1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/kcov.h> 18 #include <linux/mutex.h> 19 #include <linux/plist.h> 20 #include <linux/hrtimer.h> 21 #include <linux/seccomp.h> 22 #include <linux/nodemask.h> 23 #include <linux/rcupdate.h> 24 #include <linux/refcount.h> 25 #include <linux/resource.h> 26 #include <linux/latencytop.h> 27 #include <linux/sched/prio.h> 28 #include <linux/signal_types.h> 29 #include <linux/mm_types_task.h> 30 #include <linux/task_io_accounting.h> 31 #include <linux/rseq.h> 32 33 /* task_struct member predeclarations (sorted alphabetically): */ 34 struct audit_context; 35 struct backing_dev_info; 36 struct bio_list; 37 struct blk_plug; 38 struct capture_control; 39 struct cfs_rq; 40 struct fs_struct; 41 struct futex_pi_state; 42 struct io_context; 43 struct mempolicy; 44 struct nameidata; 45 struct nsproxy; 46 struct perf_event_context; 47 struct pid_namespace; 48 struct pipe_inode_info; 49 struct rcu_node; 50 struct reclaim_state; 51 struct robust_list_head; 52 struct root_domain; 53 struct rq; 54 struct sched_attr; 55 struct sched_param; 56 struct seq_file; 57 struct sighand_struct; 58 struct signal_struct; 59 struct task_delay_info; 60 struct task_group; 61 62 /* 63 * Task state bitmask. NOTE! These bits are also 64 * encoded in fs/proc/array.c: get_task_state(). 65 * 66 * We have two separate sets of flags: task->state 67 * is about runnability, while task->exit_state are 68 * about the task exiting. Confusing, but this way 69 * modifying one set can't modify the other one by 70 * mistake. 71 */ 72 73 /* Used in tsk->state: */ 74 #define TASK_RUNNING 0x0000 75 #define TASK_INTERRUPTIBLE 0x0001 76 #define TASK_UNINTERRUPTIBLE 0x0002 77 #define __TASK_STOPPED 0x0004 78 #define __TASK_TRACED 0x0008 79 /* Used in tsk->exit_state: */ 80 #define EXIT_DEAD 0x0010 81 #define EXIT_ZOMBIE 0x0020 82 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 83 /* Used in tsk->state again: */ 84 #define TASK_PARKED 0x0040 85 #define TASK_DEAD 0x0080 86 #define TASK_WAKEKILL 0x0100 87 #define TASK_WAKING 0x0200 88 #define TASK_NOLOAD 0x0400 89 #define TASK_NEW 0x0800 90 #define TASK_STATE_MAX 0x1000 91 92 /* Convenience macros for the sake of set_current_state: */ 93 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 94 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 95 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 96 97 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 98 99 /* Convenience macros for the sake of wake_up(): */ 100 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 101 102 /* get_task_state(): */ 103 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 104 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 105 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 106 TASK_PARKED) 107 108 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 109 110 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 111 112 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 113 114 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 115 (task->flags & PF_FROZEN) == 0 && \ 116 (task->state & TASK_NOLOAD) == 0) 117 118 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 119 120 /* 121 * Special states are those that do not use the normal wait-loop pattern. See 122 * the comment with set_special_state(). 123 */ 124 #define is_special_task_state(state) \ 125 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 126 127 #define __set_current_state(state_value) \ 128 do { \ 129 WARN_ON_ONCE(is_special_task_state(state_value));\ 130 current->task_state_change = _THIS_IP_; \ 131 current->state = (state_value); \ 132 } while (0) 133 134 #define set_current_state(state_value) \ 135 do { \ 136 WARN_ON_ONCE(is_special_task_state(state_value));\ 137 current->task_state_change = _THIS_IP_; \ 138 smp_store_mb(current->state, (state_value)); \ 139 } while (0) 140 141 #define set_special_state(state_value) \ 142 do { \ 143 unsigned long flags; /* may shadow */ \ 144 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 145 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 146 current->task_state_change = _THIS_IP_; \ 147 current->state = (state_value); \ 148 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 149 } while (0) 150 #else 151 /* 152 * set_current_state() includes a barrier so that the write of current->state 153 * is correctly serialised wrt the caller's subsequent test of whether to 154 * actually sleep: 155 * 156 * for (;;) { 157 * set_current_state(TASK_UNINTERRUPTIBLE); 158 * if (!need_sleep) 159 * break; 160 * 161 * schedule(); 162 * } 163 * __set_current_state(TASK_RUNNING); 164 * 165 * If the caller does not need such serialisation (because, for instance, the 166 * condition test and condition change and wakeup are under the same lock) then 167 * use __set_current_state(). 168 * 169 * The above is typically ordered against the wakeup, which does: 170 * 171 * need_sleep = false; 172 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 173 * 174 * where wake_up_state() executes a full memory barrier before accessing the 175 * task state. 176 * 177 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 178 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 179 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 180 * 181 * However, with slightly different timing the wakeup TASK_RUNNING store can 182 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 183 * a problem either because that will result in one extra go around the loop 184 * and our @cond test will save the day. 185 * 186 * Also see the comments of try_to_wake_up(). 187 */ 188 #define __set_current_state(state_value) \ 189 current->state = (state_value) 190 191 #define set_current_state(state_value) \ 192 smp_store_mb(current->state, (state_value)) 193 194 /* 195 * set_special_state() should be used for those states when the blocking task 196 * can not use the regular condition based wait-loop. In that case we must 197 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 198 * will not collide with our state change. 199 */ 200 #define set_special_state(state_value) \ 201 do { \ 202 unsigned long flags; /* may shadow */ \ 203 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 204 current->state = (state_value); \ 205 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 206 } while (0) 207 208 #endif 209 210 /* Task command name length: */ 211 #define TASK_COMM_LEN 16 212 213 extern void scheduler_tick(void); 214 215 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 216 217 extern long schedule_timeout(long timeout); 218 extern long schedule_timeout_interruptible(long timeout); 219 extern long schedule_timeout_killable(long timeout); 220 extern long schedule_timeout_uninterruptible(long timeout); 221 extern long schedule_timeout_idle(long timeout); 222 asmlinkage void schedule(void); 223 extern void schedule_preempt_disabled(void); 224 225 extern int __must_check io_schedule_prepare(void); 226 extern void io_schedule_finish(int token); 227 extern long io_schedule_timeout(long timeout); 228 extern void io_schedule(void); 229 230 /** 231 * struct prev_cputime - snapshot of system and user cputime 232 * @utime: time spent in user mode 233 * @stime: time spent in system mode 234 * @lock: protects the above two fields 235 * 236 * Stores previous user/system time values such that we can guarantee 237 * monotonicity. 