1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 /* 5 * cloning flags: 6 */ 7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 15 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 24 /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) 25 and is now available for re-use. */ 26 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ 27 #define CLONE_NEWIPC 0x08000000 /* New ipcs */ 28 #define CLONE_NEWUSER 0x10000000 /* New user namespace */ 29 #define CLONE_NEWPID 0x20000000 /* New pid namespace */ 30 #define CLONE_NEWNET 0x40000000 /* New network namespace */ 31 #define CLONE_IO 0x80000000 /* Clone io context */ 32 33 /* 34 * Scheduling policies 35 */ 36 #define SCHED_NORMAL 0 37 #define SCHED_FIFO 1 38 #define SCHED_RR 2 39 #define SCHED_BATCH 3 40 /* SCHED_ISO: reserved but not implemented yet */ 41 #define SCHED_IDLE 5 42 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ 43 #define SCHED_RESET_ON_FORK 0x40000000 44 45 #ifdef __KERNEL__ 46 47 struct sched_param { 48 int sched_priority; 49 }; 50 51 #include <asm/param.h> /* for HZ */ 52 53 #include <linux/capability.h> 54 #include <linux/threads.h> 55 #include <linux/kernel.h> 56 #include <linux/types.h> 57 #include <linux/timex.h> 58 #include <linux/jiffies.h> 59 #include <linux/rbtree.h> 60 #include <linux/thread_info.h> 61 #include <linux/cpumask.h> 62 #include <linux/errno.h> 63 #include <linux/nodemask.h> 64 #include <linux/mm_types.h> 65 66 #include <asm/page.h> 67 #include <asm/ptrace.h> 68 #include <asm/cputime.h> 69 70 #include <linux/smp.h> 71 #include <linux/sem.h> 72 #include <linux/signal.h> 73 #include <linux/compiler.h> 74 #include <linux/completion.h> 75 #include <linux/pid.h> 76 #include <linux/percpu.h> 77 #include <linux/topology.h> 78 #include <linux/proportions.h> 79 #include <linux/seccomp.h> 80 #include <linux/rcupdate.h> 81 #include <linux/rculist.h> 82 #include <linux/rtmutex.h> 83 84 #include <linux/time.h> 85 #include <linux/param.h> 86 #include <linux/resource.h> 87 #include <linux/timer.h> 88 #include <linux/hrtimer.h> 89 #include <linux/task_io_accounting.h> 90 #include <linux/latencytop.h> 91 #include <linux/cred.h> 92 #include <linux/llist.h> 93 #include <linux/uidgid.h> 94 95 #include <asm/processor.h> 96 97 struct exec_domain; 98 struct futex_pi_state; 99 struct robust_list_head; 100 struct bio_list; 101 struct fs_struct; 102 struct perf_event_context; 103 struct blk_plug; 104 105 /* 106 * List of flags we want to share for kernel threads, 107 * if only because they are not used by them anyway. 108 */ 109 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 110 111 /* 112 * These are the constant used to fake the fixed-point load-average 113 * counting. Some notes: 114 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 115 * a load-average precision of 10 bits integer + 11 bits fractional 116 * - if you want to count load-averages more often, you need more 117 * precision, or rounding will get you. With 2-second counting freq, 118 * the EXP_n values would be 1981, 2034 and 2043 if still using only 119 * 11 bit fractions. 120 */ 121 extern unsigned long avenrun[]; /* Load averages */ 122 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 123 124 #define FSHIFT 11 /* nr of bits of precision */ 125 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 126 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 127 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 128 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 129 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 130 131 #define CALC_LOAD(load,exp,n) \ 132 load *= exp; \ 133 load += n*(FIXED_1-exp); \ 134 load >>= FSHIFT; 135 136 extern unsigned long total_forks; 137 extern int nr_threads; 138 DECLARE_PER_CPU(unsigned long, process_counts); 139 extern int nr_processes(void); 140 extern unsigned long nr_running(void); 141 extern unsigned long nr_uninterruptible(void); 142 extern unsigned long nr_iowait(void); 143 extern unsigned long nr_iowait_cpu(int cpu); 144 extern unsigned long this_cpu_load(void); 145 146 147 extern void calc_global_load(unsigned long ticks); 148 extern void update_cpu_load_nohz(void); 149 150 extern unsigned long get_parent_ip(unsigned long addr); 151 152 struct seq_file; 153 struct cfs_rq; 154 struct task_group; 155 #ifdef CONFIG_SCHED_DEBUG 156 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 157 extern void proc_sched_set_task(struct task_struct *p); 158 extern void 159 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 160 #else 161 static inline void 162 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 163 { 164 } 165 static inline void proc_sched_set_task(struct task_struct *p) 166 { 167 } 168 static inline void 169 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 170 { 171 } 172 #endif 173 174 /* 175 * Task state bitmask. NOTE! These bits are also 176 * encoded in fs/proc/array.c: get_task_state(). 177 * 178 * We have two separate sets of flags: task->state 179 * is about runnability, while task->exit_state are 180 * about the task exiting. Confusing, but this way 181 * modifying one set can't modify the other one by 182 * mistake. 183 */ 184 #define TASK_RUNNING 0 185 #define TASK_INTERRUPTIBLE 1 186 #define TASK_UNINTERRUPTIBLE 2 187 #define __TASK_STOPPED 4 188 #define __TASK_TRACED 8 189 /* in tsk->exit_state */ 190 #define EXIT_ZOMBIE 16 191 #define EXIT_DEAD 32 192 /* in tsk->state again */ 193 #define TASK_DEAD 64 194 #define TASK_WAKEKILL 128 195 #define TASK_WAKING 256 196 #define TASK_STATE_MAX 512 197 198 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 199 200 extern char ___assert_task_state[1 - 2*!!( 201 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 202 203 /* Convenience macros for the sake of set_task_state */ 204 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 205 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 206 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 207 208 /* Convenience macros for the sake of wake_up */ 209 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 210 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 211 212 /* get_task_state() */ 213 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 214 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 215 __TASK_TRACED) 216 217 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 218 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 219 #define task_is_dead(task) ((task)->exit_state != 0) 220 #define task_is_stopped_or_traced(task) \ 221 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 222 #define task_contributes_to_load(task) \ 223 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 224 (task->flags & PF_FROZEN) == 0) 225 226 #define __set_task_state(tsk, state_value) \ 227 do { (tsk)->state = (state_value); } while (0) 228 #define set_task_state(tsk, state_value) \ 229 set_mb((tsk)->state, (state_value)) 230 231 /* 232 * set_current_state() includes a barrier so that the write of current->state 233 * is correctly serialised wrt the caller's subsequent test of whether to 234 * actually sleep: 235 * 236 * set_current_state(TASK_UNINTERRUPTIBLE); 237 * if (do_i_need_to_sleep()) 238 * schedule(); 239 * 240 * If the caller does not need such serialisation then use __set_current_state() 241 */ 242 #define __set_current_state(state_value) \ 243 do { current->state = (state_value); } while (0) 244 #define set_current_state(state_value) \ 245 set_mb(current->state, (state_value)) 246 247 /* Task command name length */ 248 #define TASK_COMM_LEN 16 249 250 #include <linux/spinlock.h> 251 252 /* 253 * This serializes "schedule()" and also protects 254 * the run-queue from deletions/modifications (but 255 * _adding_ to the beginning of the run-queue has 256 * a separate lock). 257 */ 258 extern rwlock_t tasklist_lock; 259 extern spinlock_t mmlist_lock; 260 261 struct task_struct; 262 263 #ifdef CONFIG_PROVE_RCU 264 extern int lockdep_tasklist_lock_is_held(void); 265 #endif /* #ifdef CONFIG_PROVE_RCU */ 266 267 extern void sched_init(void); 268 extern void sched_init_smp(void); 269 extern asmlinkage void schedule_tail(struct task_struct *prev); 270 extern void init_idle(struct task_struct *idle, int cpu); 271 extern void init_idle_bootup_task(struct task_struct *idle); 272 273 extern int runqueue_is_locked(int cpu); 274 275 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 276 extern void select_nohz_load_balancer(int stop_tick); 277 extern void set_cpu_sd_state_idle(void); 278 extern int get_nohz_timer_target(void); 279 #else 280 static inline void select_nohz_load_balancer(int stop_tick) { } 281 static inline void set_cpu_sd_state_idle(void) { } 282 #endif 283 284 /* 285 * Only dump TASK_* tasks. (0 for all tasks) 286 */ 287 extern void show_state_filter(unsigned long state_filter); 288 289 static inline void show_state(void) 290 { 291 show_state_filter(0); 292 } 293 294 extern void show_regs(struct pt_regs *); 295 296 /* 297 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 298 * task), SP is the stack pointer of the first frame that should be shown in the back 299 * trace (or NULL if the entire call-chain of the task should be shown). 300 */ 301 extern void show_stack(struct task_struct *task, unsigned long *sp); 302 303 void io_schedule(void); 304 long io_schedule_timeout(long timeout); 305 306 extern void cpu_init (void); 307 extern void trap_init(void); 308 extern void update_process_times(int user); 309 extern void scheduler_tick(void); 310 311 extern void sched_show_task(struct task_struct *p); 312 313 #ifdef CONFIG_LOCKUP_DETECTOR 314 extern void touch_softlockup_watchdog(void); 315 extern void touch_softlockup_watchdog_sync(void); 316 extern void touch_all_softlockup_watchdogs(void); 317 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 318 void __user *buffer, 319 size_t *lenp, loff_t *ppos); 320 extern unsigned int softlockup_panic; 321 void lockup_detector_init(void); 322 #else 323 static inline void touch_softlockup_watchdog(void) 324 { 325 } 326 static inline void touch_softlockup_watchdog_sync(void) 327 { 328 } 329 static inline void touch_all_softlockup_watchdogs(void) 330 { 331 } 332 static inline void lockup_detector_init(void) 333 { 334 } 335 #endif 336 337 #if defined(CONFIG_LOCKUP_DETECTOR) && defined(CONFIG_SUSPEND) 338 void lockup_detector_bootcpu_resume(void); 339 #else 340 static inline void lockup_detector_bootcpu_resume(void) 341 { 342 } 343 #endif 344 345 #ifdef CONFIG_DETECT_HUNG_TASK 346 extern unsigned int sysctl_hung_task_panic; 347 extern unsigned long sysctl_hung_task_check_count; 348 extern unsigned long sysctl_hung_task_timeout_secs; 349 extern unsigned long sysctl_hung_task_warnings; 350 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 351 void __user *buffer, 352 size_t *lenp, loff_t *ppos); 353 #else 354 /* Avoid need for ifdefs elsewhere in the code */ 355 enum { sysctl_hung_task_timeout_secs = 0 }; 356 #endif 357 358 /* Attach to any functions which should be ignored in wchan output. */ 359 #define __sched __attribute__((__section__(".sched.text"))) 360 361 /* Linker adds these: start and end of __sched functions */ 362 extern char __sched_text_start[], __sched_text_end[]; 363 364 /* Is this address in the __sched functions? */ 365 extern int in_sched_functions(unsigned long addr); 366 367 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 368 extern signed long schedule_timeout(signed long timeout); 369 extern signed long schedule_timeout_interruptible(signed long timeout); 370 extern signed long schedule_timeout_killable(signed long timeout); 371 extern signed long schedule_timeout_uninterruptible(signed long timeout); 372 asmlinkage void schedule(void); 373 extern void schedule_preempt_disabled(void); 374 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 375 376 struct nsproxy; 377 struct user_namespace; 378 379 /* 380 * Default maximum number of active map areas, this limits the number of vmas 381 * per mm struct. Users can overwrite this number by sysctl but there is a 382 * problem. 