist_node pushable_tasks;
1289 #endif
1290 
1291 	struct mm_struct *mm, *active_mm;
1292 #ifdef CONFIG_COMPAT_BRK
1293 	unsigned brk_randomized:1;
1294 #endif
1295 #if defined(SPLIT_RSS_COUNTING)
1296 	struct task_rss_stat	rss_stat;
1297 #endif
1298 /* task state */
1299 	int exit_state;
1300 	int exit_code, exit_signal;
1301 	int pdeath_signal;  /*  The signal sent when the parent dies  */
1302 	unsigned int jobctl;	/* JOBCTL_*, siglock protected */
1303 	/* ??? */
1304 	unsigned int personality;
1305 	unsigned did_exec:1;
1306 	unsigned in_execve:1;	/* Tell the LSMs that the process is doing an
1307 				 * execve */
1308 	unsigned in_iowait:1;
1309 
1310 	/* task may not gain privileges */
1311 	unsigned no_new_privs:1;
1312 
1313 	/* Revert to default priority/policy when forking */
1314 	unsigned sched_reset_on_fork:1;
1315 	unsigned sched_contributes_to_load:1;
1316 
1317 	pid_t pid;
1318 	pid_t tgid;
1319 
1320 #ifdef CONFIG_CC_STACKPROTECTOR
1321 	/* Canary value for the -fstack-protector gcc feature */
1322 	unsigned long stack_canary;
1323 #endif
1324 	/*
1325 	 * pointers to (original) parent process, youngest child, younger sibling,
1326 	 * older sibling, respectively.  (p->father can be replaced with
1327 	 * p->real_parent->pid)
1328 	 */
1329 	struct task_struct __rcu *real_parent; /* real parent process */
1330 	struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1331 	/*
1332 	 * children/sibling forms the list of my natural children
1333 	 */
1334 	struct list_head children;	/* list of my children */
1335 	struct list_head sibling;	/* linkage in my parent's children list */
1336 	struct task_struct *group_leader;	/* threadgroup leader */
1337 
1338 	/*
1339 	 * ptraced is the list of tasks this task is using ptrace on.
1340 	 * This includes both natural children and PTRACE_ATTACH targets.
1341 	 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1342 	 */
1343 	struct list_head ptraced;
1344 	struct list_head ptrace_entry;
1345 
1346 	/* PID/PID hash table linkage. */
1347 	struct pid_link pids[PIDTYPE_MAX];
1348 	struct list_head thread_group;
1349 
1350 	struct completion *vfork_done;		/* for vfork() */
1351 	int __user *set_child_tid;		/* CLONE_CHILD_SETTID */
1352 	int __user *clear_child_tid;		/* CLONE_CHILD_CLEARTID */
1353 
1354 	cputime_t utime, stime, utimescaled, stimescaled;
1355 	cputime_t gtime;
1356 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1357 	cputime_t prev_utime, prev_stime;
1358 #endif
1359 	unsigned long nvcsw, nivcsw; /* context switch counts */
1360 	struct timespec start_time; 		/* monotonic time */
1361 	struct timespec real_start_time;	/* boot based time */
1362 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1363 	unsigned long min_flt, maj_flt;
1364 
1365 	struct task_cputime cputime_expires;
1366 	struct list_head cpu_timers[3];
1367 
1368 /* process credentials */
1369 	const struct cred __rcu *real_cred; /* objective and real subjective task
1370 					 * credentials (COW) */
1371 	const struct cred __rcu *cred;	/* effective (overridable) subjective task
1372 					 * credentials (COW) */
1373 	char comm[TASK_COMM_LEN]; /* executable name excluding path
1374 				     - access with [gs]et_task_comm (which lock
1375 				       it with task_lock())
1376 				     - initialized normally by setup_new_exec */
1377 /* file system info */
1378 	int link_count, total_link_count;
1379 #ifdef CONFIG_SYSVIPC
1380 /* ipc stuff */
1381 	struct sysv_sem sysvsem;
1382 #endif
1383 #ifdef CONFIG_DETECT_HUNG_TASK
1384 /* hung task detection */
1385 	unsigned long last_switch_count;
1386 #endif
1387 /* CPU-specific state of this task */
1388 	struct thread_struct thread;
1389 /* filesystem information */
1390 	struct fs_struct *fs;
1391 /* open file information */
1392 	struct files_struct *files;
1393 /* namespaces */
1394 	struct nsproxy *nsproxy;
1395 /* signal handlers */
1396 	struct signal_struct *signal;
1397 	struct sighand_struct *sighand;
1398 
1399 	sigset_t blocked, real_blocked;
1400 	sigset_t saved_sigmask;	/* restored if set_restore_sigmask() was used */
1401 	struct sigpending pending;
1402 
1403 	unsigned long sas_ss_sp;
1404 	size_t sas_ss_size;
1405 	int (*notifier)(void *priv);
1406 	void *notifier_data;
1407 	sigset_t *notifier_mask;
1408 	struct hlist_head task_works;
1409 
1410 	struct audit_context *audit_context;
1411 #ifdef CONFIG_AUDITSYSCALL
1412 	uid_t loginuid;
1413 	unsigned int sessionid;
1414 #endif
1415 	struct seccomp seccomp;
1416 
1417 /* Thread group tracking */
1418    	u32 parent_exec_id;
1419    	u32 self_exec_id;
1420 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1421  * mempolicy */
1422 	spinlock_t alloc_lock;
1423 
1424 	/* Protection of the PI data structures: */
1425 	raw_spinlock_t pi_lock;
1426 
1427 #ifdef CONFIG_RT_MUTEXES
1428 	/* PI waiters blocked on a rt_mutex held by this task */
1429 	struct plist_head pi_waiters;
1430 	/* Deadlock detection and priority inheritance handling */
1431 	struct rt_mutex_waiter *pi_blocked_on;
1432 #endif
1433 
1434 #ifdef CONFIG_DEBUG_MUTEXES
1435 	/* mutex deadlock detection */
1436 	struct mutex_waiter *blocked_on;
1437 #endif
1438 #ifdef CONFIG_TRACE_IRQFLAGS
1439 	unsigned int irq_events;
1440 	unsigned long hardirq_enable_ip;
1441 	unsigned long hardirq_disable_ip;
1442 	unsigned int hardirq_enable_event;
1443 	unsigned int hardirq_disable_event;
1444 	int hardirqs_enabled;
1445 	int hardirq_context;
1446 	unsigned long softirq_disable_ip;
1447 	unsigned long softirq_enable_ip;
1448 	unsigned int softirq_disable_event;
1449 	unsigned int softirq_enable_event;
1450 	int softirqs_enabled;
1451 	int softirq_context;
1452 #endif
1453 #ifdef CONFIG_LOCKDEP
1454 # define MAX_LOCK_DEPTH 48UL
1455 	u64 curr_chain_key;
1456 	int lockdep_depth;
1457 	unsigned int lockdep_recursion;
1458 	struct held_lock held_locks[MAX_LOCK_DEPTH];