238 */ 239 struct prev_cputime { 240 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 241 u64 utime; 242 u64 stime; 243 raw_spinlock_t lock; 244 #endif 245 }; 246 247 /** 248 * struct task_cputime - collected CPU time counts 249 * @utime: time spent in user mode, in nanoseconds 250 * @stime: time spent in kernel mode, in nanoseconds 251 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 252 * 253 * This structure groups together three kinds of CPU time that are tracked for 254 * threads and thread groups. Most things considering CPU time want to group 255 * these counts together and treat all three of them in parallel. 256 */ 257 struct task_cputime { 258 u64 utime; 259 u64 stime; 260 unsigned long long sum_exec_runtime; 261 }; 262 263 /* Alternate field names when used on cache expirations: */ 264 #define virt_exp utime 265 #define prof_exp stime 266 #define sched_exp sum_exec_runtime 267 268 enum vtime_state { 269 /* Task is sleeping or running in a CPU with VTIME inactive: */ 270 VTIME_INACTIVE = 0, 271 /* Task runs in userspace in a CPU with VTIME active: */ 272 VTIME_USER, 273 /* Task runs in kernelspace in a CPU with VTIME active: */ 274 VTIME_SYS, 275 }; 276 277 struct vtime { 278 seqcount_t seqcount; 279 unsigned long long starttime; 280 enum vtime_state state; 281 u64 utime; 282 u64 stime; 283 u64 gtime; 284 }; 285 286 /* 287 * Utilization clamp constraints. 288 * @UCLAMP_MIN: Minimum utilization 289 * @UCLAMP_MAX: Maximum utilization 290 * @UCLAMP_CNT: Utilization clamp constraints count 291 */ 292 enum uclamp_id { 293 UCLAMP_MIN = 0, 294 UCLAMP_MAX, 295 UCLAMP_CNT 296 }; 297 298 struct sched_info { 299 #ifdef CONFIG_SCHED_INFO 300 /* Cumulative counters: */ 301 302 /* # of times we have run on this CPU: */ 303 unsigned long pcount; 304 305 /* Time spent waiting on a runqueue: */ 306 unsigned long long run_delay; 307 308 /* Timestamps: */ 309 310 /* When did we last run on a CPU? */ 311 unsigned long long last_arrival; 312 313 /* When were we last queued to run? */ 314 unsigned long long last_queued; 315 316 #endif /* CONFIG_SCHED_INFO */ 317 }; 318 319 /* 320 * Integer metrics need fixed point arithmetic, e.g., sched/fair 321 * has a few: load, load_avg, util_avg, freq, and capacity. 322 * 323 * We define a basic fixed point arithmetic range, and then formalize 324 * all these metrics based on that basic range. 325 */ 326 # define SCHED_FIXEDPOINT_SHIFT 10 327 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 328 329 /* Increase resolution of cpu_capacity calculations */ 330 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 331 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 332 333 struct load_weight { 334 unsigned long weight; 335 u32 inv_weight; 336 }; 337 338 /** 339 * struct util_est - Estimation utilization of FAIR tasks 340 * @enqueued: instantaneous estimated utilization of a task/cpu 341 * @ewma: the Exponential Weighted Moving Average (EWMA) 342 * utilization of a task 343 * 344 * Support data structure to track an Exponential Weighted Moving Average 345 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 346 * average each time a task completes an activation. Sample's weight is chosen 347 * so that the EWMA will be relatively insensitive to transient changes to the 348 * task's workload. 349 * 350 * The enqueued attribute has a slightly different meaning for tasks and cpus: 351 * - task: the task's util_avg at last task dequeue time 352 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 353 * Thus, the util_est.enqueued of a task represents the contribution on the 354 * estimated utilization of the CPU where that task is currently enqueued. 355 * 356 * Only for tasks we track a moving average of the past instantaneous 357 * estimated utilization. This allows to absorb sporadic drops in utilization 358 * of an otherwise almost periodic task. 359 */ 360 struct util_est { 361 unsigned int enqueued; 362 unsigned int ewma; 363 #define UTIL_EST_WEIGHT_SHIFT 2 364 } __attribute__((__aligned__(sizeof(u64)))); 365 366 /* 367 * The load_avg/util_avg accumulates an infinite geometric series 368 * (see __update_load_avg() in kernel/sched/fair.c). 369 * 370 * [load_avg definition] 371 * 372 * load_avg = runnable% * scale_load_down(load) 373 * 374 * where runnable% is the time ratio that a sched_entity is runnable. 375 * For cfs_rq, it is the aggregated load_avg of all runnable and 376 * blocked sched_entities. 377 * 378 * [util_avg definition] 379 * 380 * util_avg = running% * SCHED_CAPACITY_SCALE 381 * 382 * where running% is the time ratio that a sched_entity is running on 383 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 384 * and blocked sched_entities. 385 * 386 * load_avg and util_avg don't direcly factor frequency scaling and CPU 387 * capacity scaling. The scaling is done through the rq_clock_pelt that 388 * is used for computing those signals (see update_rq_clock_pelt()) 389 * 390 * N.B., the above ratios (runnable% and running%) themselves are in the 391 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 392 * to as large a range as necessary. This is for example reflected by 393 * util_avg's SCHED_CAPACITY_SCALE. 394 * 395 * [Overflow issue] 396 * 397 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 398 * with the highest load (=88761), always runnable on a single cfs_rq, 399 * and should not overflow as the number already hits PID_MAX_LIMIT. 400 * 401 * For all other cases (including 32-bit kernels), struct load_weight's 402 * weight will overflow first before we do, because: 403 * 404 * Max(load_avg) <= Max(load.weight) 405 * 406 * Then it is the load_weight's responsibility to consider overflow 407 * issues. 408 */ 409 struct sched_avg { 410 u64 last_update_time; 411 u64 load_sum; 412 u64 runnable_load_sum; 413 u32 util_sum; 414 u32 period_contrib; 415 unsigned long load_avg; 416 unsigned long runnable_load_avg; 417 unsigned long util_avg; 418 struct util_est util_est; 419 } ____cacheline_aligned; 420 421 struct sched_statistics { 422 #ifdef CONFIG_SCHEDSTATS 423 u64 wait_start; 424 u64 wait_max; 425 u64 wait_count; 426 u64 wait_sum; 427 u64 iowait_count; 428 u64 iowait_sum; 429 430 u64 sleep_start; 431 u64 sleep_max; 432 s64 sum_sleep_runtime; 433 434 u64 block_start; 435 u64 block_max; 436 u64 exec_max; 437 u64 slice_max; 438 439 u64 nr_migrations_cold; 440 u64 nr_failed_migrations_affine; 441 u64 nr_failed_migrations_running; 442 u64 nr_failed_migrations_hot; 443 u64 nr_forced_migrations; 444 445 u64 nr_wakeups; 446 u64 nr_wakeups_sync; 447 u64 nr_wakeups_migrate; 448 u64 nr_wakeups_local; 449 u64 nr_wakeups_remote; 450 u64 nr_wakeups_affine; 451 u64 nr_wakeups_affine_attempts; 452 u64 nr_wakeups_passive; 453 u64 nr_wakeups_idle; 454 #endif 455 }; 456 457 struct sched_entity { 458 /* For load-balancing: */ 459 struct load_weight load; 460 unsigned long runnable_weight; 461 struct rb_node run_node; 462 struct list_head group_node; 463 unsigned int on_rq; 464 465 u64 exec_start; 466 u64 sum_exec_runtime; 467 u64 vruntime; 468 u64 prev_sum_exec_runtime; 469 470 u64 nr_migrations; 471 472 struct sched_statistics statistics; 473 474 #ifdef CONFIG_FAIR_GROUP_SCHED 475 int depth; 476 struct sched_entity *parent; 477 /* rq on which this entity is (to be) queued: */ 478 struct cfs_rq *cfs_rq; 479 /* rq "owned" by this entity/group: */ 480 struct cfs_rq *my_q; 481 #endif 482 483 #ifdef CONFIG_SMP 484 /* 485 * Per entity load average tracking. 486 * 487 * Put into separate cache line so it does not 488 * collide with read-mostly values above. 