1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/proportions.h> 44 #include <linux/seccomp.h> 45 #include <linux/rcupdate.h> 46 #include <linux/rculist.h> 47 #include <linux/rtmutex.h> 48 49 #include <linux/time.h> 50 #include <linux/param.h> 51 #include <linux/resource.h> 52 #include <linux/timer.h> 53 #include <linux/hrtimer.h> 54 #include <linux/kcov.h> 55 #include <linux/task_io_accounting.h> 56 #include <linux/latencytop.h> 57 #include <linux/cred.h> 58 #include <linux/llist.h> 59 #include <linux/uidgid.h> 60 #include <linux/gfp.h> 61 #include <linux/magic.h> 62 #include <linux/cgroup-defs.h> 63 64 #include <asm/processor.h> 65 66 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 67 68 /* 69 * Extended scheduling parameters data structure. 70 * 71 * This is needed because the original struct sched_param can not be 72 * altered without introducing ABI issues with legacy applications 73 * (e.g., in sched_getparam()). 74 * 75 * However, the possibility of specifying more than just a priority for 76 * the tasks may be useful for a wide variety of application fields, e.g., 77 * multimedia, streaming, automation and control, and many others. 78 * 79 * This variant (sched_attr) is meant at describing a so-called 80 * sporadic time-constrained task. In such model a task is specified by: 81 * - the activation period or minimum instance inter-arrival time; 82 * - the maximum (or average, depending on the actual scheduling 83 * discipline) computation time of all instances, a.k.a. runtime; 84 * - the deadline (relative to the actual activation time) of each 85 * instance. 86 * Very briefly, a periodic (sporadic) task asks for the execution of 87 * some specific computation --which is typically called an instance-- 88 * (at most) every period. Moreover, each instance typically lasts no more 89 * than the runtime and must be completed by time instant t equal to 90 * the instance activation time + the deadline. 91 * 92 * This is reflected by the actual fields of the sched_attr structure: 93 * 94 * @size size of the structure, for fwd/bwd compat. 95 * 96 * @sched_policy task's scheduling policy 97 * @sched_flags for customizing the scheduler behaviour 98 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 99 * @sched_priority task's static priority (SCHED_FIFO/RR) 100 * @sched_deadline representative of the task's deadline 101 * @sched_runtime representative of the task's runtime 102 * @sched_period representative of the task's period 103 * 104 * Given this task model, there are a multiplicity of scheduling algorithms 105 * and policies, that can be used to ensure all the tasks will make their 106 * timing constraints. 107 * 108 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 109 * only user of this new interface. More information about the algorithm 110 * available in the scheduling class file or in Documentation/. 111 */ 112 struct sched_attr { 113 u32 size; 114 115 u32 sched_policy; 116 u64 sched_flags; 117 118 /* SCHED_NORMAL, SCHED_BATCH */ 119 s32 sched_nice; 120 121 /* SCHED_FIFO, SCHED_RR */ 122 u32 sched_priority; 123 124 /* SCHED_DEADLINE */ 125 u64 sched_runtime; 126 u64 sched_deadline; 127 u64 sched_period; 128 }; 129 130 struct futex_pi_state; 131 struct robust_list_head; 132 struct bio_list; 133 struct fs_struct; 134 struct perf_event_context; 135 struct blk_plug; 136 struct filename; 137 struct nameidata; 138 139 #define VMACACHE_BITS 2 140 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 141 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 142 143 /* 144 * These are the constant used to fake the fixed-point load-average 145 * counting. Some notes: 146 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 147 * a load-average precision of 10 bits integer + 11 bits fractional 148 * - if you want to count load-averages more often, you need more 149 * precision, or rounding will get you. With 2-second counting freq, 150 * the EXP_n values would be 1981, 2034 and 2043 if still using only 151 * 11 bit fractions. 152 */ 153 extern unsigned long avenrun[]; /* Load averages */ 154 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 155 156 #define FSHIFT 11 /* nr of bits of precision */ 157 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 158 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 159 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 160 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 161 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 162 163 #define CALC_LOAD(load,exp,n) \ 164 load *= exp; \ 165 load += n*(FIXED_1-exp); \ 166 load >>= FSHIFT; 167 168 extern unsigned long total_forks; 169 extern int nr_threads; 170 DECLARE_PER_CPU(unsigned long, process_counts); 171 extern int nr_processes(void); 172 extern unsigned long nr_running(void); 173 extern bool single_task_running(void); 174 extern unsigned long nr_iowait(void); 175 extern unsigned long nr_iowait_cpu(int cpu); 176 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 177 178 extern void calc_global_load(unsigned long ticks); 179 180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 181 extern void update_cpu_load_nohz(int active); 182 #else 183 static inline void update_cpu_load_nohz(int active) { } 184 #endif 185 186 extern void dump_cpu_task(int cpu); 187 188 struct seq_file; 189 struct cfs_rq; 190 struct task_group; 191 #ifdef CONFIG_SCHED_DEBUG 192 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 193 extern void proc_sched_set_task(struct task_struct *p); 194 #endif 195 196 /* 197 * Task state bitmask. NOTE! These bits are also 198 * encoded in fs/proc/array.c: get_task_state(). 199 * 200 * We have two separate sets of flags: task->state 201 * is about runnability, while task->exit_state are 202 * about the task exiting. Confusing, but this way 203 * modifying one set can't modify the other one by 204 * mistake. 205 */ 206 #define TASK_RUNNING 0 207 #define TASK_INTERRUPTIBLE 1 208 #define TASK_UNINTERRUPTIBLE 2 209 #define __TASK_STOPPED 4 210 #define __TASK_TRACED 8 211 /* in tsk->exit_state */ 212 #define EXIT_DEAD 16 213 #define EXIT_ZOMBIE 32 214 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 215 /* in tsk->state again */ 216 #define TASK_DEAD 64 217 #define TASK_WAKEKILL 128 218 #define TASK_WAKING 256 219 #define TASK_PARKED 512 220 #define TASK_NOLOAD 1024 221 #define TASK_STATE_MAX 2048 222 223 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN" 224 225 extern char ___assert_task_state[1 - 2*!!( 226 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 227 228 /* Convenience macros for the sake of set_task_state */ 229 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 230 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 231 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 232 233 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 234 235 /* Convenience macros for the sake of wake_up */ 236 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 237 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 238 239 /* get_task_state() */ 240 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 241 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 242 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 243 244 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 245 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 246 #define task_is_stopped_or_traced(task) \ 247 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 248 #define task_contributes_to_load(task) \ 249 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 250 (task->flags & PF_FROZEN) == 0 && \ 251 (task->state & TASK_NOLOAD) == 0) 252 253 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 254 255 #define __set_task_state(tsk, state_value) \ 256 do { \ 257 (tsk)->task_state_change = _THIS_IP_; \ 258 (tsk)->state = (state_value); \ 259 } while (0) 260 #define set_task_state(tsk, state_value) \ 261 do { \ 262 (tsk)->task_state_change = _THIS_IP_; \ 263 smp_store_mb((tsk)->state, (state_value)); \ 264 } while (0) 265 266 /* 267 * set_current_state() includes a barrier so that the write of current->state 268 * is correctly serialised wrt the caller's subsequent test of whether to 269 * actually sleep: 270 * 271 * set_current_state(TASK_UNINTERRUPTIBLE); 272 * if (do_i_need_to_sleep()) 273 * schedule(); 274 * 275 * If the caller does not need such serialisation then use __set_current_state() 276 */ 277 #define __set_current_state(state_value) \ 278 do { \ 279 current->task_state_change = _THIS_IP_; \ 280 current->state = (state_value); \ 281 } while (0) 282 #define set_current_state(state_value) \ 283 do { \ 284 current->task_state_change = _THIS_IP_; \ 285 smp_store_mb(current->state, (state_value)); \ 286 } while (0) 287 288 #else 289 290 #define __set_task_state(tsk, state_value) \ 291 do { (tsk)->state = (state_value); } while (0) 292 #define set_task_state(tsk, state_value) \ 293 smp_store_mb((tsk)->state, (state_value)) 294 295 /* 296 * set_current_state() includes a barrier so that the write of current->state 297 * is correctly serialised wrt the caller's subsequent test of whether to 298 * actually sleep: 299 * 300 * set_current_state(TASK_UNINTERRUPTIBLE); 301 * if (do_i_need_to_sleep()) 302 * schedule(); 303 * 304 * If the caller does not need such serialisation then use __set_current_state() 305 */ 306 #define __set_current_state(state_value) \ 307 do { current->state = (state_value); } while (0) 308 #define set_current_state(state_value) \ 309 smp_store_mb(current->state, (state_value)) 310 311 #endif 312 313 /* Task command name length */ 314 #define TASK_COMM_LEN 16 315 316 #include <linux/spinlock.h> 317 318 /* 319 * This serializes "schedule()" and also protects 320 * the run-queue from deletions/modifications (but 321 * _adding_ to the beginning of the run-queue has 322 * a separate lock). 323 */ 324 extern rwlock_t tasklist_lock; 325 extern spinlock_t mmlist_lock; 326 327 struct task_struct; 328 329 #ifdef CONFIG_PROVE_RCU 330 extern int lockdep_tasklist_lock_is_held(void); 331 #endif /* #ifdef CONFIG_PROVE_RCU */ 332 333 extern void sched_init(void); 334 extern void sched_init_smp(void); 335 extern asmlinkage void schedule_tail(struct task_struct *prev); 336 extern void init_idle(struct task_struct *idle, int cpu); 337 extern void init_idle_bootup_task(struct task_struct *idle); 338 339 extern cpumask_var_t cpu_isolated_map; 340 341 extern int runqueue_is_locked(int cpu); 342 343 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 344 extern void nohz_balance_enter_idle(int cpu); 345 extern void set_cpu_sd_state_idle(void); 346 extern int get_nohz_timer_target(void); 347 #else 348 static inline void nohz_balance_enter_idle(int cpu) { } 349 static inline void set_cpu_sd_state_idle(void) { } 350 #endif 351 352 /* 353 * Only dump TASK_* tasks. (0 for all tasks) 354 */ 355 extern void show_state_filter(unsigned long state_filter); 356 357 static inline void show_state(void) 358 { 359 show_state_filter(0); 360 } 361 362 extern void show_regs(struct pt_regs *); 363 364 /* 365 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 366 * task), SP is the stack pointer of the first frame that should be shown in the back 367 * trace (or NULL if the entire call-chain of the task should be shown). 