1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <asm/param.h> /* for HZ */ 5 6 #include <linux/config.h> 7 #include <linux/capability.h> 8 #include <linux/threads.h> 9 #include <linux/kernel.h> 10 #include <linux/types.h> 11 #include <linux/timex.h> 12 #include <linux/jiffies.h> 13 #include <linux/rbtree.h> 14 #include <linux/thread_info.h> 15 #include <linux/cpumask.h> 16 #include <linux/errno.h> 17 #include <linux/nodemask.h> 18 19 #include <asm/system.h> 20 #include <asm/semaphore.h> 21 #include <asm/page.h> 22 #include <asm/ptrace.h> 23 #include <asm/mmu.h> 24 #include <asm/cputime.h> 25 26 #include <linux/smp.h> 27 #include <linux/sem.h> 28 #include <linux/signal.h> 29 #include <linux/securebits.h> 30 #include <linux/fs_struct.h> 31 #include <linux/compiler.h> 32 #include <linux/completion.h> 33 #include <linux/pid.h> 34 #include <linux/percpu.h> 35 #include <linux/topology.h> 36 #include <linux/seccomp.h> 37 38 struct exec_domain; 39 40 /* 41 * cloning flags: 42 */ 43 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 44 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 45 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 46 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 47 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 48 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 49 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 50 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 51 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 52 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 53 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 54 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 55 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 56 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 57 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 58 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 59 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 60 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 61 62 /* 63 * List of flags we want to share for kernel threads, 64 * if only because they are not used by them anyway. 65 */ 66 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 67 68 /* 69 * These are the constant used to fake the fixed-point load-average 70 * counting. Some notes: 71 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 72 * a load-average precision of 10 bits integer + 11 bits fractional 73 * - if you want to count load-averages more often, you need more 74 * precision, or rounding will get you. With 2-second counting freq, 75 * the EXP_n values would be 1981, 2034 and 2043 if still using only 76 * 11 bit fractions. 77 */ 78 extern unsigned long avenrun[]; /* Load averages */ 79 80 #define FSHIFT 11 /* nr of bits of precision */ 81 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 82 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */ 83 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 84 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 85 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 86 87 #define CALC_LOAD(load,exp,n) \ 88 load *= exp; \ 89 load += n*(FIXED_1-exp); \ 90 load >>= FSHIFT; 91 92 extern unsigned long total_forks; 93 extern int nr_threads; 94 extern int last_pid; 95 DECLARE_PER_CPU(unsigned long, process_counts); 96 extern int nr_processes(void); 97 extern unsigned long nr_running(void); 98 extern unsigned long nr_uninterruptible(void); 99 extern unsigned long nr_iowait(void); 100 101 #include <linux/time.h> 102 #include <linux/param.h> 103 #include <linux/resource.h> 104 #include <linux/timer.h> 105 106 #include <asm/processor.h> 107 108 #define TASK_RUNNING 0 109 #define TASK_INTERRUPTIBLE 1 110 #define TASK_UNINTERRUPTIBLE 2 111 #define TASK_STOPPED 4 112 #define TASK_TRACED 8 113 #define EXIT_ZOMBIE 16 114 #define EXIT_DEAD 32 115 116 #define __set_task_state(tsk, state_value) \ 117 do { (tsk)->state = (state_value); } while (0) 118 #define set_task_state(tsk, state_value) \ 119 set_mb((tsk)->state, (state_value)) 120 121 #define __set_current_state(state_value) \ 122 do { current->state = (state_value); } while (0) 123 #define set_current_state(state_value) \ 124 set_mb(current->state, (state_value)) 125 126 /* Task command name length */ 127 #define TASK_COMM_LEN 16 128 129 /* 130 * Scheduling policies 131 */ 132 #define SCHED_NORMAL 0 133 #define SCHED_FIFO 1 134 #define SCHED_RR 2 135 136 struct sched_param { 137 int sched_priority; 138 }; 139 140 #ifdef __KERNEL__ 141 142 #include <linux/spinlock.h> 143 144 /* 145 * This serializes "schedule()" and also protects 146 * the run-queue from deletions/modifications (but 147 * _adding_ to the beginning of the run-queue has 148 * a separate lock). 149 */ 150 extern rwlock_t tasklist_lock; 151 extern spinlock_t mmlist_lock; 152 153 typedef struct task_struct task_t; 154 155 extern void sched_init(void); 156 extern void sched_init_smp(void); 157 extern void init_idle(task_t *idle, int cpu); 158 159 extern cpumask_t nohz_cpu_mask; 160 161 extern void show_state(void); 162 extern void show_regs(struct pt_regs *); 163 164 /* 165 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 166 * task), SP is the stack pointer of the first frame that should be shown in the back 167 * trace (or NULL if the entire call-chain of the task should be shown). 