489 */ 490 struct sched_avg avg; 491 #endif 492 }; 493 494 struct sched_rt_entity { 495 struct list_head run_list; 496 unsigned long timeout; 497 unsigned long watchdog_stamp; 498 unsigned int time_slice; 499 unsigned short on_rq; 500 unsigned short on_list; 501 502 struct sched_rt_entity *back; 503 #ifdef CONFIG_RT_GROUP_SCHED 504 struct sched_rt_entity *parent; 505 /* rq on which this entity is (to be) queued: */ 506 struct rt_rq *rt_rq; 507 /* rq "owned" by this entity/group: */ 508 struct rt_rq *my_q; 509 #endif 510 } __randomize_layout; 511 512 struct sched_dl_entity { 513 struct rb_node rb_node; 514 515 /* 516 * Original scheduling parameters. Copied here from sched_attr 517 * during sched_setattr(), they will remain the same until 518 * the next sched_setattr(). 519 */ 520 u64 dl_runtime; /* Maximum runtime for each instance */ 521 u64 dl_deadline; /* Relative deadline of each instance */ 522 u64 dl_period; /* Separation of two instances (period) */ 523 u64 dl_bw; /* dl_runtime / dl_period */ 524 u64 dl_density; /* dl_runtime / dl_deadline */ 525 526 /* 527 * Actual scheduling parameters. Initialized with the values above, 528 * they are continuously updated during task execution. Note that 529 * the remaining runtime could be < 0 in case we are in overrun. 530 */ 531 s64 runtime; /* Remaining runtime for this instance */ 532 u64 deadline; /* Absolute deadline for this instance */ 533 unsigned int flags; /* Specifying the scheduler behaviour */ 534 535 /* 536 * Some bool flags: 537 * 538 * @dl_throttled tells if we exhausted the runtime. If so, the 539 * task has to wait for a replenishment to be performed at the 540 * next firing of dl_timer. 541 * 542 * @dl_boosted tells if we are boosted due to DI. If so we are 543 * outside bandwidth enforcement mechanism (but only until we 544 * exit the critical section); 545 * 546 * @dl_yielded tells if task gave up the CPU before consuming 547 * all its available runtime during the last job. 548 * 549 * @dl_non_contending tells if the task is inactive while still 550 * contributing to the active utilization. In other words, it 551 * indicates if the inactive timer has been armed and its handler 552 * has not been executed yet. This flag is useful to avoid race 553 * conditions between the inactive timer handler and the wakeup 554 * code. 555 * 556 * @dl_overrun tells if the task asked to be informed about runtime 557 * overruns. 558 */ 559 unsigned int dl_throttled : 1; 560 unsigned int dl_boosted : 1; 561 unsigned int dl_yielded : 1; 562 unsigned int dl_non_contending : 1; 563 unsigned int dl_overrun : 1; 564 565 /* 566 * Bandwidth enforcement timer. Each -deadline task has its 567 * own bandwidth to be enforced, thus we need one timer per task. 568 */ 569 struct hrtimer dl_timer; 570 571 /* 572 * Inactive timer, responsible for decreasing the active utilization 573 * at the "0-lag time". When a -deadline task blocks, it contributes 574 * to GRUB's active utilization until the "0-lag time", hence a 575 * timer is needed to decrease the active utilization at the correct 576 * time. 577 */ 578 struct hrtimer inactive_timer; 579 }; 580 581 #ifdef CONFIG_UCLAMP_TASK 582 /* Number of utilization clamp buckets (shorter alias) */ 583 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 584 585 /* 586 * Utilization clamp for a scheduling entity 587 * @value: clamp value "assigned" to a se 588 * @bucket_id: bucket index corresponding to the "assigned" value 589 * @active: the se is currently refcounted in a rq's bucket 590 * @user_defined: the requested clamp value comes from user-space 591 * 592 * The bucket_id is the index of the clamp bucket matching the clamp value 593 * which is pre-computed and stored to avoid expensive integer divisions from 594 * the fast path. 595 * 596 * The active bit is set whenever a task has got an "effective" value assigned, 597 * which can be different from the clamp value "requested" from user-space. 598 * This allows to know a task is refcounted in the rq's bucket corresponding 599 * to the "effective" bucket_id. 600 * 601 * The user_defined bit is set whenever a task has got a task-specific clamp 602 * value requested from userspace, i.e. the system defaults apply to this task 603 * just as a restriction. This allows to relax default clamps when a less 604 * restrictive task-specific value has been requested, thus allowing to 605 * implement a "nice" semantic. For example, a task running with a 20% 606 * default boost can still drop its own boosting to 0%. 607 */ 608 struct uclamp_se { 609 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 610 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 611 unsigned int active : 1; 612 unsigned int user_defined : 1; 613 }; 614 #endif /* CONFIG_UCLAMP_TASK */ 615 616 union rcu_special { 617 struct { 618 u8 blocked; 619 u8 need_qs; 620 u8 exp_hint; /* Hint for performance. */ 621 u8 deferred_qs; 622 } b; /* Bits. */ 623 u32 s; /* Set of bits. */ 624 }; 625 626 enum perf_event_task_context { 627 perf_invalid_context = -1, 628 perf_hw_context = 0, 629 perf_sw_context, 630 perf_nr_task_contexts, 631 }; 632 633 struct wake_q_node { 634 struct wake_q_node *next; 635 }; 636 637 struct task_struct { 638 #ifdef CONFIG_THREAD_INFO_IN_TASK 639 /* 640 * For reasons of header soup (see current_thread_info()), this 641 * must be the first element of task_struct. 642 */ 643 struct thread_info thread_info; 644 #endif 645 /* -1 unrunnable, 0 runnable, >0 stopped: */ 646 volatile long state; 647 648 /* 649 * This begins the randomizable portion of task_struct. Only 650 * scheduling-critical items should be added above here. 651 */ 652 randomized_struct_fields_start 653 654 void *stack; 655 refcount_t usage; 656 /* Per task flags (PF_*), defined further below: */ 657 unsigned int flags; 658 unsigned int ptrace; 659 660 #ifdef CONFIG_SMP 661 struct llist_node wake_entry; 662 int on_cpu; 663 #ifdef CONFIG_THREAD_INFO_IN_TASK 664 /* Current CPU: */ 665 unsigned int cpu; 666 #endif 667 unsigned int wakee_flips; 668 unsigned long wakee_flip_decay_ts; 669 struct task_struct *last_wakee; 670 671 /* 672 * recent_used_cpu is initially set as the last CPU used by a task 673 * that wakes affine another task. Waker/wakee relationships can 674 * push tasks around a CPU where each wakeup moves to the next one. 675 * Tracking a recently used CPU allows a quick search for a recently 676 * used CPU that may be idle. 677 */ 678 int recent_used_cpu; 679 int wake_cpu; 680 #endif 681 int on_rq; 682 683 int prio; 684 int static_prio; 685 int normal_prio; 686 unsigned int rt_priority; 687 688 const struct sched_class *sched_class; 689 struct sched_entity se; 690 struct sched_rt_entity rt; 691 #ifdef CONFIG_CGROUP_SCHED 692 struct task_group *sched_task_group; 693 #endif 694 struct sched_dl_entity dl; 695 696 #ifdef CONFIG_UCLAMP_TASK 697 /* Clamp values requested for a scheduling entity */ 698 struct uclamp_se uclamp_req[UCLAMP_CNT]; 699 /* Effective clamp values used for a scheduling entity */ 700 struct uclamp_se uclamp[UCLAMP_CNT]; 701 #endif 702 703 #ifdef CONFIG_PREEMPT_NOTIFIERS 704 /* List of struct preempt_notifier: */ 705 struct hlist_head preempt_notifiers; 706 #endif 707 708 #ifdef CONFIG_BLK_DEV_IO_TRACE 709 unsigned int btrace_seq; 710 #endif 711 712 unsigned int policy; 713 int nr_cpus_allowed; 714 const cpumask_t *cpus_ptr; 715 cpumask_t cpus_mask; 716 717 #ifdef CONFIG_PREEMPT_RCU 718 int rcu_read_lock_nesting; 719 union rcu_special rcu_read_unlock_special; 720 struct list_head rcu_node_entry; 721 struct rcu_node *rcu_blocked_node; 722 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 723 724 #ifdef CONFIG_TASKS_RCU 725 unsigned long rcu_tasks_nvcsw; 726 u8 rcu_tasks_holdout; 727 u8 