xref: /linux/include/linux/sched.h (revision 1ba5ad36e00f46e3f7676f5de6b87f5a2f57f1f1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38 
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct bpf_run_ctx;
46 struct capture_control;
47 struct cfs_rq;
48 struct fs_struct;
49 struct futex_pi_state;
50 struct io_context;
51 struct io_uring_task;
52 struct mempolicy;
53 struct nameidata;
54 struct nsproxy;
55 struct perf_event_context;
56 struct pid_namespace;
57 struct pipe_inode_info;
58 struct rcu_node;
59 struct reclaim_state;
60 struct robust_list_head;
61 struct root_domain;
62 struct rq;
63 struct sched_attr;
64 struct sched_param;
65 struct seq_file;
66 struct sighand_struct;
67 struct signal_struct;
68 struct task_delay_info;
69 struct task_group;
70 
71 /*
72  * Task state bitmask. NOTE! These bits are also
73  * encoded in fs/proc/array.c: get_task_state().
74  *
75  * We have two separate sets of flags: task->state
76  * is about runnability, while task->exit_state are
77  * about the task exiting. Confusing, but this way
78  * modifying one set can't modify the other one by
79  * mistake.
80  */
81 
82 /* Used in tsk->state: */
83 #define TASK_RUNNING			0x0000
84 #define TASK_INTERRUPTIBLE		0x0001
85 #define TASK_UNINTERRUPTIBLE		0x0002
86 #define __TASK_STOPPED			0x0004
87 #define __TASK_TRACED			0x0008
88 /* Used in tsk->exit_state: */
89 #define EXIT_DEAD			0x0010
90 #define EXIT_ZOMBIE			0x0020
91 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
92 /* Used in tsk->state again: */
93 #define TASK_PARKED			0x0040
94 #define TASK_DEAD			0x0080
95 #define TASK_WAKEKILL			0x0100
96 #define TASK_WAKING			0x0200
97 #define TASK_NOLOAD			0x0400
98 #define TASK_NEW			0x0800
99 /* RT specific auxilliary flag to mark RT lock waiters */
100 #define TASK_RTLOCK_WAIT		0x1000
101 #define TASK_STATE_MAX			0x2000
102 
103 /* Convenience macros for the sake of set_current_state: */
104 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
106 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
107 
108 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109 
110 /* Convenience macros for the sake of wake_up(): */
111 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
112 
113 /* get_task_state(): */
114 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 					 TASK_PARKED)
118 
119 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
120 
121 #define task_is_traced(task)		((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
122 
123 #define task_is_stopped(task)		((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
124 
125 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
126 
127 /*
128  * Special states are those that do not use the normal wait-loop pattern. See
129  * the comment with set_special_state().
130  */
131 #define is_special_task_state(state)				\
132 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
133 
134 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
135 # define debug_normal_state_change(state_value)				\
136 	do {								\
137 		WARN_ON_ONCE(is_special_task_state(state_value));	\
138 		current->task_state_change = _THIS_IP_;			\
139 	} while (0)
140 
141 # define debug_special_state_change(state_value)			\
142 	do {								\
143 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
144 		current->task_state_change = _THIS_IP_;			\
145 	} while (0)
146 
147 # define debug_rtlock_wait_set_state()					\
148 	do {								 \
149 		current->saved_state_change = current->task_state_change;\
150 		current->task_state_change = _THIS_IP_;			 \
151 	} while (0)
152 
153 # define debug_rtlock_wait_restore_state()				\
154 	do {								 \
155 		current->task_state_change = current->saved_state_change;\
156 	} while (0)
157 
158 #else
159 # define debug_normal_state_change(cond)	do { } while (0)
160 # define debug_special_state_change(cond)	do { } while (0)
161 # define debug_rtlock_wait_set_state()		do { } while (0)
162 # define debug_rtlock_wait_restore_state()	do { } while (0)
163 #endif
164 
165 /*
166  * set_current_state() includes a barrier so that the write of current->state
167  * is correctly serialised wrt the caller's subsequent test of whether to
168  * actually sleep:
169  *
170  *   for (;;) {
171  *	set_current_state(TASK_UNINTERRUPTIBLE);
172  *	if (CONDITION)
173  *	   break;
174  *
175  *	schedule();
176  *   }
177  *   __set_current_state(TASK_RUNNING);
178  *
179  * If the caller does not need such serialisation (because, for instance, the
180  * CONDITION test and condition change and wakeup are under the same lock) then
181  * use __set_current_state().
182  *
183  * The above is typically ordered against the wakeup, which does:
184  *
185  *   CONDITION = 1;
186  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
187  *
188  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
189  * accessing p->state.
190  *
191  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
192  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
193  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
194  *
195  * However, with slightly different timing the wakeup TASK_RUNNING store can
196  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
197  * a problem either because that will result in one extra go around the loop
198  * and our @cond test will save the day.
199  *
200  * Also see the comments of try_to_wake_up().
201  */
202 #define __set_current_state(state_value)				\
203 	do {								\
204 		debug_normal_state_change((state_value));		\
205 		WRITE_ONCE(current->__state, (state_value));		\
206 	} while (0)
207 
208 #define set_current_state(state_value)					\
209 	do {								\
210 		debug_normal_state_change((state_value));		\
211 		smp_store_mb(current->__state, (state_value));		\
212 	} while (0)
213 
214 /*
215  * set_special_state() should be used for those states when the blocking task
216  * can not use the regular condition based wait-loop. In that case we must
217  * serialize against wakeups such that any possible in-flight TASK_RUNNING
218  * stores will not collide with our state change.
219  */
220 #define set_special_state(state_value)					\
221 	do {								\
222 		unsigned long flags; /* may shadow */			\
223 									\
224 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
225 		debug_special_state_change((state_value));		\
226 		WRITE_ONCE(current->__state, (state_value));		\
227 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
228 	} while (0)
229 
230 /*
231  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
232  *
233  * RT's spin/rwlock substitutions are state preserving. The state of the
234  * task when blocking on the lock is saved in task_struct::saved_state and
235  * restored after the lock has been acquired.  These operations are
236  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
237  * lock related wakeups while the task is blocked on the lock are
238  * redirected to operate on task_struct::saved_state to ensure that these
239  * are not dropped. On restore task_struct::saved_state is set to
240  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
241  *
242  * The lock operation looks like this:
243  *
244  *	current_save_and_set_rtlock_wait_state();
245  *	for (;;) {
246  *		if (try_lock())
247  *			break;
248  *		raw_spin_unlock_irq(&lock->wait_lock);
249  *		schedule_rtlock();
250  *		raw_spin_lock_irq(&lock->wait_lock);
251  *		set_current_state(TASK_RTLOCK_WAIT);
252  *	}
253  *	current_restore_rtlock_saved_state();
254  */
255 #define current_save_and_set_rtlock_wait_state()			\
256 	do {								\
257 		lockdep_assert_irqs_disabled();				\
258 		raw_spin_lock(&current->pi_lock);			\
259 		current->saved_state = current->__state;		\
260 		debug_rtlock_wait_set_state();				\
261 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
262 		raw_spin_unlock(&current->pi_lock);			\
263 	} while (0);
264 
265 #define current_restore_rtlock_saved_state()				\
266 	do {								\
267 		lockdep_assert_irqs_disabled();				\
268 		raw_spin_lock(&current->pi_lock);			\
269 		debug_rtlock_wait_restore_state();			\
270 		WRITE_ONCE(current->__state, current->saved_state);	\
271 		current->saved_state = TASK_RUNNING;			\
272 		raw_spin_unlock(&current->pi_lock);			\
273 	} while (0);
274 
275 #define get_current_state()	READ_ONCE(current->__state)
276 
277 /*
278  * Define the task command name length as enum, then it can be visible to
279  * BPF programs.
280  */
281 enum {
282 	TASK_COMM_LEN = 16,
283 };
284 
285 extern void scheduler_tick(void);
286 
287 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
288 
289 extern long schedule_timeout(long timeout);
290 extern long schedule_timeout_interruptible(long timeout);
291 extern long schedule_timeout_killable(long timeout);
292 extern long schedule_timeout_uninterruptible(long timeout);
293 extern long schedule_timeout_idle(long timeout);
294 asmlinkage void schedule(void);
295 extern void schedule_preempt_disabled(void);
296 asmlinkage void preempt_schedule_irq(void);
297 #ifdef CONFIG_PREEMPT_RT
298  extern void schedule_rtlock(void);
299 #endif
300 
301 extern int __must_check io_schedule_prepare(void);
302 extern void io_schedule_finish(int token);
303 extern long io_schedule_timeout(long timeout);
304 extern void io_schedule(void);
305 
306 /**
307  * struct prev_cputime - snapshot of system and user cputime
308  * @utime: time spent in user mode
309  * @stime: time spent in system mode
310  * @lock: protects the above two fields
311  *
312  * Stores previous user/system time values such that we can guarantee
313  * monotonicity.