168 */ 169 extern void show_stack(struct task_struct *task, unsigned long *sp); 170 171 void io_schedule(void); 172 long io_schedule_timeout(long timeout); 173 174 extern void cpu_init (void); 175 extern void trap_init(void); 176 extern void update_process_times(int user); 177 extern void scheduler_tick(void); 178 179 /* Attach to any functions which should be ignored in wchan output. */ 180 #define __sched __attribute__((__section__(".sched.text"))) 181 /* Is this address in the __sched functions? */ 182 extern int in_sched_functions(unsigned long addr); 183 184 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 185 extern signed long FASTCALL(schedule_timeout(signed long timeout)); 186 asmlinkage void schedule(void); 187 188 struct namespace; 189 190 /* Maximum number of active map areas.. This is a random (large) number */ 191 #define DEFAULT_MAX_MAP_COUNT 65536 192 193 extern int sysctl_max_map_count; 194 195 #include <linux/aio.h> 196 197 extern unsigned long 198 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 199 unsigned long, unsigned long); 200 extern unsigned long 201 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 202 unsigned long len, unsigned long pgoff, 203 unsigned long flags); 204 extern void arch_unmap_area(struct mm_struct *, unsigned long); 205 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 206 207 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 208 #define get_mm_counter(mm, member) ((mm)->_##member) 209 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 210 #define inc_mm_counter(mm, member) (mm)->_##member++ 211 #define dec_mm_counter(mm, member) (mm)->_##member-- 212 typedef unsigned long mm_counter_t; 213 214 struct mm_struct { 215 struct vm_area_struct * mmap; /* list of VMAs */ 216 struct rb_root mm_rb; 217 struct vm_area_struct * mmap_cache; /* last find_vma result */ 218 unsigned long (*get_unmapped_area) (struct file *filp, 219 unsigned long addr, unsigned long len, 220 unsigned long pgoff, unsigned long flags); 221 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 222 unsigned long mmap_base; /* base of mmap area */ 223 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 224 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 225 pgd_t * pgd; 226 atomic_t mm_users; /* How many users with user space? */ 227 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 228 int map_count; /* number of VMAs */ 229 struct rw_semaphore mmap_sem; 230 spinlock_t page_table_lock; /* Protects page tables and some counters */ 231 232 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 233 * together off init_mm.mmlist, and are protected 234 * by mmlist_lock 235 */ 236 237 unsigned long start_code, end_code, start_data, end_data; 238 unsigned long start_brk, brk, start_stack; 239 unsigned long arg_start, arg_end, env_start, env_end; 240 unsigned long total_vm, locked_vm, shared_vm; 241 unsigned long exec_vm, stack_vm, reserved_vm, def_flags, nr_ptes; 242 243 /* Special counters protected by the page_table_lock */ 244 mm_counter_t _rss; 245 mm_counter_t _anon_rss; 246 247 unsigned long saved_auxv[42]; /* for /proc/PID/auxv */ 248 249 unsigned dumpable:2; 250 cpumask_t cpu_vm_mask; 251 252 /* Architecture-specific MM context */ 253 mm_context_t context; 254 255 /* Token based thrashing protection. */ 256 unsigned long swap_token_time; 257 char recent_pagein; 258 259 /* coredumping support */ 260 int core_waiters; 261 struct completion *core_startup_done, core_done; 262 263 /* aio bits */ 264 rwlock_t ioctx_list_lock; 265 struct kioctx *ioctx_list; 266 267 struct kioctx default_kioctx; 268 269 unsigned long hiwater_rss; /* High-water RSS usage */ 270 unsigned long hiwater_vm; /* High-water virtual memory usage */ 271 }; 272 273 struct sighand_struct { 274 atomic_t count; 275 struct k_sigaction action[_NSIG]; 276 spinlock_t siglock; 277 }; 278 279 /* 280 * NOTE! "signal_struct" does not have it's own 281 * locking, because a shared signal_struct always 282 * implies a shared sighand_struct, so locking 283 * sighand_struct is always a proper superset of 284 * the locking of signal_struct. 285 */ 286 struct signal_struct { 287 atomic_t count; 288 atomic_t live; 289 290 wait_queue_head_t wait_chldexit; /* for wait4() */ 291 292 /* current thread group signal load-balancing target: */ 293 task_t *curr_target; 294 295 /* shared signal handling: */ 296 struct sigpending shared_pending; 297 298 /* thread group exit support */ 299 int group_exit_code; 300 /* overloaded: 301 * - notify group_exit_task when ->count is equal to notify_count 302 * - everyone except group_exit_task is stopped during signal delivery 303 * of fatal signals, group_exit_task processes the signal. 304 */ 305 struct task_struct *group_exit_task; 306 int notify_count; 307 308 /* thread group stop support, overloads group_exit_code too */ 309 int group_stop_count; 310 unsigned int flags; /* see SIGNAL_* flags below */ 311 312 /* POSIX.1b Interval Timers */ 313 struct list_head posix_timers; 314 315 /* ITIMER_REAL timer for the process */ 316 struct timer_list real_timer; 317 unsigned long it_real_value, it_real_incr; 318 319 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 320 cputime_t it_prof_expires, it_virt_expires; 321 cputime_t it_prof_incr, it_virt_incr; 322 323 /* job control IDs */ 324 pid_t pgrp; 325 pid_t tty_old_pgrp; 326 pid_t session; 327 /* boolean value for session group leader */ 328 int leader; 329 330 struct tty_struct *tty; /* NULL if no tty */ 331 332 /* 333 * Cumulative resource counters for dead threads in the group, 334 * and for reaped dead child processes forked by this group. 335 * Live threads maintain their own counters and add to these 336 * in __exit_signal, except for the group leader. 