rcu_tasks_idx; 728 int rcu_tasks_idle_cpu; 729 struct list_head rcu_tasks_holdout_list; 730 #endif /* #ifdef CONFIG_TASKS_RCU */ 731 732 struct sched_info sched_info; 733 734 struct list_head tasks; 735 #ifdef CONFIG_SMP 736 struct plist_node pushable_tasks; 737 struct rb_node pushable_dl_tasks; 738 #endif 739 740 struct mm_struct *mm; 741 struct mm_struct *active_mm; 742 743 /* Per-thread vma caching: */ 744 struct vmacache vmacache; 745 746 #ifdef SPLIT_RSS_COUNTING 747 struct task_rss_stat rss_stat; 748 #endif 749 int exit_state; 750 int exit_code; 751 int exit_signal; 752 /* The signal sent when the parent dies: */ 753 int pdeath_signal; 754 /* JOBCTL_*, siglock protected: */ 755 unsigned long jobctl; 756 757 /* Used for emulating ABI behavior of previous Linux versions: */ 758 unsigned int personality; 759 760 /* Scheduler bits, serialized by scheduler locks: */ 761 unsigned sched_reset_on_fork:1; 762 unsigned sched_contributes_to_load:1; 763 unsigned sched_migrated:1; 764 unsigned sched_remote_wakeup:1; 765 #ifdef CONFIG_PSI 766 unsigned sched_psi_wake_requeue:1; 767 #endif 768 769 /* Force alignment to the next boundary: */ 770 unsigned :0; 771 772 /* Unserialized, strictly 'current' */ 773 774 /* Bit to tell LSMs we're in execve(): */ 775 unsigned in_execve:1; 776 unsigned in_iowait:1; 777 #ifndef TIF_RESTORE_SIGMASK 778 unsigned restore_sigmask:1; 779 #endif 780 #ifdef CONFIG_MEMCG 781 unsigned in_user_fault:1; 782 #endif 783 #ifdef CONFIG_COMPAT_BRK 784 unsigned brk_randomized:1; 785 #endif 786 #ifdef CONFIG_CGROUPS 787 /* disallow userland-initiated cgroup migration */ 788 unsigned no_cgroup_migration:1; 789 /* task is frozen/stopped (used by the cgroup freezer) */ 790 unsigned frozen:1; 791 #endif 792 #ifdef CONFIG_BLK_CGROUP 793 /* to be used once the psi infrastructure lands upstream. */ 794 unsigned use_memdelay:1; 795 #endif 796 797 unsigned long atomic_flags; /* Flags requiring atomic access. */ 798 799 struct restart_block restart_block; 800 801 pid_t pid; 802 pid_t tgid; 803 804 #ifdef CONFIG_STACKPROTECTOR 805 /* Canary value for the -fstack-protector GCC feature: */ 806 unsigned long stack_canary; 807 #endif 808 /* 809 * Pointers to the (original) parent process, youngest child, younger sibling, 810 * older sibling, respectively. (p->father can be replaced with 811 * p->real_parent->pid) 812 */ 813 814 /* Real parent process: */ 815 struct task_struct __rcu *real_parent; 816 817 /* Recipient of SIGCHLD, wait4() reports: */ 818 struct task_struct __rcu *parent; 819 820 /* 821 * Children/sibling form the list of natural children: 822 */ 823 struct list_head children; 824 struct list_head sibling; 825 struct task_struct *group_leader; 826 827 /* 828 * 'ptraced' is the list of tasks this task is using ptrace() on. 829 * 830 * This includes both natural children and PTRACE_ATTACH targets. 831 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 832 */ 833 struct list_head ptraced; 834 struct list_head ptrace_entry; 835 836 /* PID/PID hash table linkage. */ 837 struct pid *thread_pid; 838 struct hlist_node pid_links[PIDTYPE_MAX]; 839 struct list_head thread_group; 840 struct list_head thread_node; 841 842 struct completion *vfork_done; 843 844 /* CLONE_CHILD_SETTID: */ 845 int __user *set_child_tid; 846 847 /* CLONE_CHILD_CLEARTID: */ 848 int __user *clear_child_tid; 849 850 u64 utime; 851 u64 stime; 852 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 853 u64 utimescaled; 854 u64 stimescaled; 855 #endif 856 u64 gtime; 857 struct prev_cputime prev_cputime; 858 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 859 struct vtime vtime; 860 #endif 861 862 #ifdef CONFIG_NO_HZ_FULL 863 atomic_t tick_dep_mask; 864 #endif 865 /* Context switch counts: */ 866 unsigned long nvcsw; 867 unsigned long nivcsw; 868 869 /* Monotonic time in nsecs: */ 870 u64 start_time; 871 872 /* Boot based time in nsecs: */ 873 u64 real_start_time; 874 875 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 876 unsigned long min_flt; 877 unsigned long maj_flt; 878 879 #ifdef CONFIG_POSIX_TIMERS 880 struct task_cputime cputime_expires; 881 struct list_head cpu_timers[3]; 882 #endif 883 884 /* Process credentials: */ 885 886 /* Tracer's credentials at attach: */ 887 const struct cred __rcu *ptracer_cred; 888 889 /* Objective and real subjective task credentials (COW): */ 890 const struct cred __rcu *real_cred; 891 892 /* Effective (overridable) subjective task credentials (COW): */ 893 const struct cred __rcu *cred; 894 895 #ifdef CONFIG_KEYS 896 /* Cached requested key. */ 897 struct key *cached_requested_key; 898 #endif 899 900 /* 901 * executable name, excluding path. 902 * 903 * - normally initialized setup_new_exec() 904 * - access it with [gs]et_task_comm() 905 * - lock it with task_lock() 906 */ 907 char comm[TASK_COMM_LEN]; 908 909 struct nameidata *nameidata; 910 911 #ifdef CONFIG_SYSVIPC 912 struct sysv_sem sysvsem; 913 struct sysv_shm sysvshm; 914 #endif 915 #ifdef CONFIG_DETECT_HUNG_TASK 916 unsigned long last_switch_count; 917 unsigned long last_switch_time; 918 #endif 919 /* Filesystem information: */ 920 struct fs_struct *fs; 921 922 /* Open file information: */ 923 struct files_struct *files; 924 925 /* Namespaces: */ 926 struct nsproxy *nsproxy; 927 928 /* Signal handlers: */ 929 struct signal_struct *signal; 930 struct sighand_struct *sighand; 931 sigset_t blocked; 932 sigset_t real_blocked; 933 /* Restored if set_restore_sigmask() was used: */ 934 sigset_t saved_sigmask; 935 struct sigpending pending; 936 unsigned long sas_ss_sp; 937 size_t sas_ss_size; 938 unsigned int sas_ss_flags; 939 940 struct callback_head *task_works; 941 942 #ifdef CONFIG_AUDIT 943 #ifdef CONFIG_AUDITSYSCALL 944 struct audit_context *audit_context; 945 #endif 946 kuid_t loginuid; 947 unsigned int sessionid; 948 #endif 949 struct seccomp seccomp; 950 951 /* Thread group tracking: */ 952 u32 parent_exec_id; 953 u32 self_exec_id; 954 955 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 956 spinlock_t alloc_lock; 957 958 /* Protection of the PI data structures: */ 959 raw_spinlock_t pi_lock; 960 961 struct wake_q_node wake_q; 962 963 #ifdef CONFIG_RT_MUTEXES 964 /* PI waiters blocked on a rt_mutex held by this task: */ 965 struct rb_root_cached pi_waiters; 966 /* Updated under owner's pi_lock and rq lock */ 967 struct task_struct *pi_top_task; 968 /* Deadlock detection and priority inheritance handling: */ 969 struct rt_mutex_waiter *pi_blocked_on; 970 #endif 971 972 #ifdef CONFIG_DEBUG_MUTEXES 973 /* Mutex deadlock detection: */ 974 struct mutex_waiter *blocked_on; 975 #endif 976 977 #ifdef CONFIG_TRACE_IRQFLAGS 978 unsigned int irq_events; 979 unsigned long hardirq_enable_ip; 980 unsigned long hardirq_disable_ip; 981 unsigned int hardirq_enable_event; 982 unsigned int hardirq_disable_event; 983 int hardirqs_enabled; 984 int hardirq_context; 985 unsigned long softirq_disable_ip; 986 unsigned long softirq_enable_ip; 987 unsigned int softirq_disable_event; 988 unsigned int softirq_enable_event; 989 int softirqs_enabled; 990 int softirq_context; 991 #endif 992 993 #ifdef CONFIG_LOCKDEP 994 # define MAX_LOCK_DEPTH 48UL 995 u64 curr_chain_key; 996 int lockdep_depth; 997 unsigned int lockdep_recursion; 998 struct held_lock held_locks[MAX_LOCK_DEPTH]; 999 #endif 1000 1001 #ifdef CONFIG_UBSAN 1002 unsigned int in_ubsan; 1003 #endif 1004 1005 /* Journalling filesystem info: */ 1006 void *journal_info; 1007 1008 /* Stacked block device info: */ 1009 struct bio_list *bio_list; 1010 1011 #ifdef CONFIG_BLOCK 1012 /* Stack plugging: */ 1013 struct blk_plug *plug; 1014 #endif 1015 1016 /* VM state: */ 1017 struct reclaim_state *reclaim_state; 1018 1019 struct backing_dev_info *backing_dev_info; 1020 1021 struct io_context *io_context; 1022 1023 #ifdef CONFIG_COMPACTION 1024 struct capture_control *capture_control; 1025 #endif 1026 /* Ptrace state: */ 1027 unsigned long ptrace_message; 1028 kernel_siginfo_t *last_siginfo; 1029 1030 struct task_io_accounting ioac; 1031 #ifdef CONFIG_PSI 1032 /* Pressure stall state */ 1033 unsigned int psi_flags; 1034 #endif 1035 #ifdef CONFIG_TASK_XACCT 1036 /* Accumulated RSS usage: */ 1037 u64 acct_rss_mem1; 1038 /* Accumulated virtual memory usage: */ 1039 u64 acct_vm_mem1; 1040 /* stime + utime since last update: */ 1041 u64 acct_timexpd; 1042 #endif 1043 #ifdef CONFIG_CPUSETS 1044 /* Protected by ->alloc_lock: */ 1045 nodemask_t mems_allowed; 1046 /* Seqence number to catch updates: */ 1047 seqcount_t mems_allowed_seq; 1048 int cpuset_mem_spread_rotor; 1049 int cpuset_slab_spread_rotor; 1050 #endif 1051 #ifdef CONFIG_CGROUPS 1052 /* Control Group info protected by css_set_lock: */ 1053 struct css_set __rcu *cgroups; 1054 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1055 struct list_head cg_list; 1056 #endif 1057 #ifdef CONFIG_X86_CPU_RESCTRL 1058 u32 closid; 1059 u32 rmid; 1060 #endif 1061 #ifdef CONFIG_FUTEX 1062 struct robust_list_head __user *robust_list; 1063 #ifdef CONFIG_COMPAT 1064 struct compat_robust_list_head __user *compat_robust_list; 1065 #endif 1066 struct list_head pi_state_list; 1067 struct futex_pi_state *pi_state_cache; 1068 #endif 1069 #ifdef CONFIG_PERF_EVENTS 1070 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1071 struct mutex perf_event_mutex; 1072 struct list_head perf_event_list; 1073 #endif 1074 #ifdef CONFIG_DEBUG_PREEMPT 1075 unsigned long preempt_disable_ip; 1076 #endif 1077 #ifdef CONFIG_NUMA 1078 /* Protected by alloc_lock: */ 1079 struct mempolicy *mempolicy; 1080 short il_prev; 1081 short pref_node_fork; 1082 #endif 1083 #ifdef CONFIG_NUMA_BALANCING 1084 int numa_scan_seq; 1085 unsigned int numa_scan_period; 1086 unsigned int numa_scan_period_max; 1087 int numa_preferred_nid; 1088 unsigned long numa_migrate_retry; 1089 /* Migration stamp: */ 1090 u64 node_stamp; 1091 u64 last_task_numa_placement; 1092 u64 last_sum_exec_runtime; 1093 struct callback_head numa_work; 1094 1095 struct numa_group *numa_group; 1096 1097 /* 1098 * numa_faults is an array split into four regions: 1099 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1100 * in this precise order. 1101 * 1102 * faults_memory: Exponential decaying average of faults on a per-node 1103 * basis. Scheduling placement decisions are made based on these 1104 * counts. The values remain static for the duration of a PTE scan. 1105 * faults_cpu: Track the nodes the process was running on when a NUMA 1106 * hinting fault was incurred. 1107 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1108 * during the current scan window. When the scan completes, the counts 1109 * in faults_memory and faults_cpu decay and these values are copied. 1110 */ 1111 unsigned long *numa_faults; 1112 unsigned long total_numa_faults; 1113 1114 /* 1115 * numa_faults_locality tracks if faults recorded during the last 1116 * scan window were remote/local or failed to migrate. The task scan 1117 * period is adapted based on the locality of the faults with different 1118 * weights depending on whether they were shared or private faults 1119 */ 1120 unsigned long numa_faults_locality[3]; 1121 1122 unsigned long numa_pages_migrated; 1123 #endif /* CONFIG_NUMA_BALANCING */ 1124 1125 #ifdef CONFIG_RSEQ 1126 struct rseq __user *rseq; 1127 u32 rseq_sig; 1128 /* 1129 * RmW on rseq_event_mask must be performed atomically 1130 * with respect to preemption. 1131 */ 1132 unsigned long rseq_event_mask; 1133 #endif 1134 1135 struct tlbflush_unmap_batch tlb_ubc; 1136 1137 struct rcu_head rcu; 1138 1139 /* Cache last used pipe for splice(): */ 1140 struct pipe_inode_info *splice_pipe; 1141 1142 struct page_frag task_frag; 1143 1144 #ifdef CONFIG_TASK_DELAY_ACCT 1145 struct task_delay_info *delays; 1146 #endif 1147 1148 #ifdef CONFIG_FAULT_INJECTION 1149 int make_it_fail; 1150 unsigned int fail_nth; 1151 #endif 1152 /* 1153 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1154 * balance_dirty_pages() for a dirty throttling pause: 1155 */ 1156 int nr_dirtied; 1157 int nr_dirtied_pause; 1158 /* Start of a write-and-pause period: */ 1159 unsigned long dirty_paused_when; 1160 1161 #ifdef CONFIG_LATENCYTOP 1162 int latency_record_count; 1163 struct latency_record latency_record[LT_SAVECOUNT]; 1164 #endif 1165 /* 1166 * Time slack values; these are used to round up poll() and 1167 * select() etc timeout values. These are in nanoseconds. 1168 */ 1169 u64 timer_slack_ns; 1170 u64 default_timer_slack_ns; 1171 1172 #ifdef CONFIG_KASAN 1173 unsigned int kasan_depth; 1174 #endif 1175 1176 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1177 /* Index of current stored address in ret_stack: */ 1178 int curr_ret_stack; 1179 int curr_ret_depth; 1180 1181 /* Stack of return addresses for return function tracing: */ 1182 struct ftrace_ret_stack *ret_stack; 1183 1184 /* Timestamp for last schedule: */ 1185 unsigned long long ftrace_timestamp; 1186 1187 /* 1188 * Number of functions that haven't been traced 1189 * because of depth overrun: 1190 */ 1191 atomic_t trace_overrun; 1192 1193 /* Pause tracing: */ 1194 atomic_t tracing_graph_pause; 1195 #endif 1196 1197 #ifdef CONFIG_TRACING 1198 /* State flags for use by tracers: */ 1199 unsigned long trace; 1200 1201 /* Bitmask and counter of trace recursion: */ 1202 unsigned long trace_recursion; 1203 #endif /* CONFIG_TRACING */ 1204 1205 #ifdef CONFIG_KCOV 1206 /* Coverage collection mode enabled for this task (0 if disabled): */ 1207 unsigned int kcov_mode; 1208 1209 /* Size of the kcov_area: */ 1210 unsigned int kcov_size; 1211 1212 /* Buffer for coverage collection: */ 1213 void *kcov_area; 1214 1215 /* KCOV descriptor wired with this task or NULL: */ 1216 struct kcov *kcov; 1217 #endif 1218 1219 #ifdef CONFIG_MEMCG 1220 struct mem_cgroup *memcg_in_oom; 1221 gfp_t memcg_oom_gfp_mask; 1222 int memcg_oom_order; 1223 1224 /* Number of pages to reclaim on returning to userland: */ 1225 unsigned int memcg_nr_pages_over_high; 1226 1227 /* Used by memcontrol for targeted memcg charge: */ 1228 struct mem_cgroup *active_memcg; 1229 #endif 1230 1231 #ifdef CONFIG_BLK_CGROUP 1232 struct request_queue *throttle_queue; 1233 #endif 1234 1235 #ifdef CONFIG_UPROBES 1236 struct uprobe_task *utask; 1237 #endif 1238 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1239 unsigned int sequential_io; 1240 unsigned int sequential_io_avg; 1241 #endif 1242 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1243 unsigned long task_state_change; 1244 #endif 1245 int pagefault_disabled; 1246 #ifdef CONFIG_MMU 1247 struct task_struct *oom_reaper_list; 1248 #endif 1249 #ifdef CONFIG_VMAP_STACK 1250 struct vm_struct *stack_vm_area; 1251 #endif 1252 #ifdef CONFIG_THREAD_INFO_IN_TASK 1253 /* A live task holds one reference: */ 1254 refcount_t stack_refcount; 1255 #endif 1256 #ifdef CONFIG_LIVEPATCH 1257 int patch_state; 1258 #endif 1259 #ifdef CONFIG_SECURITY 1260 /* Used by LSM modules for access restriction: */ 1261 void *security; 1262 #endif 1263 1264 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1265 unsigned long lowest_stack; 1266 unsigned long prev_lowest_stack; 1267 #endif 1268 1269 /* 1270 * New fields for task_struct should be added above here, so that 1271 * they are included in the randomized portion of task_struct. 