383 * 384 * When a program's coredump is generated as ELF format, a section is created 385 * per a vma. In ELF, the number of sections is represented in unsigned short. 386 * This means the number of sections should be smaller than 65535 at coredump. 387 * Because the kernel adds some informative sections to a image of program at 388 * generating coredump, we need some margin. The number of extra sections is 389 * 1-3 now and depends on arch. We use "5" as safe margin, here. 390 */ 391 #define MAPCOUNT_ELF_CORE_MARGIN (5) 392 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 393 394 extern int sysctl_max_map_count; 395 396 #include <linux/aio.h> 397 398 #ifdef CONFIG_MMU 399 extern void arch_pick_mmap_layout(struct mm_struct *mm); 400 extern unsigned long 401 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 402 unsigned long, unsigned long); 403 extern unsigned long 404 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 405 unsigned long len, unsigned long pgoff, 406 unsigned long flags); 407 extern void arch_unmap_area(struct mm_struct *, unsigned long); 408 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 409 #else 410 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 411 #endif 412 413 414 extern void set_dumpable(struct mm_struct *mm, int value); 415 extern int get_dumpable(struct mm_struct *mm); 416 417 /* get/set_dumpable() values */ 418 #define SUID_DUMPABLE_DISABLED 0 419 #define SUID_DUMPABLE_ENABLED 1 420 #define SUID_DUMPABLE_SAFE 2 421 422 /* mm flags */ 423 /* dumpable bits */ 424 #define MMF_DUMPABLE 0 /* core dump is permitted */ 425 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 426 427 #define MMF_DUMPABLE_BITS 2 428 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 429 430 /* coredump filter bits */ 431 #define MMF_DUMP_ANON_PRIVATE 2 432 #define MMF_DUMP_ANON_SHARED 3 433 #define MMF_DUMP_MAPPED_PRIVATE 4 434 #define MMF_DUMP_MAPPED_SHARED 5 435 #define MMF_DUMP_ELF_HEADERS 6 436 #define MMF_DUMP_HUGETLB_PRIVATE 7 437 #define MMF_DUMP_HUGETLB_SHARED 8 438 439 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 440 #define MMF_DUMP_FILTER_BITS 7 441 #define MMF_DUMP_FILTER_MASK \ 442 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 443 #define MMF_DUMP_FILTER_DEFAULT \ 444 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 445 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 446 447 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 448 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 449 #else 450 # define MMF_DUMP_MASK_DEFAULT_ELF 0 451 #endif 452 /* leave room for more dump flags */ 453 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 454 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 455 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 456 457 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 458 459 struct sighand_struct { 460 atomic_t count; 461 struct k_sigaction action[_NSIG]; 462 spinlock_t siglock; 463 wait_queue_head_t signalfd_wqh; 464 }; 465 466 struct pacct_struct { 467 int ac_flag; 468 long ac_exitcode; 469 unsigned long ac_mem; 470 cputime_t ac_utime, ac_stime; 471 unsigned long ac_minflt, ac_majflt; 472 }; 473 474 struct cpu_itimer { 475 cputime_t expires; 476 cputime_t incr; 477 u32 error; 478 u32 incr_error; 479 }; 480 481 /** 482 * struct task_cputime - collected CPU time counts 483 * @utime: time spent in user mode, in &cputime_t units 484 * @stime: time spent in kernel mode, in &cputime_t units 485 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 486 * 487 * This structure groups together three kinds of CPU time that are 488 * tracked for threads and thread groups. Most things considering 489 * CPU time want to group these counts together and treat all three 490 * of them in parallel. 491 */ 492 struct task_cputime { 493 cputime_t utime; 494 cputime_t stime; 495 unsigned long long sum_exec_runtime; 496 }; 497 /* Alternate field names when used to cache expirations. */ 498 #define prof_exp stime 499 #define virt_exp utime 500 #define sched_exp sum_exec_runtime 501 502 #define INIT_CPUTIME \ 503 (struct task_cputime) { \ 504 .utime = 0, \ 505 .stime = 0, \ 506 .sum_exec_runtime = 0, \ 507 } 508 509 /* 510 * Disable preemption until the scheduler is running. 511 * Reset by start_kernel()->sched_init()->init_idle(). 512 * 513 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 514 * before the scheduler is active -- see should_resched(). 515 */ 516 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 517 518 /** 519 * struct thread_group_cputimer - thread group interval timer counts 520 * @cputime: thread group interval timers. 521 * @running: non-zero when there are timers running and 522 * @cputime receives updates. 523 * @lock: lock for fields in this struct. 524 * 525 * This structure contains the version of task_cputime, above, that is 526 * used for thread group CPU timer calculations. 527 */ 528 struct thread_group_cputimer { 529 struct task_cputime cputime; 530 int running; 531 raw_spinlock_t lock; 532 }; 533 534 #include <linux/rwsem.h> 535 struct autogroup; 536 537 /* 538 * NOTE! "signal_struct" does not have its own 539 * locking, because a shared signal_struct always 540 * implies a shared sighand_struct, so locking 541 * sighand_struct is always a proper superset of 542 * the locking of signal_struct. 543 */ 544 struct signal_struct { 545 atomic_t sigcnt; 546 atomic_t live; 547 int nr_threads; 548 549 wait_queue_head_t wait_chldexit; /* for wait4() */ 550 551 /* current thread group signal load-balancing target: */ 552 struct task_struct *curr_target; 553 554 /* shared signal handling: */ 555 struct sigpending shared_pending; 556 557 /* thread group exit support */ 558 int group_exit_code; 559 /* overloaded: 560 * - notify group_exit_task when ->count is equal to notify_count 561 * - everyone except group_exit_task is stopped during signal delivery 562 * of fatal signals, group_exit_task processes the signal. 563 */ 564 int notify_count; 565 struct task_struct *group_exit_task; 566 567 /* thread group stop support, overloads group_exit_code too */ 568 int group_stop_count; 569 unsigned int flags; /* see SIGNAL_* flags below */ 570 571 /* 572 * PR_SET_CHILD_SUBREAPER marks a process, like a service 573 * manager, to re-parent orphan (double-forking) child processes 574 * to this process instead of 'init'. The service manager is 575 * able to receive SIGCHLD signals and is able to investigate 576 * the process until it calls wait(). All children of this 577 * process will inherit a flag if they should look for a 578 * child_subreaper process at exit. 579 */ 580 unsigned int is_child_subreaper:1; 581 unsigned int has_child_subreaper:1; 582 583 /* POSIX.1b Interval Timers */ 584 struct list_head posix_timers; 585 586 /* ITIMER_REAL timer for the process */ 587 struct hrtimer real_timer; 588 struct pid *leader_pid; 589 ktime_t it_real_incr; 590 591 /* 592 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 593 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 594 * values are defined to 0 and 1 respectively 595 */ 596 struct cpu_itimer it[2]; 597 598 /* 599 * Thread group totals for process CPU timers. 600 * See thread_group_cputimer(), et al, for details. 601 */ 602 struct thread_group_cputimer cputimer; 603 604 /* Earliest-expiration cache. */ 605 struct task_cputime cputime_expires; 606 607 struct list_head cpu_timers[3]; 608 609 struct pid *tty_old_pgrp; 610 611 /* boolean value for session group leader */ 612 int leader; 613 614 struct tty_struct *tty; /* NULL if no tty */ 615 616 #ifdef CONFIG_SCHED_AUTOGROUP 617 struct autogroup *autogroup; 618 #endif 619 /* 620 * Cumulative resource counters for dead threads in the group, 621 * and for reaped dead child processes forked by this group. 622 * Live threads maintain their own counters and add to these 623 * in __exit_signal, except for the group leader. 624 */ 625 cputime_t utime, stime, cutime, cstime; 626 cputime_t gtime; 627 cputime_t cgtime; 628 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 629 cputime_t prev_utime, prev_stime; 630 #endif 631 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 632 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 633 unsigned long inblock, oublock, cinblock, coublock; 634 unsigned long maxrss, cmaxrss; 635 struct task_io_accounting ioac; 636 637 /* 638 * Cumulative ns of schedule CPU time fo dead threads in the 639 * group, not including a zombie group leader, (This only differs 640 * from jiffies_to_ns(utime + stime) if sched_clock uses something 641 * other than jiffies.) 642 */ 643 unsigned long long sum_sched_runtime; 644 645 /* 646 * We don't bother to synchronize most readers of this at all, 647 * because there is no reader checking a limit that actually needs 648 * to get both rlim_cur and rlim_max atomically, and either one 649 * alone is a single word that can safely be read normally. 650 * getrlimit/setrlimit use task_lock(current->group_leader) to 651 * protect this instead of the siglock, because they really 652 * have no need to disable irqs. 653 */ 654 struct rlimit rlim[RLIM_NLIMITS]; 655 656 #ifdef CONFIG_BSD_PROCESS_ACCT 657 struct pacct_struct pacct; /* per-process accounting information */ 658 #endif 659 #ifdef CONFIG_TASKSTATS 660 struct taskstats *stats; 661 #endif 662 #ifdef CONFIG_AUDIT 663 unsigned audit_tty; 664 struct tty_audit_buf *tty_audit_buf; 665 #endif 666 #ifdef CONFIG_CGROUPS 667 /* 668 * group_rwsem prevents new tasks from entering the threadgroup and 669 * member tasks from exiting,a more specifically, setting of 670 * PF_EXITING. fork and exit paths are protected with this rwsem 671 * using threadgroup_change_begin/end(). Users which require 672 * threadgroup to remain stable should use threadgroup_[un]lock() 673 * which also takes care of exec path. Currently, cgroup is the 674 * only user. 675 */ 676 struct rw_semaphore group_rwsem; 677 #endif 678 679 int oom_adj; /* OOM kill score adjustment (bit shift) */ 680 int oom_score_adj; /* OOM kill score adjustment */ 681 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 682 * Only settable by CAP_SYS_RESOURCE. */ 683 684 struct mutex cred_guard_mutex; /* guard against foreign influences on 685 * credential calculations 686 * (notably. ptrace) */ 687 }; 688 689 /* Context switch must be unlocked if interrupts are to be enabled */ 690 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 691 # define __ARCH_WANT_UNLOCKED_CTXSW 692 #endif 693 694 /* 695 * Bits in flags field of signal_struct. 