1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <linux/auxvec.h> /* For AT_VECTOR_SIZE */ 5 6 /* 7 * cloning flags: 8 */ 9 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 10 #define CLONE_VM 0x00000100 /* set if VM shared between processes */ 11 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 12 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 13 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 14 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 15 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 16 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 17 #define CLONE_THREAD 0x00010000 /* Same thread group? */ 18 #define CLONE_NEWNS 0x00020000 /* New namespace group? */ 19 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 20 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 21 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 22 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 23 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 24 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 25 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 26 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 27 28 /* 29 * Scheduling policies 30 */ 31 #define SCHED_NORMAL 0 32 #define SCHED_FIFO 1 33 #define SCHED_RR 2 34 #define SCHED_BATCH 3 35 36 #ifdef __KERNEL__ 37 38 struct sched_param { 39 int sched_priority; 40 }; 41 42 #include <asm/param.h> /* for HZ */ 43 44 #include <linux/capability.h> 45 #include <linux/threads.h> 46 #include <linux/kernel.h> 47 #include <linux/types.h> 48 #include <linux/timex.h> 49 #include <linux/jiffies.h> 50 #include <linux/rbtree.h> 51 #include <linux/thread_info.h> 52 #include <linux/cpumask.h> 53 #include <linux/errno.h> 54 #include <linux/nodemask.h> 55 56 #include <asm/system.h> 57 #include <asm/semaphore.h> 58 #include <asm/page.h> 59 #include <asm/ptrace.h> 60 #include <asm/mmu.h> 61 #include <asm/cputime.h> 62 63 #include <linux/smp.h> 64 #include <linux/sem.h> 65 #include <linux/signal.h> 66 #include <linux/securebits.h> 67 #include <linux/fs_struct.h> 68 #include <linux/compiler.h> 69 #include <linux/completion.h> 70 #include <linux/pid.h> 71 #include <linux/percpu.h> 72 #include <linux/topology.h> 73 #include <linux/seccomp.h> 74 #include <linux/rcupdate.h> 75 #include <linux/futex.h> 76 #include <linux/rtmutex.h> 77 78 #include <linux/time.h> 79 #include <linux/param.h> 80 #include <linux/resource.h> 81 #include <linux/timer.h> 82 #include <linux/hrtimer.h> 83 84 #include <asm/processor.h> 85 86 struct exec_domain; 87 struct futex_pi_state; 88 89 /* 90 * List of flags we want to share for kernel threads, 91 * if only because they are not used by them anyway. 92 */ 93 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 94 95 /* 96 * These are the constant used to fake the fixed-point load-average 97 * counting. Some notes: 98 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 99 * a load-average precision of 10 bits integer + 11 bits fractional 100 * - if you want to count load-averages more often, you need more 101 * precision, or rounding will get you. With 2-second counting freq, 102 * the EXP_n values would be 1981, 2034 and 2043 if still using only 103 * 11 bit fractions. 104 */ 105 extern unsigned long avenrun[]; /* Load averages */ 106 107 #define FSHIFT 11 /* nr of bits of precision */ 108 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 109 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */ 110 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 111 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 112 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 113 114 #define CALC_LOAD(load,exp,n) \ 115 load *= exp; \ 116 load += n*(FIXED_1-exp); \ 117 load >>= FSHIFT; 118 119 extern unsigned long total_forks; 120 extern int nr_threads; 121 extern int last_pid; 122 DECLARE_PER_CPU(unsigned long, process_counts); 123 extern int nr_processes(void); 124 extern unsigned long nr_running(void); 125 extern unsigned long nr_uninterruptible(void); 126 extern unsigned long nr_active(void); 127 extern unsigned long nr_iowait(void); 128 extern unsigned long weighted_cpuload(const int cpu); 129 130 131 /* 132 * Task state bitmask. NOTE! These bits are also 133 * encoded in fs/proc/array.c: get_task_state(). 134 * 135 * We have two separate sets of flags: task->state 136 * is about runnability, while task->exit_state are 137 * about the task exiting. Confusing, but this way 138 * modifying one set can't modify the other one by 139 * mistake. 140 */ 141 #define TASK_RUNNING 0 142 #define TASK_INTERRUPTIBLE 1 143 #define TASK_UNINTERRUPTIBLE 2 144 #define TASK_STOPPED 4 145 #define TASK_TRACED 8 146 /* in tsk->exit_state */ 147 #define EXIT_ZOMBIE 16 148 #define EXIT_DEAD 32 149 /* in tsk->state again */ 150 #define TASK_NONINTERACTIVE 64 151 152 #define __set_task_state(tsk, state_value) \ 153 do { (tsk)->state = (state_value); } while (0) 154 #define set_task_state(tsk, state_value) \ 155 set_mb((tsk)->state, (state_value)) 156 157 /* 158 * set_current_state() includes a barrier so that the write of current->state 159 * is correctly serialised wrt the caller's subsequent test of whether to 160 * actually sleep: 161 * 162 * set_current_state(TASK_UNINTERRUPTIBLE); 163 * if (do_i_need_to_sleep()) 164 * schedule(); 165 * 166 * If the caller does not need such serialisation then use __set_current_state() 167 */ 168 #define __set_current_state(state_value) \ 169 do { current->state = (state_value); } while (0) 170 #define set_current_state(state_value) \ 171 set_mb(current->state, (state_value)) 172 173 /* Task command name length */ 174 #define TASK_COMM_LEN 16 175 176 #include <linux/spinlock.h> 177 178 /* 179 * This serializes "schedule()" and also protects 180 * the run-queue from deletions/modifications (but 181 * _adding_ to the beginning of the run-queue has 182 * a separate lock). 183 */ 184 extern rwlock_t tasklist_lock; 185 extern spinlock_t mmlist_lock; 186 187 struct task_struct; 188 189 extern void sched_init(void); 190 extern void sched_init_smp(void); 191 extern void init_idle(struct task_struct *idle, int cpu); 192 193 extern cpumask_t nohz_cpu_mask; 194 195 extern void show_state(void); 196 extern void show_regs(struct pt_regs *); 197 198 /* 199 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 200 * task), SP is the stack pointer of the first frame that should be shown in the back 201 * trace (or NULL if the entire call-chain of the task should be shown). 