xref: /linux/include/linux/sched.h (revision 0ddd7eaffa644baa78e247bbd220ab7195b1eed6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38 
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct capture_control;
46 struct cfs_rq;
47 struct fs_struct;
48 struct futex_pi_state;
49 struct io_context;
50 struct io_uring_task;
51 struct mempolicy;
52 struct nameidata;
53 struct nsproxy;
54 struct perf_event_context;
55 struct pid_namespace;
56 struct pipe_inode_info;
57 struct rcu_node;
58 struct reclaim_state;
59 struct robust_list_head;
60 struct root_domain;
61 struct rq;
62 struct sched_attr;
63 struct sched_param;
64 struct seq_file;
65 struct sighand_struct;
66 struct signal_struct;
67 struct task_delay_info;
68 struct task_group;
69 
70 /*
71  * Task state bitmask. NOTE! These bits are also
72  * encoded in fs/proc/array.c: get_task_state().
73  *
74  * We have two separate sets of flags: task->state
75  * is about runnability, while task->exit_state are
76  * about the task exiting. Confusing, but this way
77  * modifying one set can't modify the other one by
78  * mistake.
79  */
80 
81 /* Used in tsk->state: */
82 #define TASK_RUNNING			0x0000
83 #define TASK_INTERRUPTIBLE		0x0001
84 #define TASK_UNINTERRUPTIBLE		0x0002
85 #define __TASK_STOPPED			0x0004
86 #define __TASK_TRACED			0x0008
87 /* Used in tsk->exit_state: */
88 #define EXIT_DEAD			0x0010
89 #define EXIT_ZOMBIE			0x0020
90 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
91 /* Used in tsk->state again: */
92 #define TASK_PARKED			0x0040
93 #define TASK_DEAD			0x0080
94 #define TASK_WAKEKILL			0x0100
95 #define TASK_WAKING			0x0200
96 #define TASK_NOLOAD			0x0400
97 #define TASK_NEW			0x0800
98 #define TASK_STATE_MAX			0x1000
99 
100 /* Convenience macros for the sake of set_current_state: */
101 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
102 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
103 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
104 
105 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
106 
107 /* Convenience macros for the sake of wake_up(): */
108 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
109 
110 /* get_task_state(): */
111 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
112 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
113 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
114 					 TASK_PARKED)
115 
116 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
117 
118 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
119 
120 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
121 
122 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
123 
124 /*
125  * Special states are those that do not use the normal wait-loop pattern. See
126  * the comment with set_special_state().
127  */
128 #define is_special_task_state(state)				\
129 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
130 
131 #define __set_current_state(state_value)			\
132 	do {							\
133 		WARN_ON_ONCE(is_special_task_state(state_value));\
134 		current->task_state_change = _THIS_IP_;		\
135 		current->state = (state_value);			\
136 	} while (0)
137 
138 #define set_current_state(state_value)				\
139 	do {							\
140 		WARN_ON_ONCE(is_special_task_state(state_value));\
141 		current->task_state_change = _THIS_IP_;		\
142 		smp_store_mb(current->state, (state_value));	\
143 	} while (0)
144 
145 #define set_special_state(state_value)					\
146 	do {								\
147 		unsigned long flags; /* may shadow */			\
148 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
149 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
150 		current->task_state_change = _THIS_IP_;			\
151 		current->state = (state_value);				\
152 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
153 	} while (0)
154 #else
155 /*
156  * set_current_state() includes a barrier so that the write of current->state
157  * is correctly serialised wrt the caller's subsequent test of whether to
158  * actually sleep:
159  *
160  *   for (;;) {
161  *	set_current_state(TASK_UNINTERRUPTIBLE);
162  *	if (CONDITION)
163  *	   break;
164  *
165  *	schedule();
166  *   }
167  *   __set_current_state(TASK_RUNNING);
168  *
169  * If the caller does not need such serialisation (because, for instance, the
170  * CONDITION test and condition change and wakeup are under the same lock) then
171  * use __set_current_state().
172  *
173  * The above is typically ordered against the wakeup, which does:
174  *
175  *   CONDITION = 1;
176  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
177  *
178  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
179  * accessing p->state.
180  *
181  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
182  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
183  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
184  *
185  * However, with slightly different timing the wakeup TASK_RUNNING store can
186  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
187  * a problem either because that will result in one extra go around the loop
188  * and our @cond test will save the day.
189  *
190  * Also see the comments of try_to_wake_up().
191  */
192 #define __set_current_state(state_value)				\
193 	current->state = (state_value)
194 
195 #define set_current_state(state_value)					\
196 	smp_store_mb(current->state, (state_value))
197 
198 /*
199  * set_special_state() should be used for those states when the blocking task
200  * can not use the regular condition based wait-loop. In that case we must
201  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
202  * will not collide with our state change.
203  */
204 #define set_special_state(state_value)					\
205 	do {								\
206 		unsigned long flags; /* may shadow */			\
207 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
208 		current->state = (state_value);				\
209 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
210 	} while (0)
211 
212 #endif
213 
214 /* Task command name length: */
215 #define TASK_COMM_LEN			16
216 
217 extern void scheduler_tick(void);
218 
219 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
220 
221 extern long schedule_timeout(long timeout);
222 extern long schedule_timeout_interruptible(long timeout);
223 extern long schedule_timeout_killable(long timeout);
224 extern long schedule_timeout_uninterruptible(long timeout);
225 extern long schedule_timeout_idle(long timeout);
226 asmlinkage void schedule(void);
227 extern void schedule_preempt_disabled(void);
228 asmlinkage void preempt_schedule_irq(void);
229 
230 extern int __must_check io_schedule_prepare(void);
231 extern void io_schedule_finish(int token);
232 extern long io_schedule_timeout(long timeout);
233 extern void io_schedule(void);
234 
235 /**
236  * struct prev_cputime - snapshot of system and user cputime
237  * @utime: time spent in user mode
238  * @stime: time spent in system mode
239  * @lock: protects the above two fields
240  *
241  * Stores previous user/system time values such that we can guarantee
242  * monotonicity.
243  */
244 struct prev_cputime {
245 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
246 	u64				utime;
247 	u64				stime;
248 	raw_spinlock_t			lock;
249 #endif
250 };
251 
252 enum vtime_state {
253 	/* Task is sleeping or running in a CPU with VTIME inactive: */
254 	VTIME_INACTIVE = 0,
255 	/* Task is idle */
256 	VTIME_IDLE,
257 	/* Task runs in kernelspace in a CPU with VTIME active: */
258 	VTIME_SYS,
259 	/* Task runs in userspace in a CPU with VTIME active: */
260 	VTIME_USER,
261 	/* Task runs as guests in a CPU with VTIME active: */
262 	VTIME_GUEST,
263 };
264 
265 struct vtime {
266 	seqcount_t		seqcount;
267 	unsigned long long	starttime;
268 	enum vtime_state	state;
269 	unsigned int		cpu;
270 	u64			utime;
271 	u64			stime;
272 	u64			gtime;
273 };
274 
275 /*
276  * Utilization clamp constraints.