1459 	gfp_t lockdep_reclaim_gfp;
1460 #endif
1461 
1462 /* journalling filesystem info */
1463 	void *journal_info;
1464 
1465 /* stacked block device info */
1466 	struct bio_list *bio_list;
1467 
1468 #ifdef CONFIG_BLOCK
1469 /* stack plugging */
1470 	struct blk_plug *plug;
1471 #endif
1472 
1473 /* VM state */
1474 	struct reclaim_state *reclaim_state;
1475 
1476 	struct backing_dev_info *backing_dev_info;
1477 
1478 	struct io_context *io_context;
1479 
1480 	unsigned long ptrace_message;
1481 	siginfo_t *last_siginfo; /* For ptrace use.  */
1482 	struct task_io_accounting ioac;
1483 #if defined(CONFIG_TASK_XACCT)
1484 	u64 acct_rss_mem1;	/* accumulated rss usage */
1485 	u64 acct_vm_mem1;	/* accumulated virtual memory usage */
1486 	cputime_t acct_timexpd;	/* stime + utime since last update */
1487 #endif
1488 #ifdef CONFIG_CPUSETS
1489 	nodemask_t mems_allowed;	/* Protected by alloc_lock */
1490 	seqcount_t mems_allowed_seq;	/* Seqence no to catch updates */
1491 	int cpuset_mem_spread_rotor;
1492 	int cpuset_slab_spread_rotor;
1493 #endif
1494 #ifdef CONFIG_CGROUPS
1495 	/* Control Group info protected by css_set_lock */
1496 	struct css_set __rcu *cgroups;
1497 	/* cg_list protected by css_set_lock and tsk->alloc_lock */
1498 	struct list_head cg_list;
1499 #endif
1500 #ifdef CONFIG_FUTEX
1501 	struct robust_list_head __user *robust_list;
1502 #ifdef CONFIG_COMPAT
1503 	struct compat_robust_list_head __user *compat_robust_list;
1504 #endif
1505 	struct list_head pi_state_list;
1506 	struct futex_pi_state *pi_state_cache;
1507 #endif
1508 #ifdef CONFIG_PERF_EVENTS
1509 	struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1510 	struct mutex perf_event_mutex;
1511 	struct list_head perf_event_list;
1512 #endif
1513 #ifdef CONFIG_NUMA
1514 	struct mempolicy *mempolicy;	/* Protected by alloc_lock */
1515 	short il_next;
1516 	short pref_node_fork;
1517 #endif
1518 	struct rcu_head rcu;
1519 
1520 	/*
1521 	 * cache last used pipe for splice
1522 	 */
1523 	struct pipe_inode_info *splice_pipe;
1524 #ifdef	CONFIG_TASK_DELAY_ACCT
1525 	struct task_delay_info *delays;
1526 #endif
1527 #ifdef CONFIG_FAULT_INJECTION
1528 	int make_it_fail;
1529 #endif
1530 	/*
1531 	 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1532 	 * balance_dirty_pages() for some dirty throttling pause
1533 	 */
1534 	int nr_dirtied;
1535 	int nr_dirtied_pause;
1536 	unsigned long dirty_paused_when; /* start of a write-and-pause period */
1537 
1538 #ifdef CONFIG_LATENCYTOP
1539 	int latency_record_count;
1540 	struct latency_record latency_record[LT_SAVECOUNT];
1541 #endif
1542 	/*
1543 	 * time slack values; these are used to round up poll() and
1544 	 * select() etc timeout values. These are in nanoseconds.
1545 	 */
1546 	unsigned long timer_slack_ns;
1547 	unsigned long default_timer_slack_ns;
1548 
1549 	struct list_head	*scm_work_list;
1550 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1551 	/* Index of current stored address in ret_stack */
1552 	int curr_ret_stack;
1553 	/* Stack of return addresses for return function tracing */
1554 	struct ftrace_ret_stack	*ret_stack;
1555 	/* time stamp for last schedule */
1556 	unsigned long long ftrace_timestamp;
1557 	/*
1558 	 * Number of functions that haven't been traced
1559 	 * because of depth overrun.
1560 	 */
1561 	atomic_t trace_overrun;
1562 	/* Pause for the tracing */
1563 	atomic_t tracing_graph_pause;
1564 #endif
1565 #ifdef CONFIG_TRACING
1566 	/* state flags for use by tracers */
1567 	unsigned long trace;
1568 	/* bitmask and counter of trace recursion */
1569 	unsigned long trace_recursion;
1570 #endif /* CONFIG_TRACING */
1571 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1572 	struct memcg_batch_info {
1573 		int do_batch;	/* incremented when batch uncharge started */
1574 		struct mem_cgroup *memcg; /* target memcg of uncharge */
1575 		unsigned long nr_pages;	/* uncharged usage */
1576 		unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1577 	} memcg_batch;
1578 #endif
1579 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1580 	atomic_t ptrace_bp_refcnt;
1581 #endif
1582 #ifdef CONFIG_UPROBES
1583 	struct uprobe_task *utask;
1584 	int uprobe_srcu_id;
1585 #endif
1586 };
1587 
1588 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1589 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1590 
1591 /*
1592  * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1593  * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1594  * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1595  * values are inverted: lower p->prio value means higher priority.
1596  *
1597  * The MAX_USER_RT_PRIO value allows the actual maximum
1598  * RT priority to be separate from the value exported to
1599  * user-space.  This allows kernel threads to set their
1600  * priority to a value higher than any user task. Note:
1601  * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1602  */
1603 
1604 #define MAX_USER_RT_PRIO	100
1605 #define MAX_RT_PRIO		MAX_USER_RT_PRIO
1606 
1607 #define MAX_PRIO		(MAX_RT_PRIO + 40)
1608 #define DEFAULT_PRIO		(MAX_RT_PRIO + 20)
1609 
1610 static inline int rt_prio(int prio)
1611 {
1612 	if (unlikely(prio < MAX_RT_PRIO))
1613 		return 1;
1614 	return 0;
1615 }
1616 
1617 static inline int rt_task(struct task_struct *p)
1618 {
1619 	return rt_prio(p->prio);
1620 }
1621 
1622 static inline struct pid *task_pid(struct task_struct *task)
1623 {
1624 	return task->pids[PIDTYPE_PID].pid;
1625 }
1626 
1627 static inline struct pid *task_tgid(struct task_struct *task)
1628 {
1629 	return task->group_leader->pids[PIDTYPE_PID].pid;
1630 }
1631 
1632 /*
1633  * Without tasklist or rcu lock it is not safe to dereference
1634  * the result of task_pgrp/task_session even if task == current,
1635  * we can race with another thread doing sys_setsid/sys_setpgid.