368 */ 369 extern void show_stack(struct task_struct *task, unsigned long *sp); 370 371 extern void cpu_init (void); 372 extern void trap_init(void); 373 extern void update_process_times(int user); 374 extern void scheduler_tick(void); 375 376 extern void sched_show_task(struct task_struct *p); 377 378 #ifdef CONFIG_LOCKUP_DETECTOR 379 extern void touch_softlockup_watchdog_sched(void); 380 extern void touch_softlockup_watchdog(void); 381 extern void touch_softlockup_watchdog_sync(void); 382 extern void touch_all_softlockup_watchdogs(void); 383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 384 void __user *buffer, 385 size_t *lenp, loff_t *ppos); 386 extern unsigned int softlockup_panic; 387 extern unsigned int hardlockup_panic; 388 void lockup_detector_init(void); 389 #else 390 static inline void touch_softlockup_watchdog_sched(void) 391 { 392 } 393 static inline void touch_softlockup_watchdog(void) 394 { 395 } 396 static inline void touch_softlockup_watchdog_sync(void) 397 { 398 } 399 static inline void touch_all_softlockup_watchdogs(void) 400 { 401 } 402 static inline void lockup_detector_init(void) 403 { 404 } 405 #endif 406 407 #ifdef CONFIG_DETECT_HUNG_TASK 408 void reset_hung_task_detector(void); 409 #else 410 static inline void reset_hung_task_detector(void) 411 { 412 } 413 #endif 414 415 /* Attach to any functions which should be ignored in wchan output. */ 416 #define __sched __attribute__((__section__(".sched.text"))) 417 418 /* Linker adds these: start and end of __sched functions */ 419 extern char __sched_text_start[], __sched_text_end[]; 420 421 /* Is this address in the __sched functions? */ 422 extern int in_sched_functions(unsigned long addr); 423 424 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 425 extern signed long schedule_timeout(signed long timeout); 426 extern signed long schedule_timeout_interruptible(signed long timeout); 427 extern signed long schedule_timeout_killable(signed long timeout); 428 extern signed long schedule_timeout_uninterruptible(signed long timeout); 429 extern signed long schedule_timeout_idle(signed long timeout); 430 asmlinkage void schedule(void); 431 extern void schedule_preempt_disabled(void); 432 433 extern long io_schedule_timeout(long timeout); 434 435 static inline void io_schedule(void) 436 { 437 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 438 } 439 440 struct nsproxy; 441 struct user_namespace; 442 443 #ifdef CONFIG_MMU 444 extern void arch_pick_mmap_layout(struct mm_struct *mm); 445 extern unsigned long 446 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 447 unsigned long, unsigned long); 448 extern unsigned long 449 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 450 unsigned long len, unsigned long pgoff, 451 unsigned long flags); 452 #else 453 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 454 #endif 455 456 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 457 #define SUID_DUMP_USER 1 /* Dump as user of process */ 458 #define SUID_DUMP_ROOT 2 /* Dump as root */ 459 460 /* mm flags */ 461 462 /* for SUID_DUMP_* above */ 463 #define MMF_DUMPABLE_BITS 2 464 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 465 466 extern void set_dumpable(struct mm_struct *mm, int value); 467 /* 468 * This returns the actual value of the suid_dumpable flag. For things 469 * that are using this for checking for privilege transitions, it must 470 * test against SUID_DUMP_USER rather than treating it as a boolean 471 * value. 472 */ 473 static inline int __get_dumpable(unsigned long mm_flags) 474 { 475 return mm_flags & MMF_DUMPABLE_MASK; 476 } 477 478 static inline int get_dumpable(struct mm_struct *mm) 479 { 480 return __get_dumpable(mm->flags); 481 } 482 483 /* coredump filter bits */ 484 #define MMF_DUMP_ANON_PRIVATE 2 485 #define MMF_DUMP_ANON_SHARED 3 486 #define MMF_DUMP_MAPPED_PRIVATE 4 487 #define MMF_DUMP_MAPPED_SHARED 5 488 #define MMF_DUMP_ELF_HEADERS 6 489 #define MMF_DUMP_HUGETLB_PRIVATE 7 490 #define MMF_DUMP_HUGETLB_SHARED 8 491 #define MMF_DUMP_DAX_PRIVATE 9 492 #define MMF_DUMP_DAX_SHARED 10 493 494 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 495 #define MMF_DUMP_FILTER_BITS 9 496 #define MMF_DUMP_FILTER_MASK \ 497 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 498 #define MMF_DUMP_FILTER_DEFAULT \ 499 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 500 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 501 502 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 503 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 504 #else 505 # define MMF_DUMP_MASK_DEFAULT_ELF 0 506 #endif 507 /* leave room for more dump flags */ 508 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 509 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 510 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 511 512 #define MMF_HAS_UPROBES 19 /* has uprobes */ 513 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 514 515 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 516 517 struct sighand_struct { 518 atomic_t count; 519 struct k_sigaction action[_NSIG]; 520 spinlock_t siglock; 521 wait_queue_head_t signalfd_wqh; 522 }; 523 524 struct pacct_struct { 525 int ac_flag; 526 long ac_exitcode; 527 unsigned long ac_mem; 528 cputime_t ac_utime, ac_stime; 529 unsigned long ac_minflt, ac_majflt; 530 }; 531 532 struct cpu_itimer { 533 cputime_t expires; 534 cputime_t incr; 535 u32 error; 536 u32 incr_error; 537 }; 538 539 /** 540 * struct prev_cputime - snaphsot of system and user cputime 541 * @utime: time spent in user mode 542 * @stime: time spent in system mode 543 * @lock: protects the above two fields 544 * 545 * Stores previous user/system time values such that we can guarantee 546 * monotonicity. 547 */ 548 struct prev_cputime { 549 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 550 cputime_t utime; 551 cputime_t stime; 552 raw_spinlock_t lock; 553 #endif 554 }; 555 556 static inline void prev_cputime_init(struct prev_cputime *prev) 557 { 558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 559 prev->utime = prev->stime = 0; 560 raw_spin_lock_init(&prev->lock); 561 #endif 562 } 563 564 /** 565 * struct task_cputime - collected CPU time counts 566 * @utime: time spent in user mode, in &cputime_t units 567 * @stime: time spent in kernel mode, in &cputime_t units 568 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 569 * 570 * This structure groups together three kinds of CPU time that are tracked for 571 * threads and thread groups. Most things considering CPU time want to group 572 * these counts together and treat all three of them in parallel. 573 */ 574 struct task_cputime { 575 cputime_t utime; 576 cputime_t stime; 577 unsigned long long sum_exec_runtime; 578 }; 579 580 /* Alternate field names when used to cache expirations. */ 581 #define virt_exp utime 582 #define prof_exp stime 583 #define sched_exp sum_exec_runtime 584 585 #define INIT_CPUTIME \ 586 (struct task_cputime) { \ 587 .utime = 0, \ 588 .stime = 0, \ 589 .sum_exec_runtime = 0, \ 590 } 591 592 /* 593 * This is the atomic variant of task_cputime, which can be used for 594 * storing and updating task_cputime statistics without locking. 595 */ 596 struct task_cputime_atomic { 597 atomic64_t utime; 598 atomic64_t stime; 599 atomic64_t sum_exec_runtime; 600 }; 601 602 #define INIT_CPUTIME_ATOMIC \ 603 (struct task_cputime_atomic) { \ 604 .utime = ATOMIC64_INIT(0), \ 605 .stime = ATOMIC64_INIT(0), \ 606 .sum_exec_runtime = ATOMIC64_INIT(0), \ 607 } 608 609 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 610 611 /* 612 * Disable preemption until the scheduler is running -- use an unconditional 613 * value so that it also works on !PREEMPT_COUNT kernels. 614 * 615 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 616 */ 617 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET 618 619 /* 620 * Initial preempt_count value; reflects the preempt_count schedule invariant 621 * which states that during context switches: 622 * 623 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 624 * 625 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 626 * Note: See finish_task_switch(). 627 */ 628 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 629 630 /** 631 * struct thread_group_cputimer - thread group interval timer counts 632 * @cputime_atomic: atomic thread group interval timers. 633 * @running: true when there are timers running and 634 * @cputime_atomic receives updates. 635 * @checking_timer: true when a thread in the group is in the 636 * process of checking for thread group timers. 637 * 638 * This structure contains the version of task_cputime, above, that is 639 * used for thread group CPU timer calculations. 640 */ 641 struct thread_group_cputimer { 642 struct task_cputime_atomic cputime_atomic; 643 bool running; 644 bool checking_timer; 645 }; 646 647 #include <linux/rwsem.h> 648 struct autogroup; 649 650 /* 651 * NOTE! "signal_struct" does not have its own 652 * locking, because a shared signal_struct always 653 * implies a shared sighand_struct, so locking 654 * sighand_struct is always a proper superset of 655 * the locking of signal_struct. 656 */ 657 struct signal_struct { 658 atomic_t sigcnt; 659 atomic_t live; 660 int nr_threads; 661 struct list_head thread_head; 662 663 wait_queue_head_t wait_chldexit; /* for wait4() */ 664 665 /* current thread group signal load-balancing target: */ 666 struct task_struct *curr_target; 667 668 /* shared signal handling: */ 669 struct sigpending shared_pending; 670 671 /* thread group exit support */ 672 int group_exit_code; 673 /* overloaded: 674 * - notify group_exit_task when ->count is equal to notify_count 675 * - everyone except group_exit_task is stopped during signal delivery 676 * of fatal signals, group_exit_task processes the signal. 677 */ 678 int notify_count; 679 struct task_struct *group_exit_task; 680 681 /* thread group stop support, overloads group_exit_code too */ 682 int group_stop_count; 683 unsigned int flags; /* see SIGNAL_* flags below */ 684 685 /* 686 * PR_SET_CHILD_SUBREAPER marks a process, like a service 687 * manager, to re-parent orphan (double-forking) child processes 688 * to this process instead of 'init'. The service manager is 689 * able to receive SIGCHLD signals and is able to investigate 690 * the process until it calls wait(). All children of this 691 * process will inherit a flag if they should look for a 692 * child_subreaper process at exit. 693 */ 694 unsigned int is_child_subreaper:1; 695 unsigned int has_child_subreaper:1; 696 697 /* POSIX.1b Interval Timers */ 698 int posix_timer_id; 699 struct list_head posix_timers; 700 701 /* ITIMER_REAL timer for the process */ 702 struct hrtimer real_timer; 703 struct pid *leader_pid; 704 ktime_t it_real_incr; 705 706 /* 707 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 708 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 709 * values are defined to 0 and 1 respectively 710 */ 711 struct cpu_itimer it[2]; 712 713 /* 714 * Thread group totals for process CPU timers. 715 * See thread_group_cputimer(), et al, for details. 716 */ 717 struct thread_group_cputimer cputimer; 718 719 /* Earliest-expiration cache. */ 720 struct task_cputime cputime_expires; 721 722 #ifdef CONFIG_NO_HZ_FULL 723 atomic_t tick_dep_mask; 724 #endif 725 726 struct list_head cpu_timers[3]; 727 728 struct pid *tty_old_pgrp; 729 730 /* boolean value for session group leader */ 731 int leader; 732 733 struct tty_struct *tty; /* NULL if no tty */ 734 735 #ifdef CONFIG_SCHED_AUTOGROUP 736 struct autogroup *autogroup; 737 #endif 738 /* 739 * Cumulative resource counters for dead threads in the group, 740 * and for reaped dead child processes forked by this group. 741 * Live threads maintain their own counters and add to these 742 * in __exit_signal, except for the group leader. 743 */ 744 seqlock_t stats_lock; 745 cputime_t utime, stime, cutime, cstime; 746 cputime_t gtime; 747 cputime_t cgtime; 748 struct prev_cputime prev_cputime; 749 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 750 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 751 unsigned long inblock, oublock, cinblock, coublock; 752 unsigned long maxrss, cmaxrss; 753 struct task_io_accounting ioac; 754 755 /* 756 * Cumulative ns of schedule CPU time fo dead threads in the 757 * group, not including a zombie group leader, (This only differs 758 * from jiffies_to_ns(utime + stime) if sched_clock uses something 759 * other than jiffies.) 760 */ 761 unsigned long long sum_sched_runtime; 762 763 /* 764 * We don't bother to synchronize most readers of this at all, 765 * because there is no reader checking a limit that actually needs 766 * to get both rlim_cur and rlim_max atomically, and either one 767 * alone is a single word that can safely be read normally. 768 * getrlimit/setrlimit use task_lock(current->group_leader) to 769 * protect this instead of the siglock, because they really 770 * have no need to disable irqs. 771 */ 772 struct rlimit rlim[RLIM_NLIMITS]; 773 774 #ifdef CONFIG_BSD_PROCESS_ACCT 775 struct pacct_struct pacct; /* per-process accounting information */ 776 #endif 777 #ifdef CONFIG_TASKSTATS 778 struct taskstats *stats; 779 #endif 780 #ifdef CONFIG_AUDIT 781 unsigned audit_tty; 782 struct tty_audit_buf *tty_audit_buf; 783 #endif 784 785 oom_flags_t oom_flags; 786 short oom_score_adj; /* OOM kill score adjustment */ 787 short oom_score_adj_min; /* OOM kill score adjustment min value. 788 * Only settable by CAP_SYS_RESOURCE. */ 789 790 struct mutex cred_guard_mutex; /* guard against foreign influences on 791 * credential calculations 792 * (notably. ptrace) */ 793 }; 794 795 /* 796 * Bits in flags field of signal_struct. 797 */ 798 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 799 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 800 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 801 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 802 /* 803 * Pending notifications to parent. 804 */ 805 #define SIGNAL_CLD_STOPPED 0x00000010 806 #define SIGNAL_CLD_CONTINUED 0x00000020 807 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 808 809 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 810 811 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 812 static inline int signal_group_exit(const struct signal_struct *sig) 813 { 814 return (sig->flags & SIGNAL_GROUP_EXIT) || 815 (sig->group_exit_task != NULL); 816 } 817 818 /* 819 * Some day this will be a full-fledged user tracking system.. 