337 */ 338 cputime_t utime, stime, cutime, cstime; 339 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 340 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 341 342 /* 343 * Cumulative ns of scheduled CPU time for dead threads in the 344 * group, not including a zombie group leader. (This only differs 345 * from jiffies_to_ns(utime + stime) if sched_clock uses something 346 * other than jiffies.) 347 */ 348 unsigned long long sched_time; 349 350 /* 351 * We don't bother to synchronize most readers of this at all, 352 * because there is no reader checking a limit that actually needs 353 * to get both rlim_cur and rlim_max atomically, and either one 354 * alone is a single word that can safely be read normally. 355 * getrlimit/setrlimit use task_lock(current->group_leader) to 356 * protect this instead of the siglock, because they really 357 * have no need to disable irqs. 358 */ 359 struct rlimit rlim[RLIM_NLIMITS]; 360 361 struct list_head cpu_timers[3]; 362 363 /* keep the process-shared keyrings here so that they do the right 364 * thing in threads created with CLONE_THREAD */ 365 #ifdef CONFIG_KEYS 366 struct key *session_keyring; /* keyring inherited over fork */ 367 struct key *process_keyring; /* keyring private to this process */ 368 #endif 369 }; 370 371 /* Context switch must be unlocked if interrupts are to be enabled */ 372 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 373 # define __ARCH_WANT_UNLOCKED_CTXSW 374 #endif 375 376 /* 377 * Bits in flags field of signal_struct. 378 */ 379 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 380 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 381 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 382 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 383 384 385 /* 386 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 387 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL tasks are 388 * in the range MAX_RT_PRIO..MAX_PRIO-1. Priority values 389 * are inverted: lower p->prio value means higher priority. 390 * 391 * The MAX_USER_RT_PRIO value allows the actual maximum 392 * RT priority to be separate from the value exported to 393 * user-space. This allows kernel threads to set their 394 * priority to a value higher than any user task. Note: 395 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 396 */ 397 398 #define MAX_USER_RT_PRIO 100 399 #define MAX_RT_PRIO MAX_USER_RT_PRIO 400 401 #define MAX_PRIO (MAX_RT_PRIO + 40) 402 403 #define rt_task(p) (unlikely((p)->prio < MAX_RT_PRIO)) 404 405 /* 406 * Some day this will be a full-fledged user tracking system.. 407 */ 408 struct user_struct { 409 atomic_t __count; /* reference count */ 410 atomic_t processes; /* How many processes does this user have? */ 411 atomic_t files; /* How many open files does this user have? */ 412 atomic_t sigpending; /* How many pending signals does this user have? */ 413 #ifdef CONFIG_INOTIFY 414 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 415 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 416 #endif 417 /* protected by mq_lock */ 418 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 419 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 420 421 #ifdef CONFIG_KEYS 422 struct key *uid_keyring; /* UID specific keyring */ 423 struct key *session_keyring; /* UID's default session keyring */ 424 #endif 425 426 /* Hash table maintenance information */ 427 struct list_head uidhash_list; 428 uid_t uid; 429 }; 430 431 extern struct user_struct *find_user(uid_t); 432 433 extern struct user_struct root_user; 434 #define INIT_USER (&root_user) 435 436 typedef struct prio_array prio_array_t; 437 struct backing_dev_info; 438 struct reclaim_state; 439 440 #ifdef CONFIG_SCHEDSTATS 441 struct sched_info { 442 /* cumulative counters */ 443 unsigned long cpu_time, /* time spent on the cpu */ 444 run_delay, /* time spent waiting on a runqueue */ 445 pcnt; /* # of timeslices run on this cpu */ 446 447 /* timestamps */ 448 unsigned long last_arrival, /* when we last ran on a cpu */ 449 last_queued; /* when we were last queued to run */ 450 }; 451 452 extern struct file_operations proc_schedstat_operations; 453 #endif 454 455 enum idle_type 456 { 457 SCHED_IDLE, 458 NOT_IDLE, 459 NEWLY_IDLE, 460 MAX_IDLE_TYPES 461 }; 462 463 /* 464 * sched-domains (multiprocessor balancing) declarations: 465 */ 466 #ifdef CONFIG_SMP 467 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ 468 469 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 470 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 471 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 472 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 473 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 474 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 475 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 476 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 477 478 struct sched_group { 479 struct sched_group *next; /* Must be a circular list */ 480 cpumask_t cpumask; 481 482 /* 483 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 484 * single CPU. This is read only (except for setup, hotplug CPU). 