202 */ 203 extern void show_stack(struct task_struct *task, unsigned long *sp); 204 205 void io_schedule(void); 206 long io_schedule_timeout(long timeout); 207 208 extern void cpu_init (void); 209 extern void trap_init(void); 210 extern void update_process_times(int user); 211 extern void scheduler_tick(void); 212 213 #ifdef CONFIG_DETECT_SOFTLOCKUP 214 extern void softlockup_tick(void); 215 extern void spawn_softlockup_task(void); 216 extern void touch_softlockup_watchdog(void); 217 #else 218 static inline void softlockup_tick(void) 219 { 220 } 221 static inline void spawn_softlockup_task(void) 222 { 223 } 224 static inline void touch_softlockup_watchdog(void) 225 { 226 } 227 #endif 228 229 230 /* Attach to any functions which should be ignored in wchan output. */ 231 #define __sched __attribute__((__section__(".sched.text"))) 232 /* Is this address in the __sched functions? */ 233 extern int in_sched_functions(unsigned long addr); 234 235 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 236 extern signed long FASTCALL(schedule_timeout(signed long timeout)); 237 extern signed long schedule_timeout_interruptible(signed long timeout); 238 extern signed long schedule_timeout_uninterruptible(signed long timeout); 239 asmlinkage void schedule(void); 240 241 struct namespace; 242 243 /* Maximum number of active map areas.. This is a random (large) number */ 244 #define DEFAULT_MAX_MAP_COUNT 65536 245 246 extern int sysctl_max_map_count; 247 248 #include <linux/aio.h> 249 250 extern unsigned long 251 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 252 unsigned long, unsigned long); 253 extern unsigned long 254 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 255 unsigned long len, unsigned long pgoff, 256 unsigned long flags); 257 extern void arch_unmap_area(struct mm_struct *, unsigned long); 258 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 259 260 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 261 /* 262 * The mm counters are not protected by its page_table_lock, 263 * so must be incremented atomically. 264 */ 265 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value) 266 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member)) 267 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member) 268 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member) 269 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member) 270 typedef atomic_long_t mm_counter_t; 271 272 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 273 /* 274 * The mm counters are protected by its page_table_lock, 275 * so can be incremented directly. 276 */ 277 #define set_mm_counter(mm, member, value) (mm)->_##member = (value) 278 #define get_mm_counter(mm, member) ((mm)->_##member) 279 #define add_mm_counter(mm, member, value) (mm)->_##member += (value) 280 #define inc_mm_counter(mm, member) (mm)->_##member++ 281 #define dec_mm_counter(mm, member) (mm)->_##member-- 282 typedef unsigned long mm_counter_t; 283 284 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 285 286 #define get_mm_rss(mm) \ 287 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss)) 288 #define update_hiwater_rss(mm) do { \ 289 unsigned long _rss = get_mm_rss(mm); \ 290 if ((mm)->hiwater_rss < _rss) \ 291 (mm)->hiwater_rss = _rss; \ 292 } while (0) 293 #define update_hiwater_vm(mm) do { \ 294 if ((mm)->hiwater_vm < (mm)->total_vm) \ 295 (mm)->hiwater_vm = (mm)->total_vm; \ 296 } while (0) 297 298 struct mm_struct { 299 struct vm_area_struct * mmap; /* list of VMAs */ 300 struct rb_root mm_rb; 301 struct vm_area_struct * mmap_cache; /* last find_vma result */ 302 unsigned long (*get_unmapped_area) (struct file *filp, 303 unsigned long addr, unsigned long len, 304 unsigned long pgoff, unsigned long flags); 305 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 306 unsigned long mmap_base; /* base of mmap area */ 307 unsigned long task_size; /* size of task vm space */ 308 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 309 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 310 pgd_t * pgd; 311 atomic_t mm_users; /* How many users with user space? */ 312 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 313 int map_count; /* number of VMAs */ 314 struct rw_semaphore mmap_sem; 315 spinlock_t page_table_lock; /* Protects page tables and some counters */ 316 317 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 318 * together off init_mm.mmlist, and are protected 319 * by mmlist_lock 320 */ 321 322 /* Special counters, in some configurations protected by the 323 * page_table_lock, in other configurations by being atomic. 324 */ 325 mm_counter_t _file_rss; 326 mm_counter_t _anon_rss; 327 328 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 329 unsigned long hiwater_vm; /* High-water virtual memory usage */ 330 331 unsigned long total_vm, locked_vm, shared_vm, exec_vm; 332 unsigned long stack_vm, reserved_vm, def_flags, nr_ptes; 333 unsigned long start_code, end_code, start_data, end_data; 334 unsigned long start_brk, brk, start_stack; 335 unsigned long arg_start, arg_end, env_start, env_end; 336 337 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 338 339 unsigned dumpable:2; 340 cpumask_t cpu_vm_mask; 341 342 /* Architecture-specific MM context */ 343 mm_context_t context; 344 345 /* Token based thrashing protection. */ 346 unsigned long swap_token_time; 347 char recent_pagein; 348 349 /* coredumping support */ 350 int core_waiters; 351 struct completion *core_startup_done, core_done; 352 353 /* aio bits */ 354 rwlock_t ioctx_list_lock; 355 struct kioctx *ioctx_list; 356 }; 357 358 struct sighand_struct { 359 atomic_t count; 360 struct k_sigaction action[_NSIG]; 361 spinlock_t siglock; 362 }; 363 364 struct pacct_struct { 365 int ac_flag; 366 long ac_exitcode; 367 unsigned long ac_mem; 368 cputime_t ac_utime, ac_stime; 369 unsigned long ac_minflt, ac_majflt; 370 }; 371 372 /* 373 * NOTE! "signal_struct" does not have it's own 374 * locking, because a shared signal_struct always 375 * implies a shared sighand_struct, so locking 376 * sighand_struct is always a proper superset of 377 * the locking of signal_struct. 378 */ 379 struct signal_struct { 380 atomic_t count; 381 atomic_t live; 382 383 wait_queue_head_t wait_chldexit; /* for wait4() */ 384 385 /* current thread group signal load-balancing target: */ 386 struct task_struct *curr_target; 387 388 /* shared signal handling: */ 389 struct sigpending shared_pending; 390 391 /* thread group exit support */ 392 int group_exit_code; 393 /* overloaded: 394 * - notify group_exit_task when ->count is equal to notify_count 395 * - everyone except group_exit_task is stopped during signal delivery 396 * of fatal signals, group_exit_task processes the signal. 