277  * @UCLAMP_MIN:	Minimum utilization
278  * @UCLAMP_MAX:	Maximum utilization
279  * @UCLAMP_CNT:	Utilization clamp constraints count
280  */
281 enum uclamp_id {
282 	UCLAMP_MIN = 0,
283 	UCLAMP_MAX,
284 	UCLAMP_CNT
285 };
286 
287 #ifdef CONFIG_SMP
288 extern struct root_domain def_root_domain;
289 extern struct mutex sched_domains_mutex;
290 #endif
291 
292 struct sched_info {
293 #ifdef CONFIG_SCHED_INFO
294 	/* Cumulative counters: */
295 
296 	/* # of times we have run on this CPU: */
297 	unsigned long			pcount;
298 
299 	/* Time spent waiting on a runqueue: */
300 	unsigned long long		run_delay;
301 
302 	/* Timestamps: */
303 
304 	/* When did we last run on a CPU? */
305 	unsigned long long		last_arrival;
306 
307 	/* When were we last queued to run? */
308 	unsigned long long		last_queued;
309 
310 #endif /* CONFIG_SCHED_INFO */
311 };
312 
313 /*
314  * Integer metrics need fixed point arithmetic, e.g., sched/fair
315  * has a few: load, load_avg, util_avg, freq, and capacity.
316  *
317  * We define a basic fixed point arithmetic range, and then formalize
318  * all these metrics based on that basic range.
319  */
320 # define SCHED_FIXEDPOINT_SHIFT		10
321 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
322 
323 /* Increase resolution of cpu_capacity calculations */
324 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
325 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
326 
327 struct load_weight {
328 	unsigned long			weight;
329 	u32				inv_weight;
330 };
331 
332 /**
333  * struct util_est - Estimation utilization of FAIR tasks
334  * @enqueued: instantaneous estimated utilization of a task/cpu
335  * @ewma:     the Exponential Weighted Moving Average (EWMA)
336  *            utilization of a task
337  *
338  * Support data structure to track an Exponential Weighted Moving Average
339  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
340  * average each time a task completes an activation. Sample's weight is chosen
341  * so that the EWMA will be relatively insensitive to transient changes to the
342  * task's workload.
343  *
344  * The enqueued attribute has a slightly different meaning for tasks and cpus:
345  * - task:   the task's util_avg at last task dequeue time
346  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
347  * Thus, the util_est.enqueued of a task represents the contribution on the
348  * estimated utilization of the CPU where that task is currently enqueued.
349  *
350  * Only for tasks we track a moving average of the past instantaneous
351  * estimated utilization. This allows to absorb sporadic drops in utilization
352  * of an otherwise almost periodic task.
353  */
354 struct util_est {
355 	unsigned int			enqueued;
356 	unsigned int			ewma;
357 #define UTIL_EST_WEIGHT_SHIFT		2
358 } __attribute__((__aligned__(sizeof(u64))));
359 
360 /*
361  * The load/runnable/util_avg accumulates an infinite geometric series
362  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
363  *
364  * [load_avg definition]
365  *
366  *   load_avg = runnable% * scale_load_down(load)
367  *
368  * [runnable_avg definition]
369  *
370  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
371  *
372  * [util_avg definition]
373  *
374  *   util_avg = running% * SCHED_CAPACITY_SCALE
375  *
376  * where runnable% is the time ratio that a sched_entity is runnable and
377  * running% the time ratio that a sched_entity is running.
378  *
379  * For cfs_rq, they are the aggregated values of all runnable and blocked
380  * sched_entities.
381  *
382  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
383  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
384  * for computing those signals (see update_rq_clock_pelt())
385  *
386  * N.B., the above ratios (runnable% and running%) themselves are in the
387  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
388  * to as large a range as necessary. This is for example reflected by
389  * util_avg's SCHED_CAPACITY_SCALE.
390  *
391  * [Overflow issue]
392  *
393  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
394  * with the highest load (=88761), always runnable on a single cfs_rq,
395  * and should not overflow as the number already hits PID_MAX_LIMIT.
396  *
397  * For all other cases (including 32-bit kernels), struct load_weight's
398  * weight will overflow first before we do, because:
399  *
400  *    Max(load_avg) <= Max(load.weight)
401  *
402  * Then it is the load_weight's responsibility to consider overflow
403  * issues.
404  */
405 struct sched_avg {
406 	u64				last_update_time;
407 	u64				load_sum;
408 	u64				runnable_sum;
409 	u32				util_sum;
410 	u32				period_contrib;
411 	unsigned long			load_avg;
412 	unsigned long			runnable_avg;
413 	unsigned long			util_avg;
414 	struct util_est			util_est;
415 } ____cacheline_aligned;
416 
417 struct sched_statistics {
418 #ifdef CONFIG_SCHEDSTATS
419 	u64				wait_start;
420 	u64				wait_max;
421 	u64				wait_count;
422 	u64				wait_sum;
423 	u64				iowait_count;
424 	u64				iowait_sum;
425 
426 	u64				sleep_start;
427 	u64				sleep_max;
428 	s64				sum_sleep_runtime;
429 
430 	u64				block_start;
431 	u64				block_max;
432 	u64				exec_max;
433 	u64				slice_max;
434 
435 	u64				nr_migrations_cold;
436 	u64				nr_failed_migrations_affine;
437 	u64				nr_failed_migrations_running;
438 	u64				nr_failed_migrations_hot;
439 	u64				nr_forced_migrations;
440 
441 	u64				nr_wakeups;
442 	u64				nr_wakeups_sync;
443 	u64				nr_wakeups_migrate;
444 	u64				nr_wakeups_local;
445 	u64				nr_wakeups_remote;
446 	u64				nr_wakeups_affine;
447 	u64				nr_wakeups_affine_attempts;
448 	u64				nr_wakeups_passive;
449 	u64				nr_wakeups_idle;
450 #endif
451 };
452 
453 struct sched_entity {
454 	/* For load-balancing: */
455 	struct load_weight		load;
456 	struct rb_node			run_node;
457 	struct list_head		group_node;
458 	unsigned int			on_rq;
459 
460 	u64				exec_start;
461 	u64				sum_exec_runtime;
462 	u64				vruntime;
463 	u64				prev_sum_exec_runtime;
464 
465 	u64				nr_migrations;
466 
467 	struct sched_statistics		statistics;
468 
469 #ifdef CONFIG_FAIR_GROUP_SCHED
470 	int				depth;
471 	struct sched_entity		*parent;
472 	/* rq on which this entity is (to be) queued: */
473 	struct cfs_rq			*cfs_rq;
474 	/* rq "owned" by this entity/group: */
475 	struct cfs_rq			*my_q;
476 	/* cached value of my_q->h_nr_running */
477 	unsigned long			runnable_weight;
478 #endif
479 
480 #ifdef CONFIG_SMP
481 	/*
482 	 * Per entity load average tracking.
483 	 *
484 	 * Put into separate cache line so it does not
485 	 * collide with read-mostly values above.
486 	 */
487 	struct sched_avg		avg;
488 #endif
489 };
490 
491 struct sched_rt_entity {
492 	struct list_head		run_list;
493 	unsigned long			timeout;
494 	unsigned long			watchdog_stamp;
495 	unsigned int			time_slice;
496 	unsigned short			on_rq;
497 	unsigned short			on_list;
498 
499 	struct sched_rt_entity		*back;
500 #ifdef CONFIG_RT_GROUP_SCHED
501 	struct sched_rt_entity		*parent;
502 	/* rq on which this entity is (to be) queued: */
503 	struct rt_rq			*rt_rq;
504 	/* rq "owned" by this entity/group: */
505 	struct rt_rq			*my_q;
506 #endif
507 } __randomize_layout;
508 
509 struct sched_dl_entity {
510 	struct rb_node			rb_node;
511 
512 	/*
513 	 * Original scheduling parameters. Copied here from sched_attr
514 	 * during sched_setattr(), they will remain the same until
515 	 * the next sched_setattr().
516 	 */
517 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
518 	u64				dl_deadline;	/* Relative deadline of each instance	*/
519 	u64				dl_period;	/* Separation of two instances (period) */
520 	u64				dl_bw;		/* dl_runtime / dl_period		*/
521 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
522 
523 	/*
524 	 * Actual scheduling parameters. Initialized with the values above,
525 	 * they are continuously updated during task execution. Note that
526 	 * the remaining runtime could be < 0 in case we are in overrun.