314  */
315 struct prev_cputime {
316 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
317 	u64				utime;
318 	u64				stime;
319 	raw_spinlock_t			lock;
320 #endif
321 };
322 
323 enum vtime_state {
324 	/* Task is sleeping or running in a CPU with VTIME inactive: */
325 	VTIME_INACTIVE = 0,
326 	/* Task is idle */
327 	VTIME_IDLE,
328 	/* Task runs in kernelspace in a CPU with VTIME active: */
329 	VTIME_SYS,
330 	/* Task runs in userspace in a CPU with VTIME active: */
331 	VTIME_USER,
332 	/* Task runs as guests in a CPU with VTIME active: */
333 	VTIME_GUEST,
334 };
335 
336 struct vtime {
337 	seqcount_t		seqcount;
338 	unsigned long long	starttime;
339 	enum vtime_state	state;
340 	unsigned int		cpu;
341 	u64			utime;
342 	u64			stime;
343 	u64			gtime;
344 };
345 
346 /*
347  * Utilization clamp constraints.
348  * @UCLAMP_MIN:	Minimum utilization
349  * @UCLAMP_MAX:	Maximum utilization
350  * @UCLAMP_CNT:	Utilization clamp constraints count
351  */
352 enum uclamp_id {
353 	UCLAMP_MIN = 0,
354 	UCLAMP_MAX,
355 	UCLAMP_CNT
356 };
357 
358 #ifdef CONFIG_SMP
359 extern struct root_domain def_root_domain;
360 extern struct mutex sched_domains_mutex;
361 #endif
362 
363 struct sched_info {
364 #ifdef CONFIG_SCHED_INFO
365 	/* Cumulative counters: */
366 
367 	/* # of times we have run on this CPU: */
368 	unsigned long			pcount;
369 
370 	/* Time spent waiting on a runqueue: */
371 	unsigned long long		run_delay;
372 
373 	/* Timestamps: */
374 
375 	/* When did we last run on a CPU? */
376 	unsigned long long		last_arrival;
377 
378 	/* When were we last queued to run? */
379 	unsigned long long		last_queued;
380 
381 #endif /* CONFIG_SCHED_INFO */
382 };
383 
384 /*
385  * Integer metrics need fixed point arithmetic, e.g., sched/fair
386  * has a few: load, load_avg, util_avg, freq, and capacity.
387  *
388  * We define a basic fixed point arithmetic range, and then formalize
389  * all these metrics based on that basic range.
390  */
391 # define SCHED_FIXEDPOINT_SHIFT		10
392 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
393 
394 /* Increase resolution of cpu_capacity calculations */
395 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
396 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
397 
398 struct load_weight {
399 	unsigned long			weight;
400 	u32				inv_weight;
401 };
402 
403 /**
404  * struct util_est - Estimation utilization of FAIR tasks
405  * @enqueued: instantaneous estimated utilization of a task/cpu
406  * @ewma:     the Exponential Weighted Moving Average (EWMA)
407  *            utilization of a task
408  *
409  * Support data structure to track an Exponential Weighted Moving Average
410  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
411  * average each time a task completes an activation. Sample's weight is chosen
412  * so that the EWMA will be relatively insensitive to transient changes to the
413  * task's workload.
414  *
415  * The enqueued attribute has a slightly different meaning for tasks and cpus:
416  * - task:   the task's util_avg at last task dequeue time
417  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
418  * Thus, the util_est.enqueued of a task represents the contribution on the
419  * estimated utilization of the CPU where that task is currently enqueued.
420  *
421  * Only for tasks we track a moving average of the past instantaneous
422  * estimated utilization. This allows to absorb sporadic drops in utilization
423  * of an otherwise almost periodic task.
424  *
425  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
426  * updates. When a task is dequeued, its util_est should not be updated if its
427  * util_avg has not been updated in the meantime.
428  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
429  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
430  * for a task) it is safe to use MSB.
431  */
432 struct util_est {
433 	unsigned int			enqueued;
434 	unsigned int			ewma;
435 #define UTIL_EST_WEIGHT_SHIFT		2
436 #define UTIL_AVG_UNCHANGED		0x80000000
437 } __attribute__((__aligned__(sizeof(u64))));
438 
439 /*
440  * The load/runnable/util_avg accumulates an infinite geometric series
441  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
442  *
443  * [load_avg definition]
444  *
445  *   load_avg = runnable% * scale_load_down(load)
446  *
447  * [runnable_avg definition]
448  *
449  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
450  *
451  * [util_avg definition]
452  *
453  *   util_avg = running% * SCHED_CAPACITY_SCALE
454  *
455  * where runnable% is the time ratio that a sched_entity is runnable and
456  * running% the time ratio that a sched_entity is running.
457  *
458  * For cfs_rq, they are the aggregated values of all runnable and blocked
459  * sched_entities.
460  *
461  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
462  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
463  * for computing those signals (see update_rq_clock_pelt())
464  *
465  * N.B., the above ratios (runnable% and running%) themselves are in the
466  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
467  * to as large a range as necessary. This is for example reflected by
468  * util_avg's SCHED_CAPACITY_SCALE.
469  *
470  * [Overflow issue]
471  *
472  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
473  * with the highest load (=88761), always runnable on a single cfs_rq,
474  * and should not overflow as the number already hits PID_MAX_LIMIT.
475  *
476  * For all other cases (including 32-bit kernels), struct load_weight's
477  * weight will overflow first before we do, because:
478  *
479  *    Max(load_avg) <= Max(load.weight)
480  *
481  * Then it is the load_weight's responsibility to consider overflow
482  * issues.
483  */
484 struct sched_avg {
485 	u64				last_update_time;
486 	u64				load_sum;
487 	u64				runnable_sum;
488 	u32				util_sum;
489 	u32				period_contrib;
490 	unsigned long			load_avg;
491 	unsigned long			runnable_avg;
492 	unsigned long			util_avg;
493 	struct util_est			util_est;
494 } ____cacheline_aligned;
495 
496 struct sched_statistics {
497 #ifdef CONFIG_SCHEDSTATS
498 	u64				wait_start;
499 	u64				wait_max;
500 	u64				wait_count;
501 	u64				wait_sum;
502 	u64				iowait_count;
503 	u64				iowait_sum;
504 
505 	u64				sleep_start;
506 	u64				sleep_max;
507 	s64				sum_sleep_runtime;
508 
509 	u64				block_start;
510 	u64				block_max;
511 	s64				sum_block_runtime;
512 
513 	u64				exec_max;
514 	u64				slice_max;
515 
516 	u64				nr_migrations_cold;
517 	u64				nr_failed_migrations_affine;
518 	u64				nr_failed_migrations_running;
519 	u64				nr_failed_migrations_hot;
520 	u64				nr_forced_migrations;
521 
522 	u64				nr_wakeups;
523 	u64				nr_wakeups_sync;
524 	u64				nr_wakeups_migrate;
525 	u64				nr_wakeups_local;
526 	u64				nr_wakeups_remote;
527 	u64				nr_wakeups_affine;
528 	u64				nr_wakeups_affine_attempts;
529 	u64				nr_wakeups_passive;
530 	u64				nr_wakeups_idle;
531 
532 #ifdef CONFIG_SCHED_CORE
533 	u64				core_forceidle_sum;
534 #endif
535 #endif /* CONFIG_SCHEDSTATS */
536 } ____cacheline_aligned;
537 
538 struct sched_entity {
539 	/* For load-balancing: */
540 	struct load_weight		load;
541 	struct rb_node			run_node;
542 	struct list_head		group_node;
543 	unsigned int			on_rq;
544 
545 	u64				exec_start;
546 	u64				sum_exec_runtime;
547 	u64				vruntime;
548 	u64				prev_sum_exec_runtime;
549 
550 	u64				nr_migrations;
551 
552 #ifdef CONFIG_FAIR_GROUP_SCHED
553 	int				depth;
554 	struct sched_entity		*parent;
555 	/* rq on which this entity is (to be) queued: */
556 	struct cfs_rq			*cfs_rq;
557 	/* rq "owned" by this entity/group: */
558 	struct cfs_rq			*my_q;
559 	/* cached value of my_q->h_nr_running */
560 	unsigned long			runnable_weight;
561 #endif
562 
563 #ifdef CONFIG_SMP
564 	/*
565 	 * Per entity load average tracking.
566 	 *
567 	 * Put into separate cache line so it does not
568 	 * collide with read-mostly values above.
569 	 */
570 	struct sched_avg		avg;
571 #endif
572 };
573 
574 struct sched_rt_entity {
575 	struct list_head		run_list;
576 	unsigned long			timeout;
577 	unsigned long			watchdog_stamp;
578 	unsigned int			time_slice;
579 	unsigned short			on_rq;
580 	unsigned short			on_list;
581 
582 	struct sched_rt_entity		*back;
583 #ifdef CONFIG_RT_GROUP_SCHED
584 	struct sched_rt_entity		*parent;
585 	/* rq on which this entity is (to be) queued: */
586 	struct rt_rq			*rt_rq;
587 	/* rq "owned" by this entity/group: */
588 	struct rt_rq			*my_q;
589 #endif
590 } __randomize_layout;
591 
592 struct sched_dl_entity {
593 	struct rb_node			rb_node;
594 
595 	/*
596 	 * Original scheduling parameters. Copied here from sched_attr
597 	 * during sched_setattr(), they will remain the same until
598 	 * the next sched_setattr().