397 */ 398 struct task_struct *group_exit_task; 399 int notify_count; 400 401 /* thread group stop support, overloads group_exit_code too */ 402 int group_stop_count; 403 unsigned int flags; /* see SIGNAL_* flags below */ 404 405 /* POSIX.1b Interval Timers */ 406 struct list_head posix_timers; 407 408 /* ITIMER_REAL timer for the process */ 409 struct hrtimer real_timer; 410 struct task_struct *tsk; 411 ktime_t it_real_incr; 412 413 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 414 cputime_t it_prof_expires, it_virt_expires; 415 cputime_t it_prof_incr, it_virt_incr; 416 417 /* job control IDs */ 418 pid_t pgrp; 419 pid_t tty_old_pgrp; 420 pid_t session; 421 /* boolean value for session group leader */ 422 int leader; 423 424 struct tty_struct *tty; /* NULL if no tty */ 425 426 /* 427 * Cumulative resource counters for dead threads in the group, 428 * and for reaped dead child processes forked by this group. 429 * Live threads maintain their own counters and add to these 430 * in __exit_signal, except for the group leader. 431 */ 432 cputime_t utime, stime, cutime, cstime; 433 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 434 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 435 436 /* 437 * Cumulative ns of scheduled CPU time for dead threads in the 438 * group, not including a zombie group leader. (This only differs 439 * from jiffies_to_ns(utime + stime) if sched_clock uses something 440 * other than jiffies.) 441 */ 442 unsigned long long sched_time; 443 444 /* 445 * We don't bother to synchronize most readers of this at all, 446 * because there is no reader checking a limit that actually needs 447 * to get both rlim_cur and rlim_max atomically, and either one 448 * alone is a single word that can safely be read normally. 449 * getrlimit/setrlimit use task_lock(current->group_leader) to 450 * protect this instead of the siglock, because they really 451 * have no need to disable irqs. 452 */ 453 struct rlimit rlim[RLIM_NLIMITS]; 454 455 struct list_head cpu_timers[3]; 456 457 /* keep the process-shared keyrings here so that they do the right 458 * thing in threads created with CLONE_THREAD */ 459 #ifdef CONFIG_KEYS 460 struct key *session_keyring; /* keyring inherited over fork */ 461 struct key *process_keyring; /* keyring private to this process */ 462 #endif 463 #ifdef CONFIG_BSD_PROCESS_ACCT 464 struct pacct_struct pacct; /* per-process accounting information */ 465 #endif 466 }; 467 468 /* Context switch must be unlocked if interrupts are to be enabled */ 469 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 470 # define __ARCH_WANT_UNLOCKED_CTXSW 471 #endif 472 473 /* 474 * Bits in flags field of signal_struct. 475 */ 476 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 477 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 478 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 479 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 480 481 482 /* 483 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 484 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 485 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 486 * values are inverted: lower p->prio value means higher priority. 487 * 488 * The MAX_USER_RT_PRIO value allows the actual maximum 489 * RT priority to be separate from the value exported to 490 * user-space. This allows kernel threads to set their 491 * priority to a value higher than any user task. Note: 492 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 493 */ 494 495 #define MAX_USER_RT_PRIO 100 496 #define MAX_RT_PRIO MAX_USER_RT_PRIO 497 498 #define MAX_PRIO (MAX_RT_PRIO + 40) 499 500 #define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO) 501 #define rt_task(p) rt_prio((p)->prio) 502 #define batch_task(p) (unlikely((p)->policy == SCHED_BATCH)) 503 #define has_rt_policy(p) \ 504 unlikely((p)->policy != SCHED_NORMAL && (p)->policy != SCHED_BATCH) 505 506 /* 507 * Some day this will be a full-fledged user tracking system.. 508 */ 509 struct user_struct { 510 atomic_t __count; /* reference count */ 511 atomic_t processes; /* How many processes does this user have? */ 512 atomic_t files; /* How many open files does this user have? */ 513 atomic_t sigpending; /* How many pending signals does this user have? */ 514 #ifdef CONFIG_INOTIFY_USER 515 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 516 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 517 #endif 518 /* protected by mq_lock */ 519 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 520 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 521 522 #ifdef CONFIG_KEYS 523 struct key *uid_keyring; /* UID specific keyring */ 524 struct key *session_keyring; /* UID's default session keyring */ 525 #endif 526 527 /* Hash table maintenance information */ 528 struct list_head uidhash_list; 529 uid_t uid; 530 }; 531 532 extern struct user_struct *find_user(uid_t); 533 534 extern struct user_struct root_user; 535 #define INIT_USER (&root_user) 536 537 struct backing_dev_info; 538 struct reclaim_state; 539 540 #ifdef CONFIG_SCHEDSTATS 541 struct sched_info { 542 /* cumulative counters */ 543 unsigned long cpu_time, /* time spent on the cpu */ 544 run_delay, /* time spent waiting on a runqueue */ 545 pcnt; /* # of timeslices run on this cpu */ 546 547 /* timestamps */ 548 unsigned long last_arrival, /* when we last ran on a cpu */ 549 last_queued; /* when we were last queued to run */ 550 }; 551 552 extern struct file_operations proc_schedstat_operations; 553 #endif 554 555 enum idle_type 556 { 557 SCHED_IDLE, 558 NOT_IDLE, 559 NEWLY_IDLE, 560 MAX_IDLE_TYPES 561 }; 562 563 /* 564 * sched-domains (multiprocessor balancing) declarations: 565 */ 566 #define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ 567 568 #ifdef CONFIG_SMP 569 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 570 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 571 #define SD_BALANCE_EXEC 4 /* Balance on exec */ 572 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 573 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 574 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 575 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 576 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 577 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */ 578 579 #define BALANCE_FOR_POWER ((sched_mc_power_savings || sched_smt_power_savings) \ 580 ? SD_POWERSAVINGS_BALANCE : 0) 581 582 583 struct sched_group { 584 struct sched_group *next; /* Must be a circular list */ 585 cpumask_t cpumask; 586 587 /* 588 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 589 * single CPU. This is read only (except for setup, hotplug CPU). 