1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_SCHED_H 3 #define _LINUX_SCHED_H 4 5 /* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10 #include <uapi/linux/sched.h> 11 12 #include <asm/current.h> 13 14 #include <linux/pid.h> 15 #include <linux/sem.h> 16 #include <linux/shm.h> 17 #include <linux/kcov.h> 18 #include <linux/mutex.h> 19 #include <linux/plist.h> 20 #include <linux/hrtimer.h> 21 #include <linux/seccomp.h> 22 #include <linux/nodemask.h> 23 #include <linux/rcupdate.h> 24 #include <linux/refcount.h> 25 #include <linux/resource.h> 26 #include <linux/latencytop.h> 27 #include <linux/sched/prio.h> 28 #include <linux/signal_types.h> 29 #include <linux/mm_types_task.h> 30 #include <linux/task_io_accounting.h> 31 #include <linux/rseq.h> 32 33 /* task_struct member predeclarations (sorted alphabetically): */ 34 struct audit_context; 35 struct backing_dev_info; 36 struct bio_list; 37 struct blk_plug; 38 struct capture_control; 39 struct cfs_rq; 40 struct fs_struct; 41 struct futex_pi_state; 42 struct io_context; 43 struct mempolicy; 44 struct nameidata; 45 struct nsproxy; 46 struct perf_event_context; 47 struct pid_namespace; 48 struct pipe_inode_info; 49 struct rcu_node; 50 struct reclaim_state; 51 struct robust_list_head; 52 struct root_domain; 53 struct rq; 54 struct sched_attr; 55 struct sched_param; 56 struct seq_file; 57 struct sighand_struct; 58 struct signal_struct; 59 struct task_delay_info; 60 struct task_group; 61 62 /* 63 * Task state bitmask. NOTE! These bits are also 64 * encoded in fs/proc/array.c: get_task_state(). 65 * 66 * We have two separate sets of flags: task->state 67 * is about runnability, while task->exit_state are 68 * about the task exiting. Confusing, but this way 69 * modifying one set can't modify the other one by 70 * mistake. 71 */ 72 73 /* Used in tsk->state: */ 74 #define TASK_RUNNING 0x0000 75 #define TASK_INTERRUPTIBLE 0x0001 76 #define TASK_UNINTERRUPTIBLE 0x0002 77 #define __TASK_STOPPED 0x0004 78 #define __TASK_TRACED 0x0008 79 /* Used in tsk->exit_state: */ 80 #define EXIT_DEAD 0x0010 81 #define EXIT_ZOMBIE 0x0020 82 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 83 /* Used in tsk->state again: */ 84 #define TASK_PARKED 0x0040 85 #define TASK_DEAD 0x0080 86 #define TASK_WAKEKILL 0x0100 87 #define TASK_WAKING 0x0200 88 #define TASK_NOLOAD 0x0400 89 #define TASK_NEW 0x0800 90 #define TASK_STATE_MAX 0x1000 91 92 /* Convenience macros for the sake of set_current_state: */ 93 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 94 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 95 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 96 97 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 98 99 /* Convenience macros for the sake of wake_up(): */ 100 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 101 102 /* get_task_state(): */ 103 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 104 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 105 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 106 TASK_PARKED) 107 108 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 109 110 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 111 112 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 113 114 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 115 (task->flags & PF_FROZEN) == 0 && \ 116 (task->state & TASK_NOLOAD) == 0) 117 118 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 119 120 /* 121 * Special states are those that do not use the normal wait-loop pattern. See 122 * the comment with set_special_state(). 123 */ 124 #define is_special_task_state(state) \ 125 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 126 127 #define __set_current_state(state_value) \ 128 do { \ 129 WARN_ON_ONCE(is_special_task_state(state_value));\ 130 current->task_state_change = _THIS_IP_; \ 131 current->state = (state_value); \ 132 } while (0) 133 134 #define set_current_state(state_value) \ 135 do { \ 136 WARN_ON_ONCE(is_special_task_state(state_value));\ 137 current->task_state_change = _THIS_IP_; \ 138 smp_store_mb(current->state, (state_value)); \ 139 } while (0) 140 141 #define set_special_state(state_value) \ 142 do { \ 143 unsigned long flags; /* may shadow */ \ 144 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 145 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 146 current->task_state_change = _THIS_IP_; \ 147 current->state = (state_value); \ 148 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 149 } while (0) 150 #else 151 /* 152 * set_current_state() includes a barrier so that the write of current->state 153 * is correctly serialised wrt the caller's subsequent test of whether to 154 * actually sleep: 155 * 156 * for (;;) { 157 * set_current_state(TASK_UNINTERRUPTIBLE); 158 * if (!need_sleep) 159 * break; 160 * 161 * schedule(); 162 * } 163 * __set_current_state(TASK_RUNNING); 164 * 165 * If the caller does not need such serialisation (because, for instance, the 166 * condition test and condition change and wakeup are under the same lock) then 167 * use __set_current_state(). 168 * 169 * The above is typically ordered against the wakeup, which does: 170 * 171 * need_sleep = false; 172 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 173 * 174 * where wake_up_state() executes a full memory barrier before accessing the 175 * task state. 176 * 177 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 178 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 179 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 180 * 181 * However, with slightly different timing the wakeup TASK_RUNNING store can 182 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 183 * a problem either because that will result in one extra go around the loop 184 * and our @cond test will save the day. 185 * 186 * Also see the comments of try_to_wake_up(). 187 */ 188 #define __set_current_state(state_value) \ 189 current->state = (state_value) 190 191 #define set_current_state(state_value) \ 192 smp_store_mb(current->state, (state_value)) 193 194 /* 195 * set_special_state() should be used for those states when the blocking task 196 * can not use the regular condition based wait-loop. In that case we must 197 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 198 * will not collide with our state change. 199 */ 200 #define set_special_state(state_value) \ 201 do { \ 202 unsigned long flags; /* may shadow */ \ 203 raw_spin_lock_irqsave(¤t->pi_lock, flags); \ 204 current->state = (state_value); \ 205 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \ 206 } while (0) 207 208 #endif 209 210 /* Task command name length: */ 211 #define TASK_COMM_LEN 16 212 213 extern void scheduler_tick(void); 214 215 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 216 217 extern long schedule_timeout(long timeout); 218 extern long schedule_timeout_interruptible(long timeout); 219 extern long schedule_timeout_killable(long timeout); 220 extern long schedule_timeout_uninterruptible(long timeout); 221 extern long schedule_timeout_idle(long timeout); 222 asmlinkage void schedule(void); 223 extern void schedule_preempt_disabled(void); 224 225 extern int __must_check io_schedule_prepare(void); 226 extern void io_schedule_finish(int token); 227 extern long io_schedule_timeout(long timeout); 228 extern void io_schedule(void); 229 230 /** 231 * struct prev_cputime - snapshot of system and user cputime 232 * @utime: time spent in user mode 233 * @stime: time spent in system mode 234 * @lock: protects the above two fields 235 * 236 * Stores previous user/system time values such that we can guarantee 237 * monotonicity. 