599 	 */
600 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
601 	u64				dl_deadline;	/* Relative deadline of each instance	*/
602 	u64				dl_period;	/* Separation of two instances (period) */
603 	u64				dl_bw;		/* dl_runtime / dl_period		*/
604 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
605 
606 	/*
607 	 * Actual scheduling parameters. Initialized with the values above,
608 	 * they are continuously updated during task execution. Note that
609 	 * the remaining runtime could be < 0 in case we are in overrun.
610 	 */
611 	s64				runtime;	/* Remaining runtime for this instance	*/
612 	u64				deadline;	/* Absolute deadline for this instance	*/
613 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
614 
615 	/*
616 	 * Some bool flags:
617 	 *
618 	 * @dl_throttled tells if we exhausted the runtime. If so, the
619 	 * task has to wait for a replenishment to be performed at the
620 	 * next firing of dl_timer.
621 	 *
622 	 * @dl_yielded tells if task gave up the CPU before consuming
623 	 * all its available runtime during the last job.
624 	 *
625 	 * @dl_non_contending tells if the task is inactive while still
626 	 * contributing to the active utilization. In other words, it
627 	 * indicates if the inactive timer has been armed and its handler
628 	 * has not been executed yet. This flag is useful to avoid race
629 	 * conditions between the inactive timer handler and the wakeup
630 	 * code.
631 	 *
632 	 * @dl_overrun tells if the task asked to be informed about runtime
633 	 * overruns.
634 	 */
635 	unsigned int			dl_throttled      : 1;
636 	unsigned int			dl_yielded        : 1;
637 	unsigned int			dl_non_contending : 1;
638 	unsigned int			dl_overrun	  : 1;
639 
640 	/*
641 	 * Bandwidth enforcement timer. Each -deadline task has its
642 	 * own bandwidth to be enforced, thus we need one timer per task.
643 	 */
644 	struct hrtimer			dl_timer;
645 
646 	/*
647 	 * Inactive timer, responsible for decreasing the active utilization
648 	 * at the "0-lag time". When a -deadline task blocks, it contributes
649 	 * to GRUB's active utilization until the "0-lag time", hence a
650 	 * timer is needed to decrease the active utilization at the correct
651 	 * time.
652 	 */
653 	struct hrtimer inactive_timer;
654 
655 #ifdef CONFIG_RT_MUTEXES
656 	/*
657 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
658 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
659 	 * to (the original one/itself).
660 	 */
661 	struct sched_dl_entity *pi_se;
662 #endif
663 };
664 
665 #ifdef CONFIG_UCLAMP_TASK
666 /* Number of utilization clamp buckets (shorter alias) */
667 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
668 
669 /*
670  * Utilization clamp for a scheduling entity
671  * @value:		clamp value "assigned" to a se
672  * @bucket_id:		bucket index corresponding to the "assigned" value
673  * @active:		the se is currently refcounted in a rq's bucket
674  * @user_defined:	the requested clamp value comes from user-space
675  *
676  * The bucket_id is the index of the clamp bucket matching the clamp value
677  * which is pre-computed and stored to avoid expensive integer divisions from
678  * the fast path.
679  *
680  * The active bit is set whenever a task has got an "effective" value assigned,
681  * which can be different from the clamp value "requested" from user-space.
682  * This allows to know a task is refcounted in the rq's bucket corresponding
683  * to the "effective" bucket_id.
684  *
685  * The user_defined bit is set whenever a task has got a task-specific clamp
686  * value requested from userspace, i.e. the system defaults apply to this task
687  * just as a restriction. This allows to relax default clamps when a less
688  * restrictive task-specific value has been requested, thus allowing to
689  * implement a "nice" semantic. For example, a task running with a 20%
690  * default boost can still drop its own boosting to 0%.
691  */
692 struct uclamp_se {
693 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
694 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
695 	unsigned int active		: 1;
696 	unsigned int user_defined	: 1;
697 };
698 #endif /* CONFIG_UCLAMP_TASK */
699 
700 union rcu_special {
701 	struct {
702 		u8			blocked;
703 		u8			need_qs;
704 		u8			exp_hint; /* Hint for performance. */
705 		u8			need_mb; /* Readers need smp_mb(). */
706 	} b; /* Bits. */
707 	u32 s; /* Set of bits. */
708 };
709 
710 enum perf_event_task_context {
711 	perf_invalid_context = -1,
712 	perf_hw_context = 0,
713 	perf_sw_context,
714 	perf_nr_task_contexts,
715 };
716 
717 struct wake_q_node {
718 	struct wake_q_node *next;
719 };
720 
721 struct kmap_ctrl {
722 #ifdef CONFIG_KMAP_LOCAL
723 	int				idx;
724 	pte_t				pteval[KM_MAX_IDX];
725 #endif
726 };
727 
728 struct task_struct {
729 #ifdef CONFIG_THREAD_INFO_IN_TASK
730 	/*
731 	 * For reasons of header soup (see current_thread_info()), this
732 	 * must be the first element of task_struct.
733 	 */
734 	struct thread_info		thread_info;
735 #endif
736 	unsigned int			__state;
737 
738 #ifdef CONFIG_PREEMPT_RT
739 	/* saved state for "spinlock sleepers" */
740 	unsigned int			saved_state;
741 #endif
742 
743 	/*
744 	 * This begins the randomizable portion of task_struct. Only
745 	 * scheduling-critical items should be added above here.
746 	 */
747 	randomized_struct_fields_start
748 
749 	void				*stack;
750 	refcount_t			usage;
751 	/* Per task flags (PF_*), defined further below: */
752 	unsigned int			flags;
753 	unsigned int			ptrace;
754 
755 #ifdef CONFIG_SMP
756 	int				on_cpu;
757 	struct __call_single_node	wake_entry;
758 	unsigned int			wakee_flips;
759 	unsigned long			wakee_flip_decay_ts;
760 	struct task_struct		*last_wakee;
761 
762 	/*
763 	 * recent_used_cpu is initially set as the last CPU used by a task
764 	 * that wakes affine another task. Waker/wakee relationships can
765 	 * push tasks around a CPU where each wakeup moves to the next one.
766 	 * Tracking a recently used CPU allows a quick search for a recently
767 	 * used CPU that may be idle.
768 	 */
769 	int				recent_used_cpu;
770 	int				wake_cpu;
771 #endif
772 	int				on_rq;
773 
774 	int				prio;
775 	int				static_prio;
776 	int				normal_prio;
777 	unsigned int			rt_priority;
778 
779 	struct sched_entity		se;
780 	struct sched_rt_entity		rt;
781 	struct sched_dl_entity		dl;
782 	const struct sched_class	*sched_class;
783 
784 #ifdef CONFIG_SCHED_CORE
785 	struct rb_node			core_node;
786 	unsigned long			core_cookie;
787 	unsigned int			core_occupation;
788 #endif
789 
790 #ifdef CONFIG_CGROUP_SCHED
791 	struct task_group		*sched_task_group;
792 #endif
793 
794 #ifdef CONFIG_UCLAMP_TASK
795 	/*
796 	 * Clamp values requested for a scheduling entity.
797 	 * Must be updated with task_rq_lock() held.
798 	 */
799 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
800 	/*
801 	 * Effective clamp values used for a scheduling entity.
802 	 * Must be updated with task_rq_lock() held.
803 	 */
804 	struct uclamp_se		uclamp[UCLAMP_CNT];
805 #endif
806 
807 	struct sched_statistics         stats;
808 
809 #ifdef CONFIG_PREEMPT_NOTIFIERS
810 	/* List of struct preempt_notifier: */
811 	struct hlist_head		preempt_notifiers;
812 #endif
813 
814 #ifdef CONFIG_BLK_DEV_IO_TRACE
815 	unsigned int			btrace_seq;
816 #endif
817 
818 	unsigned int			policy;
819 	int				nr_cpus_allowed;
820 	const cpumask_t			*cpus_ptr;
821 	cpumask_t			*user_cpus_ptr;
822 	cpumask_t			cpus_mask;
823 	void				*migration_pending;
824 #ifdef CONFIG_SMP
825 	unsigned short			migration_disabled;
826 #endif
827 	unsigned short			migration_flags;
828 
829 #ifdef CONFIG_PREEMPT_RCU
830 	int				rcu_read_lock_nesting;
831 	union rcu_special		rcu_read_unlock_special;
832 	struct list_head		rcu_node_entry;
833 	struct rcu_node			*rcu_blocked_node;
834 #endif /* #ifdef CONFIG_PREEMPT_RCU */
835 
836 #ifdef CONFIG_TASKS_RCU
837 	unsigned long			rcu_tasks_nvcsw;
838 	u8				rcu_tasks_holdout;
839 	u8				rcu_tasks_idx;
840 	int				rcu_tasks_idle_cpu;
841 	struct list_head		rcu_tasks_holdout_list;
842 #endif /* #ifdef CONFIG_TASKS_RCU */
843 
844 #ifdef CONFIG_TASKS_TRACE_RCU
845 	int				trc_reader_nesting;
846 	int				trc_ipi_to_cpu;
847 	union rcu_special		trc_reader_special;
848 	bool				trc_reader_checked;
849 	struct list_head		trc_holdout_list;
850 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
851 
852 	struct sched_info		sched_info;
853 
854 	struct list_head		tasks;
855 #ifdef CONFIG_SMP
856 	struct plist_node		pushable_tasks;
857 	struct rb_node			pushable_dl_tasks;
858 #endif
859 
860 	struct mm_struct		*mm;
861 	struct mm_struct		*active_mm;
862 
863 	/* Per-thread vma caching: */
864 	struct vmacache			vmacache;
865 
866 #ifdef SPLIT_RSS_COUNTING
867 	struct task_rss_stat		rss_stat;
868 #endif
869 	int				exit_state;
870 	int				exit_code;
871 	int				exit_signal;
872 	/* The signal sent when the parent dies: */
873 	int				pdeath_signal;
874 	/* JOBCTL_*, siglock protected: */
875 	unsigned long			jobctl;
876 
877 	/* Used for emulating ABI behavior of previous Linux versions: */
878 	unsigned int			personality;
879 
880 	/* Scheduler bits, serialized by scheduler locks: */
881 	unsigned			sched_reset_on_fork:1;
882 	unsigned			sched_contributes_to_load:1;
883 	unsigned			sched_migrated:1;
884 #ifdef CONFIG_PSI
885 	unsigned			sched_psi_wake_requeue:1;
886 #endif
887 
888 	/* Force alignment to the next boundary: */
889 	unsigned			:0;
890 
891 	/* Unserialized, strictly 'current' */
892 
893 	/*
894 	 * This field must not be in the scheduler word above due to wakelist
895 	 * queueing no longer being serialized by p->on_cpu. However:
896 	 *
897 	 * p->XXX = X;			ttwu()
898 	 * schedule()			  if (p->on_rq && ..) // false
899 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
900 	 *   deactivate_task()		      ttwu_queue_wakelist())
901 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
902 	 *
903 	 * guarantees all stores of 'current' are visible before
904 	 * ->sched_remote_wakeup gets used, so it can be in this word.