1636  */
1637 static inline struct pid *task_pgrp(struct task_struct *task)
1638 {
1639 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1640 }
1641 
1642 static inline struct pid *task_session(struct task_struct *task)
1643 {
1644 	return task->group_leader->pids[PIDTYPE_SID].pid;
1645 }
1646 
1647 struct pid_namespace;
1648 
1649 /*
1650  * the helpers to get the task's different pids as they are seen
1651  * from various namespaces
1652  *
1653  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1654  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1655  *                     current.
1656  * task_xid_nr_ns()  : id seen from the ns specified;
1657  *
1658  * set_task_vxid()   : assigns a virtual id to a task;
1659  *
1660  * see also pid_nr() etc in include/linux/pid.h
1661  */
1662 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1663 			struct pid_namespace *ns);
1664 
1665 static inline pid_t task_pid_nr(struct task_struct *tsk)
1666 {
1667 	return tsk->pid;
1668 }
1669 
1670 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1671 					struct pid_namespace *ns)
1672 {
1673 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1674 }
1675 
1676 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1677 {
1678 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1679 }
1680 
1681 
1682 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1683 {
1684 	return tsk->tgid;
1685 }
1686 
1687 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1688 
1689 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1690 {
1691 	return pid_vnr(task_tgid(tsk));
1692 }
1693 
1694 
1695 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1696 					struct pid_namespace *ns)
1697 {
1698 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1699 }
1700 
1701 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1702 {
1703 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1704 }
1705 
1706 
1707 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1708 					struct pid_namespace *ns)
1709 {
1710 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1711 }
1712 
1713 static inline pid_t task_session_vnr(struct task_struct *tsk)
1714 {
1715 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1716 }
1717 
1718 /* obsolete, do not use */
1719 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1720 {
1721 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1722 }
1723 
1724 /**
1725  * pid_alive - check that a task structure is not stale
1726  * @p: Task structure to be checked.
1727  *
1728  * Test if a process is not yet dead (at most zombie state)
1729  * If pid_alive fails, then pointers within the task structure
1730  * can be stale and must not be dereferenced.
1731  */
1732 static inline int pid_alive(struct task_struct *p)
1733 {
1734 	return p->pids[PIDTYPE_PID].pid != NULL;
1735 }
1736 
1737 /**
1738  * is_global_init - check if a task structure is init
1739  * @tsk: Task structure to be checked.
1740  *
1741  * Check if a task structure is the first user space task the kernel created.
1742  */
1743 static inline int is_global_init(struct task_struct *tsk)
1744 {
1745 	return tsk->pid == 1;
1746 }
1747 
1748 /*
1749  * is_container_init:
1750  * check whether in the task is init in its own pid namespace.
1751  */
1752 extern int is_container_init(struct task_struct *tsk);
1753 
1754 extern struct pid *cad_pid;
1755 
1756 extern void free_task(struct task_struct *tsk);
1757 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1758 
1759 extern void __put_task_struct(struct task_struct *t);
1760 
1761 static inline void put_task_struct(struct task_struct *t)
1762 {
1763 	if (atomic_dec_and_test(&t->usage))
1764 		__put_task_struct(t);
1765 }
1766 
1767 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1768 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1769 
1770 /*
1771  * Per process flags
1772  */
1773 #define PF_EXITING	0x00000004	/* getting shut down */
1774 #define PF_EXITPIDONE	0x00000008	/* pi exit done on shut down */
1775 #define PF_VCPU		0x00000010	/* I'm a virtual CPU */
1776 #define PF_WQ_WORKER	0x00000020	/* I'm a workqueue worker */
1777 #define PF_FORKNOEXEC	0x00000040	/* forked but didn't exec */
1778 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1779 #define PF_SUPERPRIV	0x00000100	/* used super-user privileges */
1780 #define PF_DUMPCORE	0x00000200	/* dumped core */
1781 #define PF_SIGNALED	0x00000400	/* killed by a signal */
1782 #define PF_MEMALLOC	0x00000800	/* Allocating memory */
1783 #define PF_NPROC_EXCEEDED 0x00001000	/* set_user noticed that RLIMIT_NPROC was exceeded */
1784 #define PF_USED_MATH	0x00002000	/* if unset the fpu must be initialized before use */
1785 #define PF_NOFREEZE	0x00008000	/* this thread should not be frozen */
1786 #define PF_FROZEN	0x00010000	/* frozen for system suspend */
1787 #define PF_FSTRANS	0x00020000	/* inside a filesystem transaction */
1788 #define PF_KSWAPD	0x00040000	/* I am kswapd */
1789 #define PF_LESS_THROTTLE 0x00100000	/* Throttle me less: I clean memory */
1790 #define PF_KTHREAD	0x00200000	/* I am a kernel thread */
1791 #define PF_RANDOMIZE	0x00400000	/* randomize virtual address space */
1792 #define PF_SWAPWRITE	0x00800000	/* Allowed to write to swap */
1793 #define PF_SPREAD_PAGE	0x01000000	/* Spread page cache over cpuset */
1794 #define PF_SPREAD_SLAB	0x02000000	/* Spread some slab caches over cpuset */
1795 #define PF_THREAD_BOUND	0x04000000	/* Thread bound to specific cpu */
1796 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1797 #define PF_MEMPOLICY	0x10000000	/* Non-default NUMA mempolicy */
1798 #define PF_MUTEX_TESTER	0x20000000	/* Thread belongs to the rt mutex tester */
1799 #define PF_FREEZER_SKIP	0x40000000	/* Freezer should not count it as freezable */
1800 
1801 /*
1802  * Only the _current_ task can read/write to tsk->flags, but other
1803  * tasks can access tsk->flags in readonly mode for example
1804  * with tsk_used_math (like during threaded core dumping).
1805  * There is however an exception to this rule during ptrace
1806  * or during fork: the ptracer task is allowed to write to the
1807  * child->flags of its traced child (same goes for fork, the parent
1808  * can write to the child->flags), because we're guaranteed the
1809  * child is not running and in turn not changing child->flags
1810  * at the same time the parent does it.