238 */ 239 struct prev_cputime { 240 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 241 u64 utime; 242 u64 stime; 243 raw_spinlock_t lock; 244 #endif 245 }; 246 247 /** 248 * struct task_cputime - collected CPU time counts 249 * @utime: time spent in user mode, in nanoseconds 250 * @stime: time spent in kernel mode, in nanoseconds 251 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 252 * 253 * This structure groups together three kinds of CPU time that are tracked for 254 * threads and thread groups. Most things considering CPU time want to group 255 * these counts together and treat all three of them in parallel. 256 */ 257 struct task_cputime { 258 u64 utime; 259 u64 stime; 260 unsigned long long sum_exec_runtime; 261 }; 262 263 /* Alternate field names when used on cache expirations: */ 264 #define virt_exp utime 265 #define prof_exp stime 266 #define sched_exp sum_exec_runtime 267 268 enum vtime_state { 269 /* Task is sleeping or running in a CPU with VTIME inactive: */ 270 VTIME_INACTIVE = 0, 271 /* Task runs in userspace in a CPU with VTIME active: */ 272 VTIME_USER, 273 /* Task runs in kernelspace in a CPU with VTIME active: */ 274 VTIME_SYS, 275 }; 276 277 struct vtime { 278 seqcount_t seqcount; 279 unsigned long long starttime; 280 enum vtime_state state; 281 u64 utime; 282 u64 stime; 283 u64 gtime; 284 }; 285 286 /* 287 * Utilization clamp constraints. 288 * @UCLAMP_MIN: Minimum utilization 289 * @UCLAMP_MAX: Maximum utilization 290 * @UCLAMP_CNT: Utilization clamp constraints count 291 */ 292 enum uclamp_id { 293 UCLAMP_MIN = 0, 294 UCLAMP_MAX, 295 UCLAMP_CNT 296 }; 297 298 #ifdef CONFIG_SMP 299 extern struct root_domain def_root_domain; 300 extern struct mutex sched_domains_mutex; 301 #endif 302 303 struct sched_info { 304 #ifdef CONFIG_SCHED_INFO 305 /* Cumulative counters: */ 306 307 /* # of times we have run on this CPU: */ 308 unsigned long pcount; 309 310 /* Time spent waiting on a runqueue: */ 311 unsigned long long run_delay; 312 313 /* Timestamps: */ 314 315 /* When did we last run on a CPU? */ 316 unsigned long long last_arrival; 317 318 /* When were we last queued to run? */ 319 unsigned long long last_queued; 320 321 #endif /* CONFIG_SCHED_INFO */ 322 }; 323 324 /* 325 * Integer metrics need fixed point arithmetic, e.g., sched/fair 326 * has a few: load, load_avg, util_avg, freq, and capacity. 327 * 328 * We define a basic fixed point arithmetic range, and then formalize 329 * all these metrics based on that basic range. 330 */ 331 # define SCHED_FIXEDPOINT_SHIFT 10 332 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 333 334 /* Increase resolution of cpu_capacity calculations */ 335 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 336 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 337 338 struct load_weight { 339 unsigned long weight; 340 u32 inv_weight; 341 }; 342 343 /** 344 * struct util_est - Estimation utilization of FAIR tasks 345 * @enqueued: instantaneous estimated utilization of a task/cpu 346 * @ewma: the Exponential Weighted Moving Average (EWMA) 347 * utilization of a task 348 * 349 * Support data structure to track an Exponential Weighted Moving Average 350 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 351 * average each time a task completes an activation. Sample's weight is chosen 352 * so that the EWMA will be relatively insensitive to transient changes to the 353 * task's workload. 354 * 355 * The enqueued attribute has a slightly different meaning for tasks and cpus: 356 * - task: the task's util_avg at last task dequeue time 357 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 358 * Thus, the util_est.enqueued of a task represents the contribution on the 359 * estimated utilization of the CPU where that task is currently enqueued. 360 * 361 * Only for tasks we track a moving average of the past instantaneous 362 * estimated utilization. This allows to absorb sporadic drops in utilization 363 * of an otherwise almost periodic task. 364 */ 365 struct util_est { 366 unsigned int enqueued; 367 unsigned int ewma; 368 #define UTIL_EST_WEIGHT_SHIFT 2 369 } __attribute__((__aligned__(sizeof(u64)))); 370 371 /* 372 * The load_avg/util_avg accumulates an infinite geometric series 373 * (see __update_load_avg() in kernel/sched/fair.c). 374 * 375 * [load_avg definition] 376 * 377 * load_avg = runnable% * scale_load_down(load) 378 * 379 * where runnable% is the time ratio that a sched_entity is runnable. 380 * For cfs_rq, it is the aggregated load_avg of all runnable and 381 * blocked sched_entities. 382 * 383 * [util_avg definition] 384 * 385 * util_avg = running% * SCHED_CAPACITY_SCALE 386 * 387 * where running% is the time ratio that a sched_entity is running on 388 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 389 * and blocked sched_entities. 390 * 391 * load_avg and util_avg don't direcly factor frequency scaling and CPU 392 * capacity scaling. The scaling is done through the rq_clock_pelt that 393 * is used for computing those signals (see update_rq_clock_pelt()) 394 * 395 * N.B., the above ratios (runnable% and running%) themselves are in the 396 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 397 * to as large a range as necessary. This is for example reflected by 398 * util_avg's SCHED_CAPACITY_SCALE. 399 * 400 * [Overflow issue] 401 * 402 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 403 * with the highest load (=88761), always runnable on a single cfs_rq, 404 * and should not overflow as the number already hits PID_MAX_LIMIT. 405 * 406 * For all other cases (including 32-bit kernels), struct load_weight's 407 * weight will overflow first before we do, because: 408 * 409 * Max(load_avg) <= Max(load.weight) 410 * 411 * Then it is the load_weight's responsibility to consider overflow 412 * issues. 413 */ 414 struct sched_avg { 415 u64 last_update_time; 416 u64 load_sum; 417 u64 runnable_load_sum; 418 u32 util_sum; 419 u32 period_contrib; 420 unsigned long load_avg; 421 unsigned long runnable_load_avg; 422 unsigned long util_avg; 423 struct util_est util_est; 424 } ____cacheline_aligned; 425 426 struct sched_statistics { 427 #ifdef CONFIG_SCHEDSTATS 428 u64 wait_start; 429 u64 wait_max; 430 u64 wait_count; 431 u64 wait_sum; 432 u64 iowait_count; 433 u64 iowait_sum; 434 435 u64 sleep_start; 436 u64 sleep_max; 437 s64 sum_sleep_runtime; 438 439 u64 block_start; 440 u64 block_max; 441 u64 exec_max; 442 u64 slice_max; 443 444 u64 nr_migrations_cold; 445 u64 nr_failed_migrations_affine; 446 u64 nr_failed_migrations_running; 447 u64 nr_failed_migrations_hot; 448 u64 nr_forced_migrations; 449 450 u64 nr_wakeups; 451 u64 nr_wakeups_sync; 452 u64 nr_wakeups_migrate; 453 u64 nr_wakeups_local; 454 u64 nr_wakeups_remote; 455 u64 nr_wakeups_affine; 456 u64 nr_wakeups_affine_attempts; 457 u64 nr_wakeups_passive; 458 u64 nr_wakeups_idle; 459 #endif 460 }; 461 462 struct sched_entity { 463 /* For load-balancing: */ 464 struct load_weight load; 465 unsigned long runnable_weight; 466 struct rb_node run_node; 467 struct list_head group_node; 468 unsigned int on_rq; 469 470 u64 exec_start; 471 u64 sum_exec_runtime; 472 u64 vruntime; 473 u64 prev_sum_exec_runtime; 474 475 u64 nr_migrations; 476 477 struct sched_statistics statistics; 478 479 #ifdef CONFIG_FAIR_GROUP_SCHED 480 int depth; 481 struct sched_entity *parent; 482 /* rq on which this entity is (to be) queued: */ 483 struct cfs_rq *cfs_rq; 484 /* rq "owned" by this entity/group: */ 485 struct cfs_rq *my_q; 486 #endif 487 488 #ifdef CONFIG_SMP 489 /* 490 * Per entity load average tracking. 491 * 492 * Put into separate cache line so it does not 493 * collide with read-mostly values above. 