xref: /linux/include/linux/sched.h (revision 19a4ff534bb09686f53800564cb977bad2177c00)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/signal_types.h>
29 #include <linux/mm_types_task.h>
30 #include <linux/task_io_accounting.h>
31 #include <linux/rseq.h>
32 
33 /* task_struct member predeclarations (sorted alphabetically): */
34 struct audit_context;
35 struct backing_dev_info;
36 struct bio_list;
37 struct blk_plug;
38 struct capture_control;
39 struct cfs_rq;
40 struct fs_struct;
41 struct futex_pi_state;
42 struct io_context;
43 struct mempolicy;
44 struct nameidata;
45 struct nsproxy;
46 struct perf_event_context;
47 struct pid_namespace;
48 struct pipe_inode_info;
49 struct rcu_node;
50 struct reclaim_state;
51 struct robust_list_head;
52 struct root_domain;
53 struct rq;
54 struct sched_attr;
55 struct sched_param;
56 struct seq_file;
57 struct sighand_struct;
58 struct signal_struct;
59 struct task_delay_info;
60 struct task_group;
61 
62 /*
63  * Task state bitmask. NOTE! These bits are also
64  * encoded in fs/proc/array.c: get_task_state().
65  *
66  * We have two separate sets of flags: task->state
67  * is about runnability, while task->exit_state are
68  * about the task exiting. Confusing, but this way
69  * modifying one set can't modify the other one by
70  * mistake.
71  */
72 
73 /* Used in tsk->state: */
74 #define TASK_RUNNING			0x0000
75 #define TASK_INTERRUPTIBLE		0x0001
76 #define TASK_UNINTERRUPTIBLE		0x0002
77 #define __TASK_STOPPED			0x0004
78 #define __TASK_TRACED			0x0008
79 /* Used in tsk->exit_state: */
80 #define EXIT_DEAD			0x0010
81 #define EXIT_ZOMBIE			0x0020
82 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
83 /* Used in tsk->state again: */
84 #define TASK_PARKED			0x0040
85 #define TASK_DEAD			0x0080
86 #define TASK_WAKEKILL			0x0100
87 #define TASK_WAKING			0x0200
88 #define TASK_NOLOAD			0x0400
89 #define TASK_NEW			0x0800
90 #define TASK_STATE_MAX			0x1000
91 
92 /* Convenience macros for the sake of set_current_state: */
93 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
94 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
95 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
96 
97 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
98 
99 /* Convenience macros for the sake of wake_up(): */
100 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
101 
102 /* get_task_state(): */
103 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
104 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
105 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
106 					 TASK_PARKED)
107 
108 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
109 
110 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
111 
112 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
113 
114 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
115 					 (task->flags & PF_FROZEN) == 0 && \
116 					 (task->state & TASK_NOLOAD) == 0)
117 
118 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
119 
120 /*
121  * Special states are those that do not use the normal wait-loop pattern. See
122  * the comment with set_special_state().
123  */
124 #define is_special_task_state(state)				\
125 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
126 
127 #define __set_current_state(state_value)			\
128 	do {							\
129 		WARN_ON_ONCE(is_special_task_state(state_value));\
130 		current->task_state_change = _THIS_IP_;		\
131 		current->state = (state_value);			\
132 	} while (0)
133 
134 #define set_current_state(state_value)				\
135 	do {							\
136 		WARN_ON_ONCE(is_special_task_state(state_value));\
137 		current->task_state_change = _THIS_IP_;		\
138 		smp_store_mb(current->state, (state_value));	\
139 	} while (0)
140 
141 #define set_special_state(state_value)					\
142 	do {								\
143 		unsigned long flags; /* may shadow */			\
144 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
145 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
146 		current->task_state_change = _THIS_IP_;			\
147 		current->state = (state_value);				\
148 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
149 	} while (0)
150 #else
151 /*
152  * set_current_state() includes a barrier so that the write of current->state
153  * is correctly serialised wrt the caller's subsequent test of whether to
154  * actually sleep:
155  *
156  *   for (;;) {
157  *	set_current_state(TASK_UNINTERRUPTIBLE);
158  *	if (!need_sleep)
159  *		break;
160  *
161  *	schedule();
162  *   }
163  *   __set_current_state(TASK_RUNNING);
164  *
165  * If the caller does not need such serialisation (because, for instance, the
166  * condition test and condition change and wakeup are under the same lock) then
167  * use __set_current_state().
168  *
169  * The above is typically ordered against the wakeup, which does:
170  *
171  *   need_sleep = false;
172  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
173  *
174  * where wake_up_state() executes a full memory barrier before accessing the
175  * task state.
176  *
177  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
178  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
179  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
180  *
181  * However, with slightly different timing the wakeup TASK_RUNNING store can
182  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
183  * a problem either because that will result in one extra go around the loop
184  * and our @cond test will save the day.
185  *
186  * Also see the comments of try_to_wake_up().
187  */
188 #define __set_current_state(state_value)				\
189 	current->state = (state_value)
190 
191 #define set_current_state(state_value)					\
192 	smp_store_mb(current->state, (state_value))
193 
194 /*
195  * set_special_state() should be used for those states when the blocking task
196  * can not use the regular condition based wait-loop. In that case we must
197  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
198  * will not collide with our state change.
199  */
200 #define set_special_state(state_value)					\
201 	do {								\
202 		unsigned long flags; /* may shadow */			\
203 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
204 		current->state = (state_value);				\
205 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
206 	} while (0)
207 
208 #endif
209 
210 /* Task command name length: */
211 #define TASK_COMM_LEN			16
212 
213 extern void scheduler_tick(void);
214 
215 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
216 
217 extern long schedule_timeout(long timeout);
218 extern long schedule_timeout_interruptible(long timeout);
219 extern long schedule_timeout_killable(long timeout);
220 extern long schedule_timeout_uninterruptible(long timeout);
221 extern long schedule_timeout_idle(long timeout);
222 asmlinkage void schedule(void);
223 extern void schedule_preempt_disabled(void);
224 
225 extern int __must_check io_schedule_prepare(void);
226 extern void io_schedule_finish(int token);
227 extern long io_schedule_timeout(long timeout);
228 extern void io_schedule(void);
229 
230 /**
231  * struct prev_cputime - snapshot of system and user cputime
232  * @utime: time spent in user mode
233  * @stime: time spent in system mode
234  * @lock: protects the above two fields
235  *
236  * Stores previous user/system time values such that we can guarantee
237  * monotonicity.
238  */
239 struct prev_cputime {
240 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
241 	u64				utime;
242 	u64				stime;
243 	raw_spinlock_t			lock;
244 #endif
245 };
246 
247 /**
248  * struct task_cputime - collected CPU time counts
249  * @utime:		time spent in user mode, in nanoseconds
250  * @stime:		time spent in kernel mode, in nanoseconds
251  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
252  *
253  * This structure groups together three kinds of CPU time that are tracked for
254  * threads and thread groups.  Most things considering CPU time want to group
255  * these counts together and treat all three of them in parallel.
256  */
257 struct task_cputime {
258 	u64				utime;
259 	u64				stime;
260 	unsigned long long		sum_exec_runtime;
261 };
262 
263 /* Alternate field names when used on cache expirations: */
264 #define virt_exp			utime
265 #define prof_exp			stime
266 #define sched_exp			sum_exec_runtime
267 
268 enum vtime_state {
269 	/* Task is sleeping or running in a CPU with VTIME inactive: */
270 	VTIME_INACTIVE = 0,
271 	/* Task runs in userspace in a CPU with VTIME active: */
272 	VTIME_USER,
273 	/* Task runs in kernelspace in a CPU with VTIME active: */
274 	VTIME_SYS,
275 };
276 
277 struct vtime {
278 	seqcount_t		seqcount;
279 	unsigned long long	starttime;
280 	enum vtime_state	state;
281 	u64			utime;
282 	u64			stime;
283 	u64			gtime;
284 };
285 
286 /*
287  * Utilization clamp constraints.