696 */ 697 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 698 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 699 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 700 /* 701 * Pending notifications to parent. 702 */ 703 #define SIGNAL_CLD_STOPPED 0x00000010 704 #define SIGNAL_CLD_CONTINUED 0x00000020 705 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 706 707 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 708 709 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 710 static inline int signal_group_exit(const struct signal_struct *sig) 711 { 712 return (sig->flags & SIGNAL_GROUP_EXIT) || 713 (sig->group_exit_task != NULL); 714 } 715 716 /* 717 * Some day this will be a full-fledged user tracking system.. 718 */ 719 struct user_struct { 720 atomic_t __count; /* reference count */ 721 atomic_t processes; /* How many processes does this user have? */ 722 atomic_t files; /* How many open files does this user have? */ 723 atomic_t sigpending; /* How many pending signals does this user have? */ 724 #ifdef CONFIG_INOTIFY_USER 725 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 726 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 727 #endif 728 #ifdef CONFIG_FANOTIFY 729 atomic_t fanotify_listeners; 730 #endif 731 #ifdef CONFIG_EPOLL 732 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 733 #endif 734 #ifdef CONFIG_POSIX_MQUEUE 735 /* protected by mq_lock */ 736 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 737 #endif 738 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 739 740 #ifdef CONFIG_KEYS 741 struct key *uid_keyring; /* UID specific keyring */ 742 struct key *session_keyring; /* UID's default session keyring */ 743 #endif 744 745 /* Hash table maintenance information */ 746 struct hlist_node uidhash_node; 747 kuid_t uid; 748 749 #ifdef CONFIG_PERF_EVENTS 750 atomic_long_t locked_vm; 751 #endif 752 }; 753 754 extern int uids_sysfs_init(void); 755 756 extern struct user_struct *find_user(kuid_t); 757 758 extern struct user_struct root_user; 759 #define INIT_USER (&root_user) 760 761 762 struct backing_dev_info; 763 struct reclaim_state; 764 765 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 766 struct sched_info { 767 /* cumulative counters */ 768 unsigned long pcount; /* # of times run on this cpu */ 769 unsigned long long run_delay; /* time spent waiting on a runqueue */ 770 771 /* timestamps */ 772 unsigned long long last_arrival,/* when we last ran on a cpu */ 773 last_queued; /* when we were last queued to run */ 774 }; 775 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 776 777 #ifdef CONFIG_TASK_DELAY_ACCT 778 struct task_delay_info { 779 spinlock_t lock; 780 unsigned int flags; /* Private per-task flags */ 781 782 /* For each stat XXX, add following, aligned appropriately 783 * 784 * struct timespec XXX_start, XXX_end; 785 * u64 XXX_delay; 786 * u32 XXX_count; 787 * 788 * Atomicity of updates to XXX_delay, XXX_count protected by 789 * single lock above (split into XXX_lock if contention is an issue). 790 */ 791 792 /* 793 * XXX_count is incremented on every XXX operation, the delay 794 * associated with the operation is added to XXX_delay. 795 * XXX_delay contains the accumulated delay time in nanoseconds. 796 */ 797 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 798 u64 blkio_delay; /* wait for sync block io completion */ 799 u64 swapin_delay; /* wait for swapin block io completion */ 800 u32 blkio_count; /* total count of the number of sync block */ 801 /* io operations performed */ 802 u32 swapin_count; /* total count of the number of swapin block */ 803 /* io operations performed */ 804 805 struct timespec freepages_start, freepages_end; 806 u64 freepages_delay; /* wait for memory reclaim */ 807 u32 freepages_count; /* total count of memory reclaim */ 808 }; 809 #endif /* CONFIG_TASK_DELAY_ACCT */ 810 811 static inline int sched_info_on(void) 812 { 813 #ifdef CONFIG_SCHEDSTATS 814 return 1; 815 #elif defined(CONFIG_TASK_DELAY_ACCT) 816 extern int delayacct_on; 817 return delayacct_on; 818 #else 819 return 0; 820 #endif 821 } 822 823 enum cpu_idle_type { 824 CPU_IDLE, 825 CPU_NOT_IDLE, 826 CPU_NEWLY_IDLE, 827 CPU_MAX_IDLE_TYPES 828 }; 829 830 /* 831 * Increase resolution of nice-level calculations for 64-bit architectures. 832 * The extra resolution improves shares distribution and load balancing of 833 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 834 * hierarchies, especially on larger systems. This is not a user-visible change 835 * and does not change the user-interface for setting shares/weights. 836 * 837 * We increase resolution only if we have enough bits to allow this increased 838 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 839 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 840 * increased costs. 841 */ 842 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 843 # define SCHED_LOAD_RESOLUTION 10 844 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 845 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 846 #else 847 # define SCHED_LOAD_RESOLUTION 0 848 # define scale_load(w) (w) 849 # define scale_load_down(w) (w) 850 #endif 851 852 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 853 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 854 855 /* 856 * Increase resolution of cpu_power calculations 857 */ 858 #define SCHED_POWER_SHIFT 10 859 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 860 861 /* 862 * sched-domains (multiprocessor balancing) declarations: 863 */ 864 #ifdef CONFIG_SMP 865 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 866 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 867 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 868 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 869 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 870 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 871 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ 872 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 873 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 874 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 875 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 876 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 877 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 878 879 extern int __weak arch_sd_sibiling_asym_packing(void); 880 881 struct sched_group_power { 882 atomic_t ref; 883 /* 884 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 885 * single CPU. 886 */ 887 unsigned int power, power_orig; 888 unsigned long next_update; 889 /* 890 * Number of busy cpus in this group. 891 */ 892 atomic_t nr_busy_cpus; 893 894 unsigned long cpumask[0]; /* iteration mask */ 895 }; 896 897 struct sched_group { 898 struct sched_group *next; /* Must be a circular list */ 899 atomic_t ref; 900 901 unsigned int group_weight; 902 struct sched_group_power *sgp; 903 904 /* 905 * The CPUs this group covers. 906 * 907 * NOTE: this field is variable length. (Allocated dynamically 908 * by attaching extra space to the end of the structure, 909 * depending on how many CPUs the kernel has booted up with) 910 */ 911 unsigned long cpumask[0]; 912 }; 913 914 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 915 { 916 return to_cpumask(sg->cpumask); 917 } 918 919 /* 920 * cpumask masking which cpus in the group are allowed to iterate up the domain 921 * tree. 922 */ 923 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 924 { 925 return to_cpumask(sg->sgp->cpumask); 926 } 927 928 /** 929 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 930 * @group: The group whose first cpu is to be returned. 931 */ 932 static inline unsigned int group_first_cpu(struct sched_group *group) 933 { 934 return cpumask_first(sched_group_cpus(group)); 935 } 936 937 struct sched_domain_attr { 938 int relax_domain_level; 939 }; 940 941 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 942 .relax_domain_level = -1, \ 943 } 944 945 extern int sched_domain_level_max; 946 947 struct sched_domain { 948 /* These fields must be setup */ 949 struct sched_domain *parent; /* top domain must be null terminated */ 950 struct sched_domain *child; /* bottom domain must be null terminated */ 951 struct sched_group *groups; /* the balancing groups of the domain */ 952 unsigned long min_interval; /* Minimum balance interval ms */ 953 unsigned long max_interval; /* Maximum balance interval ms */ 954 unsigned int busy_factor; /* less balancing by factor if busy */ 955 unsigned int imbalance_pct; /* No balance until over watermark */ 956 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 957 unsigned int busy_idx; 958 unsigned int idle_idx; 959 unsigned int newidle_idx; 960 unsigned int wake_idx; 961 unsigned int forkexec_idx; 962 unsigned int smt_gain; 963 int flags; /* See SD_* */ 964 int level; 965 int idle_buddy; /* cpu assigned to select_idle_sibling() */ 966 967 /* Runtime fields. */ 968 unsigned long last_balance; /* init to jiffies. units in jiffies */ 969 unsigned int balance_interval; /* initialise to 1. units in ms. */ 970 unsigned int nr_balance_failed; /* initialise to 0 */ 971 972 u64 last_update; 973 974 #ifdef CONFIG_SCHEDSTATS 975 /* load_balance() stats */ 976 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 977 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 978 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 979 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 980 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 981 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 982 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 983 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 984 985 /* Active load balancing */ 986 unsigned int alb_count; 987 unsigned int alb_failed; 988 unsigned int alb_pushed; 989 990 /* SD_BALANCE_EXEC stats */ 991 unsigned int sbe_count; 992 unsigned int sbe_balanced; 993 unsigned int sbe_pushed; 994 995 /* SD_BALANCE_FORK stats */ 996 unsigned int sbf_count; 997 unsigned int sbf_balanced; 998 unsigned int sbf_pushed; 999 1000 /* try_to_wake_up() stats */ 1001 unsigned int ttwu_wake_remote; 1002 unsigned int ttwu_move_affine; 1003 unsigned int ttwu_move_balance; 1004 #endif 1005 #ifdef CONFIG_SCHED_DEBUG 1006 char *name; 1007 #endif 1008 union { 1009 void *private; /* used during construction */ 1010 struct rcu_head rcu; /* used during destruction */ 1011 }; 1012 1013 unsigned int span_weight; 1014 /* 1015 * Span of all CPUs in this domain. 