1811  */
1812 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1813 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1814 #define clear_used_math() clear_stopped_child_used_math(current)
1815 #define set_used_math() set_stopped_child_used_math(current)
1816 #define conditional_stopped_child_used_math(condition, child) \
1817 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1818 #define conditional_used_math(condition) \
1819 	conditional_stopped_child_used_math(condition, current)
1820 #define copy_to_stopped_child_used_math(child) \
1821 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1822 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1823 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1824 #define used_math() tsk_used_math(current)
1825 
1826 /*
1827  * task->jobctl flags
1828  */
1829 #define JOBCTL_STOP_SIGMASK	0xffff	/* signr of the last group stop */
1830 
1831 #define JOBCTL_STOP_DEQUEUED_BIT 16	/* stop signal dequeued */
1832 #define JOBCTL_STOP_PENDING_BIT	17	/* task should stop for group stop */
1833 #define JOBCTL_STOP_CONSUME_BIT	18	/* consume group stop count */
1834 #define JOBCTL_TRAP_STOP_BIT	19	/* trap for STOP */
1835 #define JOBCTL_TRAP_NOTIFY_BIT	20	/* trap for NOTIFY */
1836 #define JOBCTL_TRAPPING_BIT	21	/* switching to TRACED */
1837 #define JOBCTL_LISTENING_BIT	22	/* ptracer is listening for events */
1838 
1839 #define JOBCTL_STOP_DEQUEUED	(1 << JOBCTL_STOP_DEQUEUED_BIT)
1840 #define JOBCTL_STOP_PENDING	(1 << JOBCTL_STOP_PENDING_BIT)
1841 #define JOBCTL_STOP_CONSUME	(1 << JOBCTL_STOP_CONSUME_BIT)
1842 #define JOBCTL_TRAP_STOP	(1 << JOBCTL_TRAP_STOP_BIT)
1843 #define JOBCTL_TRAP_NOTIFY	(1 << JOBCTL_TRAP_NOTIFY_BIT)
1844 #define JOBCTL_TRAPPING		(1 << JOBCTL_TRAPPING_BIT)
1845 #define JOBCTL_LISTENING	(1 << JOBCTL_LISTENING_BIT)
1846 
1847 #define JOBCTL_TRAP_MASK	(JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1848 #define JOBCTL_PENDING_MASK	(JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1849 
1850 extern bool task_set_jobctl_pending(struct task_struct *task,
1851 				    unsigned int mask);
1852 extern void task_clear_jobctl_trapping(struct task_struct *task);
1853 extern void task_clear_jobctl_pending(struct task_struct *task,
1854 				      unsigned int mask);
1855 
1856 #ifdef CONFIG_PREEMPT_RCU
1857 
1858 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1859 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1860 
1861 static inline void rcu_copy_process(struct task_struct *p)
1862 {
1863 	p->rcu_read_lock_nesting = 0;
1864 	p->rcu_read_unlock_special = 0;
1865 #ifdef CONFIG_TREE_PREEMPT_RCU
1866 	p->rcu_blocked_node = NULL;
1867 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1868 #ifdef CONFIG_RCU_BOOST
1869 	p->rcu_boost_mutex = NULL;
1870 #endif /* #ifdef CONFIG_RCU_BOOST */
1871 	INIT_LIST_HEAD(&p->rcu_node_entry);
1872 }
1873 
1874 static inline void rcu_switch_from(struct task_struct *prev)
1875 {
1876 	if (prev->rcu_read_lock_nesting != 0)
1877 		rcu_preempt_note_context_switch();
1878 }
1879 
1880 #else
1881 
1882 static inline void rcu_copy_process(struct task_struct *p)
1883 {
1884 }
1885 
1886 static inline void rcu_switch_from(struct task_struct *prev)
1887 {
1888 }
1889 
1890 #endif
1891 
1892 #ifdef CONFIG_SMP
1893 extern void do_set_cpus_allowed(struct task_struct *p,
1894 			       const struct cpumask *new_mask);
1895 
1896 extern int set_cpus_allowed_ptr(struct task_struct *p,
1897 				const struct cpumask *new_mask);
1898 #else
1899 static inline void do_set_cpus_allowed(struct task_struct *p,
1900 				      const struct cpumask *new_mask)
1901 {
1902 }
1903 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1904 				       const struct cpumask *new_mask)
1905 {
1906 	if (!cpumask_test_cpu(0, new_mask))
1907 		return -EINVAL;
1908 	return 0;
1909 }
1910 #endif
1911 
1912 #ifndef CONFIG_CPUMASK_OFFSTACK
1913 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1914 {
1915 	return set_cpus_allowed_ptr(p, &new_mask);
1916 }
1917 #endif
1918 
1919 /*
1920  * Do not use outside of architecture code which knows its limitations.
1921  *
1922  * sched_clock() has no promise of monotonicity or bounded drift between
1923  * CPUs, use (which you should not) requires disabling IRQs.
1924  *
1925  * Please use one of the three interfaces below.
1926  */
1927 extern unsigned long long notrace sched_clock(void);
1928 /*
1929  * See the comment in kernel/sched/clock.c
1930  */
1931 extern u64 cpu_clock(int cpu);
1932 extern u64 local_clock(void);
1933 extern u64 sched_clock_cpu(int cpu);
1934 
1935 
1936 extern void sched_clock_init(void);
1937 
1938 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1939 static inline void sched_clock_tick(void)
1940 {
1941 }
1942 
1943 static inline void sched_clock_idle_sleep_event(void)
1944 {
1945 }
1946 
1947 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1948 {
1949 }
1950 #else
1951 /*
1952  * Architectures can set this to 1 if they have specified
1953  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1954  * but then during bootup it turns out that sched_clock()
1955  * is reliable after all:
1956  */
1957 extern int sched_clock_stable;
1958 
1959 extern void sched_clock_tick(void);
1960 extern void sched_clock_idle_sleep_event(void);
1961 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1962 #endif
1963 
1964 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1965 /*
1966  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1967  * The reason for this explicit opt-in is not to have perf penalty with
1968  * slow sched_clocks.