527 	 */
528 	s64				runtime;	/* Remaining runtime for this instance	*/
529 	u64				deadline;	/* Absolute deadline for this instance	*/
530 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
531 
532 	/*
533 	 * Some bool flags:
534 	 *
535 	 * @dl_throttled tells if we exhausted the runtime. If so, the
536 	 * task has to wait for a replenishment to be performed at the
537 	 * next firing of dl_timer.
538 	 *
539 	 * @dl_boosted tells if we are boosted due to DI. If so we are
540 	 * outside bandwidth enforcement mechanism (but only until we
541 	 * exit the critical section);
542 	 *
543 	 * @dl_yielded tells if task gave up the CPU before consuming
544 	 * all its available runtime during the last job.
545 	 *
546 	 * @dl_non_contending tells if the task is inactive while still
547 	 * contributing to the active utilization. In other words, it
548 	 * indicates if the inactive timer has been armed and its handler
549 	 * has not been executed yet. This flag is useful to avoid race
550 	 * conditions between the inactive timer handler and the wakeup
551 	 * code.
552 	 *
553 	 * @dl_overrun tells if the task asked to be informed about runtime
554 	 * overruns.
555 	 */
556 	unsigned int			dl_throttled      : 1;
557 	unsigned int			dl_yielded        : 1;
558 	unsigned int			dl_non_contending : 1;
559 	unsigned int			dl_overrun	  : 1;
560 
561 	/*
562 	 * Bandwidth enforcement timer. Each -deadline task has its
563 	 * own bandwidth to be enforced, thus we need one timer per task.
564 	 */
565 	struct hrtimer			dl_timer;
566 
567 	/*
568 	 * Inactive timer, responsible for decreasing the active utilization
569 	 * at the "0-lag time". When a -deadline task blocks, it contributes
570 	 * to GRUB's active utilization until the "0-lag time", hence a
571 	 * timer is needed to decrease the active utilization at the correct
572 	 * time.
573 	 */
574 	struct hrtimer inactive_timer;
575 
576 #ifdef CONFIG_RT_MUTEXES
577 	/*
578 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
579 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
580 	 * to (the original one/itself).
581 	 */
582 	struct sched_dl_entity *pi_se;
583 #endif
584 };
585 
586 #ifdef CONFIG_UCLAMP_TASK
587 /* Number of utilization clamp buckets (shorter alias) */
588 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
589 
590 /*
591  * Utilization clamp for a scheduling entity
592  * @value:		clamp value "assigned" to a se
593  * @bucket_id:		bucket index corresponding to the "assigned" value
594  * @active:		the se is currently refcounted in a rq's bucket
595  * @user_defined:	the requested clamp value comes from user-space
596  *
597  * The bucket_id is the index of the clamp bucket matching the clamp value
598  * which is pre-computed and stored to avoid expensive integer divisions from
599  * the fast path.
600  *
601  * The active bit is set whenever a task has got an "effective" value assigned,
602  * which can be different from the clamp value "requested" from user-space.
603  * This allows to know a task is refcounted in the rq's bucket corresponding
604  * to the "effective" bucket_id.
605  *
606  * The user_defined bit is set whenever a task has got a task-specific clamp
607  * value requested from userspace, i.e. the system defaults apply to this task
608  * just as a restriction. This allows to relax default clamps when a less
609  * restrictive task-specific value has been requested, thus allowing to
610  * implement a "nice" semantic. For example, a task running with a 20%
611  * default boost can still drop its own boosting to 0%.
612  */
613 struct uclamp_se {
614 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
615 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
616 	unsigned int active		: 1;
617 	unsigned int user_defined	: 1;
618 };
619 #endif /* CONFIG_UCLAMP_TASK */
620 
621 union rcu_special {
622 	struct {
623 		u8			blocked;
624 		u8			need_qs;
625 		u8			exp_hint; /* Hint for performance. */
626 		u8			need_mb; /* Readers need smp_mb(). */
627 	} b; /* Bits. */
628 	u32 s; /* Set of bits. */
629 };
630 
631 enum perf_event_task_context {
632 	perf_invalid_context = -1,
633 	perf_hw_context = 0,
634 	perf_sw_context,
635 	perf_nr_task_contexts,
636 };
637 
638 struct wake_q_node {
639 	struct wake_q_node *next;
640 };
641 
642 struct kmap_ctrl {
643 #ifdef CONFIG_KMAP_LOCAL
644 	int				idx;
645 	pte_t				pteval[KM_MAX_IDX];
646 #endif
647 };
648 
649 struct task_struct {
650 #ifdef CONFIG_THREAD_INFO_IN_TASK
651 	/*
652 	 * For reasons of header soup (see current_thread_info()), this
653 	 * must be the first element of task_struct.
654 	 */
655 	struct thread_info		thread_info;
656 #endif
657 	/* -1 unrunnable, 0 runnable, >0 stopped: */
658 	volatile long			state;
659 
660 	/*
661 	 * This begins the randomizable portion of task_struct. Only
662 	 * scheduling-critical items should be added above here.
663 	 */
664 	randomized_struct_fields_start
665 
666 	void				*stack;
667 	refcount_t			usage;
668 	/* Per task flags (PF_*), defined further below: */
669 	unsigned int			flags;
670 	unsigned int			ptrace;
671 
672 #ifdef CONFIG_SMP
673 	int				on_cpu;
674 	struct __call_single_node	wake_entry;
675 #ifdef CONFIG_THREAD_INFO_IN_TASK
676 	/* Current CPU: */
677 	unsigned int			cpu;
678 #endif
679 	unsigned int			wakee_flips;
680 	unsigned long			wakee_flip_decay_ts;
681 	struct task_struct		*last_wakee;
682 
683 	/*
684 	 * recent_used_cpu is initially set as the last CPU used by a task
685 	 * that wakes affine another task. Waker/wakee relationships can
686 	 * push tasks around a CPU where each wakeup moves to the next one.
687 	 * Tracking a recently used CPU allows a quick search for a recently
688 	 * used CPU that may be idle.
689 	 */
690 	int				recent_used_cpu;
691 	int				wake_cpu;
692 #endif
693 	int				on_rq;
694 
695 	int				prio;
696 	int				static_prio;
697 	int				normal_prio;
698 	unsigned int			rt_priority;
699 
700 	const struct sched_class	*sched_class;
701 	struct sched_entity		se;
702 	struct sched_rt_entity		rt;
703 #ifdef CONFIG_CGROUP_SCHED
704 	struct task_group		*sched_task_group;
705 #endif
706 	struct sched_dl_entity		dl;
707 
708 #ifdef CONFIG_UCLAMP_TASK
709 	/*
710 	 * Clamp values requested for a scheduling entity.
711 	 * Must be updated with task_rq_lock() held.
712 	 */
713 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
714 	/*
715 	 * Effective clamp values used for a scheduling entity.
716 	 * Must be updated with task_rq_lock() held.