485 */ 486 unsigned long cpu_power; 487 }; 488 489 struct sched_domain { 490 /* These fields must be setup */ 491 struct sched_domain *parent; /* top domain must be null terminated */ 492 struct sched_group *groups; /* the balancing groups of the domain */ 493 cpumask_t span; /* span of all CPUs in this domain */ 494 unsigned long min_interval; /* Minimum balance interval ms */ 495 unsigned long max_interval; /* Maximum balance interval ms */ 496 unsigned int busy_factor; /* less balancing by factor if busy */ 497 unsigned int imbalance_pct; /* No balance until over watermark */ 498 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ 499 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 500 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */ 501 unsigned int busy_idx; 502 unsigned int idle_idx; 503 unsigned int newidle_idx; 504 unsigned int wake_idx; 505 unsigned int forkexec_idx; 506 int flags; /* See SD_* */ 507 508 /* Runtime fields. */ 509 unsigned long last_balance; /* init to jiffies. units in jiffies */ 510 unsigned int balance_interval; /* initialise to 1. units in ms. */ 511 unsigned int nr_balance_failed; /* initialise to 0 */ 512 513 #ifdef CONFIG_SCHEDSTATS 514 /* load_balance() stats */ 515 unsigned long lb_cnt[MAX_IDLE_TYPES]; 516 unsigned long lb_failed[MAX_IDLE_TYPES]; 517 unsigned long lb_balanced[MAX_IDLE_TYPES]; 518 unsigned long lb_imbalance[MAX_IDLE_TYPES]; 519 unsigned long lb_gained[MAX_IDLE_TYPES]; 520 unsigned long lb_hot_gained[MAX_IDLE_TYPES]; 521 unsigned long lb_nobusyg[MAX_IDLE_TYPES]; 522 unsigned long lb_nobusyq[MAX_IDLE_TYPES]; 523 524 /* Active load balancing */ 525 unsigned long alb_cnt; 526 unsigned long alb_failed; 527 unsigned long alb_pushed; 528 529 /* SD_BALANCE_EXEC stats */ 530 unsigned long sbe_cnt; 531 unsigned long sbe_balanced; 532 unsigned long sbe_pushed; 533 534 /* SD_BALANCE_FORK stats */ 535 unsigned long sbf_cnt; 536 unsigned long sbf_balanced; 537 unsigned long sbf_pushed; 538 539 /* try_to_wake_up() stats */ 540 unsigned long ttwu_wake_remote; 541 unsigned long ttwu_move_affine; 542 unsigned long ttwu_move_balance; 543 #endif 544 }; 545 546 extern void partition_sched_domains(cpumask_t *partition1, 547 cpumask_t *partition2); 548 #ifdef ARCH_HAS_SCHED_DOMAIN 549 /* Useful helpers that arch setup code may use. Defined in kernel/sched.c */ 550 extern cpumask_t cpu_isolated_map; 551 extern void init_sched_build_groups(struct sched_group groups[], 552 cpumask_t span, int (*group_fn)(int cpu)); 553 extern void cpu_attach_domain(struct sched_domain *sd, int cpu); 554 #endif /* ARCH_HAS_SCHED_DOMAIN */ 555 #endif /* CONFIG_SMP */ 556 557 558 struct io_context; /* See blkdev.h */ 559 void exit_io_context(void); 560 struct cpuset; 561 562 #define NGROUPS_SMALL 32 563 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 564 struct group_info { 565 int ngroups; 566 atomic_t usage; 567 gid_t small_block[NGROUPS_SMALL]; 568 int nblocks; 569 gid_t *blocks[0]; 570 }; 571 572 /* 573 * get_group_info() must be called with the owning task locked (via task_lock()) 574 * when task != current. The reason being that the vast majority of callers are 575 * looking at current->group_info, which can not be changed except by the 576 * current task. Changing current->group_info requires the task lock, too. 577 */ 578 #define get_group_info(group_info) do { \ 579 atomic_inc(&(group_info)->usage); \ 580 } while (0) 581 582 #define put_group_info(group_info) do { \ 583 if (atomic_dec_and_test(&(group_info)->usage)) \ 584 groups_free(group_info); \ 585 } while (0) 586 587 extern struct group_info *groups_alloc(int gidsetsize); 588 extern void groups_free(struct group_info *group_info); 589 extern int set_current_groups(struct group_info *group_info); 590 extern int groups_search(struct group_info *group_info, gid_t grp); 591 /* access the groups "array" with this macro */ 592 #define GROUP_AT(gi, i) \ 593 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 594 595 596 struct audit_context; /* See audit.c */ 597 struct mempolicy; 598 599 struct task_struct { 600 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 601 struct thread_info *thread_info; 602 atomic_t usage; 603 unsigned long flags; /* per process flags, defined below */ 604 unsigned long ptrace; 605 606 int lock_depth; /* BKL lock depth */ 607 608 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) 609 int oncpu; 610 #endif 611 int prio, static_prio; 612 struct list_head run_list; 613 prio_array_t *array; 614 615 unsigned short ioprio; 616 617 unsigned long sleep_avg; 618 unsigned long long timestamp, last_ran; 619 unsigned long long sched_time; /* sched_clock time spent running */ 620 int activated; 621 622 unsigned long policy; 623 cpumask_t cpus_allowed; 624 unsigned int time_slice, first_time_slice; 625 626 #ifdef CONFIG_SCHEDSTATS 627 struct sched_info sched_info; 628 #endif 629 630 struct list_head tasks; 631 /* 632 * ptrace_list/ptrace_children forms the list of my children 633 * that were stolen by a ptracer. 634 */ 635 struct list_head ptrace_children; 636 struct list_head ptrace_list; 637 638 struct mm_struct *mm, *active_mm; 639 640 /* task state */ 641 struct linux_binfmt *binfmt; 642 long exit_state; 643 int exit_code, exit_signal; 644 int pdeath_signal; /* The signal sent when the parent dies */ 645 /* ??? */ 646 unsigned long personality; 647 unsigned did_exec:1; 648 pid_t pid; 649 pid_t tgid; 650 /* 651 * pointers to (original) parent process, youngest child, younger sibling, 652 * older sibling, respectively. (p->father can be replaced with 653 * p->parent->pid) 654 */ 655 struct task_struct *real_parent; /* real parent process (when being debugged) */ 656 struct task_struct *parent; /* parent process */ 657 /* 658 * children/sibling forms the list of my children plus the 659 * tasks I'm ptracing. 