590 */ 591 unsigned long cpu_power; 592 }; 593 594 struct sched_domain { 595 /* These fields must be setup */ 596 struct sched_domain *parent; /* top domain must be null terminated */ 597 struct sched_group *groups; /* the balancing groups of the domain */ 598 cpumask_t span; /* span of all CPUs in this domain */ 599 unsigned long min_interval; /* Minimum balance interval ms */ 600 unsigned long max_interval; /* Maximum balance interval ms */ 601 unsigned int busy_factor; /* less balancing by factor if busy */ 602 unsigned int imbalance_pct; /* No balance until over watermark */ 603 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ 604 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 605 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */ 606 unsigned int busy_idx; 607 unsigned int idle_idx; 608 unsigned int newidle_idx; 609 unsigned int wake_idx; 610 unsigned int forkexec_idx; 611 int flags; /* See SD_* */ 612 613 /* Runtime fields. */ 614 unsigned long last_balance; /* init to jiffies. units in jiffies */ 615 unsigned int balance_interval; /* initialise to 1. units in ms. */ 616 unsigned int nr_balance_failed; /* initialise to 0 */ 617 618 #ifdef CONFIG_SCHEDSTATS 619 /* load_balance() stats */ 620 unsigned long lb_cnt[MAX_IDLE_TYPES]; 621 unsigned long lb_failed[MAX_IDLE_TYPES]; 622 unsigned long lb_balanced[MAX_IDLE_TYPES]; 623 unsigned long lb_imbalance[MAX_IDLE_TYPES]; 624 unsigned long lb_gained[MAX_IDLE_TYPES]; 625 unsigned long lb_hot_gained[MAX_IDLE_TYPES]; 626 unsigned long lb_nobusyg[MAX_IDLE_TYPES]; 627 unsigned long lb_nobusyq[MAX_IDLE_TYPES]; 628 629 /* Active load balancing */ 630 unsigned long alb_cnt; 631 unsigned long alb_failed; 632 unsigned long alb_pushed; 633 634 /* SD_BALANCE_EXEC stats */ 635 unsigned long sbe_cnt; 636 unsigned long sbe_balanced; 637 unsigned long sbe_pushed; 638 639 /* SD_BALANCE_FORK stats */ 640 unsigned long sbf_cnt; 641 unsigned long sbf_balanced; 642 unsigned long sbf_pushed; 643 644 /* try_to_wake_up() stats */ 645 unsigned long ttwu_wake_remote; 646 unsigned long ttwu_move_affine; 647 unsigned long ttwu_move_balance; 648 #endif 649 }; 650 651 extern int partition_sched_domains(cpumask_t *partition1, 652 cpumask_t *partition2); 653 654 /* 655 * Maximum cache size the migration-costs auto-tuning code will 656 * search from: 657 */ 658 extern unsigned int max_cache_size; 659 660 #endif /* CONFIG_SMP */ 661 662 663 struct io_context; /* See blkdev.h */ 664 void exit_io_context(void); 665 struct cpuset; 666 667 #define NGROUPS_SMALL 32 668 #define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 669 struct group_info { 670 int ngroups; 671 atomic_t usage; 672 gid_t small_block[NGROUPS_SMALL]; 673 int nblocks; 674 gid_t *blocks[0]; 675 }; 676 677 /* 678 * get_group_info() must be called with the owning task locked (via task_lock()) 679 * when task != current. The reason being that the vast majority of callers are 680 * looking at current->group_info, which can not be changed except by the 681 * current task. Changing current->group_info requires the task lock, too. 682 */ 683 #define get_group_info(group_info) do { \ 684 atomic_inc(&(group_info)->usage); \ 685 } while (0) 686 687 #define put_group_info(group_info) do { \ 688 if (atomic_dec_and_test(&(group_info)->usage)) \ 689 groups_free(group_info); \ 690 } while (0) 691 692 extern struct group_info *groups_alloc(int gidsetsize); 693 extern void groups_free(struct group_info *group_info); 694 extern int set_current_groups(struct group_info *group_info); 695 extern int groups_search(struct group_info *group_info, gid_t grp); 696 /* access the groups "array" with this macro */ 697 #define GROUP_AT(gi, i) \ 698 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 699 700 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 701 extern void prefetch_stack(struct task_struct *t); 702 #else 703 static inline void prefetch_stack(struct task_struct *t) { } 704 #endif 705 706 struct audit_context; /* See audit.c */ 707 struct mempolicy; 708 struct pipe_inode_info; 709 710 enum sleep_type { 711 SLEEP_NORMAL, 712 SLEEP_NONINTERACTIVE, 713 SLEEP_INTERACTIVE, 714 SLEEP_INTERRUPTED, 715 }; 716 717 struct prio_array; 718 719 struct task_struct { 720 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 721 struct thread_info *thread_info; 722 atomic_t usage; 723 unsigned long flags; /* per process flags, defined below */ 724 unsigned long ptrace; 725 726 int lock_depth; /* BKL lock depth */ 727 728 #ifdef CONFIG_SMP 729 #ifdef __ARCH_WANT_UNLOCKED_CTXSW 730 int oncpu; 731 #endif 732 #endif 733 int load_weight; /* for niceness load balancing purposes */ 734 int prio, static_prio, normal_prio; 735 struct list_head run_list; 736 struct prio_array *array; 737 738 unsigned short ioprio; 739 unsigned int btrace_seq; 740 741 unsigned long sleep_avg; 742 unsigned long long timestamp, last_ran; 743 unsigned long long sched_time; /* sched_clock time spent running */ 744 enum sleep_type sleep_type; 745 746 unsigned long policy; 747 cpumask_t cpus_allowed; 748 unsigned int time_slice, first_time_slice; 749 750 #ifdef CONFIG_SCHEDSTATS 751 struct sched_info sched_info; 752 #endif 753 754 struct list_head tasks; 755 /* 756 * ptrace_list/ptrace_children forms the list of my children 757 * that were stolen by a ptracer. 758 */ 759 struct list_head ptrace_children; 760 struct list_head ptrace_list; 761 762 struct mm_struct *mm, *active_mm; 763 764 /* task state */ 765 struct linux_binfmt *binfmt; 766 long exit_state; 767 int exit_code, exit_signal; 768 int pdeath_signal; /* The signal sent when the parent dies */ 769 /* ??? */ 770 unsigned long personality; 771 unsigned did_exec:1; 772 pid_t pid; 773 pid_t tgid; 774 /* 775 * pointers to (original) parent process, youngest child, younger sibling, 776 * older sibling, respectively. (p->father can be replaced with 777 * p->parent->pid) 778 */ 779 struct task_struct *real_parent; /* real parent process (when being debugged) */ 780 struct task_struct *parent; /* parent process */ 781 /* 782 * children/sibling forms the list of my children plus the 783 * tasks I'm ptracing. 