494 */ 495 struct sched_avg avg; 496 #endif 497 }; 498 499 struct sched_rt_entity { 500 struct list_head run_list; 501 unsigned long timeout; 502 unsigned long watchdog_stamp; 503 unsigned int time_slice; 504 unsigned short on_rq; 505 unsigned short on_list; 506 507 struct sched_rt_entity *back; 508 #ifdef CONFIG_RT_GROUP_SCHED 509 struct sched_rt_entity *parent; 510 /* rq on which this entity is (to be) queued: */ 511 struct rt_rq *rt_rq; 512 /* rq "owned" by this entity/group: */ 513 struct rt_rq *my_q; 514 #endif 515 } __randomize_layout; 516 517 struct sched_dl_entity { 518 struct rb_node rb_node; 519 520 /* 521 * Original scheduling parameters. Copied here from sched_attr 522 * during sched_setattr(), they will remain the same until 523 * the next sched_setattr(). 524 */ 525 u64 dl_runtime; /* Maximum runtime for each instance */ 526 u64 dl_deadline; /* Relative deadline of each instance */ 527 u64 dl_period; /* Separation of two instances (period) */ 528 u64 dl_bw; /* dl_runtime / dl_period */ 529 u64 dl_density; /* dl_runtime / dl_deadline */ 530 531 /* 532 * Actual scheduling parameters. Initialized with the values above, 533 * they are continuously updated during task execution. Note that 534 * the remaining runtime could be < 0 in case we are in overrun. 535 */ 536 s64 runtime; /* Remaining runtime for this instance */ 537 u64 deadline; /* Absolute deadline for this instance */ 538 unsigned int flags; /* Specifying the scheduler behaviour */ 539 540 /* 541 * Some bool flags: 542 * 543 * @dl_throttled tells if we exhausted the runtime. If so, the 544 * task has to wait for a replenishment to be performed at the 545 * next firing of dl_timer. 546 * 547 * @dl_boosted tells if we are boosted due to DI. If so we are 548 * outside bandwidth enforcement mechanism (but only until we 549 * exit the critical section); 550 * 551 * @dl_yielded tells if task gave up the CPU before consuming 552 * all its available runtime during the last job. 553 * 554 * @dl_non_contending tells if the task is inactive while still 555 * contributing to the active utilization. In other words, it 556 * indicates if the inactive timer has been armed and its handler 557 * has not been executed yet. This flag is useful to avoid race 558 * conditions between the inactive timer handler and the wakeup 559 * code. 560 * 561 * @dl_overrun tells if the task asked to be informed about runtime 562 * overruns. 563 */ 564 unsigned int dl_throttled : 1; 565 unsigned int dl_boosted : 1; 566 unsigned int dl_yielded : 1; 567 unsigned int dl_non_contending : 1; 568 unsigned int dl_overrun : 1; 569 570 /* 571 * Bandwidth enforcement timer. Each -deadline task has its 572 * own bandwidth to be enforced, thus we need one timer per task. 573 */ 574 struct hrtimer dl_timer; 575 576 /* 577 * Inactive timer, responsible for decreasing the active utilization 578 * at the "0-lag time". When a -deadline task blocks, it contributes 579 * to GRUB's active utilization until the "0-lag time", hence a 580 * timer is needed to decrease the active utilization at the correct 581 * time. 582 */ 583 struct hrtimer inactive_timer; 584 }; 585 586 #ifdef CONFIG_UCLAMP_TASK 587 /* Number of utilization clamp buckets (shorter alias) */ 588 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 589 590 /* 591 * Utilization clamp for a scheduling entity 592 * @value: clamp value "assigned" to a se 593 * @bucket_id: bucket index corresponding to the "assigned" value 594 * @active: the se is currently refcounted in a rq's bucket 595 * @user_defined: the requested clamp value comes from user-space 596 * 597 * The bucket_id is the index of the clamp bucket matching the clamp value 598 * which is pre-computed and stored to avoid expensive integer divisions from 599 * the fast path. 600 * 601 * The active bit is set whenever a task has got an "effective" value assigned, 602 * which can be different from the clamp value "requested" from user-space. 603 * This allows to know a task is refcounted in the rq's bucket corresponding 604 * to the "effective" bucket_id. 605 * 606 * The user_defined bit is set whenever a task has got a task-specific clamp 607 * value requested from userspace, i.e. the system defaults apply to this task 608 * just as a restriction. This allows to relax default clamps when a less 609 * restrictive task-specific value has been requested, thus allowing to 610 * implement a "nice" semantic. For example, a task running with a 20% 611 * default boost can still drop its own boosting to 0%. 612 */ 613 struct uclamp_se { 614 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 615 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 616 unsigned int active : 1; 617 unsigned int user_defined : 1; 618 }; 619 #endif /* CONFIG_UCLAMP_TASK */ 620 621 union rcu_special { 622 struct { 623 u8 blocked; 624 u8 need_qs; 625 u8 exp_hint; /* Hint for performance. */ 626 u8 deferred_qs; 627 } b; /* Bits. */ 628 u32 s; /* Set of bits. */ 629 }; 630 631 enum perf_event_task_context { 632 perf_invalid_context = -1, 633 perf_hw_context = 0, 634 perf_sw_context, 635 perf_nr_task_contexts, 636 }; 637 638 struct wake_q_node { 639 struct wake_q_node *next; 640 }; 641 642 struct task_struct { 643 #ifdef CONFIG_THREAD_INFO_IN_TASK 644 /* 645 * For reasons of header soup (see current_thread_info()), this 646 * must be the first element of task_struct. 647 */ 648 struct thread_info thread_info; 649 #endif 650 /* -1 unrunnable, 0 runnable, >0 stopped: */ 651 volatile long state; 652 653 /* 654 * This begins the randomizable portion of task_struct. Only 655 * scheduling-critical items should be added above here. 656 */ 657 randomized_struct_fields_start 658 659 void *stack; 660 refcount_t usage; 661 /* Per task flags (PF_*), defined further below: */ 662 unsigned int flags; 663 unsigned int ptrace; 664 665 #ifdef CONFIG_SMP 666 struct llist_node wake_entry; 667 int on_cpu; 668 #ifdef CONFIG_THREAD_INFO_IN_TASK 669 /* Current CPU: */ 670 unsigned int cpu; 671 #endif 672 unsigned int wakee_flips; 673 unsigned long wakee_flip_decay_ts; 674 struct task_struct *last_wakee; 675 676 /* 677 * recent_used_cpu is initially set as the last CPU used by a task 678 * that wakes affine another task. Waker/wakee relationships can 679 * push tasks around a CPU where each wakeup moves to the next one. 680 * Tracking a recently used CPU allows a quick search for a recently 681 * used CPU that may be idle. 682 */ 683 int recent_used_cpu; 684 int wake_cpu; 685 #endif 686 int on_rq; 687 688 int prio; 689 int static_prio; 690 int normal_prio; 691 unsigned int rt_priority; 692 693 const struct sched_class *sched_class; 694 struct sched_entity se; 695 struct sched_rt_entity rt; 696 #ifdef CONFIG_CGROUP_SCHED 697 struct task_group *sched_task_group; 698 #endif 699 struct sched_dl_entity dl; 700 701 #ifdef CONFIG_UCLAMP_TASK 702 /* Clamp values requested for a scheduling entity */ 703 struct uclamp_se uclamp_req[UCLAMP_CNT]; 704 /* Effective clamp values used for a scheduling entity */ 705 struct uclamp_se uclamp[UCLAMP_CNT]; 706 #endif 707 708 #ifdef CONFIG_PREEMPT_NOTIFIERS 709 /* List of struct preempt_notifier: */ 710 struct hlist_head preempt_notifiers; 711 #endif 712 713 #ifdef CONFIG_BLK_DEV_IO_TRACE 714 unsigned int btrace_seq; 715 #endif 716 717 unsigned int policy; 718 int nr_cpus_allowed; 719 const cpumask_t *cpus_ptr; 720 cpumask_t cpus_mask; 721 722 #ifdef CONFIG_PREEMPT_RCU 723 int rcu_read_lock_nesting; 724 union rcu_special rcu_read_unlock_special; 725 struct list_head rcu_node_entry; 726 struct rcu_node *rcu_blocked_node; 727 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 728 729 #ifdef CONFIG_TASKS_RCU 730 unsigned long