820 */ 821 struct user_struct { 822 atomic_t __count; /* reference count */ 823 atomic_t processes; /* How many processes does this user have? */ 824 atomic_t sigpending; /* How many pending signals does this user have? */ 825 #ifdef CONFIG_INOTIFY_USER 826 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 827 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 828 #endif 829 #ifdef CONFIG_FANOTIFY 830 atomic_t fanotify_listeners; 831 #endif 832 #ifdef CONFIG_EPOLL 833 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 834 #endif 835 #ifdef CONFIG_POSIX_MQUEUE 836 /* protected by mq_lock */ 837 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 838 #endif 839 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 840 unsigned long unix_inflight; /* How many files in flight in unix sockets */ 841 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ 842 843 #ifdef CONFIG_KEYS 844 struct key *uid_keyring; /* UID specific keyring */ 845 struct key *session_keyring; /* UID's default session keyring */ 846 #endif 847 848 /* Hash table maintenance information */ 849 struct hlist_node uidhash_node; 850 kuid_t uid; 851 852 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) 853 atomic_long_t locked_vm; 854 #endif 855 }; 856 857 extern int uids_sysfs_init(void); 858 859 extern struct user_struct *find_user(kuid_t); 860 861 extern struct user_struct root_user; 862 #define INIT_USER (&root_user) 863 864 865 struct backing_dev_info; 866 struct reclaim_state; 867 868 #ifdef CONFIG_SCHED_INFO 869 struct sched_info { 870 /* cumulative counters */ 871 unsigned long pcount; /* # of times run on this cpu */ 872 unsigned long long run_delay; /* time spent waiting on a runqueue */ 873 874 /* timestamps */ 875 unsigned long long last_arrival,/* when we last ran on a cpu */ 876 last_queued; /* when we were last queued to run */ 877 }; 878 #endif /* CONFIG_SCHED_INFO */ 879 880 #ifdef CONFIG_TASK_DELAY_ACCT 881 struct task_delay_info { 882 spinlock_t lock; 883 unsigned int flags; /* Private per-task flags */ 884 885 /* For each stat XXX, add following, aligned appropriately 886 * 887 * struct timespec XXX_start, XXX_end; 888 * u64 XXX_delay; 889 * u32 XXX_count; 890 * 891 * Atomicity of updates to XXX_delay, XXX_count protected by 892 * single lock above (split into XXX_lock if contention is an issue). 893 */ 894 895 /* 896 * XXX_count is incremented on every XXX operation, the delay 897 * associated with the operation is added to XXX_delay. 898 * XXX_delay contains the accumulated delay time in nanoseconds. 899 */ 900 u64 blkio_start; /* Shared by blkio, swapin */ 901 u64 blkio_delay; /* wait for sync block io completion */ 902 u64 swapin_delay; /* wait for swapin block io completion */ 903 u32 blkio_count; /* total count of the number of sync block */ 904 /* io operations performed */ 905 u32 swapin_count; /* total count of the number of swapin block */ 906 /* io operations performed */ 907 908 u64 freepages_start; 909 u64 freepages_delay; /* wait for memory reclaim */ 910 u32 freepages_count; /* total count of memory reclaim */ 911 }; 912 #endif /* CONFIG_TASK_DELAY_ACCT */ 913 914 static inline int sched_info_on(void) 915 { 916 #ifdef CONFIG_SCHEDSTATS 917 return 1; 918 #elif defined(CONFIG_TASK_DELAY_ACCT) 919 extern int delayacct_on; 920 return delayacct_on; 921 #else 922 return 0; 923 #endif 924 } 925 926 #ifdef CONFIG_SCHEDSTATS 927 void force_schedstat_enabled(void); 928 #endif 929 930 enum cpu_idle_type { 931 CPU_IDLE, 932 CPU_NOT_IDLE, 933 CPU_NEWLY_IDLE, 934 CPU_MAX_IDLE_TYPES 935 }; 936 937 /* 938 * Increase resolution of cpu_capacity calculations 939 */ 940 #define SCHED_CAPACITY_SHIFT 10 941 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 942 943 /* 944 * Wake-queues are lists of tasks with a pending wakeup, whose 945 * callers have already marked the task as woken internally, 946 * and can thus carry on. A common use case is being able to 947 * do the wakeups once the corresponding user lock as been 948 * released. 949 * 950 * We hold reference to each task in the list across the wakeup, 951 * thus guaranteeing that the memory is still valid by the time 952 * the actual wakeups are performed in wake_up_q(). 953 * 954 * One per task suffices, because there's never a need for a task to be 955 * in two wake queues simultaneously; it is forbidden to abandon a task 956 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 957 * already in a wake queue, the wakeup will happen soon and the second 958 * waker can just skip it. 959 * 960 * The WAKE_Q macro declares and initializes the list head. 961 * wake_up_q() does NOT reinitialize the list; it's expected to be 962 * called near the end of a function, where the fact that the queue is 963 * not used again will be easy to see by inspection. 964 * 965 * Note that this can cause spurious wakeups. schedule() callers 966 * must ensure the call is done inside a loop, confirming that the 967 * wakeup condition has in fact occurred. 968 */ 969 struct wake_q_node { 970 struct wake_q_node *next; 971 }; 972 973 struct wake_q_head { 974 struct wake_q_node *first; 975 struct wake_q_node **lastp; 976 }; 977 978 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 979 980 #define WAKE_Q(name) \ 981 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 982 983 extern void wake_q_add(struct wake_q_head *head, 984 struct task_struct *task); 985 extern void wake_up_q(struct wake_q_head *head); 986 987 /* 988 * sched-domains (multiprocessor balancing) declarations: 989 */ 990 #ifdef CONFIG_SMP 991 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 992 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 993 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 994 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 995 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 996 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 997 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 998 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 999 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 1000 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 1001 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 1002 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 1003 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 1004 #define SD_NUMA 0x4000 /* cross-node balancing */ 1005 1006 #ifdef CONFIG_SCHED_SMT 1007 static inline int cpu_smt_flags(void) 1008 { 1009 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1010 } 1011 #endif 1012 1013 #ifdef CONFIG_SCHED_MC 1014 static inline int cpu_core_flags(void) 1015 { 1016 return SD_SHARE_PKG_RESOURCES; 1017 } 1018 #endif 1019 1020 #ifdef CONFIG_NUMA 1021 static inline int cpu_numa_flags(void) 1022 { 1023 return SD_NUMA; 1024 } 1025 #endif 1026 1027 struct sched_domain_attr { 1028 int relax_domain_level; 1029 }; 1030 1031 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1032 .relax_domain_level = -1, \ 1033 } 1034 1035 extern int sched_domain_level_max; 1036 1037 struct sched_group; 1038 1039 struct sched_domain { 1040 /* These fields must be setup */ 1041 struct sched_domain *parent; /* top domain must be null terminated */ 1042 struct sched_domain *child; /* bottom domain must be null terminated */ 1043 struct sched_group *groups; /* the balancing groups of the domain */ 1044 unsigned long min_interval; /* Minimum balance interval ms */ 1045 unsigned long max_interval; /* Maximum balance interval ms */ 1046 unsigned int busy_factor; /* less balancing by factor if busy */ 1047 unsigned int imbalance_pct; /* No balance until over watermark */ 1048 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1049 unsigned int busy_idx; 1050 unsigned int idle_idx; 1051 unsigned int newidle_idx; 1052 unsigned int wake_idx; 1053 unsigned int forkexec_idx; 1054 unsigned int smt_gain; 1055 1056 int nohz_idle; /* NOHZ IDLE status */ 1057 int flags; /* See SD_* */ 1058 int level; 1059 1060 /* Runtime fields. */ 1061 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1062 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1063 unsigned int nr_balance_failed; /* initialise to 0 */ 1064 1065 /* idle_balance() stats */ 1066 u64 max_newidle_lb_cost; 1067 unsigned long next_decay_max_lb_cost; 1068 1069 #ifdef CONFIG_SCHEDSTATS 1070 /* load_balance() stats */ 1071 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1072 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1073 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1074 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1075 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1076 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1077 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1078 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1079 1080 /* Active load balancing */ 1081 unsigned int alb_count; 1082 unsigned int alb_failed; 1083 unsigned int alb_pushed; 1084 1085 /* SD_BALANCE_EXEC stats */ 1086 unsigned int sbe_count; 1087 unsigned int sbe_balanced; 1088 unsigned int sbe_pushed; 1089 1090 /* SD_BALANCE_FORK stats */ 1091 unsigned int sbf_count; 1092 unsigned int sbf_balanced; 1093 unsigned int sbf_pushed; 1094 1095 /* try_to_wake_up() stats */ 1096 unsigned int ttwu_wake_remote; 1097 unsigned int ttwu_move_affine; 1098 unsigned int ttwu_move_balance; 1099 #endif 1100 #ifdef CONFIG_SCHED_DEBUG 1101 char *name; 1102 #endif 1103 union { 1104 void *private; /* used during construction */ 1105 struct rcu_head rcu; /* used during destruction */ 1106 }; 1107 1108 unsigned int span_weight; 1109 /* 1110 * Span of all CPUs in this domain. 1111 * 1112 * NOTE: this field is variable length. (Allocated dynamically 1113 * by attaching extra space to the end of the structure, 1114 * depending on how many CPUs the kernel has booted up with) 1115 */ 1116 unsigned long span[0]; 1117 }; 1118 1119 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1120 { 1121 return to_cpumask(sd->span); 1122 } 1123 1124 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1125 struct sched_domain_attr *dattr_new); 1126 1127 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1128 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1129 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1130 1131 bool cpus_share_cache(int this_cpu, int that_cpu); 1132 1133 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1134 typedef int (*sched_domain_flags_f)(void); 1135 1136 #define SDTL_OVERLAP 0x01 1137 1138 struct sd_data { 1139 struct sched_domain **__percpu sd; 1140 struct sched_group **__percpu sg; 1141 struct sched_group_capacity **__percpu sgc; 1142 }; 1143 1144 struct sched_domain_topology_level { 1145 sched_domain_mask_f mask; 1146 sched_domain_flags_f sd_flags; 1147 int flags; 1148 int numa_level; 1149 struct sd_data data; 1150 #ifdef CONFIG_SCHED_DEBUG 1151 char *name; 1152 #endif 1153 }; 1154 1155 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1156 extern void wake_up_if_idle(int cpu); 1157 1158 #ifdef CONFIG_SCHED_DEBUG 1159 # define SD_INIT_NAME(type) .name = #type 1160 #else 1161 # define SD_INIT_NAME(type) 1162 #endif 1163 1164 #else /* CONFIG_SMP */ 1165 1166 struct sched_domain_attr; 1167 1168 static inline void 1169 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1170 struct sched_domain_attr *dattr_new) 1171 { 1172 } 1173 1174 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1175 { 1176 return true; 1177 } 1178 1179 #endif /* !CONFIG_SMP */ 1180 1181 1182 struct io_context; /* See blkdev.h */ 1183 1184 1185 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1186 extern void prefetch_stack(struct task_struct *t); 1187 #else 1188 static inline void prefetch_stack(struct task_struct *t) { } 1189 #endif 1190 1191 struct audit_context; /* See audit.c */ 1192 struct mempolicy; 1193 struct pipe_inode_info; 1194 struct uts_namespace; 1195 1196 struct load_weight { 1197 unsigned long weight; 1198 u32 inv_weight; 1199 }; 1200 1201 /* 1202 * The load_avg/util_avg accumulates an infinite geometric series. 1203 * 1) load_avg factors frequency scaling into the amount of time that a 1204 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the 1205 * aggregated such weights of all runnable and blocked sched_entities. 1206 * 2) util_avg factors frequency and cpu scaling into the amount of time 1207 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE]. 1208 * For cfs_rq, it is the aggregated such times of all runnable and 1209 * blocked sched_entities. 