288  * @UCLAMP_MIN:	Minimum utilization
289  * @UCLAMP_MAX:	Maximum utilization
290  * @UCLAMP_CNT:	Utilization clamp constraints count
291  */
292 enum uclamp_id {
293 	UCLAMP_MIN = 0,
294 	UCLAMP_MAX,
295 	UCLAMP_CNT
296 };
297 
298 #ifdef CONFIG_SMP
299 extern struct root_domain def_root_domain;
300 extern struct mutex sched_domains_mutex;
301 #endif
302 
303 struct sched_info {
304 #ifdef CONFIG_SCHED_INFO
305 	/* Cumulative counters: */
306 
307 	/* # of times we have run on this CPU: */
308 	unsigned long			pcount;
309 
310 	/* Time spent waiting on a runqueue: */
311 	unsigned long long		run_delay;
312 
313 	/* Timestamps: */
314 
315 	/* When did we last run on a CPU? */
316 	unsigned long long		last_arrival;
317 
318 	/* When were we last queued to run? */
319 	unsigned long long		last_queued;
320 
321 #endif /* CONFIG_SCHED_INFO */
322 };
323 
324 /*
325  * Integer metrics need fixed point arithmetic, e.g., sched/fair
326  * has a few: load, load_avg, util_avg, freq, and capacity.
327  *
328  * We define a basic fixed point arithmetic range, and then formalize
329  * all these metrics based on that basic range.
330  */
331 # define SCHED_FIXEDPOINT_SHIFT		10
332 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
333 
334 /* Increase resolution of cpu_capacity calculations */
335 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
336 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
337 
338 struct load_weight {
339 	unsigned long			weight;
340 	u32				inv_weight;
341 };
342 
343 /**
344  * struct util_est - Estimation utilization of FAIR tasks
345  * @enqueued: instantaneous estimated utilization of a task/cpu
346  * @ewma:     the Exponential Weighted Moving Average (EWMA)
347  *            utilization of a task
348  *
349  * Support data structure to track an Exponential Weighted Moving Average
350  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
351  * average each time a task completes an activation. Sample's weight is chosen
352  * so that the EWMA will be relatively insensitive to transient changes to the
353  * task's workload.
354  *
355  * The enqueued attribute has a slightly different meaning for tasks and cpus:
356  * - task:   the task's util_avg at last task dequeue time
357  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
358  * Thus, the util_est.enqueued of a task represents the contribution on the
359  * estimated utilization of the CPU where that task is currently enqueued.
360  *
361  * Only for tasks we track a moving average of the past instantaneous
362  * estimated utilization. This allows to absorb sporadic drops in utilization
363  * of an otherwise almost periodic task.
364  */
365 struct util_est {
366 	unsigned int			enqueued;
367 	unsigned int			ewma;
368 #define UTIL_EST_WEIGHT_SHIFT		2
369 } __attribute__((__aligned__(sizeof(u64))));
370 
371 /*
372  * The load_avg/util_avg accumulates an infinite geometric series
373  * (see __update_load_avg() in kernel/sched/fair.c).
374  *
375  * [load_avg definition]
376  *
377  *   load_avg = runnable% * scale_load_down(load)
378  *
379  * where runnable% is the time ratio that a sched_entity is runnable.
380  * For cfs_rq, it is the aggregated load_avg of all runnable and
381  * blocked sched_entities.
382  *
383  * [util_avg definition]
384  *
385  *   util_avg = running% * SCHED_CAPACITY_SCALE
386  *
387  * where running% is the time ratio that a sched_entity is running on
388  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
389  * and blocked sched_entities.
390  *
391  * load_avg and util_avg don't direcly factor frequency scaling and CPU
392  * capacity scaling. The scaling is done through the rq_clock_pelt that
393  * is used for computing those signals (see update_rq_clock_pelt())
394  *
395  * N.B., the above ratios (runnable% and running%) themselves are in the
396  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
397  * to as large a range as necessary. This is for example reflected by
398  * util_avg's SCHED_CAPACITY_SCALE.
399  *
400  * [Overflow issue]
401  *
402  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
403  * with the highest load (=88761), always runnable on a single cfs_rq,
404  * and should not overflow as the number already hits PID_MAX_LIMIT.
405  *
406  * For all other cases (including 32-bit kernels), struct load_weight's
407  * weight will overflow first before we do, because:
408  *
409  *    Max(load_avg) <= Max(load.weight)
410  *
411  * Then it is the load_weight's responsibility to consider overflow
412  * issues.
413  */
414 struct sched_avg {
415 	u64				last_update_time;
416 	u64				load_sum;
417 	u64				runnable_load_sum;
418 	u32				util_sum;
419 	u32				period_contrib;
420 	unsigned long			load_avg;
421 	unsigned long			runnable_load_avg;
422 	unsigned long			util_avg;
423 	struct util_est			util_est;
424 } ____cacheline_aligned;
425 
426 struct sched_statistics {
427 #ifdef CONFIG_SCHEDSTATS
428 	u64				wait_start;
429 	u64				wait_max;
430 	u64				wait_count;
431 	u64				wait_sum;
432 	u64				iowait_count;
433 	u64				iowait_sum;
434 
435 	u64				sleep_start;
436 	u64				sleep_max;
437 	s64				sum_sleep_runtime;
438 
439 	u64				block_start;
440 	u64				block_max;
441 	u64				exec_max;
442 	u64				slice_max;
443 
444 	u64				nr_migrations_cold;
445 	u64				nr_failed_migrations_affine;
446 	u64				nr_failed_migrations_running;
447 	u64				nr_failed_migrations_hot;
448 	u64				nr_forced_migrations;
449 
450 	u64				nr_wakeups;
451 	u64				nr_wakeups_sync;
452 	u64				nr_wakeups_migrate;
453 	u64				nr_wakeups_local;
454 	u64				nr_wakeups_remote;
455 	u64				nr_wakeups_affine;
456 	u64				nr_wakeups_affine_attempts;
457 	u64				nr_wakeups_passive;
458 	u64				nr_wakeups_idle;
459 #endif
460 };
461 
462 struct sched_entity {
463 	/* For load-balancing: */
464 	struct load_weight		load;
465 	unsigned long			runnable_weight;
466 	struct rb_node			run_node;
467 	struct list_head		group_node;
468 	unsigned int			on_rq;
469 
470 	u64				exec_start;
471 	u64				sum_exec_runtime;
472 	u64				vruntime;
473 	u64				prev_sum_exec_runtime;
474 
475 	u64				nr_migrations;
476 
477 	struct sched_statistics		statistics;
478 
479 #ifdef CONFIG_FAIR_GROUP_SCHED
480 	int				depth;
481 	struct sched_entity		*parent;
482 	/* rq on which this entity is (to be) queued: */
483 	struct cfs_rq			*cfs_rq;
484 	/* rq "owned" by this entity/group: */
485 	struct cfs_rq			*my_q;
486 #endif
487 
488 #ifdef CONFIG_SMP
489 	/*
490 	 * Per entity load average tracking.
491 	 *
492 	 * Put into separate cache line so it does not
493 	 * collide with read-mostly values above.