905 	 */
906 	unsigned			sched_remote_wakeup:1;
907 
908 	/* Bit to tell LSMs we're in execve(): */
909 	unsigned			in_execve:1;
910 	unsigned			in_iowait:1;
911 #ifndef TIF_RESTORE_SIGMASK
912 	unsigned			restore_sigmask:1;
913 #endif
914 #ifdef CONFIG_MEMCG
915 	unsigned			in_user_fault:1;
916 #endif
917 #ifdef CONFIG_COMPAT_BRK
918 	unsigned			brk_randomized:1;
919 #endif
920 #ifdef CONFIG_CGROUPS
921 	/* disallow userland-initiated cgroup migration */
922 	unsigned			no_cgroup_migration:1;
923 	/* task is frozen/stopped (used by the cgroup freezer) */
924 	unsigned			frozen:1;
925 #endif
926 #ifdef CONFIG_BLK_CGROUP
927 	unsigned			use_memdelay:1;
928 #endif
929 #ifdef CONFIG_PSI
930 	/* Stalled due to lack of memory */
931 	unsigned			in_memstall:1;
932 #endif
933 #ifdef CONFIG_PAGE_OWNER
934 	/* Used by page_owner=on to detect recursion in page tracking. */
935 	unsigned			in_page_owner:1;
936 #endif
937 #ifdef CONFIG_EVENTFD
938 	/* Recursion prevention for eventfd_signal() */
939 	unsigned			in_eventfd_signal:1;
940 #endif
941 #ifdef CONFIG_IOMMU_SVA
942 	unsigned			pasid_activated:1;
943 #endif
944 #ifdef	CONFIG_CPU_SUP_INTEL
945 	unsigned			reported_split_lock:1;
946 #endif
947 
948 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
949 
950 	struct restart_block		restart_block;
951 
952 	pid_t				pid;
953 	pid_t				tgid;
954 
955 #ifdef CONFIG_STACKPROTECTOR
956 	/* Canary value for the -fstack-protector GCC feature: */
957 	unsigned long			stack_canary;
958 #endif
959 	/*
960 	 * Pointers to the (original) parent process, youngest child, younger sibling,
961 	 * older sibling, respectively.  (p->father can be replaced with
962 	 * p->real_parent->pid)
963 	 */
964 
965 	/* Real parent process: */
966 	struct task_struct __rcu	*real_parent;
967 
968 	/* Recipient of SIGCHLD, wait4() reports: */
969 	struct task_struct __rcu	*parent;
970 
971 	/*
972 	 * Children/sibling form the list of natural children:
973 	 */
974 	struct list_head		children;
975 	struct list_head		sibling;
976 	struct task_struct		*group_leader;
977 
978 	/*
979 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
980 	 *
981 	 * This includes both natural children and PTRACE_ATTACH targets.
982 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
983 	 */
984 	struct list_head		ptraced;
985 	struct list_head		ptrace_entry;
986 
987 	/* PID/PID hash table linkage. */
988 	struct pid			*thread_pid;
989 	struct hlist_node		pid_links[PIDTYPE_MAX];
990 	struct list_head		thread_group;
991 	struct list_head		thread_node;
992 
993 	struct completion		*vfork_done;
994 
995 	/* CLONE_CHILD_SETTID: */
996 	int __user			*set_child_tid;
997 
998 	/* CLONE_CHILD_CLEARTID: */
999 	int __user			*clear_child_tid;
1000 
1001 	/* PF_KTHREAD | PF_IO_WORKER */
1002 	void				*worker_private;
1003 
1004 	u64				utime;
1005 	u64				stime;
1006 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1007 	u64				utimescaled;
1008 	u64				stimescaled;
1009 #endif
1010 	u64				gtime;
1011 	struct prev_cputime		prev_cputime;
1012 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1013 	struct vtime			vtime;
1014 #endif
1015 
1016 #ifdef CONFIG_NO_HZ_FULL
1017 	atomic_t			tick_dep_mask;
1018 #endif
1019 	/* Context switch counts: */
1020 	unsigned long			nvcsw;
1021 	unsigned long			nivcsw;
1022 
1023 	/* Monotonic time in nsecs: */
1024 	u64				start_time;
1025 
1026 	/* Boot based time in nsecs: */
1027 	u64				start_boottime;
1028 
1029 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1030 	unsigned long			min_flt;
1031 	unsigned long			maj_flt;
1032 
1033 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1034 	struct posix_cputimers		posix_cputimers;
1035 
1036 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1037 	struct posix_cputimers_work	posix_cputimers_work;
1038 #endif
1039 
1040 	/* Process credentials: */
1041 
1042 	/* Tracer's credentials at attach: */
1043 	const struct cred __rcu		*ptracer_cred;
1044 
1045 	/* Objective and real subjective task credentials (COW): */
1046 	const struct cred __rcu		*real_cred;
1047 
1048 	/* Effective (overridable) subjective task credentials (COW): */
1049 	const struct cred __rcu		*cred;
1050 
1051 #ifdef CONFIG_KEYS
1052 	/* Cached requested key. */
1053 	struct key			*cached_requested_key;
1054 #endif
1055 
1056 	/*
1057 	 * executable name, excluding path.