717 	 */
718 	struct uclamp_se		uclamp[UCLAMP_CNT];
719 #endif
720 
721 #ifdef CONFIG_PREEMPT_NOTIFIERS
722 	/* List of struct preempt_notifier: */
723 	struct hlist_head		preempt_notifiers;
724 #endif
725 
726 #ifdef CONFIG_BLK_DEV_IO_TRACE
727 	unsigned int			btrace_seq;
728 #endif
729 
730 	unsigned int			policy;
731 	int				nr_cpus_allowed;
732 	const cpumask_t			*cpus_ptr;
733 	cpumask_t			cpus_mask;
734 	void				*migration_pending;
735 #ifdef CONFIG_SMP
736 	unsigned short			migration_disabled;
737 #endif
738 	unsigned short			migration_flags;
739 
740 #ifdef CONFIG_PREEMPT_RCU
741 	int				rcu_read_lock_nesting;
742 	union rcu_special		rcu_read_unlock_special;
743 	struct list_head		rcu_node_entry;
744 	struct rcu_node			*rcu_blocked_node;
745 #endif /* #ifdef CONFIG_PREEMPT_RCU */
746 
747 #ifdef CONFIG_TASKS_RCU
748 	unsigned long			rcu_tasks_nvcsw;
749 	u8				rcu_tasks_holdout;
750 	u8				rcu_tasks_idx;
751 	int				rcu_tasks_idle_cpu;
752 	struct list_head		rcu_tasks_holdout_list;
753 #endif /* #ifdef CONFIG_TASKS_RCU */
754 
755 #ifdef CONFIG_TASKS_TRACE_RCU
756 	int				trc_reader_nesting;
757 	int				trc_ipi_to_cpu;
758 	union rcu_special		trc_reader_special;
759 	bool				trc_reader_checked;
760 	struct list_head		trc_holdout_list;
761 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
762 
763 	struct sched_info		sched_info;
764 
765 	struct list_head		tasks;
766 #ifdef CONFIG_SMP
767 	struct plist_node		pushable_tasks;
768 	struct rb_node			pushable_dl_tasks;
769 #endif
770 
771 	struct mm_struct		*mm;
772 	struct mm_struct		*active_mm;
773 
774 	/* Per-thread vma caching: */
775 	struct vmacache			vmacache;
776 
777 #ifdef SPLIT_RSS_COUNTING
778 	struct task_rss_stat		rss_stat;
779 #endif
780 	int				exit_state;
781 	int				exit_code;
782 	int				exit_signal;
783 	/* The signal sent when the parent dies: */
784 	int				pdeath_signal;
785 	/* JOBCTL_*, siglock protected: */
786 	unsigned long			jobctl;
787 
788 	/* Used for emulating ABI behavior of previous Linux versions: */
789 	unsigned int			personality;
790 
791 	/* Scheduler bits, serialized by scheduler locks: */
792 	unsigned			sched_reset_on_fork:1;
793 	unsigned			sched_contributes_to_load:1;
794 	unsigned			sched_migrated:1;
795 #ifdef CONFIG_PSI
796 	unsigned			sched_psi_wake_requeue:1;
797 #endif
798 
799 	/* Force alignment to the next boundary: */
800 	unsigned			:0;
801 
802 	/* Unserialized, strictly 'current' */
803 
804 	/*
805 	 * This field must not be in the scheduler word above due to wakelist
806 	 * queueing no longer being serialized by p->on_cpu. However:
807 	 *
808 	 * p->XXX = X;			ttwu()
809 	 * schedule()			  if (p->on_rq && ..) // false
810 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
811 	 *   deactivate_task()		      ttwu_queue_wakelist())
812 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
813 	 *
814 	 * guarantees all stores of 'current' are visible before
815 	 * ->sched_remote_wakeup gets used, so it can be in this word.
816 	 */
817 	unsigned			sched_remote_wakeup:1;
818 
819 	/* Bit to tell LSMs we're in execve(): */
820 	unsigned			in_execve:1;
821 	unsigned			in_iowait:1;
822 #ifndef TIF_RESTORE_SIGMASK
823 	unsigned			restore_sigmask:1;
824 #endif
825 #ifdef CONFIG_MEMCG
826 	unsigned			in_user_fault:1;
827 #endif
828 #ifdef CONFIG_COMPAT_BRK
829 	unsigned			brk_randomized:1;
830 #endif
831 #ifdef CONFIG_CGROUPS
832 	/* disallow userland-initiated cgroup migration */
833 	unsigned			no_cgroup_migration:1;
834 	/* task is frozen/stopped (used by the cgroup freezer) */
835 	unsigned			frozen:1;
836 #endif
837 #ifdef CONFIG_BLK_CGROUP
838 	unsigned			use_memdelay:1;
839 #endif
840 #ifdef CONFIG_PSI
841 	/* Stalled due to lack of memory */
842 	unsigned			in_memstall:1;
843 #endif
844 #ifdef CONFIG_PAGE_OWNER
845 	/* Used by page_owner=on to detect recursion in page tracking. */
846 	unsigned			in_page_owner:1;
847 #endif
848 
849 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
850 
851 	struct restart_block		restart_block;
852 
853 	pid_t				pid;
854 	pid_t				tgid;
855 
856 #ifdef CONFIG_STACKPROTECTOR
857 	/* Canary value for the -fstack-protector GCC feature: */
858 	unsigned long			stack_canary;
859 #endif
860 	/*
861 	 * Pointers to the (original) parent process, youngest child, younger sibling,
862 	 * older sibling, respectively.  (p->father can be replaced with
863 	 * p->real_parent->pid)
864 	 */
865 
866 	/* Real parent process: */
867 	struct task_struct __rcu	*real_parent;
868 
869 	/* Recipient of SIGCHLD, wait4() reports: */
870 	struct task_struct __rcu	*parent;
871 
872 	/*
873 	 * Children/sibling form the list of natural children:
874 	 */
875 	struct list_head		children;
876 	struct list_head		sibling;
877 	struct task_struct		*group_leader;
878 
879 	/*
880 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
881 	 *
882 	 * This includes both natural children and PTRACE_ATTACH targets.
883 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
884 	 */
885 	struct list_head		ptraced;
886 	struct list_head		ptrace_entry;
887 
888 	/* PID/PID hash table linkage. */
889 	struct pid			*thread_pid;
890 	struct hlist_node		pid_links[PIDTYPE_MAX];
891 	struct list_head		thread_group;
892 	struct list_head		thread_node;
893 
894 	struct completion		*vfork_done;
895 
896 	/* CLONE_CHILD_SETTID: */
897 	int __user			*set_child_tid;
898 
899 	/* CLONE_CHILD_CLEARTID: */
900 	int __user			*clear_child_tid;
901 
902 	/* PF_IO_WORKER */
903 	void				*pf_io_worker;
904 
905 	u64				utime;
906 	u64				stime;
907 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
908 	u64				utimescaled;
909 	u64				stimescaled;
910 #endif
911 	u64				gtime;
912 	struct prev_cputime		prev_cputime;
913 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
914 	struct vtime			vtime;
915 #endif
916 
917 #ifdef CONFIG_NO_HZ_FULL
918 	atomic_t			tick_dep_mask;
919 #endif
920 	/* Context switch counts: */
921 	unsigned long			nvcsw;
922 	unsigned long			nivcsw;
923 
924 	/* Monotonic time in nsecs: */
925 	u64				start_time;
926 
927 	/* Boot based time in nsecs: */
928 	u64				start_boottime;
929 
930 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
931 	unsigned long			min_flt;
932 	unsigned long			maj_flt;
933 
934 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
935 	struct posix_cputimers		posix_cputimers;
936 
937 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
938 	struct posix_cputimers_work	posix_cputimers_work;
939 #endif
940 
941 	/* Process credentials: */
942 
943 	/* Tracer's credentials at attach: */
944 	const struct cred __rcu		*ptracer_cred;
945 
946 	/* Objective and real subjective task credentials (COW): */
947 	const struct cred __rcu		*real_cred;
948 
949 	/* Effective (overridable) subjective task credentials (COW): */
950 	const struct cred __rcu		*cred;
951 
952 #ifdef CONFIG_KEYS
953 	/* Cached requested key. */
954 	struct key			*cached_requested_key;
955 #endif
956 
957 	/*
958 	 * executable name, excluding path.