1016 * 1017 * NOTE: this field is variable length. (Allocated dynamically 1018 * by attaching extra space to the end of the structure, 1019 * depending on how many CPUs the kernel has booted up with) 1020 */ 1021 unsigned long span[0]; 1022 }; 1023 1024 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1025 { 1026 return to_cpumask(sd->span); 1027 } 1028 1029 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1030 struct sched_domain_attr *dattr_new); 1031 1032 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1033 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1034 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1035 1036 /* Test a flag in parent sched domain */ 1037 static inline int test_sd_parent(struct sched_domain *sd, int flag) 1038 { 1039 if (sd->parent && (sd->parent->flags & flag)) 1040 return 1; 1041 1042 return 0; 1043 } 1044 1045 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 1046 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 1047 1048 bool cpus_share_cache(int this_cpu, int that_cpu); 1049 1050 #else /* CONFIG_SMP */ 1051 1052 struct sched_domain_attr; 1053 1054 static inline void 1055 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1056 struct sched_domain_attr *dattr_new) 1057 { 1058 } 1059 1060 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1061 { 1062 return true; 1063 } 1064 1065 #endif /* !CONFIG_SMP */ 1066 1067 1068 struct io_context; /* See blkdev.h */ 1069 1070 1071 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1072 extern void prefetch_stack(struct task_struct *t); 1073 #else 1074 static inline void prefetch_stack(struct task_struct *t) { } 1075 #endif 1076 1077 struct audit_context; /* See audit.c */ 1078 struct mempolicy; 1079 struct pipe_inode_info; 1080 struct uts_namespace; 1081 1082 struct rq; 1083 struct sched_domain; 1084 1085 /* 1086 * wake flags 1087 */ 1088 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1089 #define WF_FORK 0x02 /* child wakeup after fork */ 1090 #define WF_MIGRATED 0x04 /* internal use, task got migrated */ 1091 1092 #define ENQUEUE_WAKEUP 1 1093 #define ENQUEUE_HEAD 2 1094 #ifdef CONFIG_SMP 1095 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1096 #else 1097 #define ENQUEUE_WAKING 0 1098 #endif 1099 1100 #define DEQUEUE_SLEEP 1 1101 1102 struct sched_class { 1103 const struct sched_class *next; 1104 1105 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1106 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1107 void (*yield_task) (struct rq *rq); 1108 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1109 1110 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1111 1112 struct task_struct * (*pick_next_task) (struct rq *rq); 1113 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1114 1115 #ifdef CONFIG_SMP 1116 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1117 1118 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1119 void (*post_schedule) (struct rq *this_rq); 1120 void (*task_waking) (struct task_struct *task); 1121 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1122 1123 void (*set_cpus_allowed)(struct task_struct *p, 1124 const struct cpumask *newmask); 1125 1126 void (*rq_online)(struct rq *rq); 1127 void (*rq_offline)(struct rq *rq); 1128 #endif 1129 1130 void (*set_curr_task) (struct rq *rq); 1131 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1132 void (*task_fork) (struct task_struct *p); 1133 1134 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1135 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1136 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1137 int oldprio); 1138 1139 unsigned int (*get_rr_interval) (struct rq *rq, 1140 struct task_struct *task); 1141 1142 #ifdef CONFIG_FAIR_GROUP_SCHED 1143 void (*task_move_group) (struct task_struct *p, int on_rq); 1144 #endif 1145 }; 1146 1147 struct load_weight { 1148 unsigned long weight, inv_weight; 1149 }; 1150 1151 #ifdef CONFIG_SCHEDSTATS 1152 struct sched_statistics { 1153 u64 wait_start; 1154 u64 wait_max; 1155 u64 wait_count; 1156 u64 wait_sum; 1157 u64 iowait_count; 1158 u64 iowait_sum; 1159 1160 u64 sleep_start; 1161 u64 sleep_max; 1162 s64 sum_sleep_runtime; 1163 1164 u64 block_start; 1165 u64 block_max; 1166 u64 exec_max; 1167 u64 slice_max; 1168 1169 u64 nr_migrations_cold; 1170 u64 nr_failed_migrations_affine; 1171 u64 nr_failed_migrations_running; 1172 u64 nr_failed_migrations_hot; 1173 u64 nr_forced_migrations; 1174 1175 u64 nr_wakeups; 1176 u64 nr_wakeups_sync; 1177 u64 nr_wakeups_migrate; 1178 u64 nr_wakeups_local; 1179 u64 nr_wakeups_remote; 1180 u64 nr_wakeups_affine; 1181 u64 nr_wakeups_affine_attempts; 1182 u64 nr_wakeups_passive; 1183 u64 nr_wakeups_idle; 1184 }; 1185 #endif 1186 1187 struct sched_entity { 1188 struct load_weight load; /* for load-balancing */ 1189 struct rb_node run_node; 1190 struct list_head group_node; 1191 unsigned int on_rq; 1192 1193 u64 exec_start; 1194 u64 sum_exec_runtime; 1195 u64 vruntime; 1196 u64 prev_sum_exec_runtime; 1197 1198 u64 nr_migrations; 1199 1200 #ifdef CONFIG_SCHEDSTATS 1201 struct sched_statistics statistics; 1202 #endif 1203 1204 #ifdef CONFIG_FAIR_GROUP_SCHED 1205 struct sched_entity *parent; 1206 /* rq on which this entity is (to be) queued: */ 1207 struct cfs_rq *cfs_rq; 1208 /* rq "owned" by this entity/group: */ 1209 struct cfs_rq *my_q; 1210 #endif 1211 }; 1212 1213 struct sched_rt_entity { 1214 struct list_head run_list; 1215 unsigned long timeout; 1216 unsigned int time_slice; 1217 1218 struct sched_rt_entity *back; 1219 #ifdef CONFIG_RT_GROUP_SCHED 1220 struct sched_rt_entity *parent; 1221 /* rq on which this entity is (to be) queued: */ 1222 struct rt_rq *rt_rq; 1223 /* rq "owned" by this entity/group: */ 1224 struct rt_rq *my_q; 1225 #endif 1226 }; 1227 1228 /* 1229 * default timeslice is 100 msecs (used only for SCHED_RR tasks). 1230 * Timeslices get refilled after they expire. 1231 */ 1232 #define RR_TIMESLICE (100 * HZ / 1000) 1233 1234 struct rcu_node; 1235 1236 enum perf_event_task_context { 1237 perf_invalid_context = -1, 1238 perf_hw_context = 0, 1239 perf_sw_context, 1240 perf_nr_task_contexts, 1241 }; 1242 1243 struct task_struct { 1244 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1245 void *stack; 1246 atomic_t usage; 1247 unsigned int flags; /* per process flags, defined below */ 1248 unsigned int ptrace; 1249 1250 #ifdef CONFIG_SMP 1251 struct llist_node wake_entry; 1252 int on_cpu; 1253 #endif 1254 int on_rq; 1255 1256 int prio, static_prio, normal_prio; 1257 unsigned int rt_priority; 1258 const struct sched_class *sched_class; 1259 struct sched_entity se; 1260 struct sched_rt_entity rt; 1261 #ifdef CONFIG_CGROUP_SCHED 1262 struct task_group *sched_task_group; 1263 #endif 1264 1265 #ifdef CONFIG_PREEMPT_NOTIFIERS 1266 /* list of struct preempt_notifier: */ 1267 struct hlist_head preempt_notifiers; 1268 #endif 1269 1270 /* 1271 * fpu_counter contains the number of consecutive context switches 1272 * that the FPU is used. If this is over a threshold, the lazy fpu 1273 * saving becomes unlazy to save the trap. This is an unsigned char 1274 * so that after 256 times the counter wraps and the behavior turns 1275 * lazy again; this to deal with bursty apps that only use FPU for 1276 * a short time 1277 */ 1278 unsigned char fpu_counter; 1279 #ifdef CONFIG_BLK_DEV_IO_TRACE 1280 unsigned int btrace_seq; 1281 #endif 1282 1283 unsigned int policy; 1284 int nr_cpus_allowed; 1285 cpumask_t cpus_allowed; 1286 1287 #ifdef CONFIG_PREEMPT_RCU 1288 int rcu_read_lock_nesting; 1289 char rcu_read_unlock_special; 1290 struct list_head rcu_node_entry; 1291 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1292 #ifdef CONFIG_TREE_PREEMPT_RCU 1293 struct rcu_node *rcu_blocked_node; 1294 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1295 #ifdef CONFIG_RCU_BOOST 1296 struct rt_mutex *rcu_boost_mutex; 1297 #endif /* #ifdef CONFIG_RCU_BOOST */ 1298 1299 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1300 struct sched_info sched_info; 1301 #endif 1302 1303 struct list_head tasks; 1304 #ifdef CONFIG_SMP 1305 struct plist_node pushable_tasks; 1306 #endif 1307 1308 struct mm_struct *mm, *active_mm; 1309 #ifdef CONFIG_COMPAT_BRK 1310 unsigned brk_randomized:1; 1311 #endif 1312 #if defined(SPLIT_RSS_COUNTING) 1313 struct task_rss_stat rss_stat; 1314 #endif 1315 /* task state */ 1316 int exit_state; 1317 int exit_code, exit_signal; 1318 int pdeath_signal; /* The signal sent when the parent dies */ 1319 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1320 /* ??? */ 1321 unsigned int personality; 1322 unsigned did_exec:1; 1323 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1324 * execve */ 1325 unsigned in_iowait:1; 1326 1327 /* task may not gain privileges */ 1328 unsigned no_new_privs:1; 1329 1330 /* Revert to default priority/policy when forking */ 1331 unsigned sched_reset_on_fork:1; 1332 unsigned sched_contributes_to_load:1; 1333 1334 pid_t pid; 1335 pid_t tgid; 1336 1337 #ifdef CONFIG_CC_STACKPROTECTOR 1338 /* Canary value for the -fstack-protector gcc feature */ 1339 unsigned long stack_canary; 1340 #endif 1341 /* 1342 * pointers to (original) parent process, youngest child, younger sibling, 1343 * older sibling, respectively. (p->father can be replaced with 1344 * p->real_parent->pid) 1345 */ 1346 struct task_struct __rcu *real_parent; /* real parent process */ 1347 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1348 /* 1349 * children/sibling forms the list of my natural children 1350 */ 1351 struct list_head children; /* list of my children */ 1352 struct list_head sibling; /* linkage in my parent's children list */ 1353 struct task_struct *group_leader; /* threadgroup leader */ 1354 1355 /* 1356 * ptraced is the list of tasks this task is using ptrace on. 1357 * This includes both natural children and PTRACE_ATTACH targets. 1358 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1359 */ 1360 struct list_head ptraced; 1361 struct list_head ptrace_entry; 1362 1363 /* PID/PID hash table linkage. */ 1364 struct pid_link pids[PIDTYPE_MAX]; 1365 struct list_head thread_group; 1366 1367 struct completion *vfork_done; /* for vfork() */ 1368 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1369 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1370 1371 cputime_t utime, stime, utimescaled, stimescaled; 1372 cputime_t gtime; 1373 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1374 cputime_t prev_utime, prev_stime; 1375 #endif 1376 unsigned long nvcsw, nivcsw; /* context switch counts */ 1377 struct timespec start_time; /* monotonic time */ 1378 struct timespec real_start_time; /* boot based time */ 1379 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1380 unsigned long min_flt, maj_flt; 1381 1382 struct task_cputime cputime_expires; 1383 struct list_head cpu_timers[3]; 1384 1385 /* process credentials */ 1386 const struct cred __rcu *real_cred; /* objective and real subjective task 1387 * credentials (COW) */ 1388 const struct cred __rcu *cred; /* effective (overridable) subjective task 1389 * credentials (COW) */ 1390 char comm[TASK_COMM_LEN]; /* executable name excluding path 1391 - access with [gs]et_task_comm (which lock 1392 it with task_lock()) 1393 - initialized normally by setup_new_exec */ 1394 /* file system info */ 1395 int link_count, total_link_count; 1396 #ifdef CONFIG_SYSVIPC 1397 /* ipc stuff */ 1398 struct sysv_sem sysvsem; 1399 #endif 1400 #ifdef CONFIG_DETECT_HUNG_TASK 1401 /* hung task detection */ 1402 unsigned long last_switch_count; 1403 #endif 1404 /* CPU-specific state of this task */ 1405 struct thread_struct thread; 1406 /* filesystem information */ 1407 struct fs_struct *fs; 1408 /* open file information */ 1409 struct files_struct *files; 1410 /* namespaces */ 1411 struct nsproxy *nsproxy; 1412 /* signal handlers */ 1413 struct signal_struct *signal; 1414 struct sighand_struct *sighand; 1415 1416 sigset_t blocked, real_blocked; 1417 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1418 struct sigpending pending; 1419 1420 unsigned long sas_ss_sp; 1421 size_t sas_ss_size; 1422 int (*notifier)(void *priv); 1423 void *notifier_data; 1424 sigset_t *notifier_mask; 1425 struct callback_head *task_works; 1426 1427 struct