1058 	 *
1059 	 * - normally initialized setup_new_exec()
1060 	 * - access it with [gs]et_task_comm()
1061 	 * - lock it with task_lock()
1062 	 */
1063 	char				comm[TASK_COMM_LEN];
1064 
1065 	struct nameidata		*nameidata;
1066 
1067 #ifdef CONFIG_SYSVIPC
1068 	struct sysv_sem			sysvsem;
1069 	struct sysv_shm			sysvshm;
1070 #endif
1071 #ifdef CONFIG_DETECT_HUNG_TASK
1072 	unsigned long			last_switch_count;
1073 	unsigned long			last_switch_time;
1074 #endif
1075 	/* Filesystem information: */
1076 	struct fs_struct		*fs;
1077 
1078 	/* Open file information: */
1079 	struct files_struct		*files;
1080 
1081 #ifdef CONFIG_IO_URING
1082 	struct io_uring_task		*io_uring;
1083 #endif
1084 
1085 	/* Namespaces: */
1086 	struct nsproxy			*nsproxy;
1087 
1088 	/* Signal handlers: */
1089 	struct signal_struct		*signal;
1090 	struct sighand_struct __rcu		*sighand;
1091 	sigset_t			blocked;
1092 	sigset_t			real_blocked;
1093 	/* Restored if set_restore_sigmask() was used: */
1094 	sigset_t			saved_sigmask;
1095 	struct sigpending		pending;
1096 	unsigned long			sas_ss_sp;
1097 	size_t				sas_ss_size;
1098 	unsigned int			sas_ss_flags;
1099 
1100 	struct callback_head		*task_works;
1101 
1102 #ifdef CONFIG_AUDIT
1103 #ifdef CONFIG_AUDITSYSCALL
1104 	struct audit_context		*audit_context;
1105 #endif
1106 	kuid_t				loginuid;
1107 	unsigned int			sessionid;
1108 #endif
1109 	struct seccomp			seccomp;
1110 	struct syscall_user_dispatch	syscall_dispatch;
1111 
1112 	/* Thread group tracking: */
1113 	u64				parent_exec_id;
1114 	u64				self_exec_id;
1115 
1116 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1117 	spinlock_t			alloc_lock;
1118 
1119 	/* Protection of the PI data structures: */
1120 	raw_spinlock_t			pi_lock;
1121 
1122 	struct wake_q_node		wake_q;
1123 
1124 #ifdef CONFIG_RT_MUTEXES
1125 	/* PI waiters blocked on a rt_mutex held by this task: */
1126 	struct rb_root_cached		pi_waiters;
1127 	/* Updated under owner's pi_lock and rq lock */
1128 	struct task_struct		*pi_top_task;
1129 	/* Deadlock detection and priority inheritance handling: */
1130 	struct rt_mutex_waiter		*pi_blocked_on;
1131 #endif
1132 
1133 #ifdef CONFIG_DEBUG_MUTEXES
1134 	/* Mutex deadlock detection: */
1135 	struct mutex_waiter		*blocked_on;
1136 #endif
1137 
1138 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1139 	int				non_block_count;
1140 #endif
1141 
1142 #ifdef CONFIG_TRACE_IRQFLAGS
1143 	struct irqtrace_events		irqtrace;
1144 	unsigned int			hardirq_threaded;
1145 	u64				hardirq_chain_key;
1146 	int				softirqs_enabled;
1147 	int				softirq_context;
1148 	int				irq_config;
1149 #endif
1150 #ifdef CONFIG_PREEMPT_RT
1151 	int				softirq_disable_cnt;
1152 #endif
1153 
1154 #ifdef CONFIG_LOCKDEP
1155 # define MAX_LOCK_DEPTH			48UL
1156 	u64				curr_chain_key;
1157 	int				lockdep_depth;
1158 	unsigned int			lockdep_recursion;
1159 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1160 #endif
1161 
1162 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1163 	unsigned int			in_ubsan;
1164 #endif
1165 
1166 	/* Journalling filesystem info: */
1167 	void				*journal_info;
1168 
1169 	/* Stacked block device info: */
1170 	struct bio_list			*bio_list;
1171 
1172 	/* Stack plugging: */
1173 	struct blk_plug			*plug;
1174 
1175 	/* VM state: */
1176 	struct reclaim_state		*reclaim_state;
1177 
1178 	struct backing_dev_info		*backing_dev_info;
1179 
1180 	struct io_context		*io_context;
1181 
1182 #ifdef CONFIG_COMPACTION
1183 	struct capture_control		*capture_control;
1184 #endif
1185 	/* Ptrace state: */
1186 	unsigned long			ptrace_message;
1187 	kernel_siginfo_t		*last_siginfo;
1188 
1189 	struct task_io_accounting	ioac;
1190 #ifdef CONFIG_PSI
1191 	/* Pressure stall state */
1192 	unsigned int			psi_flags;
1193 #endif
1194 #ifdef CONFIG_TASK_XACCT
1195 	/* Accumulated RSS usage: */
1196 	u64				acct_rss_mem1;
1197 	/* Accumulated virtual memory usage: */
1198 	u64				acct_vm_mem1;
1199 	/* stime + utime since last update: */
1200 	u64				acct_timexpd;
1201 #endif
1202 #ifdef CONFIG_CPUSETS
1203 	/* Protected by ->alloc_lock: */
1204 	nodemask_t			mems_allowed;
1205 	/* Sequence number to catch updates: */
1206 	seqcount_spinlock_t		mems_allowed_seq;
1207 	int				cpuset_mem_spread_rotor;
1208 	int				cpuset_slab_spread_rotor;
1209 #endif
1210 #ifdef CONFIG_CGROUPS
1211 	/* Control Group info protected by css_set_lock: */
1212 	struct css_set __rcu		*cgroups;
1213 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1214 	struct list_head		cg_list;
1215 #endif
1216 #ifdef CONFIG_X86_CPU_RESCTRL
1217 	u32				closid;
1218 	u32				rmid;
1219 #endif
1220 #ifdef CONFIG_FUTEX
1221 	struct robust_list_head __user	*robust_list;
1222 #ifdef CONFIG_COMPAT
1223 	struct compat_robust_list_head __user *compat_robust_list;
1224 #endif
1225 	struct list_head		pi_state_list;
1226 	struct futex_pi_state		*pi_state_cache;
1227 	struct mutex			futex_exit_mutex;
1228 	unsigned int			futex_state;
1229 #endif
1230 #ifdef CONFIG_PERF_EVENTS
1231 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1232 	struct mutex			perf_event_mutex;
1233 	struct list_head		perf_event_list;
1234 #endif
1235 #ifdef CONFIG_DEBUG_PREEMPT
1236 	unsigned long			preempt_disable_ip;
1237 #endif
1238 #ifdef CONFIG_NUMA
1239 	/* Protected by alloc_lock: */
1240 	struct mempolicy		*mempolicy;
1241 	short				il_prev;
1242 	short				pref_node_fork;
1243 #endif
1244 #ifdef CONFIG_NUMA_BALANCING
1245 	int				numa_scan_seq;
1246 	unsigned int			numa_scan_period;
1247 	unsigned int			numa_scan_period_max;
1248 	int				numa_preferred_nid;
1249 	unsigned long			numa_migrate_retry;
1250 	/* Migration stamp: */
1251 	u64				node_stamp;
1252 	u64				last_task_numa_placement;
1253 	u64				last_sum_exec_runtime;
1254 	struct callback_head		numa_work;
1255 
1256 	/*
1257 	 * This pointer is only modified for current in syscall and
1258 	 * pagefault context (and for tasks being destroyed), so it can be read
1259 	 * from any of the following contexts:
1260 	 *  - RCU read-side critical section
1261 	 *  - current->numa_group from everywhere
1262 	 *  - task's runqueue locked, task not running
1263 	 */
1264 	struct numa_group __rcu		*numa_group;
1265 
1266 	/*
1267 	 * numa_faults is an array split into four regions:
1268 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1269 	 * in this precise order.
1270 	 *
1271 	 * faults_memory: Exponential decaying average of faults on a per-node
1272 	 * basis. Scheduling placement decisions are made based on these
1273 	 * counts. The values remain static for the duration of a PTE scan.
1274 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1275 	 * hinting fault was incurred.
1276 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1277 	 * during the current scan window. When the scan completes, the counts
1278 	 * in faults_memory and faults_cpu decay and these values are copied.
1279 	 */
1280 	unsigned long			*numa_faults;
1281 	unsigned long			total_numa_faults;
1282 
1283 	/*
1284 	 * numa_faults_locality tracks if faults recorded during the last
1285 	 * scan window were remote/local or failed to migrate. The task scan
1286 	 * period is adapted based on the locality of the faults with different
1287 	 * weights depending on whether they were shared or private faults
1288 	 */
1289 	unsigned long			numa_faults_locality[3];
1290 
1291 	unsigned long			numa_pages_migrated;
1292 #endif /* CONFIG_NUMA_BALANCING */
1293 
1294 #ifdef CONFIG_RSEQ
1295 	struct rseq __user *rseq;
1296 	u32 rseq_sig;
1297 	/*
1298 	 * RmW on rseq_event_mask must be performed atomically
1299 	 * with respect to preemption.
1300 	 */
1301 	unsigned long rseq_event_mask;
1302 #endif
1303 
1304 	struct tlbflush_unmap_batch	tlb_ubc;
1305 
1306 	union {
1307 		refcount_t		rcu_users;
1308 		struct rcu_head		rcu;
1309 	};
1310 
1311 	/* Cache last used pipe for splice(): */
1312 	struct pipe_inode_info		*splice_pipe;
1313 
1314 	struct page_frag		task_frag;
1315 
1316 #ifdef CONFIG_TASK_DELAY_ACCT
1317 	struct task_delay_info		*delays;
1318 #endif
1319 
1320 #ifdef CONFIG_FAULT_INJECTION
1321 	int				make_it_fail;
1322 	unsigned int			fail_nth;
1323 #endif
1324 	/*
1325 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1326 	 * balance_dirty_pages() for a dirty throttling pause:
1327 	 */
1328 	int				nr_dirtied;
1329 	int				nr_dirtied_pause;
1330 	/* Start of a write-and-pause period: */
1331 	unsigned long			dirty_paused_when;
1332 
1333 #ifdef CONFIG_LATENCYTOP
1334 	int				latency_record_count;
1335 	struct latency_record		latency_record[LT_SAVECOUNT];
1336 #endif
1337 	/*
1338 	 * Time slack values; these are used to round up poll() and
1339 	 * select() etc timeout values. These are in nanoseconds.