660 */ 661 struct list_head children; /* list of my children */ 662 struct list_head sibling; /* linkage in my parent's children list */ 663 struct task_struct *group_leader; /* threadgroup leader */ 664 665 /* PID/PID hash table linkage. */ 666 struct pid pids[PIDTYPE_MAX]; 667 668 struct completion *vfork_done; /* for vfork() */ 669 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 670 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 671 672 unsigned long rt_priority; 673 cputime_t utime, stime; 674 unsigned long nvcsw, nivcsw; /* context switch counts */ 675 struct timespec start_time; 676 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 677 unsigned long min_flt, maj_flt; 678 679 cputime_t it_prof_expires, it_virt_expires; 680 unsigned long long it_sched_expires; 681 struct list_head cpu_timers[3]; 682 683 /* process credentials */ 684 uid_t uid,euid,suid,fsuid; 685 gid_t gid,egid,sgid,fsgid; 686 struct group_info *group_info; 687 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 688 unsigned keep_capabilities:1; 689 struct user_struct *user; 690 #ifdef CONFIG_KEYS 691 struct key *thread_keyring; /* keyring private to this thread */ 692 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 693 #endif 694 int oomkilladj; /* OOM kill score adjustment (bit shift). */ 695 char comm[TASK_COMM_LEN]; /* executable name excluding path 696 - access with [gs]et_task_comm (which lock 697 it with task_lock()) 698 - initialized normally by flush_old_exec */ 699 /* file system info */ 700 int link_count, total_link_count; 701 /* ipc stuff */ 702 struct sysv_sem sysvsem; 703 /* CPU-specific state of this task */ 704 struct thread_struct thread; 705 /* filesystem information */ 706 struct fs_struct *fs; 707 /* open file information */ 708 struct files_struct *files; 709 /* namespace */ 710 struct namespace *namespace; 711 /* signal handlers */ 712 struct signal_struct *signal; 713 struct sighand_struct *sighand; 714 715 sigset_t blocked, real_blocked; 716 struct sigpending pending; 717 718 unsigned long sas_ss_sp; 719 size_t sas_ss_size; 720 int (*notifier)(void *priv); 721 void *notifier_data; 722 sigset_t *notifier_mask; 723 724 void *security; 725 struct audit_context *audit_context; 726 seccomp_t seccomp; 727 728 /* Thread group tracking */ 729 u32 parent_exec_id; 730 u32 self_exec_id; 731 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 732 spinlock_t alloc_lock; 733 /* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */ 734 spinlock_t proc_lock; 735 736 /* journalling filesystem info */ 737 void *journal_info; 738 739 /* VM state */ 740 struct reclaim_state *reclaim_state; 741 742 struct dentry *proc_dentry; 743 struct backing_dev_info *backing_dev_info; 744 745 struct io_context *io_context; 746 747 unsigned long ptrace_message; 748 siginfo_t *last_siginfo; /* For ptrace use. */ 749 /* 750 * current io wait handle: wait queue entry to use for io waits 751 * If this thread is processing aio, this points at the waitqueue 752 * inside the currently handled kiocb. It may be NULL (i.e. default 753 * to a stack based synchronous wait) if its doing sync IO. 754 */ 755 wait_queue_t *io_wait; 756 /* i/o counters(bytes read/written, #syscalls */ 757 u64 rchar, wchar, syscr, syscw; 758 #if defined(CONFIG_BSD_PROCESS_ACCT) 759 u64 acct_rss_mem1; /* accumulated rss usage */ 760 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 761 clock_t acct_stimexpd; /* clock_t-converted stime since last update */ 762 #endif 763 #ifdef CONFIG_NUMA 764 struct mempolicy *mempolicy; 765 short il_next; 766 #endif 767 #ifdef CONFIG_CPUSETS 768 struct cpuset *cpuset; 769 nodemask_t mems_allowed; 770 int cpuset_mems_generation; 771 #endif 772 atomic_t fs_excl; /* holding fs exclusive resources */ 773 }; 774 775 static inline pid_t process_group(struct task_struct *tsk) 776 { 777 return tsk->signal->pgrp; 778 } 779 780 /** 781 * pid_alive - check that a task structure is not stale 782 * @p: Task structure to be checked. 783 * 784 * Test if a process is not yet dead (at most zombie state) 785 * If pid_alive fails, then pointers within the task structure 786 * can be stale and must not be dereferenced. 787 */ 788 static inline int pid_alive(struct task_struct *p) 789 { 790 return p->pids[PIDTYPE_PID].nr != 0; 791 } 792 793 extern void free_task(struct task_struct *tsk); 794 extern void __put_task_struct(struct task_struct *tsk); 795 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 796 #define put_task_struct(tsk) \ 797 do { if (atomic_dec_and_test(&(tsk)->usage)) __put_task_struct(tsk); } while(0) 798 799 /* 800 * Per process flags 801 */ 802 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 803 /* Not implemented yet, only for 486*/ 804 #define PF_STARTING 0x00000002 /* being created */ 805 #define PF_EXITING 0x00000004 /* getting shut down */ 806 #define PF_DEAD 0x00000008 /* Dead */ 807 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 808 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 809 #define PF_DUMPCORE 0x00000200 /* dumped core */ 810 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 811 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 812 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 813 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 814 #define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */ 815 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 816 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 817 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 818 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 819 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 820 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 821 #define PF_SYNCWRITE 0x00200000 /* I am doing a sync write */ 822 #define PF_BORROWED_MM 0x00400000 /* I am a kthread doing use_mm */ 823 #define PF_RANDOMIZE 0x00800000 /* randomize virtual address space */ 824 825 /* 826 * Only the _current_ task can read/write to tsk->flags, but other 827 * tasks can access tsk->flags in readonly mode for example 828 * with tsk_used_math (like during threaded core dumping). 