1969  */
1970 extern void enable_sched_clock_irqtime(void);
1971 extern void disable_sched_clock_irqtime(void);
1972 #else
1973 static inline void enable_sched_clock_irqtime(void) {}
1974 static inline void disable_sched_clock_irqtime(void) {}
1975 #endif
1976 
1977 extern unsigned long long
1978 task_sched_runtime(struct task_struct *task);
1979 
1980 /* sched_exec is called by processes performing an exec */
1981 #ifdef CONFIG_SMP
1982 extern void sched_exec(void);
1983 #else
1984 #define sched_exec()   {}
1985 #endif
1986 
1987 extern void sched_clock_idle_sleep_event(void);
1988 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1989 
1990 #ifdef CONFIG_HOTPLUG_CPU
1991 extern void idle_task_exit(void);
1992 #else
1993 static inline void idle_task_exit(void) {}
1994 #endif
1995 
1996 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1997 extern void wake_up_idle_cpu(int cpu);
1998 #else
1999 static inline void wake_up_idle_cpu(int cpu) { }
2000 #endif
2001 
2002 extern unsigned int sysctl_sched_latency;
2003 extern unsigned int sysctl_sched_min_granularity;
2004 extern unsigned int sysctl_sched_wakeup_granularity;
2005 extern unsigned int sysctl_sched_child_runs_first;
2006 
2007 enum sched_tunable_scaling {
2008 	SCHED_TUNABLESCALING_NONE,
2009 	SCHED_TUNABLESCALING_LOG,
2010 	SCHED_TUNABLESCALING_LINEAR,
2011 	SCHED_TUNABLESCALING_END,
2012 };
2013 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
2014 
2015 #ifdef CONFIG_SCHED_DEBUG
2016 extern unsigned int sysctl_sched_migration_cost;
2017 extern unsigned int sysctl_sched_nr_migrate;
2018 extern unsigned int sysctl_sched_time_avg;
2019 extern unsigned int sysctl_timer_migration;
2020 extern unsigned int sysctl_sched_shares_window;
2021 
2022 int sched_proc_update_handler(struct ctl_table *table, int write,
2023 		void __user *buffer, size_t *length,
2024 		loff_t *ppos);
2025 #endif
2026 #ifdef CONFIG_SCHED_DEBUG
2027 static inline unsigned int get_sysctl_timer_migration(void)
2028 {
2029 	return sysctl_timer_migration;
2030 }
2031 #else
2032 static inline unsigned int get_sysctl_timer_migration(void)
2033 {
2034 	return 1;
2035 }
2036 #endif
2037 extern unsigned int sysctl_sched_rt_period;
2038 extern int sysctl_sched_rt_runtime;
2039 
2040 int sched_rt_handler(struct ctl_table *table, int write,
2041 		void __user *buffer, size_t *lenp,
2042 		loff_t *ppos);
2043 
2044 #ifdef CONFIG_SCHED_AUTOGROUP
2045 extern unsigned int sysctl_sched_autogroup_enabled;
2046 
2047 extern void sched_autogroup_create_attach(struct task_struct *p);
2048 extern void sched_autogroup_detach(struct task_struct *p);
2049 extern void sched_autogroup_fork(struct signal_struct *sig);
2050 extern void sched_autogroup_exit(struct signal_struct *sig);
2051 #ifdef CONFIG_PROC_FS
2052 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2053 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2054 #endif
2055 #else
2056 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2057 static inline void sched_autogroup_detach(struct task_struct *p) { }
2058 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2059 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2060 #endif
2061 
2062 #ifdef CONFIG_CFS_BANDWIDTH
2063 extern unsigned int sysctl_sched_cfs_bandwidth_slice;
2064 #endif
2065 
2066 #ifdef CONFIG_RT_MUTEXES
2067 extern int rt_mutex_getprio(struct task_struct *p);
2068 extern void rt_mutex_setprio(struct task_struct *p, int prio);
2069 extern void rt_mutex_adjust_pi(struct task_struct *p);
2070 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2071 {
2072 	return tsk->pi_blocked_on != NULL;
2073 }
2074 #else
2075 static inline int rt_mutex_getprio(struct task_struct *p)
2076 {
2077 	return p->normal_prio;
2078 }
2079 # define rt_mutex_adjust_pi(p)		do { } while (0)
2080 static inline bool tsk_is_pi_blocked(struct task_struct *tsk)
2081 {
2082 	return false;
2083 }
2084 #endif
2085 
2086 extern bool yield_to(struct task_struct *p, bool preempt);
2087 extern void set_user_nice(struct task_struct *p, long nice);
2088 extern int task_prio(const struct task_struct *p);
2089 extern int task_nice(const struct task_struct *p);
2090 extern int can_nice(const struct task_struct *p, const int nice);
2091 extern int task_curr(const struct task_struct *p);
2092 extern int idle_cpu(int cpu);
2093 extern int sched_setscheduler(struct task_struct *, int,
2094 			      const struct sched_param *);
2095 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2096 				      const struct sched_param *);
2097 extern struct task_struct *idle_task(int cpu);
2098 /**
2099  * is_idle_task - is the specified task an idle task?
2100  * @p: the task in question.
2101  */
2102 static inline bool is_idle_task(const struct task_struct *p)
2103 {
2104 	return p->pid == 0;
2105 }
2106 extern struct task_struct *curr_task(int cpu);
2107 extern void set_curr_task(int cpu, struct task_struct *p);
2108 
2109 void yield(void);
2110 
2111 /*
2112  * The default (Linux) execution domain.