1340 	 */
1341 	u64				timer_slack_ns;
1342 	u64				default_timer_slack_ns;
1343 
1344 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1345 	unsigned int			kasan_depth;
1346 #endif
1347 
1348 #ifdef CONFIG_KCSAN
1349 	struct kcsan_ctx		kcsan_ctx;
1350 #ifdef CONFIG_TRACE_IRQFLAGS
1351 	struct irqtrace_events		kcsan_save_irqtrace;
1352 #endif
1353 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1354 	int				kcsan_stack_depth;
1355 #endif
1356 #endif
1357 
1358 #if IS_ENABLED(CONFIG_KUNIT)
1359 	struct kunit			*kunit_test;
1360 #endif
1361 
1362 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1363 	/* Index of current stored address in ret_stack: */
1364 	int				curr_ret_stack;
1365 	int				curr_ret_depth;
1366 
1367 	/* Stack of return addresses for return function tracing: */
1368 	struct ftrace_ret_stack		*ret_stack;
1369 
1370 	/* Timestamp for last schedule: */
1371 	unsigned long long		ftrace_timestamp;
1372 
1373 	/*
1374 	 * Number of functions that haven't been traced
1375 	 * because of depth overrun:
1376 	 */
1377 	atomic_t			trace_overrun;
1378 
1379 	/* Pause tracing: */
1380 	atomic_t			tracing_graph_pause;
1381 #endif
1382 
1383 #ifdef CONFIG_TRACING
1384 	/* State flags for use by tracers: */
1385 	unsigned long			trace;
1386 
1387 	/* Bitmask and counter of trace recursion: */
1388 	unsigned long			trace_recursion;
1389 #endif /* CONFIG_TRACING */
1390 
1391 #ifdef CONFIG_KCOV
1392 	/* See kernel/kcov.c for more details. */
1393 
1394 	/* Coverage collection mode enabled for this task (0 if disabled): */
1395 	unsigned int			kcov_mode;
1396 
1397 	/* Size of the kcov_area: */
1398 	unsigned int			kcov_size;
1399 
1400 	/* Buffer for coverage collection: */
1401 	void				*kcov_area;
1402 
1403 	/* KCOV descriptor wired with this task or NULL: */
1404 	struct kcov			*kcov;
1405 
1406 	/* KCOV common handle for remote coverage collection: */
1407 	u64				kcov_handle;
1408 
1409 	/* KCOV sequence number: */
1410 	int				kcov_sequence;
1411 
1412 	/* Collect coverage from softirq context: */
1413 	unsigned int			kcov_softirq;
1414 #endif
1415 
1416 #ifdef CONFIG_MEMCG
1417 	struct mem_cgroup		*memcg_in_oom;
1418 	gfp_t				memcg_oom_gfp_mask;
1419 	int				memcg_oom_order;
1420 
1421 	/* Number of pages to reclaim on returning to userland: */
1422 	unsigned int			memcg_nr_pages_over_high;
1423 
1424 	/* Used by memcontrol for targeted memcg charge: */
1425 	struct mem_cgroup		*active_memcg;
1426 #endif
1427 
1428 #ifdef CONFIG_BLK_CGROUP
1429 	struct request_queue		*throttle_queue;
1430 #endif
1431 
1432 #ifdef CONFIG_UPROBES
1433 	struct uprobe_task		*utask;
1434 #endif
1435 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1436 	unsigned int			sequential_io;
1437 	unsigned int			sequential_io_avg;
1438 #endif
1439 	struct kmap_ctrl		kmap_ctrl;
1440 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1441 	unsigned long			task_state_change;
1442 # ifdef CONFIG_PREEMPT_RT
1443 	unsigned long			saved_state_change;
1444 # endif
1445 #endif
1446 	int				pagefault_disabled;
1447 #ifdef CONFIG_MMU
1448 	struct task_struct		*oom_reaper_list;
1449 	struct timer_list		oom_reaper_timer;
1450 #endif
1451 #ifdef CONFIG_VMAP_STACK
1452 	struct vm_struct		*stack_vm_area;
1453 #endif
1454 #ifdef CONFIG_THREAD_INFO_IN_TASK
1455 	/* A live task holds one reference: */
1456 	refcount_t			stack_refcount;
1457 #endif
1458 #ifdef CONFIG_LIVEPATCH
1459 	int patch_state;
1460 #endif
1461 #ifdef CONFIG_SECURITY
1462 	/* Used by LSM modules for access restriction: */
1463 	void				*security;
1464 #endif
1465 #ifdef CONFIG_BPF_SYSCALL
1466 	/* Used by BPF task local storage */
1467 	struct bpf_local_storage __rcu	*bpf_storage;
1468 	/* Used for BPF run context */
1469 	struct bpf_run_ctx		*bpf_ctx;
1470 #endif
1471 
1472 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1473 	unsigned long			lowest_stack;
1474 	unsigned long			prev_lowest_stack;
1475 #endif
1476 
1477 #ifdef CONFIG_X86_MCE
1478 	void __user			*mce_vaddr;
1479 	__u64				mce_kflags;
1480 	u64				mce_addr;
1481 	__u64				mce_ripv : 1,
1482 					mce_whole_page : 1,
1483 					__mce_reserved : 62;
1484 	struct callback_head		mce_kill_me;
1485 	int				mce_count;
1486 #endif
1487 
1488 #ifdef CONFIG_KRETPROBES
1489 	struct llist_head               kretprobe_instances;
1490 #endif
1491 #ifdef CONFIG_RETHOOK
1492 	struct llist_head               rethooks;
1493 #endif
1494 
1495 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1496 	/*
1497 	 * If L1D flush is supported on mm context switch
1498 	 * then we use this callback head to queue kill work
1499 	 * to kill tasks that are not running on SMT disabled
1500 	 * cores
1501 	 */
1502 	struct callback_head		l1d_flush_kill;
1503 #endif
1504 
1505 	/*
1506 	 * New fields for task_struct should be added above here, so that
1507 	 * they are included in the randomized portion of task_struct.
1508 	 */
1509 	randomized_struct_fields_end
1510 
1511 	/* CPU-specific state of this task: */
1512 	struct thread_struct		thread;
1513 
1514 	/*
1515 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1516 	 * structure.  It *MUST* be at the end of 'task_struct'.
1517 	 *
1518 	 * Do not put anything below here!
1519 	 */
1520 };
1521 
1522 static inline struct pid *task_pid(struct task_struct *task)
1523 {
1524 	return task->thread_pid;
1525 }
1526 
1527 /*
1528  * the helpers to get the task's different pids as they are seen
1529  * from various namespaces
1530  *
1531  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1532  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1533  *                     current.
1534  * task_xid_nr_ns()  : id seen from the ns specified;
1535  *
1536  * see also pid_nr() etc in include/linux/pid.h
1537  */
1538 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1539 
1540 static inline pid_t task_pid_nr(struct task_struct *tsk)
1541 {
1542 	return tsk->pid;
1543 }
1544 
1545 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1546 {
1547 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1548 }
1549 
1550 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1551 {
1552 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1553 }
1554 
1555 
1556 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1557 {
1558 	return tsk->tgid;
1559 }
1560 
1561 /**
1562  * pid_alive - check that a task structure is not stale
1563  * @p: Task structure to be checked.
1564  *
1565  * Test if a process is not yet dead (at most zombie state)
1566  * If pid_alive fails, then pointers within the task structure
1567  * can be stale and must not be dereferenced.
1568  *
1569  * Return: 1 if the process is alive. 0 otherwise.
1570  */
1571 static inline int pid_alive(const struct task_struct *p)
1572 {
1573 	return p->thread_pid != NULL;
1574 }
1575 
1576 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1577 {
1578 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1579 }
1580 
1581 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1582 {
1583 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1584 }
1585 
1586 
1587 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1588 {
1589 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1590 }
1591 
1592 static inline pid_t task_session_vnr(struct task_struct *tsk)
1593 {
1594 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1595 }
1596 
1597 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1598 {
1599 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1600 }
1601 
1602 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1603 {
1604 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1605 }
1606 
1607 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1608 {
1609 	pid_t pid = 0;
1610 
1611 	rcu_read_lock();
1612 	if (pid_alive(tsk))
1613 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1614 	rcu_read_unlock();
1615 
1616 	return pid;
1617 }
1618 
1619 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1620 {
1621 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1622 }
1623 
1624 /* Obsolete, do not use: */
1625 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1626 {
1627 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1628 }
1629 
1630 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1631 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1632 
1633 static inline unsigned int __task_state_index(unsigned int tsk_state,
1634 					      unsigned int tsk_exit_state)
1635 {
1636 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1637 
1638 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1639 
1640 	if (tsk_state == TASK_IDLE)
1641 		state = TASK_REPORT_IDLE;
1642 
1643 	/*
1644 	 * We're lying here, but rather than expose a completely new task state
1645 	 * to userspace, we can make this appear as if the task has gone through
1646 	 * a regular rt_mutex_lock() call.
1647 	 */
1648 	if (tsk_state == TASK_RTLOCK_WAIT)
1649 		state = TASK_UNINTERRUPTIBLE;
1650 
1651 	return fls(state);
1652 }
1653 
1654 static inline unsigned int task_state_index(struct task_struct *tsk)
1655 {
1656 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1657 }
1658 
1659 static inline char task_index_to_char(unsigned int state)
1660 {
1661 	static const char state_char[] = "RSDTtXZPI";
1662 
1663 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1664 
1665 	return state_char[state];
1666 }
1667 
1668 static inline char task_state_to_char(struct task_struct *tsk)
1669 {
1670 	return task_index_to_char(task_state_index(tsk));
1671 }
1672 
1673 /**
1674  * is_global_init - check if a task structure is init. Since init
1675  * is free to have sub-threads we need to check tgid.
1676  * @tsk: Task structure to be checked.
1677  *
1678  * Check if a task structure is the first user space task the kernel created.
1679  *
1680  * Return: 1 if the task structure is init. 0 otherwise.