494 	 */
495 	struct sched_avg		avg;
496 #endif
497 };
498 
499 struct sched_rt_entity {
500 	struct list_head		run_list;
501 	unsigned long			timeout;
502 	unsigned long			watchdog_stamp;
503 	unsigned int			time_slice;
504 	unsigned short			on_rq;
505 	unsigned short			on_list;
506 
507 	struct sched_rt_entity		*back;
508 #ifdef CONFIG_RT_GROUP_SCHED
509 	struct sched_rt_entity		*parent;
510 	/* rq on which this entity is (to be) queued: */
511 	struct rt_rq			*rt_rq;
512 	/* rq "owned" by this entity/group: */
513 	struct rt_rq			*my_q;
514 #endif
515 } __randomize_layout;
516 
517 struct sched_dl_entity {
518 	struct rb_node			rb_node;
519 
520 	/*
521 	 * Original scheduling parameters. Copied here from sched_attr
522 	 * during sched_setattr(), they will remain the same until
523 	 * the next sched_setattr().
524 	 */
525 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
526 	u64				dl_deadline;	/* Relative deadline of each instance	*/
527 	u64				dl_period;	/* Separation of two instances (period) */
528 	u64				dl_bw;		/* dl_runtime / dl_period		*/
529 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
530 
531 	/*
532 	 * Actual scheduling parameters. Initialized with the values above,
533 	 * they are continuously updated during task execution. Note that
534 	 * the remaining runtime could be < 0 in case we are in overrun.
535 	 */
536 	s64				runtime;	/* Remaining runtime for this instance	*/
537 	u64				deadline;	/* Absolute deadline for this instance	*/
538 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
539 
540 	/*
541 	 * Some bool flags:
542 	 *
543 	 * @dl_throttled tells if we exhausted the runtime. If so, the
544 	 * task has to wait for a replenishment to be performed at the
545 	 * next firing of dl_timer.
546 	 *
547 	 * @dl_boosted tells if we are boosted due to DI. If so we are
548 	 * outside bandwidth enforcement mechanism (but only until we
549 	 * exit the critical section);
550 	 *
551 	 * @dl_yielded tells if task gave up the CPU before consuming
552 	 * all its available runtime during the last job.
553 	 *
554 	 * @dl_non_contending tells if the task is inactive while still
555 	 * contributing to the active utilization. In other words, it
556 	 * indicates if the inactive timer has been armed and its handler
557 	 * has not been executed yet. This flag is useful to avoid race
558 	 * conditions between the inactive timer handler and the wakeup
559 	 * code.
560 	 *
561 	 * @dl_overrun tells if the task asked to be informed about runtime
562 	 * overruns.
563 	 */
564 	unsigned int			dl_throttled      : 1;
565 	unsigned int			dl_boosted        : 1;
566 	unsigned int			dl_yielded        : 1;
567 	unsigned int			dl_non_contending : 1;
568 	unsigned int			dl_overrun	  : 1;
569 
570 	/*
571 	 * Bandwidth enforcement timer. Each -deadline task has its
572 	 * own bandwidth to be enforced, thus we need one timer per task.
573 	 */
574 	struct hrtimer			dl_timer;
575 
576 	/*
577 	 * Inactive timer, responsible for decreasing the active utilization
578 	 * at the "0-lag time". When a -deadline task blocks, it contributes
579 	 * to GRUB's active utilization until the "0-lag time", hence a
580 	 * timer is needed to decrease the active utilization at the correct
581 	 * time.
582 	 */
583 	struct hrtimer inactive_timer;
584 };
585 
586 #ifdef CONFIG_UCLAMP_TASK
587 /* Number of utilization clamp buckets (shorter alias) */
588 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
589 
590 /*
591  * Utilization clamp for a scheduling entity
592  * @value:		clamp value "assigned" to a se
593  * @bucket_id:		bucket index corresponding to the "assigned" value
594  * @active:		the se is currently refcounted in a rq's bucket
595  * @user_defined:	the requested clamp value comes from user-space
596  *
597  * The bucket_id is the index of the clamp bucket matching the clamp value
598  * which is pre-computed and stored to avoid expensive integer divisions from
599  * the fast path.
600  *
601  * The active bit is set whenever a task has got an "effective" value assigned,
602  * which can be different from the clamp value "requested" from user-space.
603  * This allows to know a task is refcounted in the rq's bucket corresponding
604  * to the "effective" bucket_id.
605  *
606  * The user_defined bit is set whenever a task has got a task-specific clamp
607  * value requested from userspace, i.e. the system defaults apply to this task
608  * just as a restriction. This allows to relax default clamps when a less
609  * restrictive task-specific value has been requested, thus allowing to
610  * implement a "nice" semantic. For example, a task running with a 20%
611  * default boost can still drop its own boosting to 0%.
612  */
613 struct uclamp_se {
614 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
615 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
616 	unsigned int active		: 1;
617 	unsigned int user_defined	: 1;
618 };
619 #endif /* CONFIG_UCLAMP_TASK */
620 
621 union rcu_special {
622 	struct {
623 		u8			blocked;
624 		u8			need_qs;
625 		u8			exp_hint; /* Hint for performance. */
626 		u8			deferred_qs;
627 	} b; /* Bits. */
628 	u32 s; /* Set of bits. */
629 };
630 
631 enum perf_event_task_context {
632 	perf_invalid_context = -1,
633 	perf_hw_context = 0,
634 	perf_sw_context,
635 	perf_nr_task_contexts,
636 };
637 
638 struct wake_q_node {
639 	struct wake_q_node *next;
640 };
641 
642 struct task_struct {
643 #ifdef CONFIG_THREAD_INFO_IN_TASK
644 	/*
645 	 * For reasons of header soup (see current_thread_info()), this
646 	 * must be the first element of task_struct.
647 	 */
648 	struct thread_info		thread_info;
649 #endif
650 	/* -1 unrunnable, 0 runnable, >0 stopped: */
651 	volatile long			state;
652 
653 	/*
654 	 * This begins the randomizable portion of task_struct. Only
655 	 * scheduling-critical items should be added above here.
656 	 */
657 	randomized_struct_fields_start
658 
659 	void				*stack;
660 	refcount_t			usage;
661 	/* Per task flags (PF_*), defined further below: */
662 	unsigned int			flags;
663 	unsigned int			ptrace;
664 
665 #ifdef CONFIG_SMP
666 	struct llist_node		wake_entry;
667 	int				on_cpu;
668 #ifdef CONFIG_THREAD_INFO_IN_TASK
669 	/* Current CPU: */
670 	unsigned int			cpu;
671 #endif
672 	unsigned int			wakee_flips;
673 	unsigned long			wakee_flip_decay_ts;
674 	struct task_struct		*last_wakee;
675 
676 	/*
677 	 * recent_used_cpu is initially set as the last CPU used by a task
678 	 * that wakes affine another task. Waker/wakee relationships can
679 	 * push tasks around a CPU where each wakeup moves to the next one.
680 	 * Tracking a recently used CPU allows a quick search for a recently
681 	 * used CPU that may be idle.