959 	 *
960 	 * - normally initialized setup_new_exec()
961 	 * - access it with [gs]et_task_comm()
962 	 * - lock it with task_lock()
963 	 */
964 	char				comm[TASK_COMM_LEN];
965 
966 	struct nameidata		*nameidata;
967 
968 #ifdef CONFIG_SYSVIPC
969 	struct sysv_sem			sysvsem;
970 	struct sysv_shm			sysvshm;
971 #endif
972 #ifdef CONFIG_DETECT_HUNG_TASK
973 	unsigned long			last_switch_count;
974 	unsigned long			last_switch_time;
975 #endif
976 	/* Filesystem information: */
977 	struct fs_struct		*fs;
978 
979 	/* Open file information: */
980 	struct files_struct		*files;
981 
982 #ifdef CONFIG_IO_URING
983 	struct io_uring_task		*io_uring;
984 #endif
985 
986 	/* Namespaces: */
987 	struct nsproxy			*nsproxy;
988 
989 	/* Signal handlers: */
990 	struct signal_struct		*signal;
991 	struct sighand_struct __rcu		*sighand;
992 	struct sigqueue			*sigqueue_cache;
993 	sigset_t			blocked;
994 	sigset_t			real_blocked;
995 	/* Restored if set_restore_sigmask() was used: */
996 	sigset_t			saved_sigmask;
997 	struct sigpending		pending;
998 	unsigned long			sas_ss_sp;
999 	size_t				sas_ss_size;
1000 	unsigned int			sas_ss_flags;
1001 
1002 	struct callback_head		*task_works;
1003 
1004 #ifdef CONFIG_AUDIT
1005 #ifdef CONFIG_AUDITSYSCALL
1006 	struct audit_context		*audit_context;
1007 #endif
1008 	kuid_t				loginuid;
1009 	unsigned int			sessionid;
1010 #endif
1011 	struct seccomp			seccomp;
1012 	struct syscall_user_dispatch	syscall_dispatch;
1013 
1014 	/* Thread group tracking: */
1015 	u64				parent_exec_id;
1016 	u64				self_exec_id;
1017 
1018 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1019 	spinlock_t			alloc_lock;
1020 
1021 	/* Protection of the PI data structures: */
1022 	raw_spinlock_t			pi_lock;
1023 
1024 	struct wake_q_node		wake_q;
1025 
1026 #ifdef CONFIG_RT_MUTEXES
1027 	/* PI waiters blocked on a rt_mutex held by this task: */
1028 	struct rb_root_cached		pi_waiters;
1029 	/* Updated under owner's pi_lock and rq lock */
1030 	struct task_struct		*pi_top_task;
1031 	/* Deadlock detection and priority inheritance handling: */
1032 	struct rt_mutex_waiter		*pi_blocked_on;
1033 #endif
1034 
1035 #ifdef CONFIG_DEBUG_MUTEXES
1036 	/* Mutex deadlock detection: */
1037 	struct mutex_waiter		*blocked_on;
1038 #endif
1039 
1040 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1041 	int				non_block_count;
1042 #endif
1043 
1044 #ifdef CONFIG_TRACE_IRQFLAGS
1045 	struct irqtrace_events		irqtrace;
1046 	unsigned int			hardirq_threaded;
1047 	u64				hardirq_chain_key;
1048 	int				softirqs_enabled;
1049 	int				softirq_context;
1050 	int				irq_config;
1051 #endif
1052 #ifdef CONFIG_PREEMPT_RT
1053 	int				softirq_disable_cnt;
1054 #endif
1055 
1056 #ifdef CONFIG_LOCKDEP
1057 # define MAX_LOCK_DEPTH			48UL
1058 	u64				curr_chain_key;
1059 	int				lockdep_depth;
1060 	unsigned int			lockdep_recursion;
1061 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1062 #endif
1063 
1064 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1065 	unsigned int			in_ubsan;
1066 #endif
1067 
1068 	/* Journalling filesystem info: */
1069 	void				*journal_info;
1070 
1071 	/* Stacked block device info: */
1072 	struct bio_list			*bio_list;
1073 
1074 #ifdef CONFIG_BLOCK
1075 	/* Stack plugging: */
1076 	struct blk_plug			*plug;
1077 #endif
1078 
1079 	/* VM state: */
1080 	struct reclaim_state		*reclaim_state;
1081 
1082 	struct backing_dev_info		*backing_dev_info;
1083 
1084 	struct io_context		*io_context;
1085 
1086 #ifdef CONFIG_COMPACTION
1087 	struct capture_control		*capture_control;
1088 #endif
1089 	/* Ptrace state: */
1090 	unsigned long			ptrace_message;
1091 	kernel_siginfo_t		*last_siginfo;
1092 
1093 	struct task_io_accounting	ioac;
1094 #ifdef CONFIG_PSI
1095 	/* Pressure stall state */
1096 	unsigned int			psi_flags;
1097 #endif
1098 #ifdef CONFIG_TASK_XACCT
1099 	/* Accumulated RSS usage: */
1100 	u64				acct_rss_mem1;
1101 	/* Accumulated virtual memory usage: */
1102 	u64				acct_vm_mem1;
1103 	/* stime + utime since last update: */
1104 	u64				acct_timexpd;
1105 #endif
1106 #ifdef CONFIG_CPUSETS
1107 	/* Protected by ->alloc_lock: */
1108 	nodemask_t			mems_allowed;
1109 	/* Sequence number to catch updates: */
1110 	seqcount_spinlock_t		mems_allowed_seq;
1111 	int				cpuset_mem_spread_rotor;
1112 	int				cpuset_slab_spread_rotor;
1113 #endif
1114 #ifdef CONFIG_CGROUPS
1115 	/* Control Group info protected by css_set_lock: */
1116 	struct css_set __rcu		*cgroups;
1117 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1118 	struct list_head		cg_list;
1119 #endif
1120 #ifdef CONFIG_X86_CPU_RESCTRL
1121 	u32				closid;
1122 	u32				rmid;
1123 #endif
1124 #ifdef CONFIG_FUTEX
1125 	struct robust_list_head __user	*robust_list;
1126 #ifdef CONFIG_COMPAT
1127 	struct compat_robust_list_head __user *compat_robust_list;
1128 #endif
1129 	struct list_head		pi_state_list;
1130 	struct futex_pi_state		*pi_state_cache;
1131 	struct mutex			futex_exit_mutex;
1132 	unsigned int			futex_state;
1133 #endif
1134 #ifdef CONFIG_PERF_EVENTS
1135 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1136 	struct mutex			perf_event_mutex;
1137 	struct list_head		perf_event_list;
1138 #endif
1139 #ifdef CONFIG_DEBUG_PREEMPT
1140 	unsigned long			preempt_disable_ip;
1141 #endif
1142 #ifdef CONFIG_NUMA
1143 	/* Protected by alloc_lock: */
1144 	struct mempolicy		*mempolicy;
1145 	short				il_prev;
1146 	short				pref_node_fork;
1147 #endif
1148 #ifdef CONFIG_NUMA_BALANCING
1149 	int				numa_scan_seq;
1150 	unsigned int			numa_scan_period;
1151 	unsigned int			numa_scan_period_max;
1152 	int				numa_preferred_nid;
1153 	unsigned long			numa_migrate_retry;
1154 	/* Migration stamp: */
1155 	u64				node_stamp;
1156 	u64				last_task_numa_placement;
1157 	u64				last_sum_exec_runtime;
1158 	struct callback_head		numa_work;
1159 
1160 	/*
1161 	 * This pointer is only modified for current in syscall and
1162 	 * pagefault context (and for tasks being destroyed), so it can be read
1163 	 * from any of the following contexts:
1164 	 *  - RCU read-side critical section
1165 	 *  - current->numa_group from everywhere
1166 	 *  - task's runqueue locked, task not running
1167 	 */
1168 	struct numa_group __rcu		*numa_group;
1169 
1170 	/*
1171 	 * numa_faults is an array split into four regions:
1172 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1173 	 * in this precise order.