829 * There is however an exception to this rule during ptrace 830 * or during fork: the ptracer task is allowed to write to the 831 * child->flags of its traced child (same goes for fork, the parent 832 * can write to the child->flags), because we're guaranteed the 833 * child is not running and in turn not changing child->flags 834 * at the same time the parent does it. 835 */ 836 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 837 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 838 #define clear_used_math() clear_stopped_child_used_math(current) 839 #define set_used_math() set_stopped_child_used_math(current) 840 #define conditional_stopped_child_used_math(condition, child) \ 841 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 842 #define conditional_used_math(condition) \ 843 conditional_stopped_child_used_math(condition, current) 844 #define copy_to_stopped_child_used_math(child) \ 845 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 846 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 847 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 848 #define used_math() tsk_used_math(current) 849 850 #ifdef CONFIG_SMP 851 extern int set_cpus_allowed(task_t *p, cpumask_t new_mask); 852 #else 853 static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask) 854 { 855 if (!cpus_intersects(new_mask, cpu_online_map)) 856 return -EINVAL; 857 return 0; 858 } 859 #endif 860 861 extern unsigned long long sched_clock(void); 862 extern unsigned long long current_sched_time(const task_t *current_task); 863 864 /* sched_exec is called by processes performing an exec */ 865 #ifdef CONFIG_SMP 866 extern void sched_exec(void); 867 #else 868 #define sched_exec() {} 869 #endif 870 871 #ifdef CONFIG_HOTPLUG_CPU 872 extern void idle_task_exit(void); 873 #else 874 static inline void idle_task_exit(void) {} 875 #endif 876 877 extern void sched_idle_next(void); 878 extern void set_user_nice(task_t *p, long nice); 879 extern int task_prio(const task_t *p); 880 extern int task_nice(const task_t *p); 881 extern int can_nice(const task_t *p, const int nice); 882 extern int task_curr(const task_t *p); 883 extern int idle_cpu(int cpu); 884 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 885 extern task_t *idle_task(int cpu); 886 887 void yield(void); 888 889 /* 890 * The default (Linux) execution domain. 891 */ 892 extern struct exec_domain default_exec_domain; 893 894 union thread_union { 895 struct thread_info thread_info; 896 unsigned long stack[THREAD_SIZE/sizeof(long)]; 897 }; 898 899 #ifndef __HAVE_ARCH_KSTACK_END 900 static inline int kstack_end(void *addr) 901 { 902 /* Reliable end of stack detection: 903 * Some APM bios versions misalign the stack 904 */ 905 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 906 } 907 #endif 908 909 extern union thread_union init_thread_union; 910 extern struct task_struct init_task; 911 912 extern struct mm_struct init_mm; 913 914 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) 915 extern struct task_struct *find_task_by_pid_type(int type, int pid); 916 extern void set_special_pids(pid_t session, pid_t pgrp); 917 extern void __set_special_pids(pid_t session, pid_t pgrp); 918 919 /* per-UID process charging. */ 920 extern struct user_struct * alloc_uid(uid_t); 921 static inline struct user_struct *get_uid(struct user_struct *u) 922 { 923 atomic_inc(&u->__count); 924 return u; 925 } 926 extern void free_uid(struct user_struct *); 927 extern void switch_uid(struct user_struct *); 928 929 #include <asm/current.h> 930 931 extern void do_timer(struct pt_regs *); 932 933 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 934 extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 935 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 936 unsigned long clone_flags)); 937 #ifdef CONFIG_SMP 938 extern void kick_process(struct task_struct *tsk); 939 #else 940 static inline void kick_process(struct task_struct *tsk) { } 941 #endif 942 extern void FASTCALL(sched_fork(task_t * p, int clone_flags)); 943 extern void FASTCALL(sched_exit(task_t * p)); 944 945 extern int in_group_p(gid_t); 946 extern int in_egroup_p(gid_t); 947 948 extern void proc_caches_init(void); 949 extern void flush_signals(struct task_struct *); 950 extern void flush_signal_handlers(struct task_struct *, int force_default); 951 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 952 953 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 954 { 955 unsigned long flags; 956 int ret; 957 958 spin_lock_irqsave(&tsk->sighand->siglock, flags); 959 ret = dequeue_signal(tsk, mask, info); 960 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 961 962 return ret; 963 } 964 965 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 966 sigset_t *mask); 967 extern void unblock_all_signals(void); 968 extern void release_task(struct task_struct * p); 969 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 970 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 971 extern int force_sigsegv(int, struct task_struct *); 972 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 973 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp); 974 extern int kill_pg_info(int, struct siginfo *, pid_t); 975 extern int kill_proc_info(int, struct siginfo *, pid_t); 976 extern void do_notify_parent(struct task_struct *, int); 977 extern void force_sig(int, struct task_struct *); 978 extern void force_sig_specific(int, struct task_struct *); 979 extern int send_sig(int, struct task_struct *, int); 980 