682 	 */
683 	int				recent_used_cpu;
684 	int				wake_cpu;
685 #endif
686 	int				on_rq;
687 
688 	int				prio;
689 	int				static_prio;
690 	int				normal_prio;
691 	unsigned int			rt_priority;
692 
693 	const struct sched_class	*sched_class;
694 	struct sched_entity		se;
695 	struct sched_rt_entity		rt;
696 #ifdef CONFIG_CGROUP_SCHED
697 	struct task_group		*sched_task_group;
698 #endif
699 	struct sched_dl_entity		dl;
700 
701 #ifdef CONFIG_UCLAMP_TASK
702 	/* Clamp values requested for a scheduling entity */
703 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
704 	/* Effective clamp values used for a scheduling entity */
705 	struct uclamp_se		uclamp[UCLAMP_CNT];
706 #endif
707 
708 #ifdef CONFIG_PREEMPT_NOTIFIERS
709 	/* List of struct preempt_notifier: */
710 	struct hlist_head		preempt_notifiers;
711 #endif
712 
713 #ifdef CONFIG_BLK_DEV_IO_TRACE
714 	unsigned int			btrace_seq;
715 #endif
716 
717 	unsigned int			policy;
718 	int				nr_cpus_allowed;
719 	const cpumask_t			*cpus_ptr;
720 	cpumask_t			cpus_mask;
721 
722 #ifdef CONFIG_PREEMPT_RCU
723 	int				rcu_read_lock_nesting;
724 	union rcu_special		rcu_read_unlock_special;
725 	struct list_head		rcu_node_entry;
726 	struct rcu_node			*rcu_blocked_node;
727 #endif /* #ifdef CONFIG_PREEMPT_RCU */
728 
729 #ifdef CONFIG_TASKS_RCU
730 	unsigned long			rcu_tasks_nvcsw;
731 	u8				rcu_tasks_holdout;
732 	u8				rcu_tasks_idx;
733 	int				rcu_tasks_idle_cpu;
734 	struct list_head		rcu_tasks_holdout_list;
735 #endif /* #ifdef CONFIG_TASKS_RCU */
736 
737 	struct sched_info		sched_info;
738 
739 	struct list_head		tasks;
740 #ifdef CONFIG_SMP
741 	struct plist_node		pushable_tasks;
742 	struct rb_node			pushable_dl_tasks;
743 #endif
744 
745 	struct mm_struct		*mm;
746 	struct mm_struct		*active_mm;
747 
748 	/* Per-thread vma caching: */
749 	struct vmacache			vmacache;
750 
751 #ifdef SPLIT_RSS_COUNTING
752 	struct task_rss_stat		rss_stat;
753 #endif
754 	int				exit_state;
755 	int				exit_code;
756 	int				exit_signal;
757 	/* The signal sent when the parent dies: */
758 	int				pdeath_signal;
759 	/* JOBCTL_*, siglock protected: */
760 	unsigned long			jobctl;
761 
762 	/* Used for emulating ABI behavior of previous Linux versions: */
763 	unsigned int			personality;
764 
765 	/* Scheduler bits, serialized by scheduler locks: */
766 	unsigned			sched_reset_on_fork:1;
767 	unsigned			sched_contributes_to_load:1;
768 	unsigned			sched_migrated:1;
769 	unsigned			sched_remote_wakeup:1;
770 #ifdef CONFIG_PSI
771 	unsigned			sched_psi_wake_requeue:1;
772 #endif
773 
774 	/* Force alignment to the next boundary: */
775 	unsigned			:0;
776 
777 	/* Unserialized, strictly 'current' */
778 
779 	/* Bit to tell LSMs we're in execve(): */
780 	unsigned			in_execve:1;
781 	unsigned			in_iowait:1;
782 #ifndef TIF_RESTORE_SIGMASK
783 	unsigned			restore_sigmask:1;
784 #endif
785 #ifdef CONFIG_MEMCG
786 	unsigned			in_user_fault:1;
787 #endif
788 #ifdef CONFIG_COMPAT_BRK
789 	unsigned			brk_randomized:1;
790 #endif
791 #ifdef CONFIG_CGROUPS
792 	/* disallow userland-initiated cgroup migration */
793 	unsigned			no_cgroup_migration:1;
794 	/* task is frozen/stopped (used by the cgroup freezer) */
795 	unsigned			frozen:1;
796 #endif
797 #ifdef CONFIG_BLK_CGROUP
798 	/* to be used once the psi infrastructure lands upstream. */
799 	unsigned			use_memdelay:1;
800 #endif
801 
802 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
803 
804 	struct restart_block		restart_block;
805 
806 	pid_t				pid;
807 	pid_t				tgid;
808 
809 #ifdef CONFIG_STACKPROTECTOR
810 	/* Canary value for the -fstack-protector GCC feature: */
811 	unsigned long			stack_canary;
812 #endif
813 	/*
814 	 * Pointers to the (original) parent process, youngest child, younger sibling,
815 	 * older sibling, respectively.  (p->father can be replaced with
816 	 * p->real_parent->pid)
817 	 */
818 
819 	/* Real parent process: */
820 	struct task_struct __rcu	*real_parent;
821 
822 	/* Recipient of SIGCHLD, wait4() reports: */
823 	struct task_struct __rcu	*parent;
824 
825 	/*
826 	 * Children/sibling form the list of natural children:
827 	 */
828 	struct list_head		children;
829 	struct list_head		sibling;
830 	struct task_struct		*group_leader;
831 
832 	/*
833 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
834 	 *
835 	 * This includes both natural children and PTRACE_ATTACH targets.
836 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
837 	 */
838 	struct list_head		ptraced;
839 	struct list_head		ptrace_entry;
840 
841 	/* PID/PID hash table linkage. */
842 	struct pid			*thread_pid;
843 	struct hlist_node		pid_links[PIDTYPE_MAX];
844 	struct list_head		thread_group;
845 	struct list_head		thread_node;
846 
847 	struct completion		*vfork_done;
848 
849 	/* CLONE_CHILD_SETTID: */
850 	int __user			*set_child_tid;
851 
852 	/* CLONE_CHILD_CLEARTID: */
853 	int __user			*clear_child_tid;
854 
855 	u64				utime;
856 	u64				stime;
857 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
858 	u64				utimescaled;
859 	u64				stimescaled;
860 #endif
861 	u64				gtime;
862 	struct prev_cputime		prev_cputime;
863 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
864 	struct vtime			vtime;
865 #endif
866 
867 #ifdef CONFIG_NO_HZ_FULL
868 	atomic_t			tick_dep_mask;
869 #endif
870 	/* Context switch counts: */
871 	unsigned long			nvcsw;
872 	unsigned long			nivcsw;
873 
874 	/* Monotonic time in nsecs: */
875 	u64				start_time;
876 
877 	/* Boot based time in nsecs: */
878 	u64				real_start_time;
879 
880 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
881 	unsigned long			min_flt;
882 	unsigned long			maj_flt;
883 
884 #ifdef CONFIG_POSIX_TIMERS
885 	struct task_cputime		cputime_expires;
886 	struct list_head		cpu_timers[3];
887 #endif
888 
889 	/* Process credentials: */
890 
891 	/* Tracer's credentials at attach: */
892 	const struct cred __rcu		*ptracer_cred;
893 
894 	/* Objective and real subjective task credentials (COW): */
895 	const struct cred __rcu		*real_cred;
896 
897 	/* Effective (overridable) subjective task credentials (COW): */
898 	const struct cred __rcu		*cred;
899 
900 #ifdef CONFIG_KEYS
901 	/* Cached requested key. */
902 	struct key			*cached_requested_key;
903 #endif
904 
905 	/*
906 	 * executable name, excluding path.