784 */ 785 struct list_head children; /* list of my children */ 786 struct list_head sibling; /* linkage in my parent's children list */ 787 struct task_struct *group_leader; /* threadgroup leader */ 788 789 /* PID/PID hash table linkage. */ 790 struct pid_link pids[PIDTYPE_MAX]; 791 struct list_head thread_group; 792 793 struct completion *vfork_done; /* for vfork() */ 794 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 795 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 796 797 unsigned long rt_priority; 798 cputime_t utime, stime; 799 unsigned long nvcsw, nivcsw; /* context switch counts */ 800 struct timespec start_time; 801 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 802 unsigned long min_flt, maj_flt; 803 804 cputime_t it_prof_expires, it_virt_expires; 805 unsigned long long it_sched_expires; 806 struct list_head cpu_timers[3]; 807 808 /* process credentials */ 809 uid_t uid,euid,suid,fsuid; 810 gid_t gid,egid,sgid,fsgid; 811 struct group_info *group_info; 812 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 813 unsigned keep_capabilities:1; 814 struct user_struct *user; 815 #ifdef CONFIG_KEYS 816 struct key *request_key_auth; /* assumed request_key authority */ 817 struct key *thread_keyring; /* keyring private to this thread */ 818 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 819 #endif 820 int oomkilladj; /* OOM kill score adjustment (bit shift). */ 821 char comm[TASK_COMM_LEN]; /* executable name excluding path 822 - access with [gs]et_task_comm (which lock 823 it with task_lock()) 824 - initialized normally by flush_old_exec */ 825 /* file system info */ 826 int link_count, total_link_count; 827 /* ipc stuff */ 828 struct sysv_sem sysvsem; 829 /* CPU-specific state of this task */ 830 struct thread_struct thread; 831 /* filesystem information */ 832 struct fs_struct *fs; 833 /* open file information */ 834 struct files_struct *files; 835 /* namespace */ 836 struct namespace *namespace; 837 /* signal handlers */ 838 struct signal_struct *signal; 839 struct sighand_struct *sighand; 840 841 sigset_t blocked, real_blocked; 842 sigset_t saved_sigmask; /* To be restored with TIF_RESTORE_SIGMASK */ 843 struct sigpending pending; 844 845 unsigned long sas_ss_sp; 846 size_t sas_ss_size; 847 int (*notifier)(void *priv); 848 void *notifier_data; 849 sigset_t *notifier_mask; 850 851 void *security; 852 struct audit_context *audit_context; 853 seccomp_t seccomp; 854 855 /* Thread group tracking */ 856 u32 parent_exec_id; 857 u32 self_exec_id; 858 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 859 spinlock_t alloc_lock; 860 861 /* Protection of the PI data structures: */ 862 spinlock_t pi_lock; 863 864 #ifdef CONFIG_RT_MUTEXES 865 /* PI waiters blocked on a rt_mutex held by this task */ 866 struct plist_head pi_waiters; 867 /* Deadlock detection and priority inheritance handling */ 868 struct rt_mutex_waiter *pi_blocked_on; 869 #endif 870 871 #ifdef CONFIG_DEBUG_MUTEXES 872 /* mutex deadlock detection */ 873 struct mutex_waiter *blocked_on; 874 #endif 875 #ifdef CONFIG_TRACE_IRQFLAGS 876 unsigned int irq_events; 877 int hardirqs_enabled; 878 unsigned long hardirq_enable_ip; 879 unsigned int hardirq_enable_event; 880 unsigned long hardirq_disable_ip; 881 unsigned int hardirq_disable_event; 882 int softirqs_enabled; 883 unsigned long softirq_disable_ip; 884 unsigned int softirq_disable_event; 885 unsigned long softirq_enable_ip; 886 unsigned int softirq_enable_event; 887 int hardirq_context; 888 int softirq_context; 889 #endif 890 #ifdef CONFIG_LOCKDEP 891 # define MAX_LOCK_DEPTH 30UL 892 u64 curr_chain_key; 893 int lockdep_depth; 894 struct held_lock held_locks[MAX_LOCK_DEPTH]; 895 unsigned int lockdep_recursion; 896 #endif 897 898 /* journalling filesystem info */ 899 void *journal_info; 900 901 /* VM state */ 902 struct reclaim_state *reclaim_state; 903 904 struct backing_dev_info *backing_dev_info; 905 906 struct io_context *io_context; 907 908 unsigned long ptrace_message; 909 siginfo_t *last_siginfo; /* For ptrace use. */ 910 /* 911 * current io wait handle: wait queue entry to use for io waits 912 * If this thread is processing aio, this points at the waitqueue 913 * inside the currently handled kiocb. It may be NULL (i.e. default 914 * to a stack based synchronous wait) if its doing sync IO. 915 */ 916 wait_queue_t *io_wait; 917 /* i/o counters(bytes read/written, #syscalls */ 918 u64 rchar, wchar, syscr, syscw; 919 #if defined(CONFIG_BSD_PROCESS_ACCT) 920 u64 acct_rss_mem1; /* accumulated rss usage */ 921 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 922 clock_t acct_stimexpd; /* clock_t-converted stime since last update */ 923 #endif 924 #ifdef CONFIG_NUMA 925 struct mempolicy *mempolicy; 926 short il_next; 927 #endif 928 #ifdef CONFIG_CPUSETS 929 struct cpuset *cpuset; 930 nodemask_t mems_allowed; 931 int cpuset_mems_generation; 932 int cpuset_mem_spread_rotor; 933 #endif 934 struct robust_list_head __user *robust_list; 935 #ifdef CONFIG_COMPAT 936 struct compat_robust_list_head __user *compat_robust_list; 937 #endif 938 struct list_head pi_state_list; 939 struct futex_pi_state *pi_state_cache; 940 941 atomic_t fs_excl; /* holding fs exclusive resources */ 942 struct rcu_head rcu; 943 944 /* 945 * cache last used pipe for splice 946 */ 947 struct pipe_inode_info *splice_pipe; 948 }; 949 950 static inline pid_t process_group(struct task_struct *tsk) 951 { 952 return tsk->signal->pgrp; 953 } 954 955 /** 956 * pid_alive - check that a task structure is not stale 957 * @p: Task structure to be checked. 958 * 959 * Test if a process is not yet dead (at most zombie state) 960 * If pid_alive fails, then pointers within the task structure 961 * can be stale and must not be dereferenced. 