audit_context *audit_context; 1428 #ifdef CONFIG_AUDITSYSCALL 1429 uid_t loginuid; 1430 unsigned int sessionid; 1431 #endif 1432 struct seccomp seccomp; 1433 1434 /* Thread group tracking */ 1435 u32 parent_exec_id; 1436 u32 self_exec_id; 1437 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1438 * mempolicy */ 1439 spinlock_t alloc_lock; 1440 1441 /* Protection of the PI data structures: */ 1442 raw_spinlock_t pi_lock; 1443 1444 #ifdef CONFIG_RT_MUTEXES 1445 /* PI waiters blocked on a rt_mutex held by this task */ 1446 struct plist_head pi_waiters; 1447 /* Deadlock detection and priority inheritance handling */ 1448 struct rt_mutex_waiter *pi_blocked_on; 1449 #endif 1450 1451 #ifdef CONFIG_DEBUG_MUTEXES 1452 /* mutex deadlock detection */ 1453 struct mutex_waiter *blocked_on; 1454 #endif 1455 #ifdef CONFIG_TRACE_IRQFLAGS 1456 unsigned int irq_events; 1457 unsigned long hardirq_enable_ip; 1458 unsigned long hardirq_disable_ip; 1459 unsigned int hardirq_enable_event; 1460 unsigned int hardirq_disable_event; 1461 int hardirqs_enabled; 1462 int hardirq_context; 1463 unsigned long softirq_disable_ip; 1464 unsigned long softirq_enable_ip; 1465 unsigned int softirq_disable_event; 1466 unsigned int softirq_enable_event; 1467 int softirqs_enabled; 1468 int softirq_context; 1469 #endif 1470 #ifdef CONFIG_LOCKDEP 1471 # define MAX_LOCK_DEPTH 48UL 1472 u64 curr_chain_key; 1473 int lockdep_depth; 1474 unsigned int lockdep_recursion; 1475 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1476 gfp_t lockdep_reclaim_gfp; 1477 #endif 1478 1479 /* journalling filesystem info */ 1480 void *journal_info; 1481 1482 /* stacked block device info */ 1483 struct bio_list *bio_list; 1484 1485 #ifdef CONFIG_BLOCK 1486 /* stack plugging */ 1487 struct blk_plug *plug; 1488 #endif 1489 1490 /* VM state */ 1491 struct reclaim_state *reclaim_state; 1492 1493 struct backing_dev_info *backing_dev_info; 1494 1495 struct io_context *io_context; 1496 1497 unsigned long ptrace_message; 1498 siginfo_t *last_siginfo; /* For ptrace use. */ 1499 struct task_io_accounting ioac; 1500 #if defined(CONFIG_TASK_XACCT) 1501 u64 acct_rss_mem1; /* accumulated rss usage */ 1502 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1503 cputime_t acct_timexpd; /* stime + utime since last update */ 1504 #endif 1505 #ifdef CONFIG_CPUSETS 1506 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1507 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1508 int cpuset_mem_spread_rotor; 1509 int cpuset_slab_spread_rotor; 1510 #endif 1511 #ifdef CONFIG_CGROUPS 1512 /* Control Group info protected by css_set_lock */ 1513 struct css_set __rcu *cgroups; 1514 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1515 struct list_head cg_list; 1516 #endif 1517 #ifdef CONFIG_FUTEX 1518 struct robust_list_head __user *robust_list; 1519 #ifdef CONFIG_COMPAT 1520 struct compat_robust_list_head __user *compat_robust_list; 1521 #endif 1522 struct list_head pi_state_list; 1523 struct futex_pi_state *pi_state_cache; 1524 #endif 1525 #ifdef CONFIG_PERF_EVENTS 1526 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1527 struct mutex perf_event_mutex; 1528 struct list_head perf_event_list; 1529 #endif 1530 #ifdef CONFIG_NUMA 1531 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1532 short il_next; 1533 short pref_node_fork; 1534 #endif 1535 struct rcu_head rcu; 1536 1537 /* 1538 * cache last used pipe for splice 1539 */ 1540 struct pipe_inode_info *splice_pipe; 1541 #ifdef CONFIG_TASK_DELAY_ACCT 1542 struct task_delay_info *delays; 1543 #endif 1544 #ifdef CONFIG_FAULT_INJECTION 1545 int make_it_fail; 1546 #endif 1547 /* 1548 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1549 * balance_dirty_pages() for some dirty throttling pause 1550 */ 1551 int nr_dirtied; 1552 int nr_dirtied_pause; 1553 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1554 1555 #ifdef CONFIG_LATENCYTOP 1556 int latency_record_count; 1557 struct latency_record latency_record[LT_SAVECOUNT]; 1558 #endif 1559 /* 1560 * time slack values; these are used to round up poll() and 1561 * select() etc timeout values. These are in nanoseconds. 1562 */ 1563 unsigned long timer_slack_ns; 1564 unsigned long default_timer_slack_ns; 1565 1566 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1567 /* Index of current stored address in ret_stack */ 1568 int curr_ret_stack; 1569 /* Stack of return addresses for return function tracing */ 1570 struct ftrace_ret_stack *ret_stack; 1571 /* time stamp for last schedule */ 1572 unsigned long long ftrace_timestamp; 1573 /* 1574 * Number of functions that haven't been traced 1575 * because of depth overrun. 1576 */ 1577 atomic_t trace_overrun; 1578 /* Pause for the tracing */ 1579 atomic_t tracing_graph_pause; 1580 #endif 1581 #ifdef CONFIG_TRACING 1582 /* state flags for use by tracers */ 1583 unsigned long trace; 1584 /* bitmask and counter of trace recursion */ 1585 unsigned long trace_recursion; 1586 #endif /* CONFIG_TRACING */ 1587 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1588 struct memcg_batch_info { 1589 int do_batch; /* incremented when batch uncharge started */ 1590 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1591 unsigned long nr_pages; /* uncharged usage */ 1592 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1593 } memcg_batch; 1594 #endif 1595 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1596 atomic_t ptrace_bp_refcnt; 1597 #endif 1598 #ifdef CONFIG_UPROBES 1599 struct uprobe_task *utask; 1600 #endif 1601 }; 1602 1603 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1604 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1605 1606 /* 1607 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1608 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1609 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1610 * values are inverted: lower p->prio value means higher priority. 1611 * 1612 * The MAX_USER_RT_PRIO value allows the actual maximum 1613 * RT priority to be separate from the value exported to 1614 * user-space. This allows kernel threads to set their 1615 * priority to a value higher than any user task. Note: 1616 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1617 */ 1618 1619 #define MAX_USER_RT_PRIO 100 1620 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1621 1622 #define MAX_PRIO (MAX_RT_PRIO + 40) 1623 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1624 1625 static inline int rt_prio(int prio) 1626 { 1627 if (unlikely(prio < MAX_RT_PRIO)) 1628 return 1; 1629 return 0; 1630 } 1631 1632 static inline int rt_task(struct task_struct *p) 1633 { 1634 return rt_prio(p->prio); 1635 } 1636 1637 static inline struct pid *task_pid(struct task_struct *task) 1638 { 1639 return task->pids[PIDTYPE_PID].pid; 1640 } 1641 1642 static inline struct pid *task_tgid(struct task_struct *task) 1643 { 1644 return task->group_leader->pids[PIDTYPE_PID].pid; 1645 } 1646 1647 /* 1648 * Without tasklist or rcu lock it is not safe to dereference 1649 * the result of task_pgrp/task_session even if task == current, 1650 * we can race with another thread doing sys_setsid/sys_setpgid. 1651 */ 1652 static inline struct pid *task_pgrp(struct task_struct *task) 1653 { 1654 return task->group_leader->pids[PIDTYPE_PGID].pid; 1655 } 1656 1657 static inline struct pid *task_session(struct task_struct *task) 1658 { 1659 return task->group_leader->pids[PIDTYPE_SID].pid; 1660 } 1661 1662 struct pid_namespace; 1663 1664 /* 1665 * the helpers to get the task's different pids as they are seen 1666 * from various namespaces 1667 * 1668 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1669 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1670 * current. 1671 * task_xid_nr_ns() : id seen from the ns specified; 1672 * 1673 * set_task_vxid() : assigns a virtual id to a task; 1674 * 1675 * see also pid_nr() etc in include/linux/pid.h 1676 */ 1677 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1678 struct pid_namespace *ns); 1679 1680 static inline pid_t task_pid_nr(struct task_struct *tsk) 1681 { 1682 return tsk->pid; 1683 } 1684 1685 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1686 struct pid_namespace *ns) 1687 { 1688 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1689 } 1690 1691 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1692 { 1693 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1694 } 1695 1696 1697 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1698 { 1699 return tsk->tgid; 1700 } 1701 1702 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1703 1704 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1705 { 1706 return pid_vnr(task_tgid(tsk)); 1707 } 1708 1709 1710 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1711 struct pid_namespace *ns) 1712 { 1713 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1714 } 1715 1716 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1717 { 1718 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1719 } 1720 1721 1722 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1723 struct pid_namespace *ns) 1724 { 1725 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1726 } 1727 1728 static inline pid_t task_session_vnr(struct task_struct *tsk) 1729 { 1730 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1731 } 1732 1733 /* obsolete, do not use */ 1734 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1735 { 1736 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1737 } 1738 1739 /** 1740 * pid_alive - check that a task structure is not stale 1741 * @p: Task structure to be checked. 1742 * 1743 * Test if a process is not yet dead (at most zombie state) 1744 * If pid_alive fails, then pointers within the task structure 1745 * can be stale and must not be dereferenced. 1746 */ 1747 static inline int pid_alive(struct task_struct *p) 1748 { 1749 return p->pids[PIDTYPE_PID].pid != NULL; 1750 } 1751 1752 /** 1753 * is_global_init - check if a task structure is init 1754 * @tsk: Task structure to be checked. 1755 * 1756 * Check if a task structure is the first user space task the kernel created. 1757 */ 1758 static inline int is_global_init(struct task_struct *tsk) 1759 { 1760 return tsk->pid == 1; 1761 } 1762 1763 /* 1764 * is_container_init: 1765 * check whether in the task is init in its own pid namespace. 