1681  */
1682 static inline int is_global_init(struct task_struct *tsk)
1683 {
1684 	return task_tgid_nr(tsk) == 1;
1685 }
1686 
1687 extern struct pid *cad_pid;
1688 
1689 /*
1690  * Per process flags
1691  */
1692 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1693 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1694 #define PF_EXITING		0x00000004	/* Getting shut down */
1695 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1696 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1697 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1698 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1699 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1700 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1701 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1702 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1703 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1704 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1705 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1706 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1707 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1708 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1709 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1710 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1711 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1712 						 * I am cleaning dirty pages from some other bdi. */
1713 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1714 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1715 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1716 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1717 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1718 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1719 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1720 
1721 /*
1722  * Only the _current_ task can read/write to tsk->flags, but other
1723  * tasks can access tsk->flags in readonly mode for example
1724  * with tsk_used_math (like during threaded core dumping).
1725  * There is however an exception to this rule during ptrace
1726  * or during fork: the ptracer task is allowed to write to the
1727  * child->flags of its traced child (same goes for fork, the parent
1728  * can write to the child->flags), because we're guaranteed the
1729  * child is not running and in turn not changing child->flags
1730  * at the same time the parent does it.
1731  */
1732 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1733 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1734 #define clear_used_math()			clear_stopped_child_used_math(current)
1735 #define set_used_math()				set_stopped_child_used_math(current)
1736 
1737 #define conditional_stopped_child_used_math(condition, child) \
1738 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1739 
1740 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1741 
1742 #define copy_to_stopped_child_used_math(child) \
1743 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1744 
1745 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1746 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1747 #define used_math()				tsk_used_math(current)
1748 
1749 static __always_inline bool is_percpu_thread(void)
1750 {
1751 #ifdef CONFIG_SMP
1752 	return (current->flags & PF_NO_SETAFFINITY) &&
1753 		(current->nr_cpus_allowed  == 1);
1754 #else
1755 	return true;
1756 #endif
1757 }
1758 
1759 /* Per-process atomic flags. */
1760 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1761 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1762 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1763 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1764 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1765 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1766 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1767 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1768 
1769 #define TASK_PFA_TEST(name, func)					\
1770 	static inline bool task_##func(struct task_struct *p)		\
1771 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1772 
1773 #define TASK_PFA_SET(name, func)					\
1774 	static inline void task_set_##func(struct task_struct *p)	\
1775 	{ set_bit(PFA_##name, &p->atomic_flags); }
1776 
1777 #define TASK_PFA_CLEAR(name, func)					\
1778 	static inline void task_clear_##func(struct task_struct *p)	\
1779 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1780 
1781 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1782 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1783 
1784 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1785 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1786 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1787 
1788 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1789 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1790 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1791 
1792 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1793 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1794 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1795 
1796 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1797 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1798 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1799 
1800 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1801 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1802 
1803 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1804 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1805 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1806 
1807 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1808 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1809 
1810 static inline void
1811 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1812 {
1813 	current->flags &= ~flags;
1814 	current->flags |= orig_flags & flags;
1815 }
1816 
1817 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1818 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1819 #ifdef CONFIG_SMP
1820 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1821 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1822 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1823 extern void release_user_cpus_ptr(struct task_struct *p);
1824 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1825 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1826 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1827 #else
1828 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1829 {
1830 }
1831 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1832 {
1833 	if (!cpumask_test_cpu(0, new_mask))
1834 		return -EINVAL;
1835 	return 0;
1836 }
1837 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1838 {
1839 	if (src->user_cpus_ptr)
1840 		return -EINVAL;
1841 	return 0;
1842 }
1843 static inline void release_user_cpus_ptr(struct task_struct *p)
1844 {
1845 	WARN_ON(p->user_cpus_ptr);
1846 }
1847 
1848 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1849 {
1850 	return 0;
1851 }
1852 #endif
1853 
1854 extern int yield_to(struct task_struct *p, bool preempt);
1855 extern void set_user_nice(struct task_struct *p, long nice);
1856 extern int task_prio(const struct task_struct *p);
1857 
1858 /**
1859  * task_nice - return the nice value of a given task.
1860  * @p: the task in question.
1861  *
1862  * Return: The nice value [ -20 ... 0 ... 19 ].
1863  */
1864 static inline int task_nice(const struct task_struct *p)
1865 {
1866 	return PRIO_TO_NICE((p)->static_prio);
1867 }
1868 
1869 extern int can_nice(const struct task_struct *p, const int nice);
1870 extern int task_curr(const struct task_struct *p);
1871 extern int idle_cpu(int cpu);
1872 extern int available_idle_cpu(int cpu);
1873 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1874 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1875 extern void sched_set_fifo(struct task_struct *p);
1876 extern void sched_set_fifo_low(struct task_struct *p);
1877 extern void sched_set_normal(struct task_struct *p, int nice);
1878 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1879 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1880 extern struct task_struct *idle_task(int cpu);
1881 
1882 /**
1883  * is_idle_task - is the specified task an idle task?
1884  * @p: the task in question.
1885  *
1886  * Return: 1 if @p is an idle task. 0 otherwise.
1887  */
1888 static __always_inline bool is_idle_task(const struct task_struct *p)
1889 {
1890 	return !!(p->flags & PF_IDLE);
1891 }
1892 
1893 extern struct task_struct *curr_task(int cpu);
1894 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1895 
1896 void yield(void);
1897 
1898 union thread_union {
1899 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1900 	struct task_struct task;
1901 #endif
1902 #ifndef CONFIG_THREAD_INFO_IN_TASK
1903 	struct thread_info thread_info;
1904 #endif
1905 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1906 };
1907 
1908 #ifndef CONFIG_THREAD_INFO_IN_TASK
1909 extern struct thread_info init_thread_info;
1910 #endif
1911 
1912 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1913 
1914 #ifdef CONFIG_THREAD_INFO_IN_TASK
1915 # define task_thread_info(task)	(&(task)->thread_info)
1916 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1917 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1918 #endif
1919 
1920 /*
1921  * find a task by one of its numerical ids
1922  *
1923  * find_task_by_pid_ns():
1924  *      finds a task by its pid in the specified namespace
1925  * find_task_by_vpid():
1926  *      finds a task by its virtual pid
1927  *
1928  * see also find_vpid() etc in include/linux/pid.h
1929  */
1930 
1931 extern struct task_struct *find_task_by_vpid(pid_t nr);
1932 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1933 
1934 /*
1935  * find a task by its virtual pid and get the task struct
1936  */
1937 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1938 
1939 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1940 extern int wake_up_process(struct task_struct *tsk);
1941 extern void wake_up_new_task(struct task_struct *tsk);
1942 
1943 #ifdef CONFIG_SMP
1944 extern void kick_process(struct task_struct *tsk);
1945 #else
1946 static inline void kick_process(struct task_struct *tsk) { }
1947 #endif
1948 
1949 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1950 
1951 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1952 {
1953 	__set_task_comm(tsk, from, false);
1954 }
1955 
1956 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1957 #define get_task_comm(buf, tsk) ({			\
1958 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1959 	__get_task_comm(buf, sizeof(buf), tsk);		\
1960 })
1961 
1962 #ifdef CONFIG_SMP
1963 static __always_inline void scheduler_ipi(void)
1964 {
1965 	/*
1966 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1967 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1968 	 * this IPI.
1969 	 */
1970 	preempt_fold_need_resched();
1971 }
1972 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1973 #else
1974 static inline void scheduler_ipi(void) { }
1975 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1976 {
1977 	return 1;
1978 }
1979 #endif
1980 
1981 /*
1982  * Set thread flags in other task's structures.
1983  * See asm/thread_info.h for TIF_xxxx flags available:
1984  */
1985 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1986 {
1987 	set_ti_thread_flag(task_thread_info(tsk), flag);
1988 }
1989 
1990 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1991 {
1992 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1993 }
1994 
1995 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1996 					  bool value)
1997 {
1998 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1999 }
2000 
2001 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2002 {
2003 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2004 }
2005 
2006 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2007 {
2008 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2009 }
2010 
2011 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2012 {
2013 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2014 }
2015 
2016 static inline void set_tsk_need_resched(struct task_struct *tsk)
2017 {
2018 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2019 }
2020 
2021 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2022 {
2023 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2024 }
2025 
2026 static inline int test_tsk_need_resched(struct task_struct *tsk)
2027 {
2028 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2029 }
2030 
2031 /*
2032  * cond_resched() and cond_resched_lock(): latency reduction via
2033  * explicit rescheduling in places that are safe. The return
2034  * value indicates whether a reschedule was done in fact.