2113  */
2114 extern struct exec_domain	default_exec_domain;
2115 
2116 union thread_union {
2117 	struct thread_info thread_info;
2118 	unsigned long stack[THREAD_SIZE/sizeof(long)];
2119 };
2120 
2121 #ifndef __HAVE_ARCH_KSTACK_END
2122 static inline int kstack_end(void *addr)
2123 {
2124 	/* Reliable end of stack detection:
2125 	 * Some APM bios versions misalign the stack
2126 	 */
2127 	return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2128 }
2129 #endif
2130 
2131 extern union thread_union init_thread_union;
2132 extern struct task_struct init_task;
2133 
2134 extern struct   mm_struct init_mm;
2135 
2136 extern struct pid_namespace init_pid_ns;
2137 
2138 /*
2139  * find a task by one of its numerical ids
2140  *
2141  * find_task_by_pid_ns():
2142  *      finds a task by its pid in the specified namespace
2143  * find_task_by_vpid():
2144  *      finds a task by its virtual pid
2145  *
2146  * see also find_vpid() etc in include/linux/pid.h
2147  */
2148 
2149 extern struct task_struct *find_task_by_vpid(pid_t nr);
2150 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2151 		struct pid_namespace *ns);
2152 
2153 extern void __set_special_pids(struct pid *pid);
2154 
2155 /* per-UID process charging. */
2156 extern struct user_struct * alloc_uid(kuid_t);
2157 static inline struct user_struct *get_uid(struct user_struct *u)
2158 {
2159 	atomic_inc(&u->__count);
2160 	return u;
2161 }
2162 extern void free_uid(struct user_struct *);
2163 
2164 #include <asm/current.h>
2165 
2166 extern void xtime_update(unsigned long ticks);
2167 
2168 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2169 extern int wake_up_process(struct task_struct *tsk);
2170 extern void wake_up_new_task(struct task_struct *tsk);
2171 #ifdef CONFIG_SMP
2172  extern void kick_process(struct task_struct *tsk);
2173 #else
2174  static inline void kick_process(struct task_struct *tsk) { }
2175 #endif
2176 extern void sched_fork(struct task_struct *p);
2177 extern void sched_dead(struct task_struct *p);
2178 
2179 extern void proc_caches_init(void);
2180 extern void flush_signals(struct task_struct *);
2181 extern void __flush_signals(struct task_struct *);
2182 extern void ignore_signals(struct task_struct *);
2183 extern void flush_signal_handlers(struct task_struct *, int force_default);
2184 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2185 
2186 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2187 {
2188 	unsigned long flags;
2189 	int ret;
2190 
2191 	spin_lock_irqsave(&tsk->sighand->siglock, flags);
2192 	ret = dequeue_signal(tsk, mask, info);
2193 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2194 
2195 	return ret;
2196 }
2197 
2198 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2199 			      sigset_t *mask);
2200 extern void unblock_all_signals(void);
2201 extern void release_task(struct task_struct * p);
2202 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2203 extern int force_sigsegv(int, struct task_struct *);
2204 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2205 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2206 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2207 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2208 				const struct cred *, u32);
2209 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2210 extern int kill_pid(struct pid *pid, int sig, int priv);
2211 extern int kill_proc_info(int, struct siginfo *, pid_t);
2212 extern __must_check bool do_notify_parent(struct task_struct *, int);
2213 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2214 extern void force_sig(int, struct task_struct *);
2215 extern int send_sig(int, struct task_struct *, int);
2216 extern int zap_other_threads(struct task_struct *p);
2217 extern struct sigqueue *sigqueue_alloc(void);
2218 extern void sigqueue_free(struct sigqueue *);
2219 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2220 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2221 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2222 
2223 static inline void restore_saved_sigmask(void)
2224 {
2225 	if (test_and_clear_restore_sigmask())
2226 		__set_current_blocked(&current->saved_sigmask);
2227 }
2228 
2229 static inline sigset_t *sigmask_to_save(void)
2230 {
2231 	sigset_t *res = &current->blocked;
2232 	if (unlikely(test_restore_sigmask()))
2233 		res = &current->saved_sigmask;
2234 	return res;
2235 }
2236 
2237 static inline int kill_cad_pid(int sig, int priv)
2238 {
2239 	return kill_pid(cad_pid, sig, priv);
2240 }
2241 
2242 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2243 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2244 #define SEND_SIG_PRIV	((struct siginfo *) 1)
2245 #define SEND_SIG_FORCED	((struct siginfo *) 2)
2246 
2247 /*
2248  * True if we are on the alternate signal stack.
2249  */
2250 static inline int on_sig_stack(unsigned long sp)
2251 {
2252 #ifdef CONFIG_STACK_GROWSUP
2253 	return sp >= current->sas_ss_sp &&
2254 		sp - current->sas_ss_sp < current->sas_ss_size;
2255 #else
2256 	return sp > current->sas_ss_sp &&
2257 		sp - current->sas_ss_sp <= current->sas_ss_size;
2258 #endif
2259 }
2260 
2261 static inline int sas_ss_flags(unsigned long sp)
2262 {
2263 	return (current->sas_ss_size == 0 ? SS_DISABLE
2264 		: on_sig_stack(sp) ? SS_ONSTACK : 0);
2265 }
2266 
2267 /*
2268  * Routines for handling mm_structs
2269  */
2270 extern struct mm_struct * mm_alloc(void);
2271 
2272 /* mmdrop drops the mm and the page tables */
2273 extern void __mmdrop(struct mm_struct *);
2274 static inline void mmdrop(struct mm_struct * mm)
2275 {
2276 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2277 		__mmdrop(mm);
2278 }
2279 
2280 /* mmput gets rid of the mappings and all user-space */
2281 extern void mmput(struct mm_struct *);
2282 /* Grab a reference to a task's mm, if it is not already going away */
2283 extern struct mm_struct *get_task_mm(struct task_struct *task);
2284 /*
2285  * Grab a reference to a task's mm, if it is not already going away
2286  * and ptrace_may_access with the mode parameter passed to it
2287  * succeeds.
2288  */
2289 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2290 /* Remove the current tasks stale references to the old mm_struct */
2291 extern void mm_release(struct task_struct *, struct mm_struct *);
2292 /* Allocate a new mm structure and copy contents from tsk->mm */
2293 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2294 
2295 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2296 			struct task_struct *, struct pt_regs *);
2297 extern void flush_thread(void);
2298 extern void exit_thread(void);
2299 
2300 extern void exit_files(struct task_struct *);
2301 extern void __cleanup_sighand(struct sighand_struct *);
2302 
2303 extern void exit_itimers(struct signal_struct *);
2304 extern void flush_itimer_signals(void);
2305 
2306 extern void do_group_exit(int);
2307 
2308 extern void daemonize(const char *, ...);
2309 extern int allow_signal(int);
2310 extern int disallow_signal(int);
2311 
2312 extern int do_execve(const char *,
2313 		     const char __user * const __user *,
2314 		     const char __user * const __user *, struct pt_regs *);
2315 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2316 struct task_struct *fork_idle(int);
2317 
2318 extern void set_task_comm(struct task_struct *tsk, char *from);
2319 extern char *get_task_comm(char *to, struct task_struct *tsk);
2320 
2321 #ifdef CONFIG_SMP
2322 void scheduler_ipi(void);
2323 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2324 #else
2325 static inline void scheduler_ipi(void) { }
2326 static inline unsigned long wait_task_inactive(struct task_struct *p,
2327 					       long match_state)
2328 {
2329 	return 1;
2330 }
2331 #endif
2332 
2333 #define next_task(p) \
2334 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2335 
2336 #define for_each_process(p) \
2337 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2338 
2339 extern bool current_is_single_threaded(void);
2340 
2341 /*
2342  * Careful: do_each_thread/while_each_thread is a double loop so
2343  *          'break' will not work as expected - use goto instead.
2344  */
2345 #define do_each_thread(g, t) \
2346 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2347 
2348 #define while_each_thread(g, t) \
2349 	while ((t = next_thread(t)) != g)
2350 
2351 static inline int get_nr_threads(struct task_struct *tsk)
2352 {
2353 	return tsk->signal->nr_threads;
2354 }
2355 
2356 static inline bool thread_group_leader(struct task_struct *p)
2357 {
2358 	return p->exit_signal >= 0;
2359 }
2360 
2361 /* Do to the insanities of de_thread it is possible for a process
2362  * to have the pid of the thread group leader without actually being
2363  * the thread group leader.  For iteration through the pids in proc
2364  * all we care about is that we have a task with the appropriate
2365  * pid, we don't actually care if we have the right task.