1766 */ 1767 extern int is_container_init(struct task_struct *tsk); 1768 1769 extern struct pid *cad_pid; 1770 1771 extern void free_task(struct task_struct *tsk); 1772 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1773 1774 extern void __put_task_struct(struct task_struct *t); 1775 1776 static inline void put_task_struct(struct task_struct *t) 1777 { 1778 if (atomic_dec_and_test(&t->usage)) 1779 __put_task_struct(t); 1780 } 1781 1782 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1783 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1784 1785 /* 1786 * Per process flags 1787 */ 1788 #define PF_EXITING 0x00000004 /* getting shut down */ 1789 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1790 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1791 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1792 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1793 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1794 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1795 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1796 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1797 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1798 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1799 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1800 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1801 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1802 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1803 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1804 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1805 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1806 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1807 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1808 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1809 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1810 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1811 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1812 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1813 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1814 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1815 1816 /* 1817 * Only the _current_ task can read/write to tsk->flags, but other 1818 * tasks can access tsk->flags in readonly mode for example 1819 * with tsk_used_math (like during threaded core dumping). 1820 * There is however an exception to this rule during ptrace 1821 * or during fork: the ptracer task is allowed to write to the 1822 * child->flags of its traced child (same goes for fork, the parent 1823 * can write to the child->flags), because we're guaranteed the 1824 * child is not running and in turn not changing child->flags 1825 * at the same time the parent does it. 1826 */ 1827 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1828 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1829 #define clear_used_math() clear_stopped_child_used_math(current) 1830 #define set_used_math() set_stopped_child_used_math(current) 1831 #define conditional_stopped_child_used_math(condition, child) \ 1832 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1833 #define conditional_used_math(condition) \ 1834 conditional_stopped_child_used_math(condition, current) 1835 #define copy_to_stopped_child_used_math(child) \ 1836 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1837 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1838 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1839 #define used_math() tsk_used_math(current) 1840 1841 /* 1842 * task->jobctl flags 1843 */ 1844 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1845 1846 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1847 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1848 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1849 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1850 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1851 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1852 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1853 1854 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1855 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1856 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1857 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1858 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1859 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1860 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1861 1862 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1863 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1864 1865 extern bool task_set_jobctl_pending(struct task_struct *task, 1866 unsigned int mask); 1867 extern void task_clear_jobctl_trapping(struct task_struct *task); 1868 extern void task_clear_jobctl_pending(struct task_struct *task, 1869 unsigned int mask); 1870 1871 #ifdef CONFIG_PREEMPT_RCU 1872 1873 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1874 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1875 1876 static inline void rcu_copy_process(struct task_struct *p) 1877 { 1878 p->rcu_read_lock_nesting = 0; 1879 p->rcu_read_unlock_special = 0; 1880 #ifdef CONFIG_TREE_PREEMPT_RCU 1881 p->rcu_blocked_node = NULL; 1882 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1883 #ifdef CONFIG_RCU_BOOST 1884 p->rcu_boost_mutex = NULL; 1885 #endif /* #ifdef CONFIG_RCU_BOOST */ 1886 INIT_LIST_HEAD(&p->rcu_node_entry); 1887 } 1888 1889 #else 1890 1891 static inline void rcu_copy_process(struct task_struct *p) 1892 { 1893 } 1894 1895 #endif 1896 1897 static inline void tsk_restore_flags(struct task_struct *task, 1898 unsigned long orig_flags, unsigned long flags) 1899 { 1900 task->flags &= ~flags; 1901 task->flags |= orig_flags & flags; 1902 } 1903 1904 #ifdef CONFIG_SMP 1905 extern void do_set_cpus_allowed(struct task_struct *p, 1906 const struct cpumask *new_mask); 1907 1908 extern int set_cpus_allowed_ptr(struct task_struct *p, 1909 const struct cpumask *new_mask); 1910 #else 1911 static inline void do_set_cpus_allowed(struct task_struct *p, 1912 const struct cpumask *new_mask) 1913 { 1914 } 1915 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1916 const struct cpumask *new_mask) 1917 { 1918 if (!cpumask_test_cpu(0, new_mask)) 1919 return -EINVAL; 1920 return 0; 1921 } 1922 #endif 1923 1924 #ifdef CONFIG_NO_HZ 1925 void calc_load_enter_idle(void); 1926 void calc_load_exit_idle(void); 1927 #else 1928 static inline void calc_load_enter_idle(void) { } 1929 static inline void calc_load_exit_idle(void) { } 1930 #endif /* CONFIG_NO_HZ */ 1931 1932 #ifndef CONFIG_CPUMASK_OFFSTACK 1933 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1934 { 1935 return set_cpus_allowed_ptr(p, &new_mask); 1936 } 1937 #endif 1938 1939 /* 1940 * Do not use outside of architecture code which knows its limitations. 1941 * 1942 * sched_clock() has no promise of monotonicity or bounded drift between 1943 * CPUs, use (which you should not) requires disabling IRQs. 1944 * 1945 * Please use one of the three interfaces below. 1946 */ 1947 extern unsigned long long notrace sched_clock(void); 1948 /* 1949 * See the comment in kernel/sched/clock.c 1950 */ 1951 extern u64 cpu_clock(int cpu); 1952 extern u64 local_clock(void); 1953 extern u64 sched_clock_cpu(int cpu); 1954 1955 1956 extern void sched_clock_init(void); 1957 1958 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1959 static inline void sched_clock_tick(void) 1960 { 1961 } 1962 1963 static inline void sched_clock_idle_sleep_event(void) 1964 { 1965 } 1966 1967 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1968 { 1969 } 1970 #else 1971 /* 1972 * Architectures can set this to 1 if they have specified 1973 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1974 * but then during bootup it turns out that sched_clock() 1975 * is reliable after all: 1976 */ 1977 extern int sched_clock_stable; 1978 1979 extern void sched_clock_tick(void); 1980 extern void sched_clock_idle_sleep_event(void); 1981 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1982 #endif 1983 1984 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1985 /* 1986 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1987 * The reason for this explicit opt-in is not to have perf penalty with 1988 * slow sched_clocks. 1989 */ 1990 extern void enable_sched_clock_irqtime(void); 1991 extern void disable_sched_clock_irqtime(void); 1992 #else 1993 static inline void enable_sched_clock_irqtime(void) {} 1994 static inline void disable_sched_clock_irqtime(void) {} 1995 #endif 1996 1997 extern unsigned long long 1998 task_sched_runtime(struct task_struct *task); 1999 2000 /* sched_exec is called by processes performing an exec */ 2001 #ifdef CONFIG_SMP 2002 extern void sched_exec(void); 2003 #else 2004 #define sched_exec() {} 2005 #endif 2006 2007 extern void sched_clock_idle_sleep_event(void); 2008 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2009 2010 #ifdef CONFIG_HOTPLUG_CPU 2011 extern void idle_task_exit(void); 2012 #else 2013 static inline void idle_task_exit(void) {} 2014 #endif 2015 2016 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 2017 extern void wake_up_idle_cpu(int cpu); 2018 #else 2019 static inline void wake_up_idle_cpu(int cpu) { } 2020 #endif 2021 2022 extern unsigned int sysctl_sched_latency; 2023 extern unsigned int sysctl_sched_min_granularity; 2024 extern unsigned int sysctl_sched_wakeup_granularity; 2025 extern unsigned int sysctl_sched_child_runs_first; 2026 2027 enum sched_tunable_scaling { 2028 SCHED_TUNABLESCALING_NONE, 2029 SCHED_TUNABLESCALING_LOG, 2030 SCHED_TUNABLESCALING_LINEAR, 2031 SCHED_TUNABLESCALING_END, 2032 }; 2033 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 2034 2035 #ifdef CONFIG_SCHED_DEBUG 2036 extern unsigned int sysctl_sched_migration_cost; 2037 extern unsigned int sysctl_sched_nr_migrate; 2038 extern unsigned int sysctl_sched_time_avg; 2039 extern unsigned int sysctl_timer_migration; 2040 extern unsigned int sysctl_sched_shares_window; 2041 2042 int sched_proc_update_handler(struct ctl_table *table, int write, 2043 void __user *buffer, size_t *length, 2044 loff_t *ppos); 2045 #endif 2046 #ifdef CONFIG_SCHED_DEBUG 2047 static inline unsigned int get_sysctl_timer_migration(void) 2048 { 2049 return sysctl_timer_migration; 2050 } 2051 #else 2052 static inline unsigned int get_sysctl_timer_migration(void) 2053 { 2054 return 1; 2055 } 2056 #endif 2057 extern unsigned int sysctl_sched_rt_period; 2058 extern int sysctl_sched_rt_runtime; 2059 2060 int sched_rt_handler(struct ctl_table *table, int write, 2061 void __user *buffer, size_t *lenp, 2062 loff_t *ppos); 2063 2064 #ifdef CONFIG_SCHED_AUTOGROUP 2065 extern unsigned int sysctl_sched_autogroup_enabled; 2066 2067 extern void sched_autogroup_create_attach(struct task_struct *p); 2068 extern void sched_autogroup_detach(struct task_struct *p); 2069 extern void sched_autogroup_fork(struct signal_struct *sig); 2070 extern void sched_autogroup_exit(struct signal_struct *sig); 2071 #ifdef CONFIG_PROC_FS 2072 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2073 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2074 #endif 2075 #else 2076 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2077 static inline void sched_autogroup_detach(struct task_struct *p) { } 2078 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2079 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2080 #endif 2081 2082 #ifdef CONFIG_CFS_BANDWIDTH 2083 extern unsigned int sysctl_sched_cfs_bandwidth_slice; 2084 #endif 2085 2086 #ifdef CONFIG_RT_MUTEXES 2087 extern int rt_mutex_getprio(struct task_struct *p); 2088 extern void rt_mutex_setprio(struct task_struct *p, int prio); 2089 extern void rt_mutex_adjust_pi(struct task_struct *p); 2090 static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2091 { 2092 return tsk->pi_blocked_on != NULL; 2093 } 2094 #else 2095 static inline int rt_mutex_getprio(struct task_struct *p) 2096 { 2097 return p->normal_prio; 2098 } 2099 # define rt_mutex_adjust_pi(p) do { } while (0) 2100 static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2101 { 2102 return false; 2103 } 2104 #endif 2105 2106 extern bool yield_to(struct task_struct *p, bool preempt); 2107 extern void set_user_nice(struct task_struct *p, long nice); 2108 extern int task_prio(const struct task_struct *p); 2109 extern int task_nice(const struct task_struct *p); 2110 extern int can_nice(const struct task_struct *p, const int nice); 2111 extern int task_curr(const struct task_struct *p); 2112 extern int idle_cpu(int cpu); 2113 extern int sched_setscheduler(struct task_struct *, int, 2114 const struct sched_param *); 2115 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2116 const struct sched_param *); 2117 extern struct task_struct *idle_task(int cpu); 2118 /** 2119 * is_idle_task - is the specified task an idle task? 2120 * @p: the task in question. 