1272 */ 1273 randomized_struct_fields_end 1274 1275 /* CPU-specific state of this task: */ 1276 struct thread_struct thread; 1277 1278 /* 1279 * WARNING: on x86, 'thread_struct' contains a variable-sized 1280 * structure. It *MUST* be at the end of 'task_struct'. 1281 * 1282 * Do not put anything below here! 1283 */ 1284 }; 1285 1286 static inline struct pid *task_pid(struct task_struct *task) 1287 { 1288 return task->thread_pid; 1289 } 1290 1291 /* 1292 * the helpers to get the task's different pids as they are seen 1293 * from various namespaces 1294 * 1295 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1296 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1297 * current. 1298 * task_xid_nr_ns() : id seen from the ns specified; 1299 * 1300 * see also pid_nr() etc in include/linux/pid.h 1301 */ 1302 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1303 1304 static inline pid_t task_pid_nr(struct task_struct *tsk) 1305 { 1306 return tsk->pid; 1307 } 1308 1309 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1310 { 1311 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1312 } 1313 1314 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1315 { 1316 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1317 } 1318 1319 1320 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1321 { 1322 return tsk->tgid; 1323 } 1324 1325 /** 1326 * pid_alive - check that a task structure is not stale 1327 * @p: Task structure to be checked. 1328 * 1329 * Test if a process is not yet dead (at most zombie state) 1330 * If pid_alive fails, then pointers within the task structure 1331 * can be stale and must not be dereferenced. 1332 * 1333 * Return: 1 if the process is alive. 0 otherwise. 1334 */ 1335 static inline int pid_alive(const struct task_struct *p) 1336 { 1337 return p->thread_pid != NULL; 1338 } 1339 1340 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1341 { 1342 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1343 } 1344 1345 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1346 { 1347 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1348 } 1349 1350 1351 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1352 { 1353 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1354 } 1355 1356 static inline pid_t task_session_vnr(struct task_struct *tsk) 1357 { 1358 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1359 } 1360 1361 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1362 { 1363 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1364 } 1365 1366 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1367 { 1368 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1369 } 1370 1371 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1372 { 1373 pid_t pid = 0; 1374 1375 rcu_read_lock(); 1376 if (pid_alive(tsk)) 1377 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1378 rcu_read_unlock(); 1379 1380 return pid; 1381 } 1382 1383 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1384 { 1385 return task_ppid_nr_ns(tsk, &init_pid_ns); 1386 } 1387 1388 /* Obsolete, do not use: */ 1389 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1390 { 1391 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1392 } 1393 1394 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1395 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1396 1397 static inline unsigned int task_state_index(struct task_struct *tsk) 1398 { 1399 unsigned int tsk_state = READ_ONCE(tsk->state); 1400 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1401 1402 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1403 1404 if (tsk_state == TASK_IDLE) 1405 state = TASK_REPORT_IDLE; 1406 1407 return fls(state); 1408 } 1409 1410 static inline char task_index_to_char(unsigned int state) 1411 { 1412 static const char state_char[] = "RSDTtXZPI"; 1413 1414 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1415 1416 return state_char[state]; 1417 } 1418 1419 static inline char task_state_to_char(struct task_struct *tsk) 1420 { 1421 return task_index_to_char(task_state_index(tsk)); 1422 } 1423 1424 /** 1425 * is_global_init - check if a task structure is init. Since init 1426 * is free to have sub-threads we need to check tgid. 1427 * @tsk: Task structure to be checked. 1428 * 1429 * Check if a task structure is the first user space task the kernel created. 1430 * 1431 * Return: 1 if the task structure is init. 0 otherwise. 1432 */ 1433 static inline int is_global_init(struct task_struct *tsk) 1434 { 1435 return task_tgid_nr(tsk) == 1; 1436 } 1437 1438 extern struct pid *cad_pid; 1439 1440 /* 1441 * Per process flags 1442 */ 1443 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1444 #define PF_EXITING 0x00000004 /* Getting shut down */ 1445 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */ 1446 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1447 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1448 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1449 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1450 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1451 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1452 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1453 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1454 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1455 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1456 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1457 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1458 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1459 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1460 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1461 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1462 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1463 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1464 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1465 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1466 #define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */ 1467 #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */ 1468 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1469 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1470 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ 1471 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1472 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1473 1474 /* 1475 * Only the _current_ task can read/write to tsk->flags, but other 1476 * tasks can access tsk->flags in readonly mode for example 1477 * with tsk_used_math (like during threaded core dumping). 