1174 	 *
1175 	 * faults_memory: Exponential decaying average of faults on a per-node
1176 	 * basis. Scheduling placement decisions are made based on these
1177 	 * counts. The values remain static for the duration of a PTE scan.
1178 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1179 	 * hinting fault was incurred.
1180 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1181 	 * during the current scan window. When the scan completes, the counts
1182 	 * in faults_memory and faults_cpu decay and these values are copied.
1183 	 */
1184 	unsigned long			*numa_faults;
1185 	unsigned long			total_numa_faults;
1186 
1187 	/*
1188 	 * numa_faults_locality tracks if faults recorded during the last
1189 	 * scan window were remote/local or failed to migrate. The task scan
1190 	 * period is adapted based on the locality of the faults with different
1191 	 * weights depending on whether they were shared or private faults
1192 	 */
1193 	unsigned long			numa_faults_locality[3];
1194 
1195 	unsigned long			numa_pages_migrated;
1196 #endif /* CONFIG_NUMA_BALANCING */
1197 
1198 #ifdef CONFIG_RSEQ
1199 	struct rseq __user *rseq;
1200 	u32 rseq_sig;
1201 	/*
1202 	 * RmW on rseq_event_mask must be performed atomically
1203 	 * with respect to preemption.
1204 	 */
1205 	unsigned long rseq_event_mask;
1206 #endif
1207 
1208 	struct tlbflush_unmap_batch	tlb_ubc;
1209 
1210 	union {
1211 		refcount_t		rcu_users;
1212 		struct rcu_head		rcu;
1213 	};
1214 
1215 	/* Cache last used pipe for splice(): */
1216 	struct pipe_inode_info		*splice_pipe;
1217 
1218 	struct page_frag		task_frag;
1219 
1220 #ifdef CONFIG_TASK_DELAY_ACCT
1221 	struct task_delay_info		*delays;
1222 #endif
1223 
1224 #ifdef CONFIG_FAULT_INJECTION
1225 	int				make_it_fail;
1226 	unsigned int			fail_nth;
1227 #endif
1228 	/*
1229 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1230 	 * balance_dirty_pages() for a dirty throttling pause:
1231 	 */
1232 	int				nr_dirtied;
1233 	int				nr_dirtied_pause;
1234 	/* Start of a write-and-pause period: */
1235 	unsigned long			dirty_paused_when;
1236 
1237 #ifdef CONFIG_LATENCYTOP
1238 	int				latency_record_count;
1239 	struct latency_record		latency_record[LT_SAVECOUNT];
1240 #endif
1241 	/*
1242 	 * Time slack values; these are used to round up poll() and
1243 	 * select() etc timeout values. These are in nanoseconds.
1244 	 */
1245 	u64				timer_slack_ns;
1246 	u64				default_timer_slack_ns;
1247 
1248 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1249 	unsigned int			kasan_depth;
1250 #endif
1251 
1252 #ifdef CONFIG_KCSAN
1253 	struct kcsan_ctx		kcsan_ctx;
1254 #ifdef CONFIG_TRACE_IRQFLAGS
1255 	struct irqtrace_events		kcsan_save_irqtrace;
1256 #endif
1257 #endif
1258 
1259 #if IS_ENABLED(CONFIG_KUNIT)
1260 	struct kunit			*kunit_test;
1261 #endif
1262 
1263 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1264 	/* Index of current stored address in ret_stack: */
1265 	int				curr_ret_stack;
1266 	int				curr_ret_depth;
1267 
1268 	/* Stack of return addresses for return function tracing: */
1269 	struct ftrace_ret_stack		*ret_stack;
1270 
1271 	/* Timestamp for last schedule: */
1272 	unsigned long long		ftrace_timestamp;
1273 
1274 	/*
1275 	 * Number of functions that haven't been traced
1276 	 * because of depth overrun:
1277 	 */
1278 	atomic_t			trace_overrun;
1279 
1280 	/* Pause tracing: */
1281 	atomic_t			tracing_graph_pause;
1282 #endif
1283 
1284 #ifdef CONFIG_TRACING
1285 	/* State flags for use by tracers: */
1286 	unsigned long			trace;
1287 
1288 	/* Bitmask and counter of trace recursion: */
1289 	unsigned long			trace_recursion;
1290 #endif /* CONFIG_TRACING */
1291 
1292 #ifdef CONFIG_KCOV
1293 	/* See kernel/kcov.c for more details. */
1294 
1295 	/* Coverage collection mode enabled for this task (0 if disabled): */
1296 	unsigned int			kcov_mode;
1297 
1298 	/* Size of the kcov_area: */
1299 	unsigned int			kcov_size;
1300 
1301 	/* Buffer for coverage collection: */
1302 	void				*kcov_area;
1303 
1304 	/* KCOV descriptor wired with this task or NULL: */
1305 	struct kcov			*kcov;
1306 
1307 	/* KCOV common handle for remote coverage collection: */
1308 	u64				kcov_handle;
1309 
1310 	/* KCOV sequence number: */
1311 	int				kcov_sequence;
1312 
1313 	/* Collect coverage from softirq context: */
1314 	unsigned int			kcov_softirq;
1315 #endif
1316 
1317 #ifdef CONFIG_MEMCG
1318 	struct mem_cgroup		*memcg_in_oom;
1319 	gfp_t				memcg_oom_gfp_mask;
1320 	int				memcg_oom_order;
1321 
1322 	/* Number of pages to reclaim on returning to userland: */
1323 	unsigned int			memcg_nr_pages_over_high;
1324 
1325 	/* Used by memcontrol for targeted memcg charge: */
1326 	struct mem_cgroup		*active_memcg;
1327 #endif
1328 
1329 #ifdef CONFIG_BLK_CGROUP
1330 	struct request_queue		*throttle_queue;
1331 #endif
1332 
1333 #ifdef CONFIG_UPROBES
1334 	struct uprobe_task		*utask;
1335 #endif
1336 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1337 	unsigned int			sequential_io;
1338 	unsigned int			sequential_io_avg;
1339 #endif
1340 	struct kmap_ctrl		kmap_ctrl;
1341 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1342 	unsigned long			task_state_change;
1343 #endif
1344 	int				pagefault_disabled;
1345 #ifdef CONFIG_MMU
1346 	struct task_struct		*oom_reaper_list;
1347 #endif
1348 #ifdef CONFIG_VMAP_STACK
1349 	struct vm_struct		*stack_vm_area;
1350 #endif
1351 #ifdef CONFIG_THREAD_INFO_IN_TASK
1352 	/* A live task holds one reference: */
1353 	refcount_t			stack_refcount;
1354 #endif
1355 #ifdef CONFIG_LIVEPATCH
1356 	int patch_state;
1357 #endif
1358 #ifdef CONFIG_SECURITY
1359 	/* Used by LSM modules for access restriction: */
1360 	void				*security;
1361 #endif
1362 #ifdef CONFIG_BPF_SYSCALL
1363 	/* Used by BPF task local storage */
1364 	struct bpf_local_storage __rcu	*bpf_storage;
1365 #endif
1366 
1367 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1368 	unsigned long			lowest_stack;
1369 	unsigned long			prev_lowest_stack;
1370 #endif
1371 
1372 #ifdef CONFIG_X86_MCE
1373 	void __user			*mce_vaddr;
1374 	__u64				mce_kflags;
1375 	u64				mce_addr;
1376 	__u64				mce_ripv : 1,
1377 					mce_whole_page : 1,
1378 					__mce_reserved : 62;
1379 	struct callback_head		mce_kill_me;
1380 #endif
1381 
1382 #ifdef CONFIG_KRETPROBES
1383 	struct llist_head               kretprobe_instances;
1384 #endif
1385 
1386 	/*
1387 	 * New fields for task_struct should be added above here, so that
1388 	 * they are included in the randomized portion of task_struct.