907 	 *
908 	 * - normally initialized setup_new_exec()
909 	 * - access it with [gs]et_task_comm()
910 	 * - lock it with task_lock()
911 	 */
912 	char				comm[TASK_COMM_LEN];
913 
914 	struct nameidata		*nameidata;
915 
916 #ifdef CONFIG_SYSVIPC
917 	struct sysv_sem			sysvsem;
918 	struct sysv_shm			sysvshm;
919 #endif
920 #ifdef CONFIG_DETECT_HUNG_TASK
921 	unsigned long			last_switch_count;
922 	unsigned long			last_switch_time;
923 #endif
924 	/* Filesystem information: */
925 	struct fs_struct		*fs;
926 
927 	/* Open file information: */
928 	struct files_struct		*files;
929 
930 	/* Namespaces: */
931 	struct nsproxy			*nsproxy;
932 
933 	/* Signal handlers: */
934 	struct signal_struct		*signal;
935 	struct sighand_struct		*sighand;
936 	sigset_t			blocked;
937 	sigset_t			real_blocked;
938 	/* Restored if set_restore_sigmask() was used: */
939 	sigset_t			saved_sigmask;
940 	struct sigpending		pending;
941 	unsigned long			sas_ss_sp;
942 	size_t				sas_ss_size;
943 	unsigned int			sas_ss_flags;
944 
945 	struct callback_head		*task_works;
946 
947 #ifdef CONFIG_AUDIT
948 #ifdef CONFIG_AUDITSYSCALL
949 	struct audit_context		*audit_context;
950 #endif
951 	kuid_t				loginuid;
952 	unsigned int			sessionid;
953 #endif
954 	struct seccomp			seccomp;
955 
956 	/* Thread group tracking: */
957 	u32				parent_exec_id;
958 	u32				self_exec_id;
959 
960 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
961 	spinlock_t			alloc_lock;
962 
963 	/* Protection of the PI data structures: */
964 	raw_spinlock_t			pi_lock;
965 
966 	struct wake_q_node		wake_q;
967 
968 #ifdef CONFIG_RT_MUTEXES
969 	/* PI waiters blocked on a rt_mutex held by this task: */
970 	struct rb_root_cached		pi_waiters;
971 	/* Updated under owner's pi_lock and rq lock */
972 	struct task_struct		*pi_top_task;
973 	/* Deadlock detection and priority inheritance handling: */
974 	struct rt_mutex_waiter		*pi_blocked_on;
975 #endif
976 
977 #ifdef CONFIG_DEBUG_MUTEXES
978 	/* Mutex deadlock detection: */
979 	struct mutex_waiter		*blocked_on;
980 #endif
981 
982 #ifdef CONFIG_TRACE_IRQFLAGS
983 	unsigned int			irq_events;
984 	unsigned long			hardirq_enable_ip;
985 	unsigned long			hardirq_disable_ip;
986 	unsigned int			hardirq_enable_event;
987 	unsigned int			hardirq_disable_event;
988 	int				hardirqs_enabled;
989 	int				hardirq_context;
990 	unsigned long			softirq_disable_ip;
991 	unsigned long			softirq_enable_ip;
992 	unsigned int			softirq_disable_event;
993 	unsigned int			softirq_enable_event;
994 	int				softirqs_enabled;
995 	int				softirq_context;
996 #endif
997 
998 #ifdef CONFIG_LOCKDEP
999 # define MAX_LOCK_DEPTH			48UL
1000 	u64				curr_chain_key;
1001 	int				lockdep_depth;
1002 	unsigned int			lockdep_recursion;
1003 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1004 #endif
1005 
1006 #ifdef CONFIG_UBSAN
1007 	unsigned int			in_ubsan;
1008 #endif
1009 
1010 	/* Journalling filesystem info: */
1011 	void				*journal_info;
1012 
1013 	/* Stacked block device info: */
1014 	struct bio_list			*bio_list;
1015 
1016 #ifdef CONFIG_BLOCK
1017 	/* Stack plugging: */
1018 	struct blk_plug			*plug;
1019 #endif
1020 
1021 	/* VM state: */
1022 	struct reclaim_state		*reclaim_state;
1023 
1024 	struct backing_dev_info		*backing_dev_info;
1025 
1026 	struct io_context		*io_context;
1027 
1028 #ifdef CONFIG_COMPACTION
1029 	struct capture_control		*capture_control;
1030 #endif
1031 	/* Ptrace state: */
1032 	unsigned long			ptrace_message;
1033 	kernel_siginfo_t		*last_siginfo;
1034 
1035 	struct task_io_accounting	ioac;
1036 #ifdef CONFIG_PSI
1037 	/* Pressure stall state */
1038 	unsigned int			psi_flags;
1039 #endif
1040 #ifdef CONFIG_TASK_XACCT
1041 	/* Accumulated RSS usage: */
1042 	u64				acct_rss_mem1;
1043 	/* Accumulated virtual memory usage: */
1044 	u64				acct_vm_mem1;
1045 	/* stime + utime since last update: */
1046 	u64				acct_timexpd;
1047 #endif
1048 #ifdef CONFIG_CPUSETS
1049 	/* Protected by ->alloc_lock: */
1050 	nodemask_t			mems_allowed;
1051 	/* Seqence number to catch updates: */
1052 	seqcount_t			mems_allowed_seq;
1053 	int				cpuset_mem_spread_rotor;
1054 	int				cpuset_slab_spread_rotor;
1055 #endif
1056 #ifdef CONFIG_CGROUPS
1057 	/* Control Group info protected by css_set_lock: */
1058 	struct css_set __rcu		*cgroups;
1059 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1060 	struct list_head		cg_list;
1061 #endif
1062 #ifdef CONFIG_X86_CPU_RESCTRL
1063 	u32				closid;
1064 	u32				rmid;
1065 #endif
1066 #ifdef CONFIG_FUTEX
1067 	struct robust_list_head __user	*robust_list;
1068 #ifdef CONFIG_COMPAT
1069 	struct compat_robust_list_head __user *compat_robust_list;
1070 #endif
1071 	struct list_head		pi_state_list;
1072 	struct futex_pi_state		*pi_state_cache;
1073 #endif
1074 #ifdef CONFIG_PERF_EVENTS
1075 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1076 	struct mutex			perf_event_mutex;
1077 	struct list_head		perf_event_list;
1078 #endif
1079 #ifdef CONFIG_DEBUG_PREEMPT
1080 	unsigned long			preempt_disable_ip;
1081 #endif
1082 #ifdef CONFIG_NUMA
1083 	/* Protected by alloc_lock: */
1084 	struct mempolicy		*mempolicy;
1085 	short				il_prev;
1086 	short				pref_node_fork;
1087 #endif
1088 #ifdef CONFIG_NUMA_BALANCING
1089 	int				numa_scan_seq;
1090 	unsigned int			numa_scan_period;
1091 	unsigned int			numa_scan_period_max;
1092 	int				numa_preferred_nid;
1093 	unsigned long			numa_migrate_retry;
1094 	/* Migration stamp: */
1095 	u64				node_stamp;
1096 	u64				last_task_numa_placement;
1097 	u64				last_sum_exec_runtime;
1098 	struct callback_head		numa_work;
1099 
1100 	/*
1101 	 * This pointer is only modified for current in syscall and
1102 	 * pagefault context (and for tasks being destroyed), so it can be read
1103 	 * from any of the following contexts:
1104 	 *  - RCU read-side critical section
1105 	 *  - current->numa_group from everywhere
1106 	 *  - task's runqueue locked, task not running
1107 	 */
1108 	struct numa_group __rcu		*numa_group;
1109 
1110 	/*
1111 	 * numa_faults is an array split into four regions:
1112 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1113 	 * in this precise order.
1114 	 *
1115 	 * faults_memory: Exponential decaying average of faults on a per-node
1116 	 * basis. Scheduling placement decisions are made based on these
1117 	 * counts. The values remain static for the duration of a PTE scan.
1118 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1119 	 * hinting fault was incurred.
1120 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1121 	 * during the current scan window. When the scan completes, the counts
1122 	 * in faults_memory and faults_cpu decay and these values are copied.
1123 	 */
1124 	unsigned long			*numa_faults;
1125 	unsigned long			total_numa_faults;
1126 
1127 	/*
1128 	 * numa_faults_locality tracks if faults recorded during the last
1129 	 * scan window were remote/local or failed to migrate. The task scan
1130 	 * period is adapted based on the locality of the faults with different
1131 	 * weights depending on whether they were shared or private faults
1132 	 */
1133 	unsigned long			numa_faults_locality[3];
1134 
1135 	unsigned long			numa_pages_migrated;
1136 #endif /* CONFIG_NUMA_BALANCING */
1137 
1138 #ifdef CONFIG_RSEQ
1139 	struct rseq __user *rseq;
1140 	u32 rseq_sig;
1141 	/*
1142 	 * RmW on rseq_event_mask must be performed atomically
1143 	 * with respect to preemption.