2121 */ 2122 static inline bool is_idle_task(const struct task_struct *p) 2123 { 2124 return p->pid == 0; 2125 } 2126 extern struct task_struct *curr_task(int cpu); 2127 extern void set_curr_task(int cpu, struct task_struct *p); 2128 2129 void yield(void); 2130 2131 /* 2132 * The default (Linux) execution domain. 2133 */ 2134 extern struct exec_domain default_exec_domain; 2135 2136 union thread_union { 2137 struct thread_info thread_info; 2138 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2139 }; 2140 2141 #ifndef __HAVE_ARCH_KSTACK_END 2142 static inline int kstack_end(void *addr) 2143 { 2144 /* Reliable end of stack detection: 2145 * Some APM bios versions misalign the stack 2146 */ 2147 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2148 } 2149 #endif 2150 2151 extern union thread_union init_thread_union; 2152 extern struct task_struct init_task; 2153 2154 extern struct mm_struct init_mm; 2155 2156 extern struct pid_namespace init_pid_ns; 2157 2158 /* 2159 * find a task by one of its numerical ids 2160 * 2161 * find_task_by_pid_ns(): 2162 * finds a task by its pid in the specified namespace 2163 * find_task_by_vpid(): 2164 * finds a task by its virtual pid 2165 * 2166 * see also find_vpid() etc in include/linux/pid.h 2167 */ 2168 2169 extern struct task_struct *find_task_by_vpid(pid_t nr); 2170 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2171 struct pid_namespace *ns); 2172 2173 extern void __set_special_pids(struct pid *pid); 2174 2175 /* per-UID process charging. */ 2176 extern struct user_struct * alloc_uid(kuid_t); 2177 static inline struct user_struct *get_uid(struct user_struct *u) 2178 { 2179 atomic_inc(&u->__count); 2180 return u; 2181 } 2182 extern void free_uid(struct user_struct *); 2183 2184 #include <asm/current.h> 2185 2186 extern void xtime_update(unsigned long ticks); 2187 2188 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2189 extern int wake_up_process(struct task_struct *tsk); 2190 extern void wake_up_new_task(struct task_struct *tsk); 2191 #ifdef CONFIG_SMP 2192 extern void kick_process(struct task_struct *tsk); 2193 #else 2194 static inline void kick_process(struct task_struct *tsk) { } 2195 #endif 2196 extern void sched_fork(struct task_struct *p); 2197 extern void sched_dead(struct task_struct *p); 2198 2199 extern void proc_caches_init(void); 2200 extern void flush_signals(struct task_struct *); 2201 extern void __flush_signals(struct task_struct *); 2202 extern void ignore_signals(struct task_struct *); 2203 extern void flush_signal_handlers(struct task_struct *, int force_default); 2204 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2205 2206 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2207 { 2208 unsigned long flags; 2209 int ret; 2210 2211 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2212 ret = dequeue_signal(tsk, mask, info); 2213 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2214 2215 return ret; 2216 } 2217 2218 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2219 sigset_t *mask); 2220 extern void unblock_all_signals(void); 2221 extern void release_task(struct task_struct * p); 2222 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2223 extern int force_sigsegv(int, struct task_struct *); 2224 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2225 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2226 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2227 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2228 const struct cred *, u32); 2229 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2230 extern int kill_pid(struct pid *pid, int sig, int priv); 2231 extern int kill_proc_info(int, struct siginfo *, pid_t); 2232 extern __must_check bool do_notify_parent(struct task_struct *, int); 2233 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2234 extern void force_sig(int, struct task_struct *); 2235 extern int send_sig(int, struct task_struct *, int); 2236 extern int zap_other_threads(struct task_struct *p); 2237 extern struct sigqueue *sigqueue_alloc(void); 2238 extern void sigqueue_free(struct sigqueue *); 2239 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2240 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2241 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2242 2243 static inline void restore_saved_sigmask(void) 2244 { 2245 if (test_and_clear_restore_sigmask()) 2246 __set_current_blocked(¤t->saved_sigmask); 2247 } 2248 2249 static inline sigset_t *sigmask_to_save(void) 2250 { 2251 sigset_t *res = ¤t->blocked; 2252 if (unlikely(test_restore_sigmask())) 2253 res = ¤t->saved_sigmask; 2254 return res; 2255 } 2256 2257 static inline int kill_cad_pid(int sig, int priv) 2258 { 2259 return kill_pid(cad_pid, sig, priv); 2260 } 2261 2262 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2263 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2264 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2265 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2266 2267 /* 2268 * True if we are on the alternate signal stack. 2269 */ 2270 static inline int on_sig_stack(unsigned long sp) 2271 { 2272 #ifdef CONFIG_STACK_GROWSUP 2273 return sp >= current->sas_ss_sp && 2274 sp - current->sas_ss_sp < current->sas_ss_size; 2275 #else 2276 return sp > current->sas_ss_sp && 2277 sp - current->sas_ss_sp <= current->sas_ss_size; 2278 #endif 2279 } 2280 2281 static inline int sas_ss_flags(unsigned long sp) 2282 { 2283 return (current->sas_ss_size == 0 ? SS_DISABLE 2284 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2285 } 2286 2287 /* 2288 * Routines for handling mm_structs 2289 */ 2290 extern struct mm_struct * mm_alloc(void); 2291 2292 /* mmdrop drops the mm and the page tables */ 2293 extern void __mmdrop(struct mm_struct *); 2294 static inline void mmdrop(struct mm_struct * mm) 2295 { 2296 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2297 __mmdrop(mm); 2298 } 2299 2300 /* mmput gets rid of the mappings and all user-space */ 2301 extern void mmput(struct mm_struct *); 2302 /* Grab a reference to a task's mm, if it is not already going away */ 2303 extern struct mm_struct *get_task_mm(struct task_struct *task); 2304 /* 2305 * Grab a reference to a task's mm, if it is not already going away 2306 * and ptrace_may_access with the mode parameter passed to it 2307 * succeeds. 2308 */ 2309 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2310 /* Remove the current tasks stale references to the old mm_struct */ 2311 extern void mm_release(struct task_struct *, struct mm_struct *); 2312 /* Allocate a new mm structure and copy contents from tsk->mm */ 2313 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2314 2315 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2316 struct task_struct *, struct pt_regs *); 2317 extern void flush_thread(void); 2318 extern void exit_thread(void); 2319 2320 extern void exit_files(struct task_struct *); 2321 extern void __cleanup_sighand(struct sighand_struct *); 2322 2323 extern void exit_itimers(struct signal_struct *); 2324 extern void flush_itimer_signals(void); 2325 2326 extern void do_group_exit(int); 2327 2328 extern void daemonize(const char *, ...); 2329 extern int allow_signal(int); 2330 extern int disallow_signal(int); 2331 2332 extern int do_execve(const char *, 2333 const char __user * const __user *, 2334 const char __user * const __user *, struct pt_regs *); 2335 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2336 struct task_struct *fork_idle(int); 2337 2338 extern void set_task_comm(struct task_struct *tsk, char *from); 2339 extern char *get_task_comm(char *to, struct task_struct *tsk); 2340 2341 #ifdef CONFIG_SMP 2342 void scheduler_ipi(void); 2343 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2344 #else 2345 static inline void scheduler_ipi(void) { } 2346 static inline unsigned long wait_task_inactive(struct task_struct *p, 2347 long match_state) 2348 { 2349 return 1; 2350 } 2351 #endif 2352 2353 #define next_task(p) \ 2354 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2355 2356 #define for_each_process(p) \ 2357 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2358 2359 extern bool current_is_single_threaded(void); 2360 2361 /* 2362 * Careful: do_each_thread/while_each_thread is a double loop so 2363 * 'break' will not work as expected - use goto instead. 2364 */ 2365 #define do_each_thread(g, t) \ 2366 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2367 2368 #define while_each_thread(g, t) \ 2369 while ((t = next_thread(t)) != g) 2370 2371 static inline int get_nr_threads(struct task_struct *tsk) 2372 { 2373 return tsk->signal->nr_threads; 2374 } 2375 2376 static inline bool thread_group_leader(struct task_struct *p) 2377 { 2378 return p->exit_signal >= 0; 2379 } 2380 2381 /* Do to the insanities of de_thread it is possible for a process 2382 * to have the pid of the thread group leader without actually being 2383 * the thread group leader. For iteration through the pids in proc 2384 * all we care about is that we have a task with the appropriate 2385 * pid, we don't actually care if we have the right task. 2386 */ 2387 static inline int has_group_leader_pid(struct task_struct *p) 2388 { 2389 return p->pid == p->tgid; 2390 } 2391 2392 static inline 2393 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2394 { 2395 return p1->tgid == p2->tgid; 2396 } 2397 2398 static inline struct task_struct *next_thread(const struct task_struct *p) 2399 { 2400 return list_entry_rcu(p->thread_group.next, 2401 struct task_struct, thread_group); 2402 } 2403 2404 static inline int thread_group_empty(struct task_struct *p) 2405 { 2406 return list_empty(&p->thread_group); 2407 } 2408 2409 #define delay_group_leader(p) \ 2410 (thread_group_leader(p) && !thread_group_empty(p)) 2411 2412 /* 2413 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2414 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2415 * pins the final release of task.io_context. Also protects ->cpuset and 2416 * ->cgroup.subsys[]. And ->vfork_done. 2417 * 2418 * Nests both inside and outside of read_lock(&tasklist_lock). 2419 * It must not be nested with write_lock_irq(&tasklist_lock), 2420 * neither inside nor outside. 