2035  * cond_resched_lock() will drop the spinlock before scheduling,
2036  */
2037 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2038 extern int __cond_resched(void);
2039 
2040 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2041 
2042 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2043 
2044 static __always_inline int _cond_resched(void)
2045 {
2046 	return static_call_mod(cond_resched)();
2047 }
2048 
2049 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2050 extern int dynamic_cond_resched(void);
2051 
2052 static __always_inline int _cond_resched(void)
2053 {
2054 	return dynamic_cond_resched();
2055 }
2056 
2057 #else
2058 
2059 static inline int _cond_resched(void)
2060 {
2061 	return __cond_resched();
2062 }
2063 
2064 #endif /* CONFIG_PREEMPT_DYNAMIC */
2065 
2066 #else
2067 
2068 static inline int _cond_resched(void) { return 0; }
2069 
2070 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2071 
2072 #define cond_resched() ({			\
2073 	__might_resched(__FILE__, __LINE__, 0);	\
2074 	_cond_resched();			\
2075 })
2076 
2077 extern int __cond_resched_lock(spinlock_t *lock);
2078 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2079 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2080 
2081 #define MIGHT_RESCHED_RCU_SHIFT		8
2082 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2083 
2084 #ifndef CONFIG_PREEMPT_RT
2085 /*
2086  * Non RT kernels have an elevated preempt count due to the held lock,
2087  * but are not allowed to be inside a RCU read side critical section
2088  */
2089 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2090 #else
2091 /*
2092  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2093  * cond_resched*lock() has to take that into account because it checks for
2094  * preempt_count() and rcu_preempt_depth().
2095  */
2096 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2097 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2098 #endif
2099 
2100 #define cond_resched_lock(lock) ({						\
2101 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2102 	__cond_resched_lock(lock);						\
2103 })
2104 
2105 #define cond_resched_rwlock_read(lock) ({					\
2106 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2107 	__cond_resched_rwlock_read(lock);					\
2108 })
2109 
2110 #define cond_resched_rwlock_write(lock) ({					\
2111 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2112 	__cond_resched_rwlock_write(lock);					\
2113 })
2114 
2115 static inline void cond_resched_rcu(void)
2116 {
2117 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2118 	rcu_read_unlock();
2119 	cond_resched();
2120 	rcu_read_lock();
2121 #endif
2122 }
2123 
2124 #ifdef CONFIG_PREEMPT_DYNAMIC
2125 
2126 extern bool preempt_model_none(void);
2127 extern bool preempt_model_voluntary(void);
2128 extern bool preempt_model_full(void);
2129 
2130 #else
2131 
2132 static inline bool preempt_model_none(void)
2133 {
2134 	return IS_ENABLED(CONFIG_PREEMPT_NONE);
2135 }
2136 static inline bool preempt_model_voluntary(void)
2137 {
2138 	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2139 }
2140 static inline bool preempt_model_full(void)
2141 {
2142 	return IS_ENABLED(CONFIG_PREEMPT);
2143 }
2144 
2145 #endif
2146 
2147 static inline bool preempt_model_rt(void)
2148 {
2149 	return IS_ENABLED(CONFIG_PREEMPT_RT);
2150 }
2151 
2152 /*
2153  * Does the preemption model allow non-cooperative preemption?
2154  *
2155  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2156  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2157  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2158  * PREEMPT_NONE model.
2159  */
2160 static inline bool preempt_model_preemptible(void)
2161 {
2162 	return preempt_model_full() || preempt_model_rt();
2163 }
2164 
2165 /*
2166  * Does a critical section need to be broken due to another
2167  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2168  * but a general need for low latency)
2169  */
2170 static inline int spin_needbreak(spinlock_t *lock)
2171 {
2172 #ifdef CONFIG_PREEMPTION
2173 	return spin_is_contended(lock);
2174 #else
2175 	return 0;
2176 #endif
2177 }
2178 
2179 /*
2180  * Check if a rwlock is contended.
2181  * Returns non-zero if there is another task waiting on the rwlock.
2182  * Returns zero if the lock is not contended or the system / underlying
2183  * rwlock implementation does not support contention detection.
2184  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2185  * for low latency.
2186  */
2187 static inline int rwlock_needbreak(rwlock_t *lock)
2188 {
2189 #ifdef CONFIG_PREEMPTION
2190 	return rwlock_is_contended(lock);
2191 #else
2192 	return 0;
2193 #endif
2194 }
2195 
2196 static __always_inline bool need_resched(void)
2197 {
2198 	return unlikely(tif_need_resched());
2199 }
2200 
2201 /*
2202  * Wrappers for p->thread_info->cpu access. No-op on UP.
2203  */
2204 #ifdef CONFIG_SMP
2205 
2206 static inline unsigned int task_cpu(const struct task_struct *p)
2207 {
2208 	return READ_ONCE(task_thread_info(p)->cpu);
2209 }
2210 
2211 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2212 
2213 #else
2214 
2215 static inline unsigned int task_cpu(const struct task_struct *p)
2216 {
2217 	return 0;
2218 }
2219 
2220 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2221 {
2222 }
2223 
2224 #endif /* CONFIG_SMP */
2225 
2226 extern bool sched_task_on_rq(struct task_struct *p);
2227 extern unsigned long get_wchan(struct task_struct *p);
2228 
2229 /*
2230  * In order to reduce various lock holder preemption latencies provide an
2231  * interface to see if a vCPU is currently running or not.
2232  *
2233  * This allows us to terminate optimistic spin loops and block, analogous to
2234  * the native optimistic spin heuristic of testing if the lock owner task is
2235  * running or not.
2236  */
2237 #ifndef vcpu_is_preempted
2238 static inline bool vcpu_is_preempted(int cpu)
2239 {
2240 	return false;
2241 }
2242 #endif
2243 
2244 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2245 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2246 
2247 #ifndef TASK_SIZE_OF
2248 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2249 #endif
2250 
2251 #ifdef CONFIG_SMP
2252 static inline bool owner_on_cpu(struct task_struct *owner)
2253 {
2254 	/*
2255 	 * As lock holder preemption issue, we both skip spinning if
2256 	 * task is not on cpu or its cpu is preempted
2257 	 */
2258 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2259 }
2260 
2261 /* Returns effective CPU energy utilization, as seen by the scheduler */
2262 unsigned long sched_cpu_util(int cpu, unsigned long max);
2263 #endif /* CONFIG_SMP */
2264 
2265 #ifdef CONFIG_RSEQ
2266 
2267 /*
2268  * Map the event mask on the user-space ABI enum rseq_cs_flags
2269  * for direct mask checks.
2270  */
2271 enum rseq_event_mask_bits {
2272 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2273 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2274 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2275 };
2276 
2277 enum rseq_event_mask {
2278 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2279 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2280 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2281 };
2282 
2283 static inline void rseq_set_notify_resume(struct task_struct *t)
2284 {
2285 	if (t->rseq)
2286 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2287 }
2288 
2289 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2290 
2291 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2292 					     struct pt_regs *regs)
2293 {
2294 	if (current->rseq)
2295 		__rseq_handle_notify_resume(ksig, regs);
2296 }
2297 
2298 static inline void rseq_signal_deliver(struct ksignal *ksig,
2299 				       struct pt_regs *regs)
2300 {
2301 	preempt_disable();
2302 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2303 	preempt_enable();
2304 	rseq_handle_notify_resume(ksig, regs);
2305 }
2306 
2307 /* rseq_preempt() requires preemption to be disabled. */
2308 static inline void rseq_preempt(struct task_struct *t)
2309 {
2310 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2311 	rseq_set_notify_resume(t);
2312 }
2313 
2314 /* rseq_migrate() requires preemption to be disabled. */
2315 static inline void rseq_migrate(struct task_struct *t)
2316 {
2317 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2318 	rseq_set_notify_resume(t);
2319 }
2320 
2321 /*
2322  * If parent process has a registered restartable sequences area, the
2323  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2324  */
2325 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2326 {
2327 	if (clone_flags & CLONE_VM) {
2328 		t->rseq = NULL;
2329 		t->rseq_sig = 0;
2330 		t->rseq_event_mask = 0;
2331 	} else {
2332 		t->rseq = current->rseq;
2333 		t->rseq_sig = current->rseq_sig;
2334 		t->rseq_event_mask = current->rseq_event_mask;
2335 	}
2336 }
2337 
2338 static inline void rseq_execve(struct task_struct *t)
2339 {
2340 	t->rseq = NULL;
2341 	t->rseq_sig = 0;
2342 	t->rseq_event_mask = 0;
2343 }
2344 
2345 #else
2346 
2347 static inline void rseq_set_notify_resume(struct task_struct *t)
2348 {
2349 }
2350 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2351 					     struct pt_regs *regs)
2352 {
2353 }
2354 static inline void rseq_signal_deliver(struct ksignal *ksig,
2355 				       struct pt_regs *regs)
2356 {
2357 }
2358 static inline void rseq_preempt(struct task_struct *t)
2359 {
2360 }
2361 static inline void rseq_migrate(struct task_struct *t)
2362 {
2363 }
2364 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2365 {
2366 }
2367 static inline void rseq_execve(struct task_struct *t)
2368 {
2369 }
2370 
2371 #endif
2372 
2373 #ifdef CONFIG_DEBUG_RSEQ
2374 
2375 void rseq_syscall(struct pt_regs *regs);
2376 
2377 #else
2378 
2379 static inline void rseq_syscall(struct pt_regs *regs)
2380 {
2381 }
2382 
2383 #endif
2384 
2385 #ifdef CONFIG_SCHED_CORE
2386 extern void sched_core_free(struct task_struct *tsk);
2387 extern void sched_core_fork(struct task_struct *p);
2388 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2389 				unsigned long uaddr);
2390 #else
2391 static inline void sched_core_free(struct task_struct *tsk) { }
2392 static inline void sched_core_fork(struct task_struct *p) { }
2393 #endif
2394 
2395 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2396 
2397 #endif
2398