1144 	 */
1145 	unsigned long rseq_event_mask;
1146 #endif
1147 
1148 	struct tlbflush_unmap_batch	tlb_ubc;
1149 
1150 	union {
1151 		refcount_t		rcu_users;
1152 		struct rcu_head		rcu;
1153 	};
1154 
1155 	/* Cache last used pipe for splice(): */
1156 	struct pipe_inode_info		*splice_pipe;
1157 
1158 	struct page_frag		task_frag;
1159 
1160 #ifdef CONFIG_TASK_DELAY_ACCT
1161 	struct task_delay_info		*delays;
1162 #endif
1163 
1164 #ifdef CONFIG_FAULT_INJECTION
1165 	int				make_it_fail;
1166 	unsigned int			fail_nth;
1167 #endif
1168 	/*
1169 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1170 	 * balance_dirty_pages() for a dirty throttling pause:
1171 	 */
1172 	int				nr_dirtied;
1173 	int				nr_dirtied_pause;
1174 	/* Start of a write-and-pause period: */
1175 	unsigned long			dirty_paused_when;
1176 
1177 #ifdef CONFIG_LATENCYTOP
1178 	int				latency_record_count;
1179 	struct latency_record		latency_record[LT_SAVECOUNT];
1180 #endif
1181 	/*
1182 	 * Time slack values; these are used to round up poll() and
1183 	 * select() etc timeout values. These are in nanoseconds.
1184 	 */
1185 	u64				timer_slack_ns;
1186 	u64				default_timer_slack_ns;
1187 
1188 #ifdef CONFIG_KASAN
1189 	unsigned int			kasan_depth;
1190 #endif
1191 
1192 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1193 	/* Index of current stored address in ret_stack: */
1194 	int				curr_ret_stack;
1195 	int				curr_ret_depth;
1196 
1197 	/* Stack of return addresses for return function tracing: */
1198 	struct ftrace_ret_stack		*ret_stack;
1199 
1200 	/* Timestamp for last schedule: */
1201 	unsigned long long		ftrace_timestamp;
1202 
1203 	/*
1204 	 * Number of functions that haven't been traced
1205 	 * because of depth overrun:
1206 	 */
1207 	atomic_t			trace_overrun;
1208 
1209 	/* Pause tracing: */
1210 	atomic_t			tracing_graph_pause;
1211 #endif
1212 
1213 #ifdef CONFIG_TRACING
1214 	/* State flags for use by tracers: */
1215 	unsigned long			trace;
1216 
1217 	/* Bitmask and counter of trace recursion: */
1218 	unsigned long			trace_recursion;
1219 #endif /* CONFIG_TRACING */
1220 
1221 #ifdef CONFIG_KCOV
1222 	/* Coverage collection mode enabled for this task (0 if disabled): */
1223 	unsigned int			kcov_mode;
1224 
1225 	/* Size of the kcov_area: */
1226 	unsigned int			kcov_size;
1227 
1228 	/* Buffer for coverage collection: */
1229 	void				*kcov_area;
1230 
1231 	/* KCOV descriptor wired with this task or NULL: */
1232 	struct kcov			*kcov;
1233 #endif
1234 
1235 #ifdef CONFIG_MEMCG
1236 	struct mem_cgroup		*memcg_in_oom;
1237 	gfp_t				memcg_oom_gfp_mask;
1238 	int				memcg_oom_order;
1239 
1240 	/* Number of pages to reclaim on returning to userland: */
1241 	unsigned int			memcg_nr_pages_over_high;
1242 
1243 	/* Used by memcontrol for targeted memcg charge: */
1244 	struct mem_cgroup		*active_memcg;
1245 #endif
1246 
1247 #ifdef CONFIG_BLK_CGROUP
1248 	struct request_queue		*throttle_queue;
1249 #endif
1250 
1251 #ifdef CONFIG_UPROBES
1252 	struct uprobe_task		*utask;
1253 #endif
1254 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1255 	unsigned int			sequential_io;
1256 	unsigned int			sequential_io_avg;
1257 #endif
1258 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1259 	unsigned long			task_state_change;
1260 #endif
1261 	int				pagefault_disabled;
1262 #ifdef CONFIG_MMU
1263 	struct task_struct		*oom_reaper_list;
1264 #endif
1265 #ifdef CONFIG_VMAP_STACK
1266 	struct vm_struct		*stack_vm_area;
1267 #endif
1268 #ifdef CONFIG_THREAD_INFO_IN_TASK
1269 	/* A live task holds one reference: */
1270 	refcount_t			stack_refcount;
1271 #endif
1272 #ifdef CONFIG_LIVEPATCH
1273 	int patch_state;
1274 #endif
1275 #ifdef CONFIG_SECURITY
1276 	/* Used by LSM modules for access restriction: */
1277 	void				*security;
1278 #endif
1279 
1280 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1281 	unsigned long			lowest_stack;
1282 	unsigned long			prev_lowest_stack;
1283 #endif
1284 
1285 	/*
1286 	 * New fields for task_struct should be added above here, so that
1287 	 * they are included in the randomized portion of task_struct.
1288 	 */
1289 	randomized_struct_fields_end
1290 
1291 	/* CPU-specific state of this task: */
1292 	struct thread_struct		thread;
1293 
1294 	/*
1295 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1296 	 * structure.  It *MUST* be at the end of 'task_struct'.
1297 	 *
1298 	 * Do not put anything below here!
1299 	 */
1300 };
1301 
1302 static inline struct pid *task_pid(struct task_struct *task)
1303 {
1304 	return task->thread_pid;
1305 }
1306 
1307 /*
1308  * the helpers to get the task's different pids as they are seen
1309  * from various namespaces
1310  *
1311  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1312  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1313  *                     current.
1314  * task_xid_nr_ns()  : id seen from the ns specified;
1315  *
1316  * see also pid_nr() etc in include/linux/pid.h
1317  */
1318 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1319 
1320 static inline pid_t task_pid_nr(struct task_struct *tsk)
1321 {
1322 	return tsk->pid;
1323 }
1324 
1325 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1326 {
1327 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1328 }
1329 
1330 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1331 {
1332 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1333 }
1334 
1335 
1336 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1337 {
1338 	return tsk->tgid;
1339 }
1340 
1341 /**
1342  * pid_alive - check that a task structure is not stale
1343  * @p: Task structure to be checked.
1344  *
1345  * Test if a process is not yet dead (at most zombie state)
1346  * If pid_alive fails, then pointers within the task structure
1347  * can be stale and must not be dereferenced.
1348  *
1349  * Return: 1 if the process is alive. 0 otherwise.
1350  */
1351 static inline int pid_alive(const struct task_struct *p)
1352 {
1353 	return p->thread_pid != NULL;
1354 }
1355 
1356 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1357 {
1358 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1359 }
1360 
1361 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1362 {
1363 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1364 }
1365 
1366 
1367 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1368 {
1369 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1370 }
1371 
1372 static inline pid_t task_session_vnr(struct task_struct *tsk)
1373 {
1374 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1375 }
1376 
1377 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1378 {
1379 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1380 }
1381 
1382 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1383 {
1384 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1385 }
1386 
1387 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1388 {
1389 	pid_t pid = 0;
1390 
1391 	rcu_read_lock();
1392 	if (pid_alive(tsk))
1393 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1394 	rcu_read_unlock();
1395 
1396 	return pid;
1397 }
1398 
1399 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1400 {
1401 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1402 }
1403 
1404 /* Obsolete, do not use: */
1405 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1406 {
1407 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1408 }
1409 
1410 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1411 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1412 
1413 static inline unsigned int task_state_index(struct task_struct *tsk)
1414 {
1415 	unsigned int tsk_state = READ_ONCE(tsk->state);
1416 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1417 
1418 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1419 
1420 	if (tsk_state == TASK_IDLE)
1421 		state = TASK_REPORT_IDLE;
1422 
1423 	return fls(state);
1424 }
1425 
1426 static inline char task_index_to_char(unsigned int state)
1427 {
1428 	static const char state_char[] = "RSDTtXZPI";
1429 
1430 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1431 
1432 	return state_char[state];
1433 }
1434 
1435 static inline char task_state_to_char(struct task_struct *tsk)
1436 {
1437 	return task_index_to_char(task_state_index(tsk));
1438 }
1439 
1440 /**
1441  * is_global_init - check if a task structure is init. Since init
1442  * is free to have sub-threads we need to check tgid.