2421 */ 2422 static inline void task_lock(struct task_struct *p) 2423 { 2424 spin_lock(&p->alloc_lock); 2425 } 2426 2427 static inline void task_unlock(struct task_struct *p) 2428 { 2429 spin_unlock(&p->alloc_lock); 2430 } 2431 2432 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2433 unsigned long *flags); 2434 2435 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2436 unsigned long *flags) 2437 { 2438 struct sighand_struct *ret; 2439 2440 ret = __lock_task_sighand(tsk, flags); 2441 (void)__cond_lock(&tsk->sighand->siglock, ret); 2442 return ret; 2443 } 2444 2445 static inline void unlock_task_sighand(struct task_struct *tsk, 2446 unsigned long *flags) 2447 { 2448 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2449 } 2450 2451 #ifdef CONFIG_CGROUPS 2452 static inline void threadgroup_change_begin(struct task_struct *tsk) 2453 { 2454 down_read(&tsk->signal->group_rwsem); 2455 } 2456 static inline void threadgroup_change_end(struct task_struct *tsk) 2457 { 2458 up_read(&tsk->signal->group_rwsem); 2459 } 2460 2461 /** 2462 * threadgroup_lock - lock threadgroup 2463 * @tsk: member task of the threadgroup to lock 2464 * 2465 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2466 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2467 * perform exec. This is useful for cases where the threadgroup needs to 2468 * stay stable across blockable operations. 2469 * 2470 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2471 * synchronization. While held, no new task will be added to threadgroup 2472 * and no existing live task will have its PF_EXITING set. 2473 * 2474 * During exec, a task goes and puts its thread group through unusual 2475 * changes. After de-threading, exclusive access is assumed to resources 2476 * which are usually shared by tasks in the same group - e.g. sighand may 2477 * be replaced with a new one. Also, the exec'ing task takes over group 2478 * leader role including its pid. Exclude these changes while locked by 2479 * grabbing cred_guard_mutex which is used to synchronize exec path. 2480 */ 2481 static inline void threadgroup_lock(struct task_struct *tsk) 2482 { 2483 /* 2484 * exec uses exit for de-threading nesting group_rwsem inside 2485 * cred_guard_mutex. Grab cred_guard_mutex first. 2486 */ 2487 mutex_lock(&tsk->signal->cred_guard_mutex); 2488 down_write(&tsk->signal->group_rwsem); 2489 } 2490 2491 /** 2492 * threadgroup_unlock - unlock threadgroup 2493 * @tsk: member task of the threadgroup to unlock 2494 * 2495 * Reverse threadgroup_lock(). 2496 */ 2497 static inline void threadgroup_unlock(struct task_struct *tsk) 2498 { 2499 up_write(&tsk->signal->group_rwsem); 2500 mutex_unlock(&tsk->signal->cred_guard_mutex); 2501 } 2502 #else 2503 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2504 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2505 static inline void threadgroup_lock(struct task_struct *tsk) {} 2506 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2507 #endif 2508 2509 #ifndef __HAVE_THREAD_FUNCTIONS 2510 2511 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2512 #define task_stack_page(task) ((task)->stack) 2513 2514 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2515 { 2516 *task_thread_info(p) = *task_thread_info(org); 2517 task_thread_info(p)->task = p; 2518 } 2519 2520 static inline unsigned long *end_of_stack(struct task_struct *p) 2521 { 2522 return (unsigned long *)(task_thread_info(p) + 1); 2523 } 2524 2525 #endif 2526 2527 static inline int object_is_on_stack(void *obj) 2528 { 2529 void *stack = task_stack_page(current); 2530 2531 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2532 } 2533 2534 extern void thread_info_cache_init(void); 2535 2536 #ifdef CONFIG_DEBUG_STACK_USAGE 2537 static inline unsigned long stack_not_used(struct task_struct *p) 2538 { 2539 unsigned long *n = end_of_stack(p); 2540 2541 do { /* Skip over canary */ 2542 n++; 2543 } while (!*n); 2544 2545 return (unsigned long)n - (unsigned long)end_of_stack(p); 2546 } 2547 #endif 2548 2549 /* set thread flags in other task's structures 2550 * - see asm/thread_info.h for TIF_xxxx flags available 2551 */ 2552 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2553 { 2554 set_ti_thread_flag(task_thread_info(tsk), flag); 2555 } 2556 2557 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2558 { 2559 clear_ti_thread_flag(task_thread_info(tsk), flag); 2560 } 2561 2562 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2563 { 2564 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2565 } 2566 2567 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2568 { 2569 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2570 } 2571 2572 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2573 { 2574 return test_ti_thread_flag(task_thread_info(tsk), flag); 2575 } 2576 2577 static inline void set_tsk_need_resched(struct task_struct *tsk) 2578 { 2579 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2580 } 2581 2582 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2583 { 2584 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2585 } 2586 2587 static inline int test_tsk_need_resched(struct task_struct *tsk) 2588 { 2589 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2590 } 2591 2592 static inline int restart_syscall(void) 2593 { 2594 set_tsk_thread_flag(current, TIF_SIGPENDING); 2595 return -ERESTARTNOINTR; 2596 } 2597 2598 static inline int signal_pending(struct task_struct *p) 2599 { 2600 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2601 } 2602 2603 static inline int __fatal_signal_pending(struct task_struct *p) 2604 { 2605 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2606 } 2607 2608 static inline int fatal_signal_pending(struct task_struct *p) 2609 { 2610 return signal_pending(p) && __fatal_signal_pending(p); 2611 } 2612 2613 static inline int signal_pending_state(long state, struct task_struct *p) 2614 { 2615 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2616 return 0; 2617 if (!signal_pending(p)) 2618 return 0; 2619 2620 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2621 } 2622 2623 static inline int need_resched(void) 2624 { 2625 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2626 } 2627 2628 /* 2629 * cond_resched() and cond_resched_lock(): latency reduction via 2630 * explicit rescheduling in places that are safe. The return 2631 * value indicates whether a reschedule was done in fact. 2632 * cond_resched_lock() will drop the spinlock before scheduling, 2633 * cond_resched_softirq() will enable bhs before scheduling. 2634 */ 2635 extern int _cond_resched(void); 2636 2637 #define cond_resched() ({ \ 2638 __might_sleep(__FILE__, __LINE__, 0); \ 2639 _cond_resched(); \ 2640 }) 2641 2642 extern int __cond_resched_lock(spinlock_t *lock); 2643 2644 #ifdef CONFIG_PREEMPT_COUNT 2645 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2646 #else 2647 #define PREEMPT_LOCK_OFFSET 0 2648 #endif 2649 2650 #define cond_resched_lock(lock) ({ \ 2651 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2652 __cond_resched_lock(lock); \ 2653 }) 2654 2655 extern int __cond_resched_softirq(void); 2656 2657 #define cond_resched_softirq() ({ \ 2658 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2659 __cond_resched_softirq(); \ 2660 }) 2661 2662 /* 2663 * Does a critical section need to be broken due to another 2664 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2665 * but a general need for low latency) 2666 */ 2667 static inline int spin_needbreak(spinlock_t *lock) 2668 { 2669 #ifdef CONFIG_PREEMPT 2670 return spin_is_contended(lock); 2671 #else 2672 return 0; 2673 #endif 2674 } 2675 2676 /* 2677 * Thread group CPU time accounting. 2678 */ 2679 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2680 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2681 2682 static inline void thread_group_cputime_init(struct signal_struct *sig) 2683 { 2684 raw_spin_lock_init(&sig->cputimer.lock); 2685 } 2686 2687 /* 2688 * Reevaluate whether the task has signals pending delivery. 2689 * Wake the task if so. 2690 * This is required every time the blocked sigset_t changes. 2691 * callers must hold sighand->siglock. 2692 */ 2693 extern void recalc_sigpending_and_wake(struct task_struct *t); 2694 extern void recalc_sigpending(void); 2695 2696 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2697 2698 /* 2699 * Wrappers for p->thread_info->cpu access. No-op on UP. 2700 */ 2701 #ifdef CONFIG_SMP 2702 2703 static inline unsigned int task_cpu(const struct task_struct *p) 2704 { 2705 return task_thread_info(p)->cpu; 2706 } 2707 2708 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2709 2710 #else 2711 2712 static inline unsigned int task_cpu(const struct task_struct *p) 2713 { 2714 return 0; 2715 } 2716 2717 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2718 { 2719 } 2720 2721 #endif /* CONFIG_SMP */ 2722 2723 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2724 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2725 2726 extern void normalize_rt_tasks(void); 2727 2728 #ifdef CONFIG_CGROUP_SCHED 2729 2730 extern struct task_group root_task_group; 2731 2732 extern struct task_group *sched_create_group(struct task_group *parent); 2733 extern void sched_destroy_group(struct task_group *tg); 2734 extern void sched_move_task(struct task_struct *tsk); 2735 #ifdef CONFIG_FAIR_GROUP_SCHED 2736 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2737 extern unsigned long sched_group_shares(struct task_group *tg); 2738 #endif 2739 #ifdef CONFIG_RT_GROUP_SCHED 2740 extern int sched_group_set_rt_runtime(struct task_group *tg, 2741 long rt_runtime_us); 2742 extern long sched_group_rt_runtime(struct task_group *tg); 2743 extern int sched_group_set_rt_period(struct task_group *tg, 2744 long rt_period_us); 2745 extern long sched_group_rt_period(struct task_group *tg); 2746 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2747 #endif 2748 #endif /* CONFIG_CGROUP_SCHED */ 2749 2750 extern int task_can_switch_user(struct user_struct *up, 2751 struct task_struct *tsk); 2752 2753 #ifdef CONFIG_TASK_XACCT 2754 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2755 { 2756 tsk->ioac.rchar += amt; 2757 } 2758 2759 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2760 { 2761 tsk->ioac.wchar += amt; 2762 } 2763 2764 static inline void inc_syscr(struct task_struct *tsk) 2765 { 2766 tsk->ioac.syscr++; 2767 } 2768 2769 static inline void inc_syscw(struct task_struct *tsk) 2770 { 2771 tsk->ioac.syscw++; 2772 } 2773 #else 2774 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2775 { 2776 } 2777 2778 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2779 { 2780 } 2781 2782 static inline void inc_syscr(struct task_struct *tsk) 2783 { 2784 } 2785 2786 static inline void inc_syscw(struct task_struct *tsk) 2787 { 2788 } 2789 #endif 2790 2791 #ifndef TASK_SIZE_OF 2792 #define TASK_SIZE_OF(tsk) TASK_SIZE 2793 #endif 2794 2795 #ifdef CONFIG_MM_OWNER 2796 extern void mm_update_next_owner(struct mm_struct *mm); 2797 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2798 #else 2799 static inline void mm_update_next_owner(struct mm_struct *mm) 2800 { 2801 } 2802 2803 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2804 { 2805 } 2806 #endif /* CONFIG_MM_OWNER */ 2807 2808 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2809 unsigned int limit) 2810 { 2811 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2812 } 2813 2814 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2815 unsigned int limit) 2816 { 2817 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2818 } 2819 2820 static inline unsigned long rlimit(unsigned int limit) 2821 { 2822 return task_rlimit(current, limit); 2823 } 2824 2825 static inline unsigned long rlimit_max(unsigned int limit) 2826 { 2827 return task_rlimit_max(current, limit); 2828 } 2829 2830 #endif /* __KERNEL__ */ 2831 2832 #endif 2833