1210 * The 64 bit load_sum can: 1211 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with 1212 * the highest weight (=88761) always runnable, we should not overflow 1213 * 2) for entity, support any load.weight always runnable 1214 */ 1215 struct sched_avg { 1216 u64 last_update_time, load_sum; 1217 u32 util_sum, period_contrib; 1218 unsigned long load_avg, util_avg; 1219 }; 1220 1221 #ifdef CONFIG_SCHEDSTATS 1222 struct sched_statistics { 1223 u64 wait_start; 1224 u64 wait_max; 1225 u64 wait_count; 1226 u64 wait_sum; 1227 u64 iowait_count; 1228 u64 iowait_sum; 1229 1230 u64 sleep_start; 1231 u64 sleep_max; 1232 s64 sum_sleep_runtime; 1233 1234 u64 block_start; 1235 u64 block_max; 1236 u64 exec_max; 1237 u64 slice_max; 1238 1239 u64 nr_migrations_cold; 1240 u64 nr_failed_migrations_affine; 1241 u64 nr_failed_migrations_running; 1242 u64 nr_failed_migrations_hot; 1243 u64 nr_forced_migrations; 1244 1245 u64 nr_wakeups; 1246 u64 nr_wakeups_sync; 1247 u64 nr_wakeups_migrate; 1248 u64 nr_wakeups_local; 1249 u64 nr_wakeups_remote; 1250 u64 nr_wakeups_affine; 1251 u64 nr_wakeups_affine_attempts; 1252 u64 nr_wakeups_passive; 1253 u64 nr_wakeups_idle; 1254 }; 1255 #endif 1256 1257 struct sched_entity { 1258 struct load_weight load; /* for load-balancing */ 1259 struct rb_node run_node; 1260 struct list_head group_node; 1261 unsigned int on_rq; 1262 1263 u64 exec_start; 1264 u64 sum_exec_runtime; 1265 u64 vruntime; 1266 u64 prev_sum_exec_runtime; 1267 1268 u64 nr_migrations; 1269 1270 #ifdef CONFIG_SCHEDSTATS 1271 struct sched_statistics statistics; 1272 #endif 1273 1274 #ifdef CONFIG_FAIR_GROUP_SCHED 1275 int depth; 1276 struct sched_entity *parent; 1277 /* rq on which this entity is (to be) queued: */ 1278 struct cfs_rq *cfs_rq; 1279 /* rq "owned" by this entity/group: */ 1280 struct cfs_rq *my_q; 1281 #endif 1282 1283 #ifdef CONFIG_SMP 1284 /* 1285 * Per entity load average tracking. 1286 * 1287 * Put into separate cache line so it does not 1288 * collide with read-mostly values above. 1289 */ 1290 struct sched_avg avg ____cacheline_aligned_in_smp; 1291 #endif 1292 }; 1293 1294 struct sched_rt_entity { 1295 struct list_head run_list; 1296 unsigned long timeout; 1297 unsigned long watchdog_stamp; 1298 unsigned int time_slice; 1299 unsigned short on_rq; 1300 unsigned short on_list; 1301 1302 struct sched_rt_entity *back; 1303 #ifdef CONFIG_RT_GROUP_SCHED 1304 struct sched_rt_entity *parent; 1305 /* rq on which this entity is (to be) queued: */ 1306 struct rt_rq *rt_rq; 1307 /* rq "owned" by this entity/group: */ 1308 struct rt_rq *my_q; 1309 #endif 1310 }; 1311 1312 struct sched_dl_entity { 1313 struct rb_node rb_node; 1314 1315 /* 1316 * Original scheduling parameters. Copied here from sched_attr 1317 * during sched_setattr(), they will remain the same until 1318 * the next sched_setattr(). 1319 */ 1320 u64 dl_runtime; /* maximum runtime for each instance */ 1321 u64 dl_deadline; /* relative deadline of each instance */ 1322 u64 dl_period; /* separation of two instances (period) */ 1323 u64 dl_bw; /* dl_runtime / dl_deadline */ 1324 1325 /* 1326 * Actual scheduling parameters. Initialized with the values above, 1327 * they are continously updated during task execution. Note that 1328 * the remaining runtime could be < 0 in case we are in overrun. 1329 */ 1330 s64 runtime; /* remaining runtime for this instance */ 1331 u64 deadline; /* absolute deadline for this instance */ 1332 unsigned int flags; /* specifying the scheduler behaviour */ 1333 1334 /* 1335 * Some bool flags: 1336 * 1337 * @dl_throttled tells if we exhausted the runtime. If so, the 1338 * task has to wait for a replenishment to be performed at the 1339 * next firing of dl_timer. 1340 * 1341 * @dl_boosted tells if we are boosted due to DI. If so we are 1342 * outside bandwidth enforcement mechanism (but only until we 1343 * exit the critical section); 1344 * 1345 * @dl_yielded tells if task gave up the cpu before consuming 1346 * all its available runtime during the last job. 1347 */ 1348 int dl_throttled, dl_boosted, dl_yielded; 1349 1350 /* 1351 * Bandwidth enforcement timer. Each -deadline task has its 1352 * own bandwidth to be enforced, thus we need one timer per task. 1353 */ 1354 struct hrtimer dl_timer; 1355 }; 1356 1357 union rcu_special { 1358 struct { 1359 u8 blocked; 1360 u8 need_qs; 1361 u8 exp_need_qs; 1362 u8 pad; /* Otherwise the compiler can store garbage here. */ 1363 } b; /* Bits. */ 1364 u32 s; /* Set of bits. */ 1365 }; 1366 struct rcu_node; 1367 1368 enum perf_event_task_context { 1369 perf_invalid_context = -1, 1370 perf_hw_context = 0, 1371 perf_sw_context, 1372 perf_nr_task_contexts, 1373 }; 1374 1375 /* Track pages that require TLB flushes */ 1376 struct tlbflush_unmap_batch { 1377 /* 1378 * Each bit set is a CPU that potentially has a TLB entry for one of 1379 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1380 */ 1381 struct cpumask cpumask; 1382 1383 /* True if any bit in cpumask is set */ 1384 bool flush_required; 1385 1386 /* 1387 * If true then the PTE was dirty when unmapped. The entry must be 1388 * flushed before IO is initiated or a stale TLB entry potentially 1389 * allows an update without redirtying the page. 1390 */ 1391 bool writable; 1392 }; 1393 1394 struct task_struct { 1395 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1396 void *stack; 1397 atomic_t usage; 1398 unsigned int flags; /* per process flags, defined below */ 1399 unsigned int ptrace; 1400 1401 #ifdef CONFIG_SMP 1402 struct llist_node wake_entry; 1403 int on_cpu; 1404 unsigned int wakee_flips; 1405 unsigned long wakee_flip_decay_ts; 1406 struct task_struct *last_wakee; 1407 1408 int wake_cpu; 1409 #endif 1410 int on_rq; 1411 1412 int prio, static_prio, normal_prio; 1413 unsigned int rt_priority; 1414 const struct sched_class *sched_class; 1415 struct sched_entity se; 1416 struct sched_rt_entity rt; 1417 #ifdef CONFIG_CGROUP_SCHED 1418 struct task_group *sched_task_group; 1419 #endif 1420 struct sched_dl_entity dl; 1421 1422 #ifdef CONFIG_PREEMPT_NOTIFIERS 1423 /* list of struct preempt_notifier: */ 1424 struct hlist_head preempt_notifiers; 1425 #endif 1426 1427 #ifdef CONFIG_BLK_DEV_IO_TRACE 1428 unsigned int btrace_seq; 1429 #endif 1430 1431 unsigned int policy; 1432 int nr_cpus_allowed; 1433 cpumask_t cpus_allowed; 1434 1435 #ifdef CONFIG_PREEMPT_RCU 1436 int rcu_read_lock_nesting; 1437 union rcu_special rcu_read_unlock_special; 1438 struct list_head rcu_node_entry; 1439 struct rcu_node *rcu_blocked_node; 1440 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1441 #ifdef CONFIG_TASKS_RCU 1442 unsigned long rcu_tasks_nvcsw; 1443 bool rcu_tasks_holdout; 1444 struct list_head rcu_tasks_holdout_list; 1445 int rcu_tasks_idle_cpu; 1446 #endif /* #ifdef CONFIG_TASKS_RCU */ 1447 1448 #ifdef CONFIG_SCHED_INFO 1449 struct sched_info sched_info; 1450 #endif 1451 1452 struct list_head tasks; 1453 #ifdef CONFIG_SMP 1454 struct plist_node pushable_tasks; 1455 struct rb_node pushable_dl_tasks; 1456 #endif 1457 1458 struct mm_struct *mm, *active_mm; 1459 /* per-thread vma caching */ 1460 u32 vmacache_seqnum; 1461 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1462 #if defined(SPLIT_RSS_COUNTING) 1463 struct task_rss_stat rss_stat; 1464 #endif 1465 /* task state */ 1466 int exit_state; 1467 int exit_code, exit_signal; 1468 int pdeath_signal; /* The signal sent when the parent dies */ 1469 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1470 1471 /* Used for emulating ABI behavior of previous Linux versions */ 1472 unsigned int personality; 1473 1474 /* scheduler bits, serialized by scheduler locks */ 1475 unsigned sched_reset_on_fork:1; 1476 unsigned sched_contributes_to_load:1; 1477 unsigned sched_migrated:1; 1478 unsigned :0; /* force alignment to the next boundary */ 1479 1480 /* unserialized, strictly 'current' */ 1481 unsigned in_execve:1; /* bit to tell LSMs we're in execve */ 1482 unsigned in_iowait:1; 1483 #ifdef CONFIG_MEMCG 1484 unsigned memcg_may_oom:1; 1485 #ifndef CONFIG_SLOB 1486 unsigned memcg_kmem_skip_account:1; 1487 #endif 1488 #endif 1489 #ifdef CONFIG_COMPAT_BRK 1490 unsigned brk_randomized:1; 1491 #endif 1492 1493 unsigned long atomic_flags; /* Flags needing atomic access. */ 1494 1495 struct restart_block restart_block; 1496 1497 pid_t pid; 1498 pid_t tgid; 1499 1500 #ifdef CONFIG_CC_STACKPROTECTOR 1501 /* Canary value for the -fstack-protector gcc feature */ 1502 unsigned long stack_canary; 1503 #endif 1504 /* 1505 * pointers to (original) parent process, youngest child, younger sibling, 1506 * older sibling, respectively. (p->father can be replaced with 1507 * p->real_parent->pid) 1508 */ 1509 struct task_struct __rcu *real_parent; /* real parent process */ 1510 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1511 /* 1512 * children/sibling forms the list of my natural children 1513 */ 1514 struct list_head children; /* list of my children */ 1515 struct list_head sibling; /* linkage in my parent's children list */ 1516 struct task_struct *group_leader; /* threadgroup leader */ 1517 1518 /* 1519 * ptraced is the list of tasks this task is using ptrace on. 1520 * This includes both natural children and PTRACE_ATTACH targets. 1521 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1522 */ 1523 struct list_head ptraced; 1524 struct list_head ptrace_entry; 1525 1526 /* PID/PID hash table linkage. */ 1527 struct pid_link pids[PIDTYPE_MAX]; 1528 struct list_head thread_group; 1529 struct list_head thread_node; 1530 1531 struct completion *vfork_done; /* for vfork() */ 1532 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1533 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1534 1535 cputime_t utime, stime, utimescaled, stimescaled; 1536 cputime_t gtime; 1537 struct prev_cputime prev_cputime; 1538 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1539 seqcount_t vtime_seqcount; 1540 unsigned long long vtime_snap; 1541 enum { 1542 /* Task is sleeping or running in a CPU with VTIME inactive */ 1543 VTIME_INACTIVE = 0, 1544 /* Task runs in userspace in a CPU with VTIME active */ 1545 VTIME_USER, 1546 /* Task runs in kernelspace in a CPU with VTIME active */ 1547 VTIME_SYS, 1548 } vtime_snap_whence; 1549 #endif 1550 1551 #ifdef CONFIG_NO_HZ_FULL 1552 atomic_t tick_dep_mask; 1553 #endif 1554 unsigned long nvcsw, nivcsw; /* context switch counts */ 1555 u64 start_time; /* monotonic time in nsec */ 1556 u64 real_start_time; /* boot based time in nsec */ 1557 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1558 unsigned long min_flt, maj_flt; 1559 1560 struct task_cputime cputime_expires; 1561 struct list_head cpu_timers[3]; 1562 1563 /* process credentials */ 1564 const struct cred __rcu *real_cred; /* objective and real subjective task 1565 * credentials (COW) */ 1566 const struct cred __rcu *cred; /* effective (overridable) subjective task 1567 * credentials (COW) */ 1568 char comm[TASK_COMM_LEN]; /* executable name excluding path 1569 - access with [gs]et_task_comm (which lock 1570 it with task_lock()) 1571 - initialized normally by setup_new_exec */ 1572 /* file system info */ 1573 struct nameidata *nameidata; 1574 #ifdef CONFIG_SYSVIPC 1575 /* ipc stuff */ 1576 struct sysv_sem sysvsem; 1577 struct sysv_shm sysvshm; 1578 #endif 1579 #ifdef CONFIG_DETECT_HUNG_TASK 1580 /* hung task detection */ 1581 unsigned long last_switch_count; 1582 #endif 1583 /* filesystem information */ 1584 struct fs_struct *fs; 1585 /* open file information */ 1586 struct files_struct *files; 1587 /* namespaces */ 1588 struct nsproxy *nsproxy; 1589 /* signal handlers */ 1590 struct signal_struct *signal; 1591 struct sighand_struct *sighand; 1592 1593 sigset_t blocked, real_blocked; 1594 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1595 struct sigpending pending; 1596 1597 unsigned long sas_ss_sp; 1598 size_t sas_ss_size; 1599 1600 struct callback_head *task_works; 1601 1602 struct audit_context *audit_context; 1603 #ifdef CONFIG_AUDITSYSCALL 1604 kuid_t loginuid; 1605 unsigned int sessionid; 1606 #endif 1607 struct seccomp seccomp; 1608 1609 /* Thread group tracking */ 1610 u32 parent_exec_id; 1611 u32 self_exec_id; 1612 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1613 * mempolicy */ 1614 spinlock_t alloc_lock; 1615 1616 /* Protection of the PI data structures: */ 1617 raw_spinlock_t pi_lock; 1618 1619 struct wake_q_node wake_q; 1620 1621 #ifdef CONFIG_RT_MUTEXES 1622 /* PI waiters blocked on a rt_mutex held by this task */ 1623 struct rb_root pi_waiters; 1624 struct rb_node *pi_waiters_leftmost; 1625 /* Deadlock detection and priority inheritance handling */ 1626 struct rt_mutex_waiter *pi_blocked_on; 1627 #endif 1628 1629 #ifdef CONFIG_DEBUG_MUTEXES 1630 /* mutex deadlock detection */ 1631 struct mutex_waiter *blocked_on; 1632 #endif 1633 #ifdef CONFIG_TRACE_IRQFLAGS 1634 unsigned int irq_events; 1635 unsigned long hardirq_enable_ip; 1636 unsigned long hardirq_disable_ip; 1637 unsigned int hardirq_enable_event; 