1389 	 */
1390 	randomized_struct_fields_end
1391 
1392 	/* CPU-specific state of this task: */
1393 	struct thread_struct		thread;
1394 
1395 	/*
1396 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1397 	 * structure.  It *MUST* be at the end of 'task_struct'.
1398 	 *
1399 	 * Do not put anything below here!
1400 	 */
1401 };
1402 
1403 static inline struct pid *task_pid(struct task_struct *task)
1404 {
1405 	return task->thread_pid;
1406 }
1407 
1408 /*
1409  * the helpers to get the task's different pids as they are seen
1410  * from various namespaces
1411  *
1412  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1413  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1414  *                     current.
1415  * task_xid_nr_ns()  : id seen from the ns specified;
1416  *
1417  * see also pid_nr() etc in include/linux/pid.h
1418  */
1419 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1420 
1421 static inline pid_t task_pid_nr(struct task_struct *tsk)
1422 {
1423 	return tsk->pid;
1424 }
1425 
1426 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1427 {
1428 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1429 }
1430 
1431 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1432 {
1433 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1434 }
1435 
1436 
1437 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1438 {
1439 	return tsk->tgid;
1440 }
1441 
1442 /**
1443  * pid_alive - check that a task structure is not stale
1444  * @p: Task structure to be checked.
1445  *
1446  * Test if a process is not yet dead (at most zombie state)
1447  * If pid_alive fails, then pointers within the task structure
1448  * can be stale and must not be dereferenced.
1449  *
1450  * Return: 1 if the process is alive. 0 otherwise.
1451  */
1452 static inline int pid_alive(const struct task_struct *p)
1453 {
1454 	return p->thread_pid != NULL;
1455 }
1456 
1457 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1458 {
1459 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1460 }
1461 
1462 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1463 {
1464 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1465 }
1466 
1467 
1468 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1469 {
1470 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1471 }
1472 
1473 static inline pid_t task_session_vnr(struct task_struct *tsk)
1474 {
1475 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1476 }
1477 
1478 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1479 {
1480 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1481 }
1482 
1483 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1484 {
1485 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1486 }
1487 
1488 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1489 {
1490 	pid_t pid = 0;
1491 
1492 	rcu_read_lock();
1493 	if (pid_alive(tsk))
1494 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1495 	rcu_read_unlock();
1496 
1497 	return pid;
1498 }
1499 
1500 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1501 {
1502 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1503 }
1504 
1505 /* Obsolete, do not use: */
1506 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1507 {
1508 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1509 }
1510 
1511 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1512 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1513 
1514 static inline unsigned int task_state_index(struct task_struct *tsk)
1515 {
1516 	unsigned int tsk_state = READ_ONCE(tsk->state);
1517 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1518 
1519 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1520 
1521 	if (tsk_state == TASK_IDLE)
1522 		state = TASK_REPORT_IDLE;
1523 
1524 	return fls(state);
1525 }
1526 
1527 static inline char task_index_to_char(unsigned int state)
1528 {
1529 	static const char state_char[] = "RSDTtXZPI";
1530 
1531 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1532 
1533 	return state_char[state];
1534 }
1535 
1536 static inline char task_state_to_char(struct task_struct *tsk)
1537 {
1538 	return task_index_to_char(task_state_index(tsk));
1539 }
1540 
1541 /**
1542  * is_global_init - check if a task structure is init. Since init
1543  * is free to have sub-threads we need to check tgid.
1544  * @tsk: Task structure to be checked.
1545  *
1546  * Check if a task structure is the first user space task the kernel created.
1547  *
1548  * Return: 1 if the task structure is init. 0 otherwise.
1549  */
1550 static inline int is_global_init(struct task_struct *tsk)
1551 {
1552 	return task_tgid_nr(tsk) == 1;
1553 }
1554 
1555 extern struct pid *cad_pid;
1556 
1557 /*
1558  * Per process flags
1559  */
1560 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1561 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1562 #define PF_EXITING		0x00000004	/* Getting shut down */
1563 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1564 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1565 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1566 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1567 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1568 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1569 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1570 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1571 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1572 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1573 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1574 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1575 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1576 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1577 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1578 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1579 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1580 						 * I am cleaning dirty pages from some other bdi. */
1581 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1582 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1583 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1584 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1585 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1586 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1587 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1588 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1589 
1590 /*
1591  * Only the _current_ task can read/write to tsk->flags, but other
1592  * tasks can access tsk->flags in readonly mode for example
1593  * with tsk_used_math (like during threaded core dumping).
1594  * There is however an exception to this rule during ptrace
1595  * or during fork: the ptracer task is allowed to write to the
1596  * child->flags of its traced child (same goes for fork, the parent
1597  * can write to the child->flags), because we're guaranteed the
1598  * child is not running and in turn not changing child->flags
1599  * at the same time the parent does it.
1600  */
1601 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1602 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1603 #define clear_used_math()			clear_stopped_child_used_math(current)
1604 #define set_used_math()				set_stopped_child_used_math(current)
1605 
1606 #define conditional_stopped_child_used_math(condition, child) \
1607 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1608 
1609 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1610 
1611 #define copy_to_stopped_child_used_math(child) \
1612 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1613 
1614 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1615 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1616 #define used_math()				tsk_used_math(current)
1617 
1618 static inline bool is_percpu_thread(void)
1619 {
1620 #ifdef CONFIG_SMP
1621 	return (current->flags & PF_NO_SETAFFINITY) &&
1622 		(current->nr_cpus_allowed  == 1);
1623 #else
1624 	return true;
1625 #endif
1626 }
1627 
1628 /* Per-process atomic flags. */
1629 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1630 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1631 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1632 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1633 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1634 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1635 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1636 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1637 
1638 #define TASK_PFA_TEST(name, func)					\
1639 	static inline bool task_##func(struct task_struct *p)		\
1640 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1641 
1642 #define TASK_PFA_SET(name, func)					\
1643 	static inline void task_set_##func(struct task_struct *p)	\
1644 	{ set_bit(PFA_##name, &p->atomic_flags); }
1645 
1646 #define TASK_PFA_CLEAR(name, func)					\
1647 	static inline void task_clear_##func(struct task_struct *p)	\
1648 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1649 
1650 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1651 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1652 
1653 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1654 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1655 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1656 
1657 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1658 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1659 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1660 
1661 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1662 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1663 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1664 
1665 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1666 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1667 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1668 
1669 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1670 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1671 
1672 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1673 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1674 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1675 
1676 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1677 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1678 
1679 static inline void
1680 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1681 {
1682 	current->flags &= ~flags;
1683 	current->flags |= orig_flags & flags;
1684 }
1685 
1686 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1687 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1688 #ifdef CONFIG_SMP
1689 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1690 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1691 #else
1692 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1693 {
1694 }
1695 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1696 {
1697 	if (!cpumask_test_cpu(0, new_mask))
1698 		return -EINVAL;
1699 	return 0;
1700 }
1701 #endif
1702 
1703 extern int yield_to(struct task_struct *p, bool preempt);
1704 extern void set_user_nice(struct task_struct *p, long nice);
1705 extern int task_prio(const struct task_struct *p);
1706 
1707 /**
1708  * task_nice - return the nice value of a given task.