1478 * There is however an exception to this rule during ptrace 1479 * or during fork: the ptracer task is allowed to write to the 1480 * child->flags of its traced child (same goes for fork, the parent 1481 * can write to the child->flags), because we're guaranteed the 1482 * child is not running and in turn not changing child->flags 1483 * at the same time the parent does it. 1484 */ 1485 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1486 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1487 #define clear_used_math() clear_stopped_child_used_math(current) 1488 #define set_used_math() set_stopped_child_used_math(current) 1489 1490 #define conditional_stopped_child_used_math(condition, child) \ 1491 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1492 1493 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1494 1495 #define copy_to_stopped_child_used_math(child) \ 1496 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1497 1498 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1499 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1500 #define used_math() tsk_used_math(current) 1501 1502 static inline bool is_percpu_thread(void) 1503 { 1504 #ifdef CONFIG_SMP 1505 return (current->flags & PF_NO_SETAFFINITY) && 1506 (current->nr_cpus_allowed == 1); 1507 #else 1508 return true; 1509 #endif 1510 } 1511 1512 /* Per-process atomic flags. */ 1513 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1514 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1515 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1516 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1517 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1518 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1519 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1520 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1521 1522 #define TASK_PFA_TEST(name, func) \ 1523 static inline bool task_##func(struct task_struct *p) \ 1524 { return test_bit(PFA_##name, &p->atomic_flags); } 1525 1526 #define TASK_PFA_SET(name, func) \ 1527 static inline void task_set_##func(struct task_struct *p) \ 1528 { set_bit(PFA_##name, &p->atomic_flags); } 1529 1530 #define TASK_PFA_CLEAR(name, func) \ 1531 static inline void task_clear_##func(struct task_struct *p) \ 1532 { clear_bit(PFA_##name, &p->atomic_flags); } 1533 1534 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1535 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1536 1537 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1538 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1539 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1540 1541 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1542 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1543 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1544 1545 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1546 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1547 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1548 1549 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1550 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1551 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1552 1553 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1554 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1555 1556 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1557 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1558 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1559 1560 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1561 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1562 1563 static inline void 1564 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1565 { 1566 current->flags &= ~flags; 1567 current->flags |= orig_flags & flags; 1568 } 1569 1570 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1571 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1572 #ifdef CONFIG_SMP 1573 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1574 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1575 #else 1576 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1577 { 1578 } 1579 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1580 { 1581 if (!cpumask_test_cpu(0, new_mask)) 1582 return -EINVAL; 1583 return 0; 1584 } 1585 #endif 1586 1587 extern int yield_to(struct task_struct *p, bool preempt); 1588 extern void set_user_nice(struct task_struct *p, long nice); 1589 extern int task_prio(const struct task_struct *p); 1590 1591 /** 1592 * task_nice - return the nice value of a given task. 1593 * @p: the task in question. 1594 * 1595 * Return: The nice value [ -20 ... 0 ... 19 ]. 1596 */ 1597 static inline int task_nice(const struct task_struct *p) 1598 { 1599 return PRIO_TO_NICE((p)->static_prio); 1600 } 1601 1602 extern int can_nice(const struct task_struct *p, const int nice); 1603 extern int task_curr(const struct task_struct *p); 1604 extern int idle_cpu(int cpu); 1605 extern int available_idle_cpu(int cpu); 1606 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1607 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1608 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1609 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1610 extern struct task_struct *idle_task(int cpu); 1611 1612 /** 1613 * is_idle_task - is the specified task an idle task? 1614 * @p: the task in question. 1615 * 1616 * Return: 1 if @p is an idle task. 0 otherwise. 1617 */ 1618 static inline bool is_idle_task(const struct task_struct *p) 1619 { 1620 return !!(p->flags & PF_IDLE); 1621 } 1622 1623 extern struct task_struct *curr_task(int cpu); 1624 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1625 1626 void yield(void); 1627 1628 union thread_union { 1629 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1630 struct task_struct task; 1631 #endif 1632 #ifndef CONFIG_THREAD_INFO_IN_TASK 1633 struct thread_info thread_info; 1634 #endif 1635 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1636 }; 1637 1638 #ifndef CONFIG_THREAD_INFO_IN_TASK 1639 extern struct thread_info init_thread_info; 1640 #endif 1641 1642 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1643 1644 #ifdef CONFIG_THREAD_INFO_IN_TASK 1645 static inline struct thread_info *task_thread_info(struct task_struct *task) 1646 { 1647 return &task->thread_info; 1648 } 1649 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1650 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1651 #endif 1652 1653 /* 1654 * find a task by one of its numerical ids 1655 * 1656 * find_task_by_pid_ns(): 1657 * finds a task by its pid in the specified namespace 1658 * find_task_by_vpid(): 1659 * finds a task by its virtual pid 1660 * 1661 * see also find_vpid() etc in include/linux/pid.h 1662 */ 1663 1664 extern struct task_struct *find_task_by_vpid(pid_t nr); 1665 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1666 1667 /* 1668 * find a task by its virtual pid and get the task struct 1669 */ 1670 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1671 1672 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1673 extern int wake_up_process(struct task_struct *tsk); 1674 extern void wake_up_new_task(struct task_struct *tsk); 1675 1676 #ifdef CONFIG_SMP 1677 extern void kick_process(struct task_struct *tsk); 1678 #else 1679 static inline void kick_process(struct task_struct *tsk) { } 1680 #endif 1681 1682 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1683 1684 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1685 { 1686 __set_task_comm(tsk, from, false); 1687 } 1688 1689 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1690 #define get_task_comm(buf, tsk) ({ \ 1691 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1692 __get_task_comm(buf, sizeof(buf), tsk); \ 1693 }) 1694 1695 #ifdef CONFIG_SMP 1696 void scheduler_ipi(void); 1697 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1698 #else 1699 static inline void scheduler_ipi(void) { } 1700 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1701 { 1702 return 1; 1703 } 1704 #endif 1705 1706 /* 1707 * Set thread flags in other task's structures. 