extern void zap_other_threads(struct task_struct *p); 981 extern int kill_pg(pid_t, int, int); 982 extern int kill_sl(pid_t, int, int); 983 extern int kill_proc(pid_t, int, int); 984 extern struct sigqueue *sigqueue_alloc(void); 985 extern void sigqueue_free(struct sigqueue *); 986 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 987 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 988 extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *); 989 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 990 991 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 992 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 993 #define SEND_SIG_PRIV ((struct siginfo *) 1) 994 #define SEND_SIG_FORCED ((struct siginfo *) 2) 995 996 /* True if we are on the alternate signal stack. */ 997 998 static inline int on_sig_stack(unsigned long sp) 999 { 1000 return (sp - current->sas_ss_sp < current->sas_ss_size); 1001 } 1002 1003 static inline int sas_ss_flags(unsigned long sp) 1004 { 1005 return (current->sas_ss_size == 0 ? SS_DISABLE 1006 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1007 } 1008 1009 1010 #ifdef CONFIG_SECURITY 1011 /* code is in security.c */ 1012 extern int capable(int cap); 1013 #else 1014 static inline int capable(int cap) 1015 { 1016 if (cap_raised(current->cap_effective, cap)) { 1017 current->flags |= PF_SUPERPRIV; 1018 return 1; 1019 } 1020 return 0; 1021 } 1022 #endif 1023 1024 /* 1025 * Routines for handling mm_structs 1026 */ 1027 extern struct mm_struct * mm_alloc(void); 1028 1029 /* mmdrop drops the mm and the page tables */ 1030 extern void FASTCALL(__mmdrop(struct mm_struct *)); 1031 static inline void mmdrop(struct mm_struct * mm) 1032 { 1033 if (atomic_dec_and_test(&mm->mm_count)) 1034 __mmdrop(mm); 1035 } 1036 1037 /* mmput gets rid of the mappings and all user-space */ 1038 extern void mmput(struct mm_struct *); 1039 /* Grab a reference to a task's mm, if it is not already going away */ 1040 extern struct mm_struct *get_task_mm(struct task_struct *task); 1041 /* Remove the current tasks stale references to the old mm_struct */ 1042 extern void mm_release(struct task_struct *, struct mm_struct *); 1043 1044 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1045 extern void flush_thread(void); 1046 extern void exit_thread(void); 1047 1048 extern void exit_files(struct task_struct *); 1049 extern void exit_signal(struct task_struct *); 1050 extern void __exit_signal(struct task_struct *); 1051 extern void exit_sighand(struct task_struct *); 1052 extern void __exit_sighand(struct task_struct *); 1053 extern void exit_itimers(struct signal_struct *); 1054 1055 extern NORET_TYPE void do_group_exit(int); 1056 1057 extern void daemonize(const char *, ...); 1058 extern int allow_signal(int); 1059 extern int disallow_signal(int); 1060 extern task_t *child_reaper; 1061 1062 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1063 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1064 task_t *fork_idle(int); 1065 1066 extern void set_task_comm(struct task_struct *tsk, char *from); 1067 extern void get_task_comm(char *to, struct task_struct *tsk); 1068 1069 #ifdef CONFIG_SMP 1070 extern void wait_task_inactive(task_t * p); 1071 #else 1072 #define wait_task_inactive(p) do { } while (0) 1073 #endif 1074 1075 #define remove_parent(p) list_del_init(&(p)->sibling) 1076 #define add_parent(p, parent) list_add_tail(&(p)->sibling,&(parent)->children) 1077 1078 #define REMOVE_LINKS(p) do { \ 1079 if (thread_group_leader(p)) \ 1080 list_del_init(&(p)->tasks); \ 1081 remove_parent(p); \ 1082 } while (0) 1083 1084 #define SET_LINKS(p) do { \ 1085 if (thread_group_leader(p)) \ 1086 list_add_tail(&(p)->tasks,&init_task.tasks); \ 1087 add_parent(p, (p)->parent); \ 1088 } while (0) 1089 1090 #define next_task(p) list_entry((p)->tasks.next, struct task_struct, tasks) 1091 #define prev_task(p) list_entry((p)->tasks.prev, struct task_struct, tasks) 1092 1093 #define for_each_process(p) \ 1094 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1095 1096 /* 1097 * Careful: do_each_thread/while_each_thread is a double loop so 1098 * 'break' will not work as expected - use goto instead. 1099 */ 1100 #define do_each_thread(g, t) \ 1101 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1102 1103 #define while_each_thread(g, t) \ 1104 while ((t = next_thread(t)) != g) 1105 1106 extern task_t * FASTCALL(next_thread(const task_t *p)); 1107 1108 #define thread_group_leader(p) (p->pid == p->tgid) 1109 1110 static inline int thread_group_empty(task_t *p) 1111 { 1112 return list_empty(&p->pids[PIDTYPE_TGID].pid_list); 1113 } 1114 1115 #define delay_group_leader(p) \ 1116 (thread_group_leader(p) && !thread_group_empty(p)) 1117 1118 extern void unhash_process(struct task_struct *p); 1119 1120 /* 1121 * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring 1122 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1123 * pins the final release of task.io_context. 1124 * 1125 * Nests both inside and outside of read_lock(&tasklist_lock). 1126 * It must not be nested with write_lock_irq(&tasklist_lock), 1127 * neither inside nor outside. 