2366  */
2367 static inline int has_group_leader_pid(struct task_struct *p)
2368 {
2369 	return p->pid == p->tgid;
2370 }
2371 
2372 static inline
2373 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2374 {
2375 	return p1->tgid == p2->tgid;
2376 }
2377 
2378 static inline struct task_struct *next_thread(const struct task_struct *p)
2379 {
2380 	return list_entry_rcu(p->thread_group.next,
2381 			      struct task_struct, thread_group);
2382 }
2383 
2384 static inline int thread_group_empty(struct task_struct *p)
2385 {
2386 	return list_empty(&p->thread_group);
2387 }
2388 
2389 #define delay_group_leader(p) \
2390 		(thread_group_leader(p) && !thread_group_empty(p))
2391 
2392 /*
2393  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2394  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2395  * pins the final release of task.io_context.  Also protects ->cpuset and
2396  * ->cgroup.subsys[]. And ->vfork_done.
2397  *
2398  * Nests both inside and outside of read_lock(&tasklist_lock).
2399  * It must not be nested with write_lock_irq(&tasklist_lock),
2400  * neither inside nor outside.
2401  */
2402 static inline void task_lock(struct task_struct *p)
2403 {
2404 	spin_lock(&p->alloc_lock);
2405 }
2406 
2407 static inline void task_unlock(struct task_struct *p)
2408 {
2409 	spin_unlock(&p->alloc_lock);
2410 }
2411 
2412 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2413 							unsigned long *flags);
2414 
2415 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2416 						       unsigned long *flags)
2417 {
2418 	struct sighand_struct *ret;
2419 
2420 	ret = __lock_task_sighand(tsk, flags);
2421 	(void)__cond_lock(&tsk->sighand->siglock, ret);
2422 	return ret;
2423 }
2424 
2425 static inline void unlock_task_sighand(struct task_struct *tsk,
2426 						unsigned long *flags)
2427 {
2428 	spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2429 }
2430 
2431 #ifdef CONFIG_CGROUPS
2432 static inline void threadgroup_change_begin(struct task_struct *tsk)
2433 {
2434 	down_read(&tsk->signal->group_rwsem);
2435 }
2436 static inline void threadgroup_change_end(struct task_struct *tsk)
2437 {
2438 	up_read(&tsk->signal->group_rwsem);
2439 }
2440 
2441 /**
2442  * threadgroup_lock - lock threadgroup
2443  * @tsk: member task of the threadgroup to lock
2444  *
2445  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2446  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2447  * perform exec.  This is useful for cases where the threadgroup needs to
2448  * stay stable across blockable operations.
2449  *
2450  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2451  * synchronization.  While held, no new task will be added to threadgroup
2452  * and no existing live task will have its PF_EXITING set.
2453  *
2454  * During exec, a task goes and puts its thread group through unusual
2455  * changes.  After de-threading, exclusive access is assumed to resources
2456  * which are usually shared by tasks in the same group - e.g. sighand may
2457  * be replaced with a new one.  Also, the exec'ing task takes over group
2458  * leader role including its pid.  Exclude these changes while locked by
2459  * grabbing cred_guard_mutex which is used to synchronize exec path.
2460  */
2461 static inline void threadgroup_lock(struct task_struct *tsk)
2462 {
2463 	/*
2464 	 * exec uses exit for de-threading nesting group_rwsem inside
2465 	 * cred_guard_mutex. Grab cred_guard_mutex first.
2466 	 */
2467 	mutex_lock(&tsk->signal->cred_guard_mutex);
2468 	down_write(&tsk->signal->group_rwsem);
2469 }
2470 
2471 /**
2472  * threadgroup_unlock - unlock threadgroup
2473  * @tsk: member task of the threadgroup to unlock
2474  *
2475  * Reverse threadgroup_lock().
2476  */
2477 static inline void threadgroup_unlock(struct task_struct *tsk)
2478 {
2479 	up_write(&tsk->signal->group_rwsem);
2480 	mutex_unlock(&tsk->signal->cred_guard_mutex);
2481 }
2482 #else
2483 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2484 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2485 static inline void threadgroup_lock(struct task_struct *tsk) {}
2486 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2487 #endif
2488 
2489 #ifndef __HAVE_THREAD_FUNCTIONS
2490 
2491 #define task_thread_info(task)	((struct thread_info *)(task)->stack)
2492 #define task_stack_page(task)	((task)->stack)
2493 
2494 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2495 {
2496 	*task_thread_info(p) = *task_thread_info(org);
2497 	task_thread_info(p)->task = p;
2498 }
2499 
2500 static inline unsigned long *end_of_stack(struct task_struct *p)
2501 {
2502 	return (unsigned long *)(task_thread_info(p) + 1);
2503 }
2504 
2505 #endif
2506 
2507 static inline int object_is_on_stack(void *obj)
2508 {
2509 	void *stack = task_stack_page(current);
2510 
2511 	return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2512 }
2513 
2514 extern void thread_info_cache_init(void);
2515 
2516 #ifdef CONFIG_DEBUG_STACK_USAGE
2517 static inline unsigned long stack_not_used(struct task_struct *p)
2518 {
2519 	unsigned long *n = end_of_stack(p);
2520 
2521 	do { 	/* Skip over canary */
2522 		n++;
2523 	} while (!*n);
2524 
2525 	return (unsigned long)n - (unsigned long)end_of_stack(p);
2526 }
2527 #endif
2528 
2529 /* set thread flags in other task's structures
2530  * - see asm/thread_info.h for TIF_xxxx flags available
2531  */
2532 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2533 {
2534 	set_ti_thread_flag(task_thread_info(tsk), flag);
2535 }
2536 
2537 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2538 {
2539 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2540 }
2541 
2542 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2543 {
2544 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2545 }
2546 
2547 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2548 {
2549 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2550 }
2551 
2552 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2553 {
2554 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2555 }
2556 
2557 static inline void set_tsk_need_resched(struct task_struct *tsk)
2558 {
2559 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2560 }
2561 
2562 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2563 {
2564 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2565 }
2566 
2567 static inline int test_tsk_need_resched(struct task_struct *tsk)
2568 {
2569 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2570 }
2571 
2572 static inline int restart_syscall(void)
2573 {
2574 	set_tsk_thread_flag(current, TIF_SIGPENDING);
2575 	return -ERESTARTNOINTR;
2576 }
2577 
2578 static inline int signal_pending(struct task_struct *p)
2579 {
2580 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2581 }
2582 
2583 static inline int __fatal_signal_pending(struct task_struct *p)
2584 {
2585 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
2586 }
2587 
2588 static inline int fatal_signal_pending(struct task_struct *p)
2589 {
2590 	return signal_pending(p) && __fatal_signal_pending(p);
2591 }
2592 
2593 static inline int signal_pending_state(long state, struct task_struct *p)
2594 {
2595 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2596 		return 0;
2597 	if (!signal_pending(p))
2598 		return 0;
2599 
2600 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2601 }
2602 
2603 static inline int need_resched(void)
2604 {
2605 	return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2606 }
2607 
2608 /*
2609  * cond_resched() and cond_resched_lock(): latency reduction via
2610  * explicit rescheduling in places that are safe. The return
2611  * value indicates whether a reschedule was done in fact.