1638 unsigned int hardirq_disable_event; 1639 int hardirqs_enabled; 1640 int hardirq_context; 1641 unsigned long softirq_disable_ip; 1642 unsigned long softirq_enable_ip; 1643 unsigned int softirq_disable_event; 1644 unsigned int softirq_enable_event; 1645 int softirqs_enabled; 1646 int softirq_context; 1647 #endif 1648 #ifdef CONFIG_LOCKDEP 1649 # define MAX_LOCK_DEPTH 48UL 1650 u64 curr_chain_key; 1651 int lockdep_depth; 1652 unsigned int lockdep_recursion; 1653 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1654 gfp_t lockdep_reclaim_gfp; 1655 #endif 1656 #ifdef CONFIG_UBSAN 1657 unsigned int in_ubsan; 1658 #endif 1659 1660 /* journalling filesystem info */ 1661 void *journal_info; 1662 1663 /* stacked block device info */ 1664 struct bio_list *bio_list; 1665 1666 #ifdef CONFIG_BLOCK 1667 /* stack plugging */ 1668 struct blk_plug *plug; 1669 #endif 1670 1671 /* VM state */ 1672 struct reclaim_state *reclaim_state; 1673 1674 struct backing_dev_info *backing_dev_info; 1675 1676 struct io_context *io_context; 1677 1678 unsigned long ptrace_message; 1679 siginfo_t *last_siginfo; /* For ptrace use. */ 1680 struct task_io_accounting ioac; 1681 #if defined(CONFIG_TASK_XACCT) 1682 u64 acct_rss_mem1; /* accumulated rss usage */ 1683 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1684 cputime_t acct_timexpd; /* stime + utime since last update */ 1685 #endif 1686 #ifdef CONFIG_CPUSETS 1687 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1688 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1689 int cpuset_mem_spread_rotor; 1690 int cpuset_slab_spread_rotor; 1691 #endif 1692 #ifdef CONFIG_CGROUPS 1693 /* Control Group info protected by css_set_lock */ 1694 struct css_set __rcu *cgroups; 1695 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1696 struct list_head cg_list; 1697 #endif 1698 #ifdef CONFIG_FUTEX 1699 struct robust_list_head __user *robust_list; 1700 #ifdef CONFIG_COMPAT 1701 struct compat_robust_list_head __user *compat_robust_list; 1702 #endif 1703 struct list_head pi_state_list; 1704 struct futex_pi_state *pi_state_cache; 1705 #endif 1706 #ifdef CONFIG_PERF_EVENTS 1707 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1708 struct mutex perf_event_mutex; 1709 struct list_head perf_event_list; 1710 #endif 1711 #ifdef CONFIG_DEBUG_PREEMPT 1712 unsigned long preempt_disable_ip; 1713 #endif 1714 #ifdef CONFIG_NUMA 1715 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1716 short il_next; 1717 short pref_node_fork; 1718 #endif 1719 #ifdef CONFIG_NUMA_BALANCING 1720 int numa_scan_seq; 1721 unsigned int numa_scan_period; 1722 unsigned int numa_scan_period_max; 1723 int numa_preferred_nid; 1724 unsigned long numa_migrate_retry; 1725 u64 node_stamp; /* migration stamp */ 1726 u64 last_task_numa_placement; 1727 u64 last_sum_exec_runtime; 1728 struct callback_head numa_work; 1729 1730 struct list_head numa_entry; 1731 struct numa_group *numa_group; 1732 1733 /* 1734 * numa_faults is an array split into four regions: 1735 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1736 * in this precise order. 1737 * 1738 * faults_memory: Exponential decaying average of faults on a per-node 1739 * basis. Scheduling placement decisions are made based on these 1740 * counts. The values remain static for the duration of a PTE scan. 1741 * faults_cpu: Track the nodes the process was running on when a NUMA 1742 * hinting fault was incurred. 1743 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1744 * during the current scan window. When the scan completes, the counts 1745 * in faults_memory and faults_cpu decay and these values are copied. 1746 */ 1747 unsigned long *numa_faults; 1748 unsigned long total_numa_faults; 1749 1750 /* 1751 * numa_faults_locality tracks if faults recorded during the last 1752 * scan window were remote/local or failed to migrate. The task scan 1753 * period is adapted based on the locality of the faults with different 1754 * weights depending on whether they were shared or private faults 1755 */ 1756 unsigned long numa_faults_locality[3]; 1757 1758 unsigned long numa_pages_migrated; 1759 #endif /* CONFIG_NUMA_BALANCING */ 1760 1761 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1762 struct tlbflush_unmap_batch tlb_ubc; 1763 #endif 1764 1765 struct rcu_head rcu; 1766 1767 /* 1768 * cache last used pipe for splice 1769 */ 1770 struct pipe_inode_info *splice_pipe; 1771 1772 struct page_frag task_frag; 1773 1774 #ifdef CONFIG_TASK_DELAY_ACCT 1775 struct task_delay_info *delays; 1776 #endif 1777 #ifdef CONFIG_FAULT_INJECTION 1778 int make_it_fail; 1779 #endif 1780 /* 1781 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1782 * balance_dirty_pages() for some dirty throttling pause 1783 */ 1784 int nr_dirtied; 1785 int nr_dirtied_pause; 1786 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1787 1788 #ifdef CONFIG_LATENCYTOP 1789 int latency_record_count; 1790 struct latency_record latency_record[LT_SAVECOUNT]; 1791 #endif 1792 /* 1793 * time slack values; these are used to round up poll() and 1794 * select() etc timeout values. These are in nanoseconds. 1795 */ 1796 u64 timer_slack_ns; 1797 u64 default_timer_slack_ns; 1798 1799 #ifdef CONFIG_KASAN 1800 unsigned int kasan_depth; 1801 #endif 1802 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1803 /* Index of current stored address in ret_stack */ 1804 int curr_ret_stack; 1805 /* Stack of return addresses for return function tracing */ 1806 struct ftrace_ret_stack *ret_stack; 1807 /* time stamp for last schedule */ 1808 unsigned long long ftrace_timestamp; 1809 /* 1810 * Number of functions that haven't been traced 1811 * because of depth overrun. 1812 */ 1813 atomic_t trace_overrun; 1814 /* Pause for the tracing */ 1815 atomic_t tracing_graph_pause; 1816 #endif 1817 #ifdef CONFIG_TRACING 1818 /* state flags for use by tracers */ 1819 unsigned long trace; 1820 /* bitmask and counter of trace recursion */ 1821 unsigned long trace_recursion; 1822 #endif /* CONFIG_TRACING */ 1823 #ifdef CONFIG_KCOV 1824 /* Coverage collection mode enabled for this task (0 if disabled). */ 1825 enum kcov_mode kcov_mode; 1826 /* Size of the kcov_area. */ 1827 unsigned kcov_size; 1828 /* Buffer for coverage collection. */ 1829 void *kcov_area; 1830 /* kcov desciptor wired with this task or NULL. */ 1831 struct kcov *kcov; 1832 #endif 1833 #ifdef CONFIG_MEMCG 1834 struct mem_cgroup *memcg_in_oom; 1835 gfp_t memcg_oom_gfp_mask; 1836 int memcg_oom_order; 1837 1838 /* number of pages to reclaim on returning to userland */ 1839 unsigned int memcg_nr_pages_over_high; 1840 #endif 1841 #ifdef CONFIG_UPROBES 1842 struct uprobe_task *utask; 1843 #endif 1844 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1845 unsigned int sequential_io; 1846 unsigned int sequential_io_avg; 1847 #endif 1848 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1849 unsigned long task_state_change; 1850 #endif 1851 int pagefault_disabled; 1852 #ifdef CONFIG_MMU 1853 struct task_struct *oom_reaper_list; 1854 #endif 1855 /* CPU-specific state of this task */ 1856 struct thread_struct thread; 1857 /* 1858 * WARNING: on x86, 'thread_struct' contains a variable-sized 1859 * structure. It *MUST* be at the end of 'task_struct'. 1860 * 1861 * Do not put anything below here! 1862 */ 1863 }; 1864 1865 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1866 extern int arch_task_struct_size __read_mostly; 1867 #else 1868 # define arch_task_struct_size (sizeof(struct task_struct)) 1869 #endif 1870 1871 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1872 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1873 1874 #define TNF_MIGRATED 0x01 1875 #define TNF_NO_GROUP 0x02 1876 #define TNF_SHARED 0x04 1877 #define TNF_FAULT_LOCAL 0x08 1878 #define TNF_MIGRATE_FAIL 0x10 1879 1880 #ifdef CONFIG_NUMA_BALANCING 1881 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1882 extern pid_t task_numa_group_id(struct task_struct *p); 1883 extern void set_numabalancing_state(bool enabled); 1884 extern void task_numa_free(struct task_struct *p); 1885 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1886 int src_nid, int dst_cpu); 1887 #else 1888 static inline void task_numa_fault(int last_node, int node, int pages, 1889 int flags) 1890 { 1891 } 1892 static inline pid_t task_numa_group_id(struct task_struct *p) 1893 { 1894 return 0; 1895 } 1896 static inline void set_numabalancing_state(bool enabled) 1897 { 1898 } 1899 static inline void task_numa_free(struct task_struct *p) 1900 { 1901 } 1902 static inline bool should_numa_migrate_memory(struct task_struct *p, 1903 struct page *page, int src_nid, int dst_cpu) 1904 { 1905 return true; 1906 } 1907 #endif 1908 1909 static inline struct pid *task_pid(struct task_struct *task) 1910 { 1911 return task->pids[PIDTYPE_PID].pid; 1912 } 1913 1914 static inline struct pid *task_tgid(struct task_struct *task) 1915 { 1916 return task->group_leader->pids[PIDTYPE_PID].pid; 1917 } 1918 1919 /* 1920 * Without tasklist or rcu lock it is not safe to dereference 1921 * the result of task_pgrp/task_session even if task == current, 1922 * we can race with another thread doing sys_setsid/sys_setpgid. 1923 */ 1924 static inline struct pid *task_pgrp(struct task_struct *task) 1925 { 1926 return task->group_leader->pids[PIDTYPE_PGID].pid; 1927 } 1928 1929 static inline struct pid *task_session(struct task_struct *task) 1930 { 1931 return task->group_leader->pids[PIDTYPE_SID].pid; 1932 } 1933 1934 struct pid_namespace; 1935 1936 /* 1937 * the helpers to get the task's different pids as they are seen 1938 * from various namespaces 1939 * 1940 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1941 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1942 * current. 1943 * task_xid_nr_ns() : id seen from the ns specified; 1944 * 1945 * set_task_vxid() : assigns a virtual id to a task; 1946 * 1947 * see also pid_nr() etc in include/linux/pid.h 1948 */ 1949 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1950 struct pid_namespace *ns); 1951 1952 static inline pid_t task_pid_nr(struct task_struct *tsk) 1953 { 1954 return tsk->pid; 1955 } 1956 1957 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1958 struct pid_namespace *ns) 1959 { 1960 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1961 } 1962 1963 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1964 { 1965 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1966 } 1967 1968 1969 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1970 { 1971 return tsk->tgid; 1972 } 1973 1974 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1975 1976 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1977 { 1978 return pid_vnr(task_tgid(tsk)); 1979 } 1980 1981 1982 static inline int pid_alive(const struct task_struct *p); 1983 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1984 { 1985 pid_t pid = 0; 1986 1987 rcu_read_lock(); 1988 if (pid_alive(tsk)) 1989 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1990 rcu_read_unlock(); 1991 1992 return pid; 1993 } 1994 1995 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1996 { 1997 return task_ppid_nr_ns(tsk, &init_pid_ns); 1998 } 1999 2000 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 2001 struct pid_namespace *ns) 2002 { 2003 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 2004 } 2005 2006 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 2007 { 2008 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 2009 } 2010 2011 2012 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 2013 struct pid_namespace *ns) 2014 { 2015 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 2016 } 2017 2018 static inline pid_t task_session_vnr(struct task_struct *tsk) 2019 { 2020 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 2021 } 2022 2023 /* obsolete, do not use */ 2024 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 2025 { 2026 return task_pgrp_nr_ns(tsk, &init_pid_ns); 2027 } 2028 2029 /** 2030 * pid_alive - check that a task structure is not stale 2031 * @p: Task structure to be checked. 2032 * 2033 * Test if a process is not yet dead (at most zombie state) 2034 * If pid_alive fails, then pointers within the task structure 2035 * can be stale and must not be dereferenced. 2036 * 2037 * Return: 1 if the process is alive. 0 otherwise. 2038 */ 2039 static inline int pid_alive(const struct task_struct *p) 2040 { 2041 return p->pids[PIDTYPE_PID].pid != NULL; 2042 } 2043 2044 /** 2045 * is_global_init - check if a task structure is init. Since init 2046 * is free to have sub-threads we need to check tgid. 2047 * @tsk: Task structure to be checked. 2048 * 2049 * Check if a task structure is the first user space task the kernel created. 2050 * 2051 * Return: 1 if the task structure is init. 0 otherwise. 