1128 */ 1129 static inline void task_lock(struct task_struct *p) 1130 { 1131 spin_lock(&p->alloc_lock); 1132 } 1133 1134 static inline void task_unlock(struct task_struct *p) 1135 { 1136 spin_unlock(&p->alloc_lock); 1137 } 1138 1139 /* set thread flags in other task's structures 1140 * - see asm/thread_info.h for TIF_xxxx flags available 1141 */ 1142 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1143 { 1144 set_ti_thread_flag(tsk->thread_info,flag); 1145 } 1146 1147 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1148 { 1149 clear_ti_thread_flag(tsk->thread_info,flag); 1150 } 1151 1152 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1153 { 1154 return test_and_set_ti_thread_flag(tsk->thread_info,flag); 1155 } 1156 1157 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1158 { 1159 return test_and_clear_ti_thread_flag(tsk->thread_info,flag); 1160 } 1161 1162 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1163 { 1164 return test_ti_thread_flag(tsk->thread_info,flag); 1165 } 1166 1167 static inline void set_tsk_need_resched(struct task_struct *tsk) 1168 { 1169 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1170 } 1171 1172 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1173 { 1174 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1175 } 1176 1177 static inline int signal_pending(struct task_struct *p) 1178 { 1179 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1180 } 1181 1182 static inline int need_resched(void) 1183 { 1184 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1185 } 1186 1187 /* 1188 * cond_resched() and cond_resched_lock(): latency reduction via 1189 * explicit rescheduling in places that are safe. The return 1190 * value indicates whether a reschedule was done in fact. 1191 * cond_resched_lock() will drop the spinlock before scheduling, 1192 * cond_resched_softirq() will enable bhs before scheduling. 1193 */ 1194 extern int cond_resched(void); 1195 extern int cond_resched_lock(spinlock_t * lock); 1196 extern int cond_resched_softirq(void); 1197 1198 /* 1199 * Does a critical section need to be broken due to another 1200 * task waiting?: 1201 */ 1202 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1203 # define need_lockbreak(lock) ((lock)->break_lock) 1204 #else 1205 # define need_lockbreak(lock) 0 1206 #endif 1207 1208 /* 1209 * Does a critical section need to be broken due to another 1210 * task waiting or preemption being signalled: 1211 */ 1212 static inline int lock_need_resched(spinlock_t *lock) 1213 { 1214 if (need_lockbreak(lock) || need_resched()) 1215 return 1; 1216 return 0; 1217 } 1218 1219 /* Reevaluate whether the task has signals pending delivery. 1220 This is required every time the blocked sigset_t changes. 1221 callers must hold sighand->siglock. */ 1222 1223 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); 1224 extern void recalc_sigpending(void); 1225 1226 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1227 1228 /* 1229 * Wrappers for p->thread_info->cpu access. No-op on UP. 1230 */ 1231 #ifdef CONFIG_SMP 1232 1233 static inline unsigned int task_cpu(const struct task_struct *p) 1234 { 1235 return p->thread_info->cpu; 1236 } 1237 1238 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1239 { 1240 p->thread_info->cpu = cpu; 1241 } 1242 1243 #else 1244 1245 static inline unsigned int task_cpu(const struct task_struct *p) 1246 { 1247 return 0; 1248 } 1249 1250 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1251 { 1252 } 1253 1254 #endif /* CONFIG_SMP */ 1255 1256 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1257 extern void arch_pick_mmap_layout(struct mm_struct *mm); 1258 #else 1259 static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1260 { 1261 mm->mmap_base = TASK_UNMAPPED_BASE; 1262 mm->get_unmapped_area = arch_get_unmapped_area; 1263 mm->unmap_area = arch_unmap_area; 1264 } 1265 #endif 1266 1267 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1268 extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1269 1270 #ifdef CONFIG_MAGIC_SYSRQ 1271 1272 extern void normalize_rt_tasks(void); 1273 1274 #endif 1275 1276 #ifdef CONFIG_PM 1277 /* 1278 * Check if a process has been frozen 1279 */ 1280 static inline int frozen(struct task_struct *p) 1281 { 1282 return p->flags & PF_FROZEN; 1283 } 1284 1285 /* 1286 * Check if there is a request to freeze a process 1287 */ 1288 static inline int freezing(struct task_struct *p) 1289 { 1290 return p->flags & PF_FREEZE; 1291 } 1292 1293 /* 1294 * Request that a process be frozen 1295 * FIXME: SMP problem. We may not modify other process' flags! 1296 */ 1297 static inline void freeze(struct task_struct *p) 1298 { 1299 p->flags |= PF_FREEZE; 1300 } 1301 1302 /* 1303 * Wake up a frozen process 1304 */ 1305 static inline int thaw_process(struct task_struct *p) 1306 { 1307 if (frozen(p)) { 1308 p->flags &= ~PF_FROZEN; 1309 wake_up_process(p); 1310 return 1; 1311 } 1312 return 0; 1313 } 1314 1315 /* 1316 * freezing is complete, mark process as frozen 1317 */ 1318 static inline void frozen_process(struct task_struct *p) 1319 { 1320 p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN; 1321 } 1322 1323 extern void refrigerator(void); 1324 extern int freeze_processes(void); 1325 extern void thaw_processes(void); 1326 1327 static inline int try_to_freeze(void) 1328 { 1329 if (freezing(current)) { 1330 refrigerator(); 1331 return 1; 1332 } else 1333 return 0; 1334 } 1335 #else 1336 static inline int frozen(struct task_struct *p) { return 0; } 1337 static inline int freezing(struct task_struct *p) { return 0; } 1338 static inline void freeze(struct task_struct *p) { BUG(); } 1339 static inline int thaw_process(struct task_struct *p) { return 1; } 1340 static inline void frozen_process(struct task_struct *p) { BUG(); } 1341 1342 static inline void refrigerator(void) {} 1343 static inline int freeze_processes(void) { BUG(); return 0; } 1344 static inline void thaw_processes(void) {} 1345 1346 static inline int try_to_freeze(void) { return 0; } 1347 1348 #endif /* CONFIG_PM */ 1349 #endif /* __KERNEL__ */ 1350 1351 #endif 1352