rcu_tasks_nvcsw; 731 u8 rcu_tasks_holdout; 732 u8 rcu_tasks_idx; 733 int rcu_tasks_idle_cpu; 734 struct list_head rcu_tasks_holdout_list; 735 #endif /* #ifdef CONFIG_TASKS_RCU */ 736 737 struct sched_info sched_info; 738 739 struct list_head tasks; 740 #ifdef CONFIG_SMP 741 struct plist_node pushable_tasks; 742 struct rb_node pushable_dl_tasks; 743 #endif 744 745 struct mm_struct *mm; 746 struct mm_struct *active_mm; 747 748 /* Per-thread vma caching: */ 749 struct vmacache vmacache; 750 751 #ifdef SPLIT_RSS_COUNTING 752 struct task_rss_stat rss_stat; 753 #endif 754 int exit_state; 755 int exit_code; 756 int exit_signal; 757 /* The signal sent when the parent dies: */ 758 int pdeath_signal; 759 /* JOBCTL_*, siglock protected: */ 760 unsigned long jobctl; 761 762 /* Used for emulating ABI behavior of previous Linux versions: */ 763 unsigned int personality; 764 765 /* Scheduler bits, serialized by scheduler locks: */ 766 unsigned sched_reset_on_fork:1; 767 unsigned sched_contributes_to_load:1; 768 unsigned sched_migrated:1; 769 unsigned sched_remote_wakeup:1; 770 #ifdef CONFIG_PSI 771 unsigned sched_psi_wake_requeue:1; 772 #endif 773 774 /* Force alignment to the next boundary: */ 775 unsigned :0; 776 777 /* Unserialized, strictly 'current' */ 778 779 /* Bit to tell LSMs we're in execve(): */ 780 unsigned in_execve:1; 781 unsigned in_iowait:1; 782 #ifndef TIF_RESTORE_SIGMASK 783 unsigned restore_sigmask:1; 784 #endif 785 #ifdef CONFIG_MEMCG 786 unsigned in_user_fault:1; 787 #endif 788 #ifdef CONFIG_COMPAT_BRK 789 unsigned brk_randomized:1; 790 #endif 791 #ifdef CONFIG_CGROUPS 792 /* disallow userland-initiated cgroup migration */ 793 unsigned no_cgroup_migration:1; 794 /* task is frozen/stopped (used by the cgroup freezer) */ 795 unsigned frozen:1; 796 #endif 797 #ifdef CONFIG_BLK_CGROUP 798 /* to be used once the psi infrastructure lands upstream. */ 799 unsigned use_memdelay:1; 800 #endif 801 802 unsigned long atomic_flags; /* Flags requiring atomic access. */ 803 804 struct restart_block restart_block; 805 806 pid_t pid; 807 pid_t tgid; 808 809 #ifdef CONFIG_STACKPROTECTOR 810 /* Canary value for the -fstack-protector GCC feature: */ 811 unsigned long stack_canary; 812 #endif 813 /* 814 * Pointers to the (original) parent process, youngest child, younger sibling, 815 * older sibling, respectively. (p->father can be replaced with 816 * p->real_parent->pid) 817 */ 818 819 /* Real parent process: */ 820 struct task_struct __rcu *real_parent; 821 822 /* Recipient of SIGCHLD, wait4() reports: */ 823 struct task_struct __rcu *parent; 824 825 /* 826 * Children/sibling form the list of natural children: 827 */ 828 struct list_head children; 829 struct list_head sibling; 830 struct task_struct *group_leader; 831 832 /* 833 * 'ptraced' is the list of tasks this task is using ptrace() on. 834 * 835 * This includes both natural children and PTRACE_ATTACH targets. 836 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 837 */ 838 struct list_head ptraced; 839 struct list_head ptrace_entry; 840 841 /* PID/PID hash table linkage. */ 842 struct pid *thread_pid; 843 struct hlist_node pid_links[PIDTYPE_MAX]; 844 struct list_head thread_group; 845 struct list_head thread_node; 846 847 struct completion *vfork_done; 848 849 /* CLONE_CHILD_SETTID: */ 850 int __user *set_child_tid; 851 852 /* CLONE_CHILD_CLEARTID: */ 853 int __user *clear_child_tid; 854 855 u64 utime; 856 u64 stime; 857 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 858 u64 utimescaled; 859 u64 stimescaled; 860 #endif 861 u64 gtime; 862 struct prev_cputime prev_cputime; 863 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 864 struct vtime vtime; 865 #endif 866 867 #ifdef CONFIG_NO_HZ_FULL 868 atomic_t tick_dep_mask; 869 #endif 870 /* Context switch counts: */ 871 unsigned long nvcsw; 872 unsigned long nivcsw; 873 874 /* Monotonic time in nsecs: */ 875 u64 start_time; 876 877 /* Boot based time in nsecs: */ 878 u64 real_start_time; 879 880 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 881 unsigned long min_flt; 882 unsigned long maj_flt; 883 884 #ifdef CONFIG_POSIX_TIMERS 885 struct task_cputime cputime_expires; 886 struct list_head cpu_timers[3]; 887 #endif 888 889 /* Process credentials: */ 890 891 /* Tracer's credentials at attach: */ 892 const struct cred __rcu *ptracer_cred; 893 894 /* Objective and real subjective task credentials (COW): */ 895 const struct cred __rcu *real_cred; 896 897 /* Effective (overridable) subjective task credentials (COW): */ 898 const struct cred __rcu *cred; 899 900 #ifdef CONFIG_KEYS 901 /* Cached requested key. */ 902 struct key *cached_requested_key; 903 #endif 904 905 /* 906 * executable name, excluding path. 907 * 908 * - normally initialized setup_new_exec() 909 * - access it with [gs]et_task_comm() 910 * - lock it with task_lock() 911 */ 912 char comm[TASK_COMM_LEN]; 913 914 struct nameidata *nameidata; 915 916 #ifdef CONFIG_SYSVIPC 917 struct sysv_sem sysvsem; 918 struct sysv_shm sysvshm; 919 #endif 920 #ifdef CONFIG_DETECT_HUNG_TASK 921 unsigned long last_switch_count; 922 unsigned long last_switch_time; 923 #endif 924 /* Filesystem information: */ 925 struct fs_struct *fs; 926 927 /* Open file information: */ 928 struct files_struct *files; 929 930 /* Namespaces: */ 931 struct nsproxy *nsproxy; 932 933 /* Signal handlers: */ 934 struct signal_struct *signal; 935 struct sighand_struct *sighand; 936 sigset_t blocked; 937 sigset_t real_blocked; 938 /* Restored if set_restore_sigmask() was used: */ 939 sigset_t saved_sigmask; 940 struct sigpending pending; 941 unsigned long sas_ss_sp; 942 size_t sas_ss_size; 943 unsigned int sas_ss_flags; 944 945 struct callback_head *task_works; 946 947 #ifdef CONFIG_AUDIT 948 #ifdef CONFIG_AUDITSYSCALL 949 struct audit_context *audit_context; 950 #endif 951 kuid_t loginuid; 952 unsigned int sessionid; 953 #endif 954 struct seccomp seccomp; 955 956 /* Thread group tracking: */ 957 u32 parent_exec_id; 958 u32 self_exec_id; 959 960 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 961 spinlock_t alloc_lock; 962 963 /* Protection of the PI data structures: */ 964 raw_spinlock_t pi_lock; 965 966 struct wake_q_node wake_q; 967 968 #ifdef CONFIG_RT_MUTEXES 969 /* PI waiters blocked on a rt_mutex held by this task: */ 970 struct rb_root_cached pi_waiters; 971 /* Updated under owner's pi_lock and rq lock */ 972 struct task_struct *pi_top_task; 973 /* Deadlock detection and priority inheritance handling: */ 974 struct rt_mutex_waiter *pi_blocked_on; 975 #endif 976 977 #ifdef CONFIG_DEBUG_MUTEXES 978 /* Mutex deadlock detection: */ 979 struct mutex_waiter *blocked_on; 980 #endif 981 982 #ifdef CONFIG_TRACE_IRQFLAGS 983 unsigned int irq_events; 984 unsigned long hardirq_enable_ip; 985 unsigned long hardirq_disable_ip; 986 unsigned int hardirq_enable_event; 987 unsigned int hardirq_disable_event; 988 int hardirqs_enabled; 989 int hardirq_context; 990 unsigned long softirq_disable_ip; 991 unsigned long softirq_enable_ip; 992 unsigned int softirq_disable_event; 993 unsigned int softirq_enable_event; 994 int softirqs_enabled; 995 int softirq_context; 996 #endif 997 998 #ifdef CONFIG_LOCKDEP 999 # define MAX_LOCK_DEPTH 48UL 1000 u64 curr_chain_key; 1001 int lockdep_depth; 1002 unsigned int lockdep_recursion; 1003 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1004 #endif 1005 1006 #ifdef CONFIG_UBSAN 1007 unsigned int in_ubsan; 1008 #endif 1009 1010 /* Journalling filesystem info: */ 1011 void *journal_info; 1012 1013 /* Stacked block device info: */ 1014 struct bio_list *bio_list; 1015 1016 #ifdef CONFIG_BLOCK 1017 /* Stack plugging: */ 1018 struct blk_plug *plug; 1019 #endif 