962 */ 963 static inline int pid_alive(struct task_struct *p) 964 { 965 return p->pids[PIDTYPE_PID].pid != NULL; 966 } 967 968 extern void free_task(struct task_struct *tsk); 969 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 970 971 extern void __put_task_struct(struct task_struct *t); 972 973 static inline void put_task_struct(struct task_struct *t) 974 { 975 if (atomic_dec_and_test(&t->usage)) 976 __put_task_struct(t); 977 } 978 979 /* 980 * Per process flags 981 */ 982 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 983 /* Not implemented yet, only for 486*/ 984 #define PF_STARTING 0x00000002 /* being created */ 985 #define PF_EXITING 0x00000004 /* getting shut down */ 986 #define PF_DEAD 0x00000008 /* Dead */ 987 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 988 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 989 #define PF_DUMPCORE 0x00000200 /* dumped core */ 990 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 991 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 992 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 993 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 994 #define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */ 995 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 996 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 997 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 998 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 999 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 1000 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1001 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */ 1002 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1003 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1004 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1005 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1006 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1007 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1008 1009 /* 1010 * Only the _current_ task can read/write to tsk->flags, but other 1011 * tasks can access tsk->flags in readonly mode for example 1012 * with tsk_used_math (like during threaded core dumping). 1013 * There is however an exception to this rule during ptrace 1014 * or during fork: the ptracer task is allowed to write to the 1015 * child->flags of its traced child (same goes for fork, the parent 1016 * can write to the child->flags), because we're guaranteed the 1017 * child is not running and in turn not changing child->flags 1018 * at the same time the parent does it. 1019 */ 1020 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1021 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1022 #define clear_used_math() clear_stopped_child_used_math(current) 1023 #define set_used_math() set_stopped_child_used_math(current) 1024 #define conditional_stopped_child_used_math(condition, child) \ 1025 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1026 #define conditional_used_math(condition) \ 1027 conditional_stopped_child_used_math(condition, current) 1028 #define copy_to_stopped_child_used_math(child) \ 1029 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1030 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1031 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1032 #define used_math() tsk_used_math(current) 1033 1034 #ifdef CONFIG_SMP 1035 extern int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask); 1036 #else 1037 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1038 { 1039 if (!cpu_isset(0, new_mask)) 1040 return -EINVAL; 1041 return 0; 1042 } 1043 #endif 1044 1045 extern unsigned long long sched_clock(void); 1046 extern unsigned long long 1047 current_sched_time(const struct task_struct *current_task); 1048 1049 /* sched_exec is called by processes performing an exec */ 1050 #ifdef CONFIG_SMP 1051 extern void sched_exec(void); 1052 #else 1053 #define sched_exec() {} 1054 #endif 1055 1056 #ifdef CONFIG_HOTPLUG_CPU 1057 extern void idle_task_exit(void); 1058 #else 1059 static inline void idle_task_exit(void) {} 1060 #endif 1061 1062 extern void sched_idle_next(void); 1063 1064 #ifdef CONFIG_RT_MUTEXES 1065 extern int rt_mutex_getprio(struct task_struct *p); 1066 extern void rt_mutex_setprio(struct task_struct *p, int prio); 1067 extern void rt_mutex_adjust_pi(struct task_struct *p); 1068 #else 1069 static inline int rt_mutex_getprio(struct task_struct *p) 1070 { 1071 return p->normal_prio; 1072 } 1073 # define rt_mutex_adjust_pi(p) do { } while (0) 1074 #endif 1075 1076 extern void set_user_nice(struct task_struct *p, long nice); 1077 extern int task_prio(const struct task_struct *p); 1078 extern int task_nice(const struct task_struct *p); 1079 extern int can_nice(const struct task_struct *p, const int nice); 1080 extern int task_curr(const struct task_struct *p); 1081 extern int idle_cpu(int cpu); 1082 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 1083 extern struct task_struct *idle_task(int cpu); 1084 extern struct task_struct *curr_task(int cpu); 1085 extern void set_curr_task(int cpu, struct task_struct *p); 1086 1087 void yield(void); 1088 1089 /* 1090 * The default (Linux) execution domain. 1091 */ 1092 extern struct exec_domain default_exec_domain; 1093 1094 union thread_union { 1095 struct thread_info thread_info; 1096 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1097 }; 1098 1099 #ifndef __HAVE_ARCH_KSTACK_END 1100 static inline int kstack_end(void *addr) 1101 { 1102 /* Reliable end of stack detection: 1103 * Some APM bios versions misalign the stack 1104 */ 1105 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 1106 } 1107 #endif 1108 1109 extern union thread_union init_thread_union; 1110 extern struct task_struct init_task; 1111 1112 extern struct mm_struct init_mm; 1113 1114 #define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) 1115 extern struct task_struct *find_task_by_pid_type(int type, int pid); 1116 extern void set_special_pids(pid_t session, pid_t pgrp); 1117 extern void __set_special_pids(pid_t session, pid_t pgrp); 1118 1119 /* per-UID process charging. */ 1120 extern struct user_struct * alloc_uid(uid_t); 1121 static inline struct user_struct *get_uid(struct user_struct *u) 1122 { 1123 atomic_inc(&u->__count); 1124 return u; 1125 } 1126 extern void free_uid(struct user_struct *); 1127 extern void switch_uid(struct user_struct *); 1128 1129 #include <asm/current.h> 1130 1131 extern void do_timer(struct pt_regs *); 1132 1133 extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 1134 extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 1135 extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 1136 unsigned long clone_flags)); 1137 #ifdef CONFIG_SMP 1138 extern void kick_process(struct task_struct *tsk); 1139 #else 1140 static inline void kick_process(struct task_struct *tsk) { } 1141 #endif 1142 extern void FASTCALL(sched_fork(struct task_struct * p, int clone_flags)); 1143 extern void FASTCALL(sched_exit(struct task_struct * p)); 1144 1145 extern int in_group_p(gid_t); 1146 extern int in_egroup_p(gid_t); 1147 1148 extern void proc_caches_init(void); 1149 extern void flush_signals(struct task_struct *); 1150 extern void flush_signal_handlers(struct task_struct *, int