1443  * @tsk: Task structure to be checked.
1444  *
1445  * Check if a task structure is the first user space task the kernel created.
1446  *
1447  * Return: 1 if the task structure is init. 0 otherwise.
1448  */
1449 static inline int is_global_init(struct task_struct *tsk)
1450 {
1451 	return task_tgid_nr(tsk) == 1;
1452 }
1453 
1454 extern struct pid *cad_pid;
1455 
1456 /*
1457  * Per process flags
1458  */
1459 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1460 #define PF_EXITING		0x00000004	/* Getting shut down */
1461 #define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
1462 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1463 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1464 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1465 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1466 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1467 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1468 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1469 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1470 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1471 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1472 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1473 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1474 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1475 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1476 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1477 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1478 #define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
1479 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1480 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1481 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1482 #define PF_MEMSTALL		0x01000000	/* Stalled due to lack of memory */
1483 #define PF_UMH			0x02000000	/* I'm an Usermodehelper process */
1484 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1485 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1486 #define PF_MEMALLOC_NOCMA	0x10000000	/* All allocation request will have _GFP_MOVABLE cleared */
1487 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1488 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1489 
1490 /*
1491  * Only the _current_ task can read/write to tsk->flags, but other
1492  * tasks can access tsk->flags in readonly mode for example
1493  * with tsk_used_math (like during threaded core dumping).
1494  * There is however an exception to this rule during ptrace
1495  * or during fork: the ptracer task is allowed to write to the
1496  * child->flags of its traced child (same goes for fork, the parent
1497  * can write to the child->flags), because we're guaranteed the
1498  * child is not running and in turn not changing child->flags
1499  * at the same time the parent does it.
1500  */
1501 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1502 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1503 #define clear_used_math()			clear_stopped_child_used_math(current)
1504 #define set_used_math()				set_stopped_child_used_math(current)
1505 
1506 #define conditional_stopped_child_used_math(condition, child) \
1507 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1508 
1509 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1510 
1511 #define copy_to_stopped_child_used_math(child) \
1512 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1513 
1514 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1515 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1516 #define used_math()				tsk_used_math(current)
1517 
1518 static inline bool is_percpu_thread(void)
1519 {
1520 #ifdef CONFIG_SMP
1521 	return (current->flags & PF_NO_SETAFFINITY) &&
1522 		(current->nr_cpus_allowed  == 1);
1523 #else
1524 	return true;
1525 #endif
1526 }
1527 
1528 /* Per-process atomic flags. */
1529 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1530 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1531 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1532 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1533 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1534 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1535 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1536 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1537 
1538 #define TASK_PFA_TEST(name, func)					\
1539 	static inline bool task_##func(struct task_struct *p)		\
1540 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1541 
1542 #define TASK_PFA_SET(name, func)					\
1543 	static inline void task_set_##func(struct task_struct *p)	\
1544 	{ set_bit(PFA_##name, &p->atomic_flags); }
1545 
1546 #define TASK_PFA_CLEAR(name, func)					\
1547 	static inline void task_clear_##func(struct task_struct *p)	\
1548 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1549 
1550 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1551 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1552 
1553 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1554 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1555 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1556 
1557 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1558 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1559 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1560 
1561 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1562 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1563 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1564 
1565 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1566 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1567 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1568 
1569 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1570 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1571 
1572 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1573 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1574 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1575 
1576 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1577 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1578 
1579 static inline void
1580 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1581 {
1582 	current->flags &= ~flags;
1583 	current->flags |= orig_flags & flags;
1584 }
1585 
1586 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1587 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1588 #ifdef CONFIG_SMP
1589 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1590 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1591 #else
1592 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1593 {
1594 }
1595 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1596 {
1597 	if (!cpumask_test_cpu(0, new_mask))
1598 		return -EINVAL;
1599 	return 0;
1600 }
1601 #endif
1602 
1603 extern int yield_to(struct task_struct *p, bool preempt);
1604 extern void set_user_nice(struct task_struct *p, long nice);
1605 extern int task_prio(const struct task_struct *p);
1606 
1607 /**
1608  * task_nice - return the nice value of a given task.
1609  * @p: the task in question.
1610  *
1611  * Return: The nice value [ -20 ... 0 ... 19 ].
1612  */
1613 static inline int task_nice(const struct task_struct *p)
1614 {
1615 	return PRIO_TO_NICE((p)->static_prio);
1616 }
1617 
1618 extern int can_nice(const struct task_struct *p, const int nice);
1619 extern int task_curr(const struct task_struct *p);
1620 extern int idle_cpu(int cpu);
1621 extern int available_idle_cpu(int cpu);
1622 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1623 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1624 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1625 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1626 extern struct task_struct *idle_task(int cpu);
1627 
1628 /**
1629  * is_idle_task - is the specified task an idle task?
1630  * @p: the task in question.
1631  *
1632  * Return: 1 if @p is an idle task. 0 otherwise.
1633  */
1634 static inline bool is_idle_task(const struct task_struct *p)
1635 {
1636 	return !!(p->flags & PF_IDLE);
1637 }
1638 
1639 extern struct task_struct *curr_task(int cpu);
1640 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1641 
1642 void yield(void);
1643 
1644 union thread_union {
1645 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1646 	struct task_struct task;
1647 #endif
1648 #ifndef CONFIG_THREAD_INFO_IN_TASK
1649 	struct thread_info thread_info;
1650 #endif
1651 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1652 };
1653 
1654 #ifndef CONFIG_THREAD_INFO_IN_TASK
1655 extern struct thread_info init_thread_info;
1656 #endif
1657 
1658 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1659 
1660 #ifdef CONFIG_THREAD_INFO_IN_TASK
1661 static inline struct thread_info *task_thread_info(struct task_struct *task)
1662 {
1663 	return &task->thread_info;
1664 }
1665 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1666 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1667 #endif
1668 
1669 /*
1670  * find a task by one of its numerical ids
1671  *
1672  * find_task_by_pid_ns():
1673  *      finds a task by its pid in the specified namespace
1674  * find_task_by_vpid():
1675  *      finds a task by its virtual pid
1676  *
1677  * see also find_vpid() etc in include/linux/pid.h
1678  */
1679 
1680 extern struct task_struct *find_task_by_vpid(pid_t nr);
1681 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1682 
1683 /*
1684  * find a task by its virtual pid and get the task struct
1685  */
1686 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1687 
1688 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1689 extern int wake_up_process(struct task_struct *tsk);
1690 extern void wake_up_new_task(struct task_struct *tsk);
1691 
1692 #ifdef CONFIG_SMP
1693 extern void kick_process(struct task_struct *tsk);
1694 #else
1695 static inline void kick_process(struct task_struct *tsk) { }
1696 #endif
1697 
1698 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1699 
1700 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1701 {
1702 	__set_task_comm(tsk, from, false);
1703 }
1704 
1705 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1706 #define get_task_comm(buf, tsk) ({			\
1707 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1708 	__get_task_comm(buf, sizeof(buf), tsk);		\
1709 })
1710 
1711 #ifdef CONFIG_SMP
1712 void scheduler_ipi(void);
1713 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1714 #else
1715 static inline void scheduler_ipi(void) { }
1716 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1717 {
1718 	return 1;
1719 }
1720 #endif
1721 
1722 /*
1723  * Set thread flags in other task's structures.