2612  * cond_resched_lock() will drop the spinlock before scheduling,
2613  * cond_resched_softirq() will enable bhs before scheduling.
2614  */
2615 extern int _cond_resched(void);
2616 
2617 #define cond_resched() ({			\
2618 	__might_sleep(__FILE__, __LINE__, 0);	\
2619 	_cond_resched();			\
2620 })
2621 
2622 extern int __cond_resched_lock(spinlock_t *lock);
2623 
2624 #ifdef CONFIG_PREEMPT_COUNT
2625 #define PREEMPT_LOCK_OFFSET	PREEMPT_OFFSET
2626 #else
2627 #define PREEMPT_LOCK_OFFSET	0
2628 #endif
2629 
2630 #define cond_resched_lock(lock) ({				\
2631 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
2632 	__cond_resched_lock(lock);				\
2633 })
2634 
2635 extern int __cond_resched_softirq(void);
2636 
2637 #define cond_resched_softirq() ({					\
2638 	__might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
2639 	__cond_resched_softirq();					\
2640 })
2641 
2642 /*
2643  * Does a critical section need to be broken due to another
2644  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2645  * but a general need for low latency)
2646  */
2647 static inline int spin_needbreak(spinlock_t *lock)
2648 {
2649 #ifdef CONFIG_PREEMPT
2650 	return spin_is_contended(lock);
2651 #else
2652 	return 0;
2653 #endif
2654 }
2655 
2656 /*
2657  * Thread group CPU time accounting.
2658  */
2659 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2660 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2661 
2662 static inline void thread_group_cputime_init(struct signal_struct *sig)
2663 {
2664 	raw_spin_lock_init(&sig->cputimer.lock);
2665 }
2666 
2667 /*
2668  * Reevaluate whether the task has signals pending delivery.
2669  * Wake the task if so.
2670  * This is required every time the blocked sigset_t changes.
2671  * callers must hold sighand->siglock.
2672  */
2673 extern void recalc_sigpending_and_wake(struct task_struct *t);
2674 extern void recalc_sigpending(void);
2675 
2676 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2677 
2678 /*
2679  * Wrappers for p->thread_info->cpu access. No-op on UP.
2680  */
2681 #ifdef CONFIG_SMP
2682 
2683 static inline unsigned int task_cpu(const struct task_struct *p)
2684 {
2685 	return task_thread_info(p)->cpu;
2686 }
2687 
2688 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2689 
2690 #else
2691 
2692 static inline unsigned int task_cpu(const struct task_struct *p)
2693 {
2694 	return 0;
2695 }
2696 
2697 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2698 {
2699 }
2700 
2701 #endif /* CONFIG_SMP */
2702 
2703 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2704 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2705 
2706 extern void normalize_rt_tasks(void);
2707 
2708 #ifdef CONFIG_CGROUP_SCHED
2709 
2710 extern struct task_group root_task_group;
2711 
2712 extern struct task_group *sched_create_group(struct task_group *parent);
2713 extern void sched_destroy_group(struct task_group *tg);
2714 extern void sched_move_task(struct task_struct *tsk);
2715 #ifdef CONFIG_FAIR_GROUP_SCHED
2716 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2717 extern unsigned long sched_group_shares(struct task_group *tg);
2718 #endif
2719 #ifdef CONFIG_RT_GROUP_SCHED
2720 extern int sched_group_set_rt_runtime(struct task_group *tg,
2721 				      long rt_runtime_us);
2722 extern long sched_group_rt_runtime(struct task_group *tg);
2723 extern int sched_group_set_rt_period(struct task_group *tg,
2724 				      long rt_period_us);
2725 extern long sched_group_rt_period(struct task_group *tg);
2726 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2727 #endif
2728 #endif
2729 
2730 extern int task_can_switch_user(struct user_struct *up,
2731 					struct task_struct *tsk);
2732 
2733 #ifdef CONFIG_TASK_XACCT
2734 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2735 {
2736 	tsk->ioac.rchar += amt;
2737 }
2738 
2739 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2740 {
2741 	tsk->ioac.wchar += amt;
2742 }
2743 
2744 static inline void inc_syscr(struct task_struct *tsk)
2745 {
2746 	tsk->ioac.syscr++;
2747 }
2748 
2749 static inline void inc_syscw(struct task_struct *tsk)
2750 {
2751 	tsk->ioac.syscw++;
2752 }
2753 #else
2754 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2755 {
2756 }
2757 
2758 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2759 {
2760 }
2761 
2762 static inline void inc_syscr(struct task_struct *tsk)
2763 {
2764 }
2765 
2766 static inline void inc_syscw(struct task_struct *tsk)
2767 {
2768 }
2769 #endif
2770 
2771 #ifndef TASK_SIZE_OF
2772 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2773 #endif
2774 
2775 #ifdef CONFIG_MM_OWNER
2776 extern void mm_update_next_owner(struct mm_struct *mm);
2777 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2778 #else
2779 static inline void mm_update_next_owner(struct mm_struct *mm)
2780 {
2781 }
2782 
2783 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2784 {
2785 }
2786 #endif /* CONFIG_MM_OWNER */
2787 
2788 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2789 		unsigned int limit)
2790 {
2791 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2792 }
2793 
2794 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2795 		unsigned int limit)
2796 {
2797 	return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2798 }
2799 
2800 static inline unsigned long rlimit(unsigned int limit)
2801 {
2802 	return task_rlimit(current, limit);
2803 }
2804 
2805 static inline unsigned long rlimit_max(unsigned int limit)
2806 {
2807 	return task_rlimit_max(current, limit);
2808 }
2809 
2810 #endif /* __KERNEL__ */
2811 
2812 #endif
2813