2052 */ 2053 static inline int is_global_init(struct task_struct *tsk) 2054 { 2055 return task_tgid_nr(tsk) == 1; 2056 } 2057 2058 extern struct pid *cad_pid; 2059 2060 extern void free_task(struct task_struct *tsk); 2061 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2062 2063 extern void __put_task_struct(struct task_struct *t); 2064 2065 static inline void put_task_struct(struct task_struct *t) 2066 { 2067 if (atomic_dec_and_test(&t->usage)) 2068 __put_task_struct(t); 2069 } 2070 2071 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2072 extern void task_cputime(struct task_struct *t, 2073 cputime_t *utime, cputime_t *stime); 2074 extern void task_cputime_scaled(struct task_struct *t, 2075 cputime_t *utimescaled, cputime_t *stimescaled); 2076 extern cputime_t task_gtime(struct task_struct *t); 2077 #else 2078 static inline void task_cputime(struct task_struct *t, 2079 cputime_t *utime, cputime_t *stime) 2080 { 2081 if (utime) 2082 *utime = t->utime; 2083 if (stime) 2084 *stime = t->stime; 2085 } 2086 2087 static inline void task_cputime_scaled(struct task_struct *t, 2088 cputime_t *utimescaled, 2089 cputime_t *stimescaled) 2090 { 2091 if (utimescaled) 2092 *utimescaled = t->utimescaled; 2093 if (stimescaled) 2094 *stimescaled = t->stimescaled; 2095 } 2096 2097 static inline cputime_t task_gtime(struct task_struct *t) 2098 { 2099 return t->gtime; 2100 } 2101 #endif 2102 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2103 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2104 2105 /* 2106 * Per process flags 2107 */ 2108 #define PF_EXITING 0x00000004 /* getting shut down */ 2109 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2110 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2111 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2112 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2113 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2114 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2115 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2116 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2117 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2118 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2119 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2120 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2121 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2122 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2123 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2124 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2125 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2126 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2127 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2128 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2129 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2130 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2131 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2132 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2133 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2134 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2135 2136 /* 2137 * Only the _current_ task can read/write to tsk->flags, but other 2138 * tasks can access tsk->flags in readonly mode for example 2139 * with tsk_used_math (like during threaded core dumping). 2140 * There is however an exception to this rule during ptrace 2141 * or during fork: the ptracer task is allowed to write to the 2142 * child->flags of its traced child (same goes for fork, the parent 2143 * can write to the child->flags), because we're guaranteed the 2144 * child is not running and in turn not changing child->flags 2145 * at the same time the parent does it. 2146 */ 2147 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2148 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2149 #define clear_used_math() clear_stopped_child_used_math(current) 2150 #define set_used_math() set_stopped_child_used_math(current) 2151 #define conditional_stopped_child_used_math(condition, child) \ 2152 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2153 #define conditional_used_math(condition) \ 2154 conditional_stopped_child_used_math(condition, current) 2155 #define copy_to_stopped_child_used_math(child) \ 2156 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2157 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2158 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2159 #define used_math() tsk_used_math(current) 2160 2161 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2162 * __GFP_FS is also cleared as it implies __GFP_IO. 2163 */ 2164 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2165 { 2166 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2167 flags &= ~(__GFP_IO | __GFP_FS); 2168 return flags; 2169 } 2170 2171 static inline unsigned int memalloc_noio_save(void) 2172 { 2173 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2174 current->flags |= PF_MEMALLOC_NOIO; 2175 return flags; 2176 } 2177 2178 static inline void memalloc_noio_restore(unsigned int flags) 2179 { 2180 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2181 } 2182 2183 /* Per-process atomic flags. */ 2184 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2185 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2186 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2187 2188 2189 #define TASK_PFA_TEST(name, func) \ 2190 static inline bool task_##func(struct task_struct *p) \ 2191 { return test_bit(PFA_##name, &p->atomic_flags); } 2192 #define TASK_PFA_SET(name, func) \ 2193 static inline void task_set_##func(struct task_struct *p) \ 2194 { set_bit(PFA_##name, &p->atomic_flags); } 2195 #define TASK_PFA_CLEAR(name, func) \ 2196 static inline void task_clear_##func(struct task_struct *p) \ 2197 { clear_bit(PFA_##name, &p->atomic_flags); } 2198 2199 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2200 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2201 2202 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2203 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2204 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2205 2206 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2207 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2208 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2209 2210 /* 2211 * task->jobctl flags 2212 */ 2213 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2214 2215 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2216 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2217 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2218 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2219 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2220 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2221 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2222 2223 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2224 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2225 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2226 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2227 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2228 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2229 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2230 2231 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2232 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2233 2234 extern bool task_set_jobctl_pending(struct task_struct *task, 2235 unsigned long mask); 2236 extern void task_clear_jobctl_trapping(struct task_struct *task); 2237 extern void task_clear_jobctl_pending(struct task_struct *task, 2238 unsigned long mask); 2239 2240 static inline void rcu_copy_process(struct task_struct *p) 2241 { 2242 #ifdef CONFIG_PREEMPT_RCU 2243 p->rcu_read_lock_nesting = 0; 2244 p->rcu_read_unlock_special.s = 0; 2245 p->rcu_blocked_node = NULL; 2246 INIT_LIST_HEAD(&p->rcu_node_entry); 2247 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2248 #ifdef CONFIG_TASKS_RCU 2249 p->rcu_tasks_holdout = false; 2250 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2251 p->rcu_tasks_idle_cpu = -1; 2252 #endif /* #ifdef CONFIG_TASKS_RCU */ 2253 } 2254 2255 static inline void tsk_restore_flags(struct task_struct *task, 2256 unsigned long orig_flags, unsigned long flags) 2257 { 2258 task->flags &= ~flags; 2259 task->flags |= orig_flags & flags; 2260 } 2261 2262 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2263 const struct cpumask *trial); 2264 extern int task_can_attach(struct task_struct *p, 2265 const struct cpumask *cs_cpus_allowed); 2266 #ifdef CONFIG_SMP 2267 extern void do_set_cpus_allowed(struct task_struct *p, 2268 const struct cpumask *new_mask); 2269 2270 extern int set_cpus_allowed_ptr(struct task_struct *p, 2271 const struct cpumask *new_mask); 2272 #else 2273 static inline void do_set_cpus_allowed(struct task_struct *p, 2274 const struct cpumask *new_mask) 2275 { 2276 } 2277 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2278 const struct cpumask *new_mask) 2279 { 2280 if (!cpumask_test_cpu(0, new_mask)) 2281 return -EINVAL; 2282 return 0; 2283 } 2284 #endif 2285 2286 #ifdef CONFIG_NO_HZ_COMMON 2287 void calc_load_enter_idle(void); 2288 void calc_load_exit_idle(void); 2289 #else 2290 static inline void calc_load_enter_idle(void) { } 2291 static inline void calc_load_exit_idle(void) { } 2292 #endif /* CONFIG_NO_HZ_COMMON */ 2293 2294 /* 2295 * Do not use outside of architecture code which knows its limitations. 2296 * 2297 * sched_clock() has no promise of monotonicity or bounded drift between 2298 * CPUs, use (which you should not) requires disabling IRQs. 2299 * 2300 * Please use one of the three interfaces below. 2301 */ 2302 extern unsigned long long notrace sched_clock(void); 2303 /* 2304 * See the comment in kernel/sched/clock.c 2305 */ 2306 extern u64 cpu_clock(int cpu); 2307 extern u64 local_clock(void); 2308 extern u64 running_clock(void); 2309 extern u64 sched_clock_cpu(int cpu); 2310 2311 2312 extern void sched_clock_init(void); 2313 2314 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2315 static inline void sched_clock_tick(void) 2316 { 2317 } 2318 2319 static inline void sched_clock_idle_sleep_event(void) 2320 { 2321 } 2322 2323 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2324 { 2325 } 2326 #else 2327 /* 2328 * Architectures can set this to 1 if they have specified 2329 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2330 * but then during bootup it turns out that sched_clock() 2331 * is reliable after all: 2332 */ 2333 extern int sched_clock_stable(void); 2334 extern void set_sched_clock_stable(void); 2335 extern void clear_sched_clock_stable(void); 2336 2337 extern void sched_clock_tick(void); 2338 extern void sched_clock_idle_sleep_event(void); 2339 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2340 #endif 2341 2342 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2343 /* 2344 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2345 * The reason for this explicit opt-in is not to have perf penalty with 2346 * slow sched_clocks. 2347 */ 2348 extern void enable_sched_clock_irqtime(void); 2349 extern void disable_sched_clock_irqtime(void); 2350 #else 2351 static inline void enable_sched_clock_irqtime(void) {} 2352 static inline void disable_sched_clock_irqtime(void) {} 2353 #endif 2354 2355 extern unsigned long long 2356 task_sched_runtime(struct task_struct *task); 2357 2358 /* sched_exec is called by processes performing an exec */ 2359 #ifdef CONFIG_SMP 2360 extern void sched_exec(void); 2361 #else 2362 #define sched_exec() {} 2363 #endif 2364 2365 extern void sched_clock_idle_sleep_event(void); 2366 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2367 2368 #ifdef CONFIG_HOTPLUG_CPU 2369 extern void idle_task_exit(void); 2370 #else 2371 static inline void idle_task_exit(void) {} 2372 #endif 2373 2374 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2375 extern void wake_up_nohz_cpu(int cpu); 2376 #else 2377 static inline void wake_up_nohz_cpu(int cpu) { } 2378 #endif 2379 2380 #ifdef CONFIG_NO_HZ_FULL 2381 extern u64 scheduler_tick_max_deferment(void); 2382 #endif 2383 2384 #ifdef CONFIG_SCHED_AUTOGROUP 2385 extern void sched_autogroup_create_attach(struct task_struct *p); 2386 extern void sched_autogroup_detach(struct task_struct *p); 2387 extern void sched_autogroup_fork(struct signal_struct *sig); 2388 extern void sched_autogroup_exit(struct signal_struct *sig); 2389 #ifdef CONFIG_PROC_FS 2390 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2391 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2392 #endif 2393 #else 2394 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2395 static inline void sched_autogroup_detach(struct task_struct *p) { } 2396 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2397 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2398 #endif 2399 2400 extern int yield_to(struct task_struct *p, bool preempt); 2401 extern void set_user_nice(struct task_struct *p, long nice); 2402 extern int task_prio(const struct task_struct *p); 2403 /** 2404 * task_nice - return the nice value of a given task. 2405 * @p: the task in question. 