1020 1021 /* VM state: */ 1022 struct reclaim_state *reclaim_state; 1023 1024 struct backing_dev_info *backing_dev_info; 1025 1026 struct io_context *io_context; 1027 1028 #ifdef CONFIG_COMPACTION 1029 struct capture_control *capture_control; 1030 #endif 1031 /* Ptrace state: */ 1032 unsigned long ptrace_message; 1033 kernel_siginfo_t *last_siginfo; 1034 1035 struct task_io_accounting ioac; 1036 #ifdef CONFIG_PSI 1037 /* Pressure stall state */ 1038 unsigned int psi_flags; 1039 #endif 1040 #ifdef CONFIG_TASK_XACCT 1041 /* Accumulated RSS usage: */ 1042 u64 acct_rss_mem1; 1043 /* Accumulated virtual memory usage: */ 1044 u64 acct_vm_mem1; 1045 /* stime + utime since last update: */ 1046 u64 acct_timexpd; 1047 #endif 1048 #ifdef CONFIG_CPUSETS 1049 /* Protected by ->alloc_lock: */ 1050 nodemask_t mems_allowed; 1051 /* Seqence number to catch updates: */ 1052 seqcount_t mems_allowed_seq; 1053 int cpuset_mem_spread_rotor; 1054 int cpuset_slab_spread_rotor; 1055 #endif 1056 #ifdef CONFIG_CGROUPS 1057 /* Control Group info protected by css_set_lock: */ 1058 struct css_set __rcu *cgroups; 1059 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1060 struct list_head cg_list; 1061 #endif 1062 #ifdef CONFIG_X86_CPU_RESCTRL 1063 u32 closid; 1064 u32 rmid; 1065 #endif 1066 #ifdef CONFIG_FUTEX 1067 struct robust_list_head __user *robust_list; 1068 #ifdef CONFIG_COMPAT 1069 struct compat_robust_list_head __user *compat_robust_list; 1070 #endif 1071 struct list_head pi_state_list; 1072 struct futex_pi_state *pi_state_cache; 1073 #endif 1074 #ifdef CONFIG_PERF_EVENTS 1075 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1076 struct mutex perf_event_mutex; 1077 struct list_head perf_event_list; 1078 #endif 1079 #ifdef CONFIG_DEBUG_PREEMPT 1080 unsigned long preempt_disable_ip; 1081 #endif 1082 #ifdef CONFIG_NUMA 1083 /* Protected by alloc_lock: */ 1084 struct mempolicy *mempolicy; 1085 short il_prev; 1086 short pref_node_fork; 1087 #endif 1088 #ifdef CONFIG_NUMA_BALANCING 1089 int numa_scan_seq; 1090 unsigned int numa_scan_period; 1091 unsigned int numa_scan_period_max; 1092 int numa_preferred_nid; 1093 unsigned long numa_migrate_retry; 1094 /* Migration stamp: */ 1095 u64 node_stamp; 1096 u64 last_task_numa_placement; 1097 u64 last_sum_exec_runtime; 1098 struct callback_head numa_work; 1099 1100 /* 1101 * This pointer is only modified for current in syscall and 1102 * pagefault context (and for tasks being destroyed), so it can be read 1103 * from any of the following contexts: 1104 * - RCU read-side critical section 1105 * - current->numa_group from everywhere 1106 * - task's runqueue locked, task not running 1107 */ 1108 struct numa_group __rcu *numa_group; 1109 1110 /* 1111 * numa_faults is an array split into four regions: 1112 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1113 * in this precise order. 1114 * 1115 * faults_memory: Exponential decaying average of faults on a per-node 1116 * basis. Scheduling placement decisions are made based on these 1117 * counts. The values remain static for the duration of a PTE scan. 1118 * faults_cpu: Track the nodes the process was running on when a NUMA 1119 * hinting fault was incurred. 1120 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1121 * during the current scan window. When the scan completes, the counts 1122 * in faults_memory and faults_cpu decay and these values are copied. 1123 */ 1124 unsigned long *numa_faults; 1125 unsigned long total_numa_faults; 1126 1127 /* 1128 * numa_faults_locality tracks if faults recorded during the last 1129 * scan window were remote/local or failed to migrate. The task scan 1130 * period is adapted based on the locality of the faults with different 1131 * weights depending on whether they were shared or private faults 1132 */ 1133 unsigned long numa_faults_locality[3]; 1134 1135 unsigned long numa_pages_migrated; 1136 #endif /* CONFIG_NUMA_BALANCING */ 1137 1138 #ifdef CONFIG_RSEQ 1139 struct rseq __user *rseq; 1140 u32 rseq_sig; 1141 /* 1142 * RmW on rseq_event_mask must be performed atomically 1143 * with respect to preemption. 1144 */ 1145 unsigned long rseq_event_mask; 1146 #endif 1147 1148 struct tlbflush_unmap_batch tlb_ubc; 1149 1150 union { 1151 refcount_t rcu_users; 1152 struct rcu_head rcu; 1153 }; 1154 1155 /* Cache last used pipe for splice(): */ 1156 struct pipe_inode_info *splice_pipe; 1157 1158 struct page_frag task_frag; 1159 1160 #ifdef CONFIG_TASK_DELAY_ACCT 1161 struct task_delay_info *delays; 1162 #endif 1163 1164 #ifdef CONFIG_FAULT_INJECTION 1165 int make_it_fail; 1166 unsigned int fail_nth; 1167 #endif 1168 /* 1169 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1170 * balance_dirty_pages() for a dirty throttling pause: 1171 */ 1172 int nr_dirtied; 1173 int nr_dirtied_pause; 1174 /* Start of a write-and-pause period: */ 1175 unsigned long dirty_paused_when; 1176 1177 #ifdef CONFIG_LATENCYTOP 1178 int latency_record_count; 1179 struct latency_record latency_record[LT_SAVECOUNT]; 1180 #endif 1181 /* 1182 * Time slack values; these are used to round up poll() and 1183 * select() etc timeout values. These are in nanoseconds. 1184 */ 1185 u64 timer_slack_ns; 1186 u64 default_timer_slack_ns; 1187 1188 #ifdef CONFIG_KASAN 1189 unsigned int kasan_depth; 1190 #endif 1191 1192 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1193 /* Index of current stored address in ret_stack: */ 1194 int curr_ret_stack; 1195 int curr_ret_depth; 1196 1197 /* Stack of return addresses for return function tracing: */ 1198 struct ftrace_ret_stack *ret_stack; 1199 1200 /* Timestamp for last schedule: */ 1201 unsigned long long ftrace_timestamp; 1202 1203 /* 1204 * Number of functions that haven't been traced 1205 * because of depth overrun: 1206 */ 1207 atomic_t trace_overrun; 1208 1209 /* Pause tracing: */ 1210 atomic_t tracing_graph_pause; 1211 #endif 1212 1213 #ifdef CONFIG_TRACING 1214 /* State flags for use by tracers: */ 1215 unsigned long trace; 1216 1217 /* Bitmask and counter of trace recursion: */ 1218 unsigned long trace_recursion; 1219 #endif /* CONFIG_TRACING */ 1220 1221 #ifdef CONFIG_KCOV 1222 /* Coverage collection mode enabled for this task (0 if disabled): */ 1223 unsigned int kcov_mode; 1224 1225 /* Size of the kcov_area: */ 1226 unsigned int kcov_size; 1227 1228 /* Buffer for coverage collection: */ 1229 void *kcov_area; 1230 1231 /* KCOV descriptor wired with this task or NULL: */ 1232 struct kcov *kcov; 1233 #endif 1234 1235 #ifdef CONFIG_MEMCG 1236 struct mem_cgroup *memcg_in_oom; 1237 gfp_t memcg_oom_gfp_mask; 1238 int memcg_oom_order; 1239 1240 /* Number of pages to reclaim on returning to userland: */ 1241 unsigned int memcg_nr_pages_over_high; 1242 1243 /* Used by memcontrol for targeted memcg charge: */ 1244 struct mem_cgroup *active_memcg; 1245 #endif 1246 1247 #ifdef CONFIG_BLK_CGROUP 1248 struct request_queue *throttle_queue; 1249 #endif 1250 1251 #ifdef CONFIG_UPROBES 1252 struct uprobe_task *utask; 1253 #endif 1254 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1255 unsigned int sequential_io; 1256 unsigned int sequential_io_avg; 1257 #endif 1258 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1259 unsigned long task_state_change; 1260 #endif 1261 int pagefault_disabled; 1262 #ifdef CONFIG_MMU 1263 struct task_struct *oom_reaper_list; 1264 #endif 1265 #ifdef CONFIG_VMAP_STACK 1266 struct vm_struct *stack_vm_area; 1267 #endif 1268 #ifdef CONFIG_THREAD_INFO_IN_TASK 1269 /* A live task holds one reference: */ 1270 refcount_t stack_refcount; 1271 #endif 1272 #ifdef CONFIG_LIVEPATCH 1273 int patch_state; 1274 #endif 1275 #ifdef CONFIG_SECURITY 1276 /* Used by LSM modules for access restriction: */ 1277 void *security; 1278 #endif 1279 1280 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1281 unsigned long lowest_stack; 1282 unsigned long prev_lowest_stack; 1283 #endif 1284 1285 /* 1286 * New fields for task_struct should be added above here, so that 1287 * they are included in the randomized portion of task_struct. 