1708 * See asm/thread_info.h for TIF_xxxx flags available: 1709 */ 1710 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1711 { 1712 set_ti_thread_flag(task_thread_info(tsk), flag); 1713 } 1714 1715 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1716 { 1717 clear_ti_thread_flag(task_thread_info(tsk), flag); 1718 } 1719 1720 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1721 bool value) 1722 { 1723 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1724 } 1725 1726 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1727 { 1728 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1729 } 1730 1731 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1732 { 1733 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1734 } 1735 1736 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1737 { 1738 return test_ti_thread_flag(task_thread_info(tsk), flag); 1739 } 1740 1741 static inline void set_tsk_need_resched(struct task_struct *tsk) 1742 { 1743 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1744 } 1745 1746 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1747 { 1748 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1749 } 1750 1751 static inline int test_tsk_need_resched(struct task_struct *tsk) 1752 { 1753 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1754 } 1755 1756 /* 1757 * cond_resched() and cond_resched_lock(): latency reduction via 1758 * explicit rescheduling in places that are safe. The return 1759 * value indicates whether a reschedule was done in fact. 1760 * cond_resched_lock() will drop the spinlock before scheduling, 1761 */ 1762 #ifndef CONFIG_PREEMPT 1763 extern int _cond_resched(void); 1764 #else 1765 static inline int _cond_resched(void) { return 0; } 1766 #endif 1767 1768 #define cond_resched() ({ \ 1769 ___might_sleep(__FILE__, __LINE__, 0); \ 1770 _cond_resched(); \ 1771 }) 1772 1773 extern int __cond_resched_lock(spinlock_t *lock); 1774 1775 #define cond_resched_lock(lock) ({ \ 1776 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1777 __cond_resched_lock(lock); \ 1778 }) 1779 1780 static inline void cond_resched_rcu(void) 1781 { 1782 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1783 rcu_read_unlock(); 1784 cond_resched(); 1785 rcu_read_lock(); 1786 #endif 1787 } 1788 1789 /* 1790 * Does a critical section need to be broken due to another 1791 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 1792 * but a general need for low latency) 1793 */ 1794 static inline int spin_needbreak(spinlock_t *lock) 1795 { 1796 #ifdef CONFIG_PREEMPT 1797 return spin_is_contended(lock); 1798 #else 1799 return 0; 1800 #endif 1801 } 1802 1803 static __always_inline bool need_resched(void) 1804 { 1805 return unlikely(tif_need_resched()); 1806 } 1807 1808 /* 1809 * Wrappers for p->thread_info->cpu access. No-op on UP. 1810 */ 1811 #ifdef CONFIG_SMP 1812 1813 static inline unsigned int task_cpu(const struct task_struct *p) 1814 { 1815 #ifdef CONFIG_THREAD_INFO_IN_TASK 1816 return READ_ONCE(p->cpu); 1817 #else 1818 return READ_ONCE(task_thread_info(p)->cpu); 1819 #endif 1820 } 1821 1822 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1823 1824 #else 1825 1826 static inline unsigned int task_cpu(const struct task_struct *p) 1827 { 1828 return 0; 1829 } 1830 1831 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1832 { 1833 } 1834 1835 #endif /* CONFIG_SMP */ 1836 1837 /* 1838 * In order to reduce various lock holder preemption latencies provide an 1839 * interface to see if a vCPU is currently running or not. 1840 * 1841 * This allows us to terminate optimistic spin loops and block, analogous to 1842 * the native optimistic spin heuristic of testing if the lock owner task is 1843 * running or not. 1844 */ 1845 #ifndef vcpu_is_preempted 1846 # define vcpu_is_preempted(cpu) false 1847 #endif 1848 1849 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1850 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1851 1852 #ifndef TASK_SIZE_OF 1853 #define TASK_SIZE_OF(tsk) TASK_SIZE 1854 #endif 1855 1856 #ifdef CONFIG_RSEQ 1857 1858 /* 1859 * Map the event mask on the user-space ABI enum rseq_cs_flags 1860 * for direct mask checks. 1861 */ 1862 enum rseq_event_mask_bits { 1863 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1864 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1865 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1866 }; 1867 1868 enum rseq_event_mask { 1869 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1870 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1871 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1872 }; 1873 1874 static inline void rseq_set_notify_resume(struct task_struct *t) 1875 { 1876 if (t->rseq) 1877 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1878 } 1879 1880 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1881 1882 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1883 struct pt_regs *regs) 1884 { 1885 if (current->rseq) 1886 __rseq_handle_notify_resume(ksig, regs); 1887 } 1888 1889 static inline void rseq_signal_deliver(struct ksignal *ksig, 1890 struct pt_regs *regs) 1891 { 1892 preempt_disable(); 1893 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 1894 preempt_enable(); 1895 rseq_handle_notify_resume(ksig, regs); 1896 } 1897 1898 /* rseq_preempt() requires preemption to be disabled. */ 1899 static inline void rseq_preempt(struct task_struct *t) 1900 { 1901 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1902 rseq_set_notify_resume(t); 1903 } 1904 1905 /* rseq_migrate() requires preemption to be disabled. */ 1906 static inline void rseq_migrate(struct task_struct *t) 1907 { 1908 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1909 rseq_set_notify_resume(t); 1910 } 1911 1912 /* 1913 * If parent process has a registered restartable sequences area, the 1914 * child inherits. Only applies when forking a process, not a thread. 1915 */ 1916 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1917 { 1918 if (clone_flags & CLONE_THREAD) { 1919 t->rseq = NULL; 1920 t->rseq_sig = 0; 1921 t->rseq_event_mask = 0; 1922 } else { 1923 t->rseq = current->rseq; 1924 t->rseq_sig = current->rseq_sig; 1925 t->rseq_event_mask = current->rseq_event_mask; 1926 } 1927 } 1928 1929 static inline void rseq_execve(struct task_struct *t) 1930 { 1931 t->rseq = NULL; 1932 t->rseq_sig = 0; 1933 t->rseq_event_mask = 0; 1934 } 1935 1936 #else 1937 1938 static inline void rseq_set_notify_resume(struct task_struct *t) 1939 { 1940 } 1941 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1942 struct pt_regs *regs) 1943 { 1944 } 1945 static inline void rseq_signal_deliver(struct ksignal *ksig, 1946 struct pt_regs *regs) 1947 { 1948 } 1949 static inline void rseq_preempt(struct task_struct *t) 1950 { 1951 } 1952 static inline void rseq_migrate(struct task_struct *t) 1953 { 1954 } 1955 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1956 { 1957 } 1958 static inline void rseq_execve(struct task_struct *t) 1959 { 1960 } 1961 1962 #endif 1963 1964 void __exit_umh(struct task_struct *tsk); 1965 1966 static inline void exit_umh(struct task_struct *tsk) 1967 { 1968 if (unlikely(tsk->flags & PF_UMH)) 1969 __exit_umh(tsk); 1970 } 1971 1972 #ifdef CONFIG_DEBUG_RSEQ 1973 1974 void rseq_syscall(struct pt_regs *regs); 1975 1976 #else 1977 1978 static inline void rseq_syscall(struct pt_regs *regs) 1979 { 1980 } 1981 1982 #endif 1983 1984 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 1985 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 1986 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 1987 1988 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 1989 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 1990 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 1991 1992 int sched_trace_rq_cpu(struct rq *rq); 1993 1994 const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 1995 1996 #endif 1997