2406 * 2407 * Return: The nice value [ -20 ... 0 ... 19 ]. 2408 */ 2409 static inline int task_nice(const struct task_struct *p) 2410 { 2411 return PRIO_TO_NICE((p)->static_prio); 2412 } 2413 extern int can_nice(const struct task_struct *p, const int nice); 2414 extern int task_curr(const struct task_struct *p); 2415 extern int idle_cpu(int cpu); 2416 extern int sched_setscheduler(struct task_struct *, int, 2417 const struct sched_param *); 2418 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2419 const struct sched_param *); 2420 extern int sched_setattr(struct task_struct *, 2421 const struct sched_attr *); 2422 extern struct task_struct *idle_task(int cpu); 2423 /** 2424 * is_idle_task - is the specified task an idle task? 2425 * @p: the task in question. 2426 * 2427 * Return: 1 if @p is an idle task. 0 otherwise. 2428 */ 2429 static inline bool is_idle_task(const struct task_struct *p) 2430 { 2431 return p->pid == 0; 2432 } 2433 extern struct task_struct *curr_task(int cpu); 2434 extern void set_curr_task(int cpu, struct task_struct *p); 2435 2436 void yield(void); 2437 2438 union thread_union { 2439 struct thread_info thread_info; 2440 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2441 }; 2442 2443 #ifndef __HAVE_ARCH_KSTACK_END 2444 static inline int kstack_end(void *addr) 2445 { 2446 /* Reliable end of stack detection: 2447 * Some APM bios versions misalign the stack 2448 */ 2449 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2450 } 2451 #endif 2452 2453 extern union thread_union init_thread_union; 2454 extern struct task_struct init_task; 2455 2456 extern struct mm_struct init_mm; 2457 2458 extern struct pid_namespace init_pid_ns; 2459 2460 /* 2461 * find a task by one of its numerical ids 2462 * 2463 * find_task_by_pid_ns(): 2464 * finds a task by its pid in the specified namespace 2465 * find_task_by_vpid(): 2466 * finds a task by its virtual pid 2467 * 2468 * see also find_vpid() etc in include/linux/pid.h 2469 */ 2470 2471 extern struct task_struct *find_task_by_vpid(pid_t nr); 2472 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2473 struct pid_namespace *ns); 2474 2475 /* per-UID process charging. */ 2476 extern struct user_struct * alloc_uid(kuid_t); 2477 static inline struct user_struct *get_uid(struct user_struct *u) 2478 { 2479 atomic_inc(&u->__count); 2480 return u; 2481 } 2482 extern void free_uid(struct user_struct *); 2483 2484 #include <asm/current.h> 2485 2486 extern void xtime_update(unsigned long ticks); 2487 2488 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2489 extern int wake_up_process(struct task_struct *tsk); 2490 extern void wake_up_new_task(struct task_struct *tsk); 2491 #ifdef CONFIG_SMP 2492 extern void kick_process(struct task_struct *tsk); 2493 #else 2494 static inline void kick_process(struct task_struct *tsk) { } 2495 #endif 2496 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2497 extern void sched_dead(struct task_struct *p); 2498 2499 extern void proc_caches_init(void); 2500 extern void flush_signals(struct task_struct *); 2501 extern void ignore_signals(struct task_struct *); 2502 extern void flush_signal_handlers(struct task_struct *, int force_default); 2503 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2504 2505 static inline int kernel_dequeue_signal(siginfo_t *info) 2506 { 2507 struct task_struct *tsk = current; 2508 siginfo_t __info; 2509 int ret; 2510 2511 spin_lock_irq(&tsk->sighand->siglock); 2512 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 2513 spin_unlock_irq(&tsk->sighand->siglock); 2514 2515 return ret; 2516 } 2517 2518 static inline void kernel_signal_stop(void) 2519 { 2520 spin_lock_irq(¤t->sighand->siglock); 2521 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 2522 __set_current_state(TASK_STOPPED); 2523 spin_unlock_irq(¤t->sighand->siglock); 2524 2525 schedule(); 2526 } 2527 2528 extern void release_task(struct task_struct * p); 2529 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2530 extern int force_sigsegv(int, struct task_struct *); 2531 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2532 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2533 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2534 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2535 const struct cred *, u32); 2536 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2537 extern int kill_pid(struct pid *pid, int sig, int priv); 2538 extern int kill_proc_info(int, struct siginfo *, pid_t); 2539 extern __must_check bool do_notify_parent(struct task_struct *, int); 2540 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2541 extern void force_sig(int, struct task_struct *); 2542 extern int send_sig(int, struct task_struct *, int); 2543 extern int zap_other_threads(struct task_struct *p); 2544 extern struct sigqueue *sigqueue_alloc(void); 2545 extern void sigqueue_free(struct sigqueue *); 2546 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2547 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2548 2549 static inline void restore_saved_sigmask(void) 2550 { 2551 if (test_and_clear_restore_sigmask()) 2552 __set_current_blocked(¤t->saved_sigmask); 2553 } 2554 2555 static inline sigset_t *sigmask_to_save(void) 2556 { 2557 sigset_t *res = ¤t->blocked; 2558 if (unlikely(test_restore_sigmask())) 2559 res = ¤t->saved_sigmask; 2560 return res; 2561 } 2562 2563 static inline int kill_cad_pid(int sig, int priv) 2564 { 2565 return kill_pid(cad_pid, sig, priv); 2566 } 2567 2568 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2569 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2570 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2571 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2572 2573 /* 2574 * True if we are on the alternate signal stack. 2575 */ 2576 static inline int on_sig_stack(unsigned long sp) 2577 { 2578 #ifdef CONFIG_STACK_GROWSUP 2579 return sp >= current->sas_ss_sp && 2580 sp - current->sas_ss_sp < current->sas_ss_size; 2581 #else 2582 return sp > current->sas_ss_sp && 2583 sp - current->sas_ss_sp <= current->sas_ss_size; 2584 #endif 2585 } 2586 2587 static inline int sas_ss_flags(unsigned long sp) 2588 { 2589 if (!current->sas_ss_size) 2590 return SS_DISABLE; 2591 2592 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2593 } 2594 2595 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2596 { 2597 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2598 #ifdef CONFIG_STACK_GROWSUP 2599 return current->sas_ss_sp; 2600 #else 2601 return current->sas_ss_sp + current->sas_ss_size; 2602 #endif 2603 return sp; 2604 } 2605 2606 /* 2607 * Routines for handling mm_structs 2608 */ 2609 extern struct mm_struct * mm_alloc(void); 2610 2611 /* mmdrop drops the mm and the page tables */ 2612 extern void __mmdrop(struct mm_struct *); 2613 static inline void mmdrop(struct mm_struct * mm) 2614 { 2615 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2616 __mmdrop(mm); 2617 } 2618 2619 /* mmput gets rid of the mappings and all user-space */ 2620 extern void mmput(struct mm_struct *); 2621 /* Grab a reference to a task's mm, if it is not already going away */ 2622 extern struct mm_struct *get_task_mm(struct task_struct *task); 2623 /* 2624 * Grab a reference to a task's mm, if it is not already going away 2625 * and ptrace_may_access with the mode parameter passed to it 2626 * succeeds. 2627 */ 2628 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2629 /* Remove the current tasks stale references to the old mm_struct */ 2630 extern void mm_release(struct task_struct *, struct mm_struct *); 2631 2632 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2633 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2634 struct task_struct *, unsigned long); 2635 #else 2636 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2637 struct task_struct *); 2638 2639 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2640 * via pt_regs, so ignore the tls argument passed via C. */ 2641 static inline int copy_thread_tls( 2642 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2643 struct task_struct *p, unsigned long tls) 2644 { 2645 return copy_thread(clone_flags, sp, arg, p); 2646 } 2647 #endif 2648 extern void flush_thread(void); 2649 extern void exit_thread(void); 2650 2651 extern void exit_files(struct task_struct *); 2652 extern void __cleanup_sighand(struct sighand_struct *); 2653 2654 extern void exit_itimers(struct signal_struct *); 2655 extern void flush_itimer_signals(void); 2656 2657 extern void do_group_exit(int); 2658 2659 extern int do_execve(struct filename *, 2660 const char __user * const __user *, 2661 const char __user * const __user *); 2662 extern int do_execveat(int, struct filename *, 2663 const char __user * const __user *, 2664 const char __user * const __user *, 2665 int); 2666 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2667 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2668 struct task_struct *fork_idle(int); 2669 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2670 2671 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2672 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2673 { 2674 __set_task_comm(tsk, from, false); 2675 } 2676 extern char *get_task_comm(char *to, struct task_struct *tsk); 2677 2678 #ifdef CONFIG_SMP 2679 void scheduler_ipi(void); 2680 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2681 #else 2682 static inline void scheduler_ipi(void) { } 2683 static inline unsigned long wait_task_inactive(struct task_struct *p, 2684 long match_state) 2685 { 2686 return 1; 2687 } 2688 #endif 2689 2690 #define tasklist_empty() \ 2691 list_empty(&init_task.tasks) 2692 2693 #define next_task(p) \ 2694 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2695 2696 #define for_each_process(p) \ 2697 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2698 2699 extern bool current_is_single_threaded(void); 2700 2701 /* 2702 * Careful: do_each_thread/while_each_thread is a double loop so 2703 * 'break' will not work as expected - use goto instead. 2704 */ 2705 #define do_each_thread(g, t) \ 2706 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2707 2708 #define while_each_thread(g, t) \ 2709 while ((t = next_thread(t)) != g) 2710 2711 #define __for_each_thread(signal, t) \ 2712 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2713 2714 #define for_each_thread(p, t) \ 2715 __for_each_thread((p)->signal, t) 2716 2717 /* Careful: this is a double loop, 'break' won't work as expected. */ 2718 #define for_each_process_thread(p, t) \ 2719 for_each_process(p) for_each_thread(p, t) 2720 2721 static inline int get_nr_threads(struct task_struct *tsk) 2722 { 2723 return tsk->signal->nr_threads; 2724 } 2725 2726 static inline bool thread_group_leader(struct task_struct *p) 2727 { 2728 return p->exit_signal >= 0; 2729 } 2730 2731 /* Do to the insanities of de_thread it is possible for a process 2732 * to have the pid of the thread group leader without actually being 2733 * the thread group leader. For iteration through the pids in proc 2734 * all we care about is that we have a task with the appropriate 2735 * pid, we don't actually care if we have the right task. 2736 */ 2737 static inline bool has_group_leader_pid(struct task_struct *p) 2738 { 2739 return task_pid(p) == p->signal->leader_pid; 2740 } 2741 2742 static inline 2743 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2744 { 2745 return p1->signal == p2->signal; 2746 } 2747 2748 static inline struct task_struct *next_thread(const struct task_struct *p) 2749 { 2750 return list_entry_rcu(p->thread_group.next, 2751 struct task_struct, thread_group); 2752 } 2753 2754 static inline int thread_group_empty(struct task_struct *p) 2755 { 2756 return list_empty(&p->thread_group); 2757 } 2758 2759 #define delay_group_leader(p) \ 2760 (thread_group_leader(p) && !thread_group_empty(p)) 2761 2762 /* 2763 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2764 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2765 * pins the final release of task.io_context. Also protects ->cpuset and 2766 * ->cgroup.subsys[]. And ->vfork_done. 2767 * 2768 * Nests both inside and outside of read_lock(&tasklist_lock). 2769 * It must not be nested with write_lock_irq(&tasklist_lock), 2770 * neither inside nor outside. 