1288 */ 1289 randomized_struct_fields_end 1290 1291 /* CPU-specific state of this task: */ 1292 struct thread_struct thread; 1293 1294 /* 1295 * WARNING: on x86, 'thread_struct' contains a variable-sized 1296 * structure. It *MUST* be at the end of 'task_struct'. 1297 * 1298 * Do not put anything below here! 1299 */ 1300 }; 1301 1302 static inline struct pid *task_pid(struct task_struct *task) 1303 { 1304 return task->thread_pid; 1305 } 1306 1307 /* 1308 * the helpers to get the task's different pids as they are seen 1309 * from various namespaces 1310 * 1311 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1312 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1313 * current. 1314 * task_xid_nr_ns() : id seen from the ns specified; 1315 * 1316 * see also pid_nr() etc in include/linux/pid.h 1317 */ 1318 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1319 1320 static inline pid_t task_pid_nr(struct task_struct *tsk) 1321 { 1322 return tsk->pid; 1323 } 1324 1325 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1326 { 1327 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1328 } 1329 1330 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1331 { 1332 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1333 } 1334 1335 1336 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1337 { 1338 return tsk->tgid; 1339 } 1340 1341 /** 1342 * pid_alive - check that a task structure is not stale 1343 * @p: Task structure to be checked. 1344 * 1345 * Test if a process is not yet dead (at most zombie state) 1346 * If pid_alive fails, then pointers within the task structure 1347 * can be stale and must not be dereferenced. 1348 * 1349 * Return: 1 if the process is alive. 0 otherwise. 1350 */ 1351 static inline int pid_alive(const struct task_struct *p) 1352 { 1353 return p->thread_pid != NULL; 1354 } 1355 1356 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1357 { 1358 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1359 } 1360 1361 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1362 { 1363 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1364 } 1365 1366 1367 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1368 { 1369 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1370 } 1371 1372 static inline pid_t task_session_vnr(struct task_struct *tsk) 1373 { 1374 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1375 } 1376 1377 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1378 { 1379 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1380 } 1381 1382 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1383 { 1384 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1385 } 1386 1387 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1388 { 1389 pid_t pid = 0; 1390 1391 rcu_read_lock(); 1392 if (pid_alive(tsk)) 1393 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1394 rcu_read_unlock(); 1395 1396 return pid; 1397 } 1398 1399 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1400 { 1401 return task_ppid_nr_ns(tsk, &init_pid_ns); 1402 } 1403 1404 /* Obsolete, do not use: */ 1405 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1406 { 1407 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1408 } 1409 1410 #define TASK_REPORT_IDLE (TASK_REPORT + 1) 1411 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1412 1413 static inline unsigned int task_state_index(struct task_struct *tsk) 1414 { 1415 unsigned int tsk_state = READ_ONCE(tsk->state); 1416 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1417 1418 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1419 1420 if (tsk_state == TASK_IDLE) 1421 state = TASK_REPORT_IDLE; 1422 1423 return fls(state); 1424 } 1425 1426 static inline char task_index_to_char(unsigned int state) 1427 { 1428 static const char state_char[] = "RSDTtXZPI"; 1429 1430 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1431 1432 return state_char[state]; 1433 } 1434 1435 static inline char task_state_to_char(struct task_struct *tsk) 1436 { 1437 return task_index_to_char(task_state_index(tsk)); 1438 } 1439 1440 /** 1441 * is_global_init - check if a task structure is init. Since init 1442 * is free to have sub-threads we need to check tgid. 1443 * @tsk: Task structure to be checked. 1444 * 1445 * Check if a task structure is the first user space task the kernel created. 1446 * 1447 * Return: 1 if the task structure is init. 0 otherwise. 1448 */ 1449 static inline int is_global_init(struct task_struct *tsk) 1450 { 1451 return task_tgid_nr(tsk) == 1; 1452 } 1453 1454 extern struct pid *cad_pid; 1455 1456 /* 1457 * Per process flags 1458 */ 1459 #define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1460 #define PF_EXITING 0x00000004 /* Getting shut down */ 1461 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */ 1462 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1463 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1464 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1465 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1466 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1467 #define PF_DUMPCORE 0x00000200 /* Dumped core */ 1468 #define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1469 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1470 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1471 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1472 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1473 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1474 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1475 #define PF_KSWAPD 0x00020000 /* I am kswapd */ 1476 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1477 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1478 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1479 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1480 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1481 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1482 #define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */ 1483 #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */ 1484 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1485 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1486 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ 1487 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1488 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1489 1490 /* 1491 * Only the _current_ task can read/write to tsk->flags, but other 1492 * tasks can access tsk->flags in readonly mode for example 1493 * with tsk_used_math (like during threaded core dumping). 