force_default); 1151 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 1152 1153 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 1154 { 1155 unsigned long flags; 1156 int ret; 1157 1158 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1159 ret = dequeue_signal(tsk, mask, info); 1160 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1161 1162 return ret; 1163 } 1164 1165 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1166 sigset_t *mask); 1167 extern void unblock_all_signals(void); 1168 extern void release_task(struct task_struct * p); 1169 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1170 extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 1171 extern int force_sigsegv(int, struct task_struct *); 1172 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1173 extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp); 1174 extern int kill_pg_info(int, struct siginfo *, pid_t); 1175 extern int kill_proc_info(int, struct siginfo *, pid_t); 1176 extern int kill_proc_info_as_uid(int, struct siginfo *, pid_t, uid_t, uid_t, u32); 1177 extern void do_notify_parent(struct task_struct *, int); 1178 extern void force_sig(int, struct task_struct *); 1179 extern void force_sig_specific(int, struct task_struct *); 1180 extern int send_sig(int, struct task_struct *, int); 1181 extern void zap_other_threads(struct task_struct *p); 1182 extern int kill_pg(pid_t, int, int); 1183 extern int kill_proc(pid_t, int, int); 1184 extern struct sigqueue *sigqueue_alloc(void); 1185 extern void sigqueue_free(struct sigqueue *); 1186 extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1187 extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1188 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 1189 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1190 1191 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 1192 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 1193 #define SEND_SIG_PRIV ((struct siginfo *) 1) 1194 #define SEND_SIG_FORCED ((struct siginfo *) 2) 1195 1196 static inline int is_si_special(const struct siginfo *info) 1197 { 1198 return info <= SEND_SIG_FORCED; 1199 } 1200 1201 /* True if we are on the alternate signal stack. */ 1202 1203 static inline int on_sig_stack(unsigned long sp) 1204 { 1205 return (sp - current->sas_ss_sp < current->sas_ss_size); 1206 } 1207 1208 static inline int sas_ss_flags(unsigned long sp) 1209 { 1210 return (current->sas_ss_size == 0 ? SS_DISABLE 1211 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1212 } 1213 1214 /* 1215 * Routines for handling mm_structs 1216 */ 1217 extern struct mm_struct * mm_alloc(void); 1218 1219 /* mmdrop drops the mm and the page tables */ 1220 extern void FASTCALL(__mmdrop(struct mm_struct *)); 1221 static inline void mmdrop(struct mm_struct * mm) 1222 { 1223 if (atomic_dec_and_test(&mm->mm_count)) 1224 __mmdrop(mm); 1225 } 1226 1227 /* mmput gets rid of the mappings and all user-space */ 1228 extern void mmput(struct mm_struct *); 1229 /* Grab a reference to a task's mm, if it is not already going away */ 1230 extern struct mm_struct *get_task_mm(struct task_struct *task); 1231 /* Remove the current tasks stale references to the old mm_struct */ 1232 extern void mm_release(struct task_struct *, struct mm_struct *); 1233 1234 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1235 extern void flush_thread(void); 1236 extern void exit_thread(void); 1237 1238 extern void exit_files(struct task_struct *); 1239 extern void __cleanup_signal(struct signal_struct *); 1240 extern void __cleanup_sighand(struct sighand_struct *); 1241 extern void exit_itimers(struct signal_struct *); 1242 1243 extern NORET_TYPE void do_group_exit(int); 1244 1245 extern void daemonize(const char *, ...); 1246 extern int allow_signal(int); 1247 extern int disallow_signal(int); 1248 extern struct task_struct *child_reaper; 1249 1250 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1251 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1252 struct task_struct *fork_idle(int); 1253 1254 extern void set_task_comm(struct task_struct *tsk, char *from); 1255 extern void get_task_comm(char *to, struct task_struct *tsk); 1256 1257 #ifdef CONFIG_SMP 1258 extern void wait_task_inactive(struct task_struct * p); 1259 #else 1260 #define wait_task_inactive(p) do { } while (0) 1261 #endif 1262 1263 #define remove_parent(p) list_del_init(&(p)->sibling) 1264 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children) 1265 1266 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks) 1267 1268 #define for_each_process(p) \ 1269 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1270 1271 /* 1272 * Careful: do_each_thread/while_each_thread is a double loop so 1273 * 'break' will not work as expected - use goto instead. 1274 */ 1275 #define do_each_thread(g, t) \ 1276 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1277 1278 #define while_each_thread(g, t) \ 1279 while ((t = next_thread(t)) != g) 1280 1281 /* de_thread depends on thread_group_leader not being a pid based check */ 1282 #define thread_group_leader(p) (p == p->group_leader) 1283 1284 static inline struct task_struct *next_thread(const struct task_struct *p) 1285 { 1286 return list_entry(rcu_dereference(p->thread_group.next), 1287 struct task_struct, thread_group); 1288 } 1289 1290 static inline int thread_group_empty(struct task_struct *p) 1291 { 1292 return list_empty(&p->thread_group); 1293 } 1294 1295 #define delay_group_leader(p) \ 1296 (thread_group_leader(p) && !thread_group_empty(p)) 1297 1298 /* 1299 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 1300 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1301 * pins the final release of task.io_context. Also protects ->cpuset. 1302 * 1303 * Nests both inside and outside of read_lock(&tasklist_lock). 1304 * It must not be nested with write_lock_irq(&tasklist_lock), 1305 * neither inside nor outside. 