2771 */ 2772 static inline void task_lock(struct task_struct *p) 2773 { 2774 spin_lock(&p->alloc_lock); 2775 } 2776 2777 static inline void task_unlock(struct task_struct *p) 2778 { 2779 spin_unlock(&p->alloc_lock); 2780 } 2781 2782 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2783 unsigned long *flags); 2784 2785 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2786 unsigned long *flags) 2787 { 2788 struct sighand_struct *ret; 2789 2790 ret = __lock_task_sighand(tsk, flags); 2791 (void)__cond_lock(&tsk->sighand->siglock, ret); 2792 return ret; 2793 } 2794 2795 static inline void unlock_task_sighand(struct task_struct *tsk, 2796 unsigned long *flags) 2797 { 2798 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2799 } 2800 2801 /** 2802 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 2803 * @tsk: task causing the changes 2804 * 2805 * All operations which modify a threadgroup - a new thread joining the 2806 * group, death of a member thread (the assertion of PF_EXITING) and 2807 * exec(2) dethreading the process and replacing the leader - are wrapped 2808 * by threadgroup_change_{begin|end}(). This is to provide a place which 2809 * subsystems needing threadgroup stability can hook into for 2810 * synchronization. 2811 */ 2812 static inline void threadgroup_change_begin(struct task_struct *tsk) 2813 { 2814 might_sleep(); 2815 cgroup_threadgroup_change_begin(tsk); 2816 } 2817 2818 /** 2819 * threadgroup_change_end - mark the end of changes to a threadgroup 2820 * @tsk: task causing the changes 2821 * 2822 * See threadgroup_change_begin(). 2823 */ 2824 static inline void threadgroup_change_end(struct task_struct *tsk) 2825 { 2826 cgroup_threadgroup_change_end(tsk); 2827 } 2828 2829 #ifndef __HAVE_THREAD_FUNCTIONS 2830 2831 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2832 #define task_stack_page(task) ((task)->stack) 2833 2834 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2835 { 2836 *task_thread_info(p) = *task_thread_info(org); 2837 task_thread_info(p)->task = p; 2838 } 2839 2840 /* 2841 * Return the address of the last usable long on the stack. 2842 * 2843 * When the stack grows down, this is just above the thread 2844 * info struct. Going any lower will corrupt the threadinfo. 2845 * 2846 * When the stack grows up, this is the highest address. 2847 * Beyond that position, we corrupt data on the next page. 2848 */ 2849 static inline unsigned long *end_of_stack(struct task_struct *p) 2850 { 2851 #ifdef CONFIG_STACK_GROWSUP 2852 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2853 #else 2854 return (unsigned long *)(task_thread_info(p) + 1); 2855 #endif 2856 } 2857 2858 #endif 2859 #define task_stack_end_corrupted(task) \ 2860 (*(end_of_stack(task)) != STACK_END_MAGIC) 2861 2862 static inline int object_is_on_stack(void *obj) 2863 { 2864 void *stack = task_stack_page(current); 2865 2866 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2867 } 2868 2869 extern void thread_info_cache_init(void); 2870 2871 #ifdef CONFIG_DEBUG_STACK_USAGE 2872 static inline unsigned long stack_not_used(struct task_struct *p) 2873 { 2874 unsigned long *n = end_of_stack(p); 2875 2876 do { /* Skip over canary */ 2877 # ifdef CONFIG_STACK_GROWSUP 2878 n--; 2879 # else 2880 n++; 2881 # endif 2882 } while (!*n); 2883 2884 # ifdef CONFIG_STACK_GROWSUP 2885 return (unsigned long)end_of_stack(p) - (unsigned long)n; 2886 # else 2887 return (unsigned long)n - (unsigned long)end_of_stack(p); 2888 # endif 2889 } 2890 #endif 2891 extern void set_task_stack_end_magic(struct task_struct *tsk); 2892 2893 /* set thread flags in other task's structures 2894 * - see asm/thread_info.h for TIF_xxxx flags available 2895 */ 2896 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2897 { 2898 set_ti_thread_flag(task_thread_info(tsk), flag); 2899 } 2900 2901 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2902 { 2903 clear_ti_thread_flag(task_thread_info(tsk), flag); 2904 } 2905 2906 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2907 { 2908 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2909 } 2910 2911 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2912 { 2913 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2914 } 2915 2916 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2917 { 2918 return test_ti_thread_flag(task_thread_info(tsk), flag); 2919 } 2920 2921 static inline void set_tsk_need_resched(struct task_struct *tsk) 2922 { 2923 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2924 } 2925 2926 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2927 { 2928 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2929 } 2930 2931 static inline int test_tsk_need_resched(struct task_struct *tsk) 2932 { 2933 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2934 } 2935 2936 static inline int restart_syscall(void) 2937 { 2938 set_tsk_thread_flag(current, TIF_SIGPENDING); 2939 return -ERESTARTNOINTR; 2940 } 2941 2942 static inline int signal_pending(struct task_struct *p) 2943 { 2944 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2945 } 2946 2947 static inline int __fatal_signal_pending(struct task_struct *p) 2948 { 2949 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2950 } 2951 2952 static inline int fatal_signal_pending(struct task_struct *p) 2953 { 2954 return signal_pending(p) && __fatal_signal_pending(p); 2955 } 2956 2957 static inline int signal_pending_state(long state, struct task_struct *p) 2958 { 2959 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2960 return 0; 2961 if (!signal_pending(p)) 2962 return 0; 2963 2964 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2965 } 2966 2967 /* 2968 * cond_resched() and cond_resched_lock(): latency reduction via 2969 * explicit rescheduling in places that are safe. The return 2970 * value indicates whether a reschedule was done in fact. 2971 * cond_resched_lock() will drop the spinlock before scheduling, 2972 * cond_resched_softirq() will enable bhs before scheduling. 2973 */ 2974 extern int _cond_resched(void); 2975 2976 #define cond_resched() ({ \ 2977 ___might_sleep(__FILE__, __LINE__, 0); \ 2978 _cond_resched(); \ 2979 }) 2980 2981 extern int __cond_resched_lock(spinlock_t *lock); 2982 2983 #define cond_resched_lock(lock) ({ \ 2984 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 2985 __cond_resched_lock(lock); \ 2986 }) 2987 2988 extern int __cond_resched_softirq(void); 2989 2990 #define cond_resched_softirq() ({ \ 2991 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2992 __cond_resched_softirq(); \ 2993 }) 2994 2995 static inline void cond_resched_rcu(void) 2996 { 2997 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 2998 rcu_read_unlock(); 2999 cond_resched(); 3000 rcu_read_lock(); 3001 #endif 3002 } 3003 3004 /* 3005 * Does a critical section need to be broken due to another 3006 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 3007 * but a general need for low latency) 3008 */ 3009 static inline int spin_needbreak(spinlock_t *lock) 3010 { 3011 #ifdef CONFIG_PREEMPT 3012 return spin_is_contended(lock); 3013 #else 3014 return 0; 3015 #endif 3016 } 3017 3018 /* 3019 * Idle thread specific functions to determine the need_resched 3020 * polling state. 3021 */ 3022 #ifdef TIF_POLLING_NRFLAG 3023 static inline int tsk_is_polling(struct task_struct *p) 3024 { 3025 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 3026 } 3027 3028 static inline void __current_set_polling(void) 3029 { 3030 set_thread_flag(TIF_POLLING_NRFLAG); 3031 } 3032 3033 static inline bool __must_check current_set_polling_and_test(void) 3034 { 3035 __current_set_polling(); 3036 3037 /* 3038 * Polling state must be visible before we test NEED_RESCHED, 3039 * paired by resched_curr() 3040 */ 3041 smp_mb__after_atomic(); 3042 3043 return unlikely(tif_need_resched()); 3044 } 3045 3046 static inline void __current_clr_polling(void) 3047 { 3048 clear_thread_flag(TIF_POLLING_NRFLAG); 3049 } 3050 3051 static inline bool __must_check current_clr_polling_and_test(void) 3052 { 3053 __current_clr_polling(); 3054 3055 /* 3056 * Polling state must be visible before we test NEED_RESCHED, 3057 * paired by resched_curr() 3058 */ 3059 smp_mb__after_atomic(); 3060 3061 return unlikely(tif_need_resched()); 3062 } 3063 3064 #else 3065 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3066 static inline void __current_set_polling(void) { } 3067 static inline void __current_clr_polling(void) { } 3068 3069 static inline bool __must_check current_set_polling_and_test(void) 3070 { 3071 return unlikely(tif_need_resched()); 3072 } 3073 static inline bool __must_check current_clr_polling_and_test(void) 3074 { 3075 return unlikely(tif_need_resched()); 3076 } 3077 #endif 3078 3079 static inline void current_clr_polling(void) 3080 { 3081 __current_clr_polling(); 3082 3083 /* 3084 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3085 * Once the bit is cleared, we'll get IPIs with every new 3086 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3087 * fold. 3088 */ 3089 smp_mb(); /* paired with resched_curr() */ 3090 3091 preempt_fold_need_resched(); 3092 } 3093 3094 static __always_inline bool need_resched(void) 3095 { 3096 return unlikely(tif_need_resched()); 3097 } 3098 3099 /* 3100 * Thread group CPU time accounting. 3101 */ 3102 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3103 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3104 3105 /* 3106 * Reevaluate whether the task has signals pending delivery. 3107 * Wake the task if so. 3108 * This is required every time the blocked sigset_t changes. 3109 * callers must hold sighand->siglock. 3110 */ 3111 extern void recalc_sigpending_and_wake(struct task_struct *t); 3112 extern void recalc_sigpending(void); 3113 3114 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3115 3116 static inline void signal_wake_up(struct task_struct *t, bool resume) 3117 { 3118 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3119 } 3120 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3121 { 3122 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3123 } 3124 3125 /* 3126 * Wrappers for p->thread_info->cpu access. No-op on UP. 3127 */ 3128 #ifdef CONFIG_SMP 3129 3130 static inline unsigned int task_cpu(const struct task_struct *p) 3131 { 3132 return task_thread_info(p)->cpu; 3133 } 3134 3135 static inline int task_node(const struct task_struct *p) 3136 { 3137 return cpu_to_node(task_cpu(p)); 3138 } 3139 3140 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3141 3142 #else 3143 3144 static inline unsigned int task_cpu(const struct task_struct *p) 3145 { 3146 return 0; 3147 } 3148 3149 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3150 { 3151 } 3152 3153 #endif /* CONFIG_SMP */ 3154 3155 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3156 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3157 3158 #ifdef CONFIG_CGROUP_SCHED 3159 extern struct task_group root_task_group; 3160 #endif /* CONFIG_CGROUP_SCHED */ 3161 3162 extern int task_can_switch_user(struct user_struct *up, 3163 struct task_struct *tsk); 3164 3165 #ifdef CONFIG_TASK_XACCT 3166 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3167 { 3168 tsk->ioac.rchar += amt; 3169 } 3170 3171 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3172 { 3173 tsk->ioac.wchar += amt; 3174 } 3175 3176 static inline void inc_syscr(struct task_struct *tsk) 3177 { 3178 tsk->ioac.syscr++; 3179 } 3180 3181 static inline void inc_syscw(struct task_struct *tsk) 3182 { 3183 tsk->ioac.syscw++; 3184 } 3185 #else 3186 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3187 { 3188 } 3189 3190 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3191 { 3192 } 3193 3194 static inline void inc_syscr(struct task_struct *tsk) 3195 { 3196 } 3197 3198 static inline void inc_syscw(struct task_struct *tsk) 3199 { 3200 } 3201 #endif 3202 3203 #ifndef TASK_SIZE_OF 3204 #define TASK_SIZE_OF(tsk) TASK_SIZE 3205 #endif 3206 3207 #ifdef CONFIG_MEMCG 3208 extern void mm_update_next_owner(struct mm_struct *mm); 3209 #else 3210 static inline void mm_update_next_owner(struct mm_struct *mm) 3211 { 3212 } 3213 #endif /* CONFIG_MEMCG */ 3214 3215 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3216 unsigned int limit) 3217 { 3218 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3219 } 3220 3221 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3222 unsigned int limit) 3223 { 3224 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3225 } 3226 3227 static inline unsigned long rlimit(unsigned int limit) 3228 { 3229 return task_rlimit(current, limit); 3230 } 3231 3232 static inline unsigned long rlimit_max(unsigned int limit) 3233 { 3234 return task_rlimit_max(current, limit); 3235 } 3236 3237 #ifdef CONFIG_CPU_FREQ 3238 struct update_util_data { 3239 void (*func)(struct update_util_data *data, 3240 u64 time, unsigned long util, unsigned long max); 3241 }; 3242 3243 void cpufreq_set_update_util_data(int cpu, struct update_util_data *data); 3244 #endif /* CONFIG_CPU_FREQ */ 3245 3246 #endif 3247