1724  * See asm/thread_info.h for TIF_xxxx flags available:
1725  */
1726 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1727 {
1728 	set_ti_thread_flag(task_thread_info(tsk), flag);
1729 }
1730 
1731 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1732 {
1733 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1734 }
1735 
1736 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1737 					  bool value)
1738 {
1739 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1740 }
1741 
1742 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1743 {
1744 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1745 }
1746 
1747 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1748 {
1749 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1750 }
1751 
1752 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1753 {
1754 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1755 }
1756 
1757 static inline void set_tsk_need_resched(struct task_struct *tsk)
1758 {
1759 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1760 }
1761 
1762 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1763 {
1764 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1765 }
1766 
1767 static inline int test_tsk_need_resched(struct task_struct *tsk)
1768 {
1769 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1770 }
1771 
1772 /*
1773  * cond_resched() and cond_resched_lock(): latency reduction via
1774  * explicit rescheduling in places that are safe. The return
1775  * value indicates whether a reschedule was done in fact.
1776  * cond_resched_lock() will drop the spinlock before scheduling,
1777  */
1778 #ifndef CONFIG_PREEMPTION
1779 extern int _cond_resched(void);
1780 #else
1781 static inline int _cond_resched(void) { return 0; }
1782 #endif
1783 
1784 #define cond_resched() ({			\
1785 	___might_sleep(__FILE__, __LINE__, 0);	\
1786 	_cond_resched();			\
1787 })
1788 
1789 extern int __cond_resched_lock(spinlock_t *lock);
1790 
1791 #define cond_resched_lock(lock) ({				\
1792 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1793 	__cond_resched_lock(lock);				\
1794 })
1795 
1796 static inline void cond_resched_rcu(void)
1797 {
1798 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1799 	rcu_read_unlock();
1800 	cond_resched();
1801 	rcu_read_lock();
1802 #endif
1803 }
1804 
1805 /*
1806  * Does a critical section need to be broken due to another
1807  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1808  * but a general need for low latency)
1809  */
1810 static inline int spin_needbreak(spinlock_t *lock)
1811 {
1812 #ifdef CONFIG_PREEMPTION
1813 	return spin_is_contended(lock);
1814 #else
1815 	return 0;
1816 #endif
1817 }
1818 
1819 static __always_inline bool need_resched(void)
1820 {
1821 	return unlikely(tif_need_resched());
1822 }
1823 
1824 /*
1825  * Wrappers for p->thread_info->cpu access. No-op on UP.
1826  */
1827 #ifdef CONFIG_SMP
1828 
1829 static inline unsigned int task_cpu(const struct task_struct *p)
1830 {
1831 #ifdef CONFIG_THREAD_INFO_IN_TASK
1832 	return READ_ONCE(p->cpu);
1833 #else
1834 	return READ_ONCE(task_thread_info(p)->cpu);
1835 #endif
1836 }
1837 
1838 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1839 
1840 #else
1841 
1842 static inline unsigned int task_cpu(const struct task_struct *p)
1843 {
1844 	return 0;
1845 }
1846 
1847 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1848 {
1849 }
1850 
1851 #endif /* CONFIG_SMP */
1852 
1853 /*
1854  * In order to reduce various lock holder preemption latencies provide an
1855  * interface to see if a vCPU is currently running or not.
1856  *
1857  * This allows us to terminate optimistic spin loops and block, analogous to
1858  * the native optimistic spin heuristic of testing if the lock owner task is
1859  * running or not.
1860  */
1861 #ifndef vcpu_is_preempted
1862 static inline bool vcpu_is_preempted(int cpu)
1863 {
1864 	return false;
1865 }
1866 #endif
1867 
1868 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1869 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1870 
1871 #ifndef TASK_SIZE_OF
1872 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1873 #endif
1874 
1875 #ifdef CONFIG_RSEQ
1876 
1877 /*
1878  * Map the event mask on the user-space ABI enum rseq_cs_flags
1879  * for direct mask checks.
1880  */
1881 enum rseq_event_mask_bits {
1882 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1883 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1884 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1885 };
1886 
1887 enum rseq_event_mask {
1888 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
1889 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
1890 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
1891 };
1892 
1893 static inline void rseq_set_notify_resume(struct task_struct *t)
1894 {
1895 	if (t->rseq)
1896 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1897 }
1898 
1899 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1900 
1901 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1902 					     struct pt_regs *regs)
1903 {
1904 	if (current->rseq)
1905 		__rseq_handle_notify_resume(ksig, regs);
1906 }
1907 
1908 static inline void rseq_signal_deliver(struct ksignal *ksig,
1909 				       struct pt_regs *regs)
1910 {
1911 	preempt_disable();
1912 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1913 	preempt_enable();
1914 	rseq_handle_notify_resume(ksig, regs);
1915 }
1916 
1917 /* rseq_preempt() requires preemption to be disabled. */
1918 static inline void rseq_preempt(struct task_struct *t)
1919 {
1920 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1921 	rseq_set_notify_resume(t);
1922 }
1923 
1924 /* rseq_migrate() requires preemption to be disabled. */
1925 static inline void rseq_migrate(struct task_struct *t)
1926 {
1927 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1928 	rseq_set_notify_resume(t);
1929 }
1930 
1931 /*
1932  * If parent process has a registered restartable sequences area, the
1933  * child inherits. Only applies when forking a process, not a thread.
1934  */
1935 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1936 {
1937 	if (clone_flags & CLONE_THREAD) {
1938 		t->rseq = NULL;
1939 		t->rseq_sig = 0;
1940 		t->rseq_event_mask = 0;
1941 	} else {
1942 		t->rseq = current->rseq;
1943 		t->rseq_sig = current->rseq_sig;
1944 		t->rseq_event_mask = current->rseq_event_mask;
1945 	}
1946 }
1947 
1948 static inline void rseq_execve(struct task_struct *t)
1949 {
1950 	t->rseq = NULL;
1951 	t->rseq_sig = 0;
1952 	t->rseq_event_mask = 0;
1953 }
1954 
1955 #else
1956 
1957 static inline void rseq_set_notify_resume(struct task_struct *t)
1958 {
1959 }
1960 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1961 					     struct pt_regs *regs)
1962 {
1963 }
1964 static inline void rseq_signal_deliver(struct ksignal *ksig,
1965 				       struct pt_regs *regs)
1966 {
1967 }
1968 static inline void rseq_preempt(struct task_struct *t)
1969 {
1970 }
1971 static inline void rseq_migrate(struct task_struct *t)
1972 {
1973 }
1974 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1975 {
1976 }
1977 static inline void rseq_execve(struct task_struct *t)
1978 {
1979 }
1980 
1981 #endif
1982 
1983 void __exit_umh(struct task_struct *tsk);
1984 
1985 static inline void exit_umh(struct task_struct *tsk)
1986 {
1987 	if (unlikely(tsk->flags & PF_UMH))
1988 		__exit_umh(tsk);
1989 }
1990 
1991 #ifdef CONFIG_DEBUG_RSEQ
1992 
1993 void rseq_syscall(struct pt_regs *regs);
1994 
1995 #else
1996 
1997 static inline void rseq_syscall(struct pt_regs *regs)
1998 {
1999 }
2000 
2001 #endif
2002 
2003 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2004 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2005 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2006 
2007 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2008 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2009 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2010 
2011 int sched_trace_rq_cpu(struct rq *rq);
2012 
2013 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2014 
2015 #endif
2016