1494 * There is however an exception to this rule during ptrace 1495 * or during fork: the ptracer task is allowed to write to the 1496 * child->flags of its traced child (same goes for fork, the parent 1497 * can write to the child->flags), because we're guaranteed the 1498 * child is not running and in turn not changing child->flags 1499 * at the same time the parent does it. 1500 */ 1501 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1502 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1503 #define clear_used_math() clear_stopped_child_used_math(current) 1504 #define set_used_math() set_stopped_child_used_math(current) 1505 1506 #define conditional_stopped_child_used_math(condition, child) \ 1507 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1508 1509 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1510 1511 #define copy_to_stopped_child_used_math(child) \ 1512 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1513 1514 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1515 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1516 #define used_math() tsk_used_math(current) 1517 1518 static inline bool is_percpu_thread(void) 1519 { 1520 #ifdef CONFIG_SMP 1521 return (current->flags & PF_NO_SETAFFINITY) && 1522 (current->nr_cpus_allowed == 1); 1523 #else 1524 return true; 1525 #endif 1526 } 1527 1528 /* Per-process atomic flags. */ 1529 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1530 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1531 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1532 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1533 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1534 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1535 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1536 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1537 1538 #define TASK_PFA_TEST(name, func) \ 1539 static inline bool task_##func(struct task_struct *p) \ 1540 { return test_bit(PFA_##name, &p->atomic_flags); } 1541 1542 #define TASK_PFA_SET(name, func) \ 1543 static inline void task_set_##func(struct task_struct *p) \ 1544 { set_bit(PFA_##name, &p->atomic_flags); } 1545 1546 #define TASK_PFA_CLEAR(name, func) \ 1547 static inline void task_clear_##func(struct task_struct *p) \ 1548 { clear_bit(PFA_##name, &p->atomic_flags); } 1549 1550 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1551 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1552 1553 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1554 TASK_PFA_SET(SPREAD_PAGE, spread_page) 1555 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1556 1557 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1558 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1559 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1560 1561 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1562 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1563 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1564 1565 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1566 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1567 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1568 1569 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1570 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1571 1572 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1573 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1574 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1575 1576 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1577 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1578 1579 static inline void 1580 current_restore_flags(unsigned long orig_flags, unsigned long flags) 1581 { 1582 current->flags &= ~flags; 1583 current->flags |= orig_flags & flags; 1584 } 1585 1586 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1587 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1588 #ifdef CONFIG_SMP 1589 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1590 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1591 #else 1592 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1593 { 1594 } 1595 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1596 { 1597 if (!cpumask_test_cpu(0, new_mask)) 1598 return -EINVAL; 1599 return 0; 1600 } 1601 #endif 1602 1603 extern int yield_to(struct task_struct *p, bool preempt); 1604 extern void set_user_nice(struct task_struct *p, long nice); 1605 extern int task_prio(const struct task_struct *p); 1606 1607 /** 1608 * task_nice - return the nice value of a given task. 1609 * @p: the task in question. 1610 * 1611 * Return: The nice value [ -20 ... 0 ... 19 ]. 1612 */ 1613 static inline int task_nice(const struct task_struct *p) 1614 { 1615 return PRIO_TO_NICE((p)->static_prio); 1616 } 1617 1618 extern int can_nice(const struct task_struct *p, const int nice); 1619 extern int task_curr(const struct task_struct *p); 1620 extern int idle_cpu(int cpu); 1621 extern int available_idle_cpu(int cpu); 1622 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1623 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1624 extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1625 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1626 extern struct task_struct *idle_task(int cpu); 1627 1628 /** 1629 * is_idle_task - is the specified task an idle task? 1630 * @p: the task in question. 1631 * 1632 * Return: 1 if @p is an idle task. 0 otherwise. 1633 */ 1634 static inline bool is_idle_task(const struct task_struct *p) 1635 { 1636 return !!(p->flags & PF_IDLE); 1637 } 1638 1639 extern struct task_struct *curr_task(int cpu); 1640 extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1641 1642 void yield(void); 1643 1644 union thread_union { 1645 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1646 struct task_struct task; 1647 #endif 1648 #ifndef CONFIG_THREAD_INFO_IN_TASK 1649 struct thread_info thread_info; 1650 #endif 1651 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1652 }; 1653 1654 #ifndef CONFIG_THREAD_INFO_IN_TASK 1655 extern struct thread_info init_thread_info; 1656 #endif 1657 1658 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1659 1660 #ifdef CONFIG_THREAD_INFO_IN_TASK 1661 static inline struct thread_info *task_thread_info(struct task_struct *task) 1662 { 1663 return &task->thread_info; 1664 } 1665 #elif !defined(__HAVE_THREAD_FUNCTIONS) 1666 # define task_thread_info(task) ((struct thread_info *)(task)->stack) 1667 #endif 1668 1669 /* 1670 * find a task by one of its numerical ids 1671 * 1672 * find_task_by_pid_ns(): 1673 * finds a task by its pid in the specified namespace 1674 * find_task_by_vpid(): 1675 * finds a task by its virtual pid 1676 * 1677 * see also find_vpid() etc in include/linux/pid.h 1678 */ 1679 1680 extern struct task_struct *find_task_by_vpid(pid_t nr); 1681 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1682 1683 /* 1684 * find a task by its virtual pid and get the task struct 1685 */ 1686 extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1687 1688 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1689 extern int wake_up_process(struct task_struct *tsk); 1690 extern void wake_up_new_task(struct task_struct *tsk); 1691 1692 #ifdef CONFIG_SMP 1693 extern void kick_process(struct task_struct *tsk); 1694 #else 1695 static inline void kick_process(struct task_struct *tsk) { } 1696 #endif 1697 1698 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1699 1700 static inline void set_task_comm(struct task_struct *tsk, const char *from) 1701 { 1702 __set_task_comm(tsk, from, false); 1703 } 1704 1705 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1706 #define get_task_comm(buf, tsk) ({ \ 1707 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1708 __get_task_comm(buf, sizeof(buf), tsk); \ 1709 }) 1710 1711 #ifdef CONFIG_SMP 1712 void scheduler_ipi(void); 1713 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1714 #else 1715 static inline void scheduler_ipi(void) { } 1716 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1717 { 1718 return 1; 1719 } 1720 #endif 1721 1722 /* 1723 * Set thread flags in other task's structures. 