1306 */ 1307 static inline void task_lock(struct task_struct *p) 1308 { 1309 spin_lock(&p->alloc_lock); 1310 } 1311 1312 static inline void task_unlock(struct task_struct *p) 1313 { 1314 spin_unlock(&p->alloc_lock); 1315 } 1316 1317 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 1318 unsigned long *flags); 1319 1320 static inline void unlock_task_sighand(struct task_struct *tsk, 1321 unsigned long *flags) 1322 { 1323 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 1324 } 1325 1326 #ifndef __HAVE_THREAD_FUNCTIONS 1327 1328 #define task_thread_info(task) (task)->thread_info 1329 #define task_stack_page(task) ((void*)((task)->thread_info)) 1330 1331 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 1332 { 1333 *task_thread_info(p) = *task_thread_info(org); 1334 task_thread_info(p)->task = p; 1335 } 1336 1337 static inline unsigned long *end_of_stack(struct task_struct *p) 1338 { 1339 return (unsigned long *)(p->thread_info + 1); 1340 } 1341 1342 #endif 1343 1344 /* set thread flags in other task's structures 1345 * - see asm/thread_info.h for TIF_xxxx flags available 1346 */ 1347 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1348 { 1349 set_ti_thread_flag(task_thread_info(tsk), flag); 1350 } 1351 1352 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1353 { 1354 clear_ti_thread_flag(task_thread_info(tsk), flag); 1355 } 1356 1357 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1358 { 1359 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1360 } 1361 1362 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1363 { 1364 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1365 } 1366 1367 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1368 { 1369 return test_ti_thread_flag(task_thread_info(tsk), flag); 1370 } 1371 1372 static inline void set_tsk_need_resched(struct task_struct *tsk) 1373 { 1374 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1375 } 1376 1377 static inline void clear_tsk_need_resched(struct task_struct *tsk) 1378 { 1379 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1380 } 1381 1382 static inline int signal_pending(struct task_struct *p) 1383 { 1384 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1385 } 1386 1387 static inline int need_resched(void) 1388 { 1389 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1390 } 1391 1392 /* 1393 * cond_resched() and cond_resched_lock(): latency reduction via 1394 * explicit rescheduling in places that are safe. The return 1395 * value indicates whether a reschedule was done in fact. 1396 * cond_resched_lock() will drop the spinlock before scheduling, 1397 * cond_resched_softirq() will enable bhs before scheduling. 1398 */ 1399 extern int cond_resched(void); 1400 extern int cond_resched_lock(spinlock_t * lock); 1401 extern int cond_resched_softirq(void); 1402 1403 /* 1404 * Does a critical section need to be broken due to another 1405 * task waiting?: 1406 */ 1407 #if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1408 # define need_lockbreak(lock) ((lock)->break_lock) 1409 #else 1410 # define need_lockbreak(lock) 0 1411 #endif 1412 1413 /* 1414 * Does a critical section need to be broken due to another 1415 * task waiting or preemption being signalled: 1416 */ 1417 static inline int lock_need_resched(spinlock_t *lock) 1418 { 1419 if (need_lockbreak(lock) || need_resched()) 1420 return 1; 1421 return 0; 1422 } 1423 1424 /* Reevaluate whether the task has signals pending delivery. 1425 This is required every time the blocked sigset_t changes. 1426 callers must hold sighand->siglock. */ 1427 1428 extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); 1429 extern void recalc_sigpending(void); 1430 1431 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1432 1433 /* 1434 * Wrappers for p->thread_info->cpu access. No-op on UP. 1435 */ 1436 #ifdef CONFIG_SMP 1437 1438 static inline unsigned int task_cpu(const struct task_struct *p) 1439 { 1440 return task_thread_info(p)->cpu; 1441 } 1442 1443 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1444 { 1445 task_thread_info(p)->cpu = cpu; 1446 } 1447 1448 #else 1449 1450 static inline unsigned int task_cpu(const struct task_struct *p) 1451 { 1452 return 0; 1453 } 1454 1455 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1456 { 1457 } 1458 1459 #endif /* CONFIG_SMP */ 1460 1461 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1462 extern void arch_pick_mmap_layout(struct mm_struct *mm); 1463 #else 1464 static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1465 { 1466 mm->mmap_base = TASK_UNMAPPED_BASE; 1467 mm->get_unmapped_area = arch_get_unmapped_area; 1468 mm->unmap_area = arch_unmap_area; 1469 } 1470 #endif 1471 1472 extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1473 extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1474 1475 #include <linux/sysdev.h> 1476 extern int sched_mc_power_savings, sched_smt_power_savings; 1477 extern struct sysdev_attribute attr_sched_mc_power_savings, attr_sched_smt_power_savings; 1478 extern int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls); 1479 1480 extern void normalize_rt_tasks(void); 1481 1482 #ifdef CONFIG_PM 1483 /* 1484 * Check if a process has been frozen 1485 */ 1486 static inline int frozen(struct task_struct *p) 1487 { 1488 return p->flags & PF_FROZEN; 1489 } 1490 1491 /* 1492 * Check if there is a request to freeze a process 1493 */ 1494 static inline int freezing(struct task_struct *p) 1495 { 1496 return p->flags & PF_FREEZE; 1497 } 1498 1499 /* 1500 * Request that a process be frozen 1501 * FIXME: SMP problem. We may not modify other process' flags! 1502 */ 1503 static inline void freeze(struct task_struct *p) 1504 { 1505 p->flags |= PF_FREEZE; 1506 } 1507 1508 /* 1509 * Wake up a frozen process 1510 */ 1511 static inline int thaw_process(struct task_struct *p) 1512 { 1513 if (frozen(p)) { 1514 p->flags &= ~PF_FROZEN; 1515 wake_up_process(p); 1516 return 1; 1517 } 1518 return 0; 1519 } 1520 1521 /* 1522 * freezing is complete, mark process as frozen 1523 */ 1524 static inline void frozen_process(struct task_struct *p) 1525 { 1526 p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN; 1527 } 1528 1529 extern void refrigerator(void); 1530 extern int freeze_processes(void); 1531 extern void thaw_processes(void); 1532 1533 static inline int try_to_freeze(void) 1534 { 1535 if (freezing(current)) { 1536 refrigerator(); 1537 return 1; 1538 } else 1539 return 0; 1540 } 1541 #else 1542 static inline int frozen(struct task_struct *p) { return 0; } 1543 static inline int freezing(struct task_struct *p) { return 0; } 1544 static inline void freeze(struct task_struct *p) { BUG(); } 1545 static inline int thaw_process(struct task_struct *p) { return 1; } 1546 static inline void frozen_process(struct task_struct *p) { BUG(); } 1547 1548 static inline void refrigerator(void) {} 1549 static inline int freeze_processes(void) { BUG(); return 0; } 1550 static inline void thaw_processes(void) {} 1551 1552 static inline int try_to_freeze(void) { return 0; } 1553 1554 #endif /* CONFIG_PM */ 1555 #endif /* __KERNEL__ */ 1556 1557 #endif 1558