1724 * See asm/thread_info.h for TIF_xxxx flags available: 1725 */ 1726 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1727 { 1728 set_ti_thread_flag(task_thread_info(tsk), flag); 1729 } 1730 1731 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1732 { 1733 clear_ti_thread_flag(task_thread_info(tsk), flag); 1734 } 1735 1736 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1737 bool value) 1738 { 1739 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1740 } 1741 1742 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1743 { 1744 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1745 } 1746 1747 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1748 { 1749 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1750 } 1751 1752 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1753 { 1754 return test_ti_thread_flag(task_thread_info(tsk), flag); 1755 } 1756 1757 static inline void set_tsk_need_resched(struct task_struct *tsk) 1758 { 1759 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1760 } 1761 1762 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1763 { 1764 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1765 } 1766 1767 static inline int test_tsk_need_resched(struct task_struct *tsk) 1768 { 1769 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1770 } 1771 1772 /* 1773 * cond_resched() and cond_resched_lock(): latency reduction via 1774 * explicit rescheduling in places that are safe. The return 1775 * value indicates whether a reschedule was done in fact. 1776 * cond_resched_lock() will drop the spinlock before scheduling, 1777 */ 1778 #ifndef CONFIG_PREEMPTION 1779 extern int _cond_resched(void); 1780 #else 1781 static inline int _cond_resched(void) { return 0; } 1782 #endif 1783 1784 #define cond_resched() ({ \ 1785 ___might_sleep(__FILE__, __LINE__, 0); \ 1786 _cond_resched(); \ 1787 }) 1788 1789 extern int __cond_resched_lock(spinlock_t *lock); 1790 1791 #define cond_resched_lock(lock) ({ \ 1792 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1793 __cond_resched_lock(lock); \ 1794 }) 1795 1796 static inline void cond_resched_rcu(void) 1797 { 1798 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1799 rcu_read_unlock(); 1800 cond_resched(); 1801 rcu_read_lock(); 1802 #endif 1803 } 1804 1805 /* 1806 * Does a critical section need to be broken due to another 1807 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 1808 * but a general need for low latency) 1809 */ 1810 static inline int spin_needbreak(spinlock_t *lock) 1811 { 1812 #ifdef CONFIG_PREEMPTION 1813 return spin_is_contended(lock); 1814 #else 1815 return 0; 1816 #endif 1817 } 1818 1819 static __always_inline bool need_resched(void) 1820 { 1821 return unlikely(tif_need_resched()); 1822 } 1823 1824 /* 1825 * Wrappers for p->thread_info->cpu access. No-op on UP. 1826 */ 1827 #ifdef CONFIG_SMP 1828 1829 static inline unsigned int task_cpu(const struct task_struct *p) 1830 { 1831 #ifdef CONFIG_THREAD_INFO_IN_TASK 1832 return READ_ONCE(p->cpu); 1833 #else 1834 return READ_ONCE(task_thread_info(p)->cpu); 1835 #endif 1836 } 1837 1838 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1839 1840 #else 1841 1842 static inline unsigned int task_cpu(const struct task_struct *p) 1843 { 1844 return 0; 1845 } 1846 1847 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1848 { 1849 } 1850 1851 #endif /* CONFIG_SMP */ 1852 1853 /* 1854 * In order to reduce various lock holder preemption latencies provide an 1855 * interface to see if a vCPU is currently running or not. 1856 * 1857 * This allows us to terminate optimistic spin loops and block, analogous to 1858 * the native optimistic spin heuristic of testing if the lock owner task is 1859 * running or not. 1860 */ 1861 #ifndef vcpu_is_preempted 1862 static inline bool vcpu_is_preempted(int cpu) 1863 { 1864 return false; 1865 } 1866 #endif 1867 1868 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1869 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1870 1871 #ifndef TASK_SIZE_OF 1872 #define TASK_SIZE_OF(tsk) TASK_SIZE 1873 #endif 1874 1875 #ifdef CONFIG_RSEQ 1876 1877 /* 1878 * Map the event mask on the user-space ABI enum rseq_cs_flags 1879 * for direct mask checks. 1880 */ 1881 enum rseq_event_mask_bits { 1882 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1883 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1884 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1885 }; 1886 1887 enum rseq_event_mask { 1888 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1889 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1890 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1891 }; 1892 1893 static inline void rseq_set_notify_resume(struct task_struct *t) 1894 { 1895 if (t->rseq) 1896 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1897 } 1898 1899 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1900 1901 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1902 struct pt_regs *regs) 1903 { 1904 if (current->rseq) 1905 __rseq_handle_notify_resume(ksig, regs); 1906 } 1907 1908 static inline void rseq_signal_deliver(struct ksignal *ksig, 1909 struct pt_regs *regs) 1910 { 1911 preempt_disable(); 1912 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask); 1913 preempt_enable(); 1914 rseq_handle_notify_resume(ksig, regs); 1915 } 1916 1917 /* rseq_preempt() requires preemption to be disabled. */ 1918 static inline void rseq_preempt(struct task_struct *t) 1919 { 1920 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1921 rseq_set_notify_resume(t); 1922 } 1923 1924 /* rseq_migrate() requires preemption to be disabled. */ 1925 static inline void rseq_migrate(struct task_struct *t) 1926 { 1927 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1928 rseq_set_notify_resume(t); 1929 } 1930 1931 /* 1932 * If parent process has a registered restartable sequences area, the 1933 * child inherits. Only applies when forking a process, not a thread. 1934 */ 1935 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1936 { 1937 if (clone_flags & CLONE_THREAD) { 1938 t->rseq = NULL; 1939 t->rseq_sig = 0; 1940 t->rseq_event_mask = 0; 1941 } else { 1942 t->rseq = current->rseq; 1943 t->rseq_sig = current->rseq_sig; 1944 t->rseq_event_mask = current->rseq_event_mask; 1945 } 1946 } 1947 1948 static inline void rseq_execve(struct task_struct *t) 1949 { 1950 t->rseq = NULL; 1951 t->rseq_sig = 0; 1952 t->rseq_event_mask = 0; 1953 } 1954 1955 #else 1956 1957 static inline void rseq_set_notify_resume(struct task_struct *t) 1958 { 1959 } 1960 static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1961 struct pt_regs *regs) 1962 { 1963 } 1964 static inline void rseq_signal_deliver(struct ksignal *ksig, 1965 struct pt_regs *regs) 1966 { 1967 } 1968 static inline void rseq_preempt(struct task_struct *t) 1969 { 1970 } 1971 static inline void rseq_migrate(struct task_struct *t) 1972 { 1973 } 1974 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1975 { 1976 } 1977 static inline void rseq_execve(struct task_struct *t) 1978 { 1979 } 1980 1981 #endif 1982 1983 void __exit_umh(struct task_struct *tsk); 1984 1985 static inline void exit_umh(struct task_struct *tsk) 1986 { 1987 if (unlikely(tsk->flags & PF_UMH)) 1988 __exit_umh(tsk); 1989 } 1990 1991 #ifdef CONFIG_DEBUG_RSEQ 1992 1993 void rseq_syscall(struct pt_regs *regs); 1994 1995 #else 1996 1997 static inline void rseq_syscall(struct pt_regs *regs) 1998 { 1999 } 2000 2001 #endif 2002 2003 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 2004 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 2005 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 2006 2007 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 2008 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 2009 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 2010 2011 int sched_trace_rq_cpu(struct rq *rq); 2012 2013 const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 2014 2015 #endif 2016