1709  * @p: the task in question.
1710  *
1711  * Return: The nice value [ -20 ... 0 ... 19 ].
1712  */
1713 static inline int task_nice(const struct task_struct *p)
1714 {
1715 	return PRIO_TO_NICE((p)->static_prio);
1716 }
1717 
1718 extern int can_nice(const struct task_struct *p, const int nice);
1719 extern int task_curr(const struct task_struct *p);
1720 extern int idle_cpu(int cpu);
1721 extern int available_idle_cpu(int cpu);
1722 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1723 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1724 extern void sched_set_fifo(struct task_struct *p);
1725 extern void sched_set_fifo_low(struct task_struct *p);
1726 extern void sched_set_normal(struct task_struct *p, int nice);
1727 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1728 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1729 extern struct task_struct *idle_task(int cpu);
1730 
1731 /**
1732  * is_idle_task - is the specified task an idle task?
1733  * @p: the task in question.
1734  *
1735  * Return: 1 if @p is an idle task. 0 otherwise.
1736  */
1737 static __always_inline bool is_idle_task(const struct task_struct *p)
1738 {
1739 	return !!(p->flags & PF_IDLE);
1740 }
1741 
1742 extern struct task_struct *curr_task(int cpu);
1743 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1744 
1745 void yield(void);
1746 
1747 union thread_union {
1748 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1749 	struct task_struct task;
1750 #endif
1751 #ifndef CONFIG_THREAD_INFO_IN_TASK
1752 	struct thread_info thread_info;
1753 #endif
1754 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1755 };
1756 
1757 #ifndef CONFIG_THREAD_INFO_IN_TASK
1758 extern struct thread_info init_thread_info;
1759 #endif
1760 
1761 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1762 
1763 #ifdef CONFIG_THREAD_INFO_IN_TASK
1764 static inline struct thread_info *task_thread_info(struct task_struct *task)
1765 {
1766 	return &task->thread_info;
1767 }
1768 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1769 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1770 #endif
1771 
1772 /*
1773  * find a task by one of its numerical ids
1774  *
1775  * find_task_by_pid_ns():
1776  *      finds a task by its pid in the specified namespace
1777  * find_task_by_vpid():
1778  *      finds a task by its virtual pid
1779  *
1780  * see also find_vpid() etc in include/linux/pid.h
1781  */
1782 
1783 extern struct task_struct *find_task_by_vpid(pid_t nr);
1784 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1785 
1786 /*
1787  * find a task by its virtual pid and get the task struct
1788  */
1789 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1790 
1791 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1792 extern int wake_up_process(struct task_struct *tsk);
1793 extern void wake_up_new_task(struct task_struct *tsk);
1794 
1795 #ifdef CONFIG_SMP
1796 extern void kick_process(struct task_struct *tsk);
1797 #else
1798 static inline void kick_process(struct task_struct *tsk) { }
1799 #endif
1800 
1801 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1802 
1803 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1804 {
1805 	__set_task_comm(tsk, from, false);
1806 }
1807 
1808 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1809 #define get_task_comm(buf, tsk) ({			\
1810 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1811 	__get_task_comm(buf, sizeof(buf), tsk);		\
1812 })
1813 
1814 #ifdef CONFIG_SMP
1815 static __always_inline void scheduler_ipi(void)
1816 {
1817 	/*
1818 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1819 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1820 	 * this IPI.
1821 	 */
1822 	preempt_fold_need_resched();
1823 }
1824 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1825 #else
1826 static inline void scheduler_ipi(void) { }
1827 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1828 {
1829 	return 1;
1830 }
1831 #endif
1832 
1833 /*
1834  * Set thread flags in other task's structures.
1835  * See asm/thread_info.h for TIF_xxxx flags available:
1836  */
1837 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1838 {
1839 	set_ti_thread_flag(task_thread_info(tsk), flag);
1840 }
1841 
1842 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1843 {
1844 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1845 }
1846 
1847 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1848 					  bool value)
1849 {
1850 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
1851 }
1852 
1853 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1854 {
1855 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1856 }
1857 
1858 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1859 {
1860 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1861 }
1862 
1863 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1864 {
1865 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1866 }
1867 
1868 static inline void set_tsk_need_resched(struct task_struct *tsk)
1869 {
1870 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1871 }
1872 
1873 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1874 {
1875 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1876 }
1877 
1878 static inline int test_tsk_need_resched(struct task_struct *tsk)
1879 {
1880 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1881 }
1882 
1883 /*
1884  * cond_resched() and cond_resched_lock(): latency reduction via
1885  * explicit rescheduling in places that are safe. The return
1886  * value indicates whether a reschedule was done in fact.
1887  * cond_resched_lock() will drop the spinlock before scheduling,
1888  */
1889 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1890 extern int __cond_resched(void);
1891 
1892 #ifdef CONFIG_PREEMPT_DYNAMIC
1893 
1894 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1895 
1896 static __always_inline int _cond_resched(void)
1897 {
1898 	return static_call_mod(cond_resched)();
1899 }
1900 
1901 #else
1902 
1903 static inline int _cond_resched(void)
1904 {
1905 	return __cond_resched();
1906 }
1907 
1908 #endif /* CONFIG_PREEMPT_DYNAMIC */
1909 
1910 #else
1911 
1912 static inline int _cond_resched(void) { return 0; }
1913 
1914 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
1915 
1916 #define cond_resched() ({			\
1917 	___might_sleep(__FILE__, __LINE__, 0);	\
1918 	_cond_resched();			\
1919 })
1920 
1921 extern int __cond_resched_lock(spinlock_t *lock);
1922 extern int __cond_resched_rwlock_read(rwlock_t *lock);
1923 extern int __cond_resched_rwlock_write(rwlock_t *lock);
1924 
1925 #define cond_resched_lock(lock) ({				\
1926 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1927 	__cond_resched_lock(lock);				\
1928 })
1929 
1930 #define cond_resched_rwlock_read(lock) ({			\
1931 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
1932 	__cond_resched_rwlock_read(lock);			\
1933 })
1934 
1935 #define cond_resched_rwlock_write(lock) ({			\
1936 	__might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);	\
1937 	__cond_resched_rwlock_write(lock);			\
1938 })
1939 
1940 static inline void cond_resched_rcu(void)
1941 {
1942 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1943 	rcu_read_unlock();
1944 	cond_resched();
1945 	rcu_read_lock();
1946 #endif
1947 }
1948 
1949 /*
1950  * Does a critical section need to be broken due to another
1951  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1952  * but a general need for low latency)
1953  */
1954 static inline int spin_needbreak(spinlock_t *lock)
1955 {
1956 #ifdef CONFIG_PREEMPTION
1957 	return spin_is_contended(lock);
1958 #else
1959 	return 0;
1960 #endif
1961 }
1962 
1963 /*
1964  * Check if a rwlock is contended.
1965  * Returns non-zero if there is another task waiting on the rwlock.
1966  * Returns zero if the lock is not contended or the system / underlying
1967  * rwlock implementation does not support contention detection.
1968  * Technically does not depend on CONFIG_PREEMPTION, but a general need
1969  * for low latency.
1970  */
1971 static inline int rwlock_needbreak(rwlock_t *lock)
1972 {
1973 #ifdef CONFIG_PREEMPTION
1974 	return rwlock_is_contended(lock);
1975 #else
1976 	return 0;
1977 #endif
1978 }
1979 
1980 static __always_inline bool need_resched(void)
1981 {
1982 	return unlikely(tif_need_resched());
1983 }
1984 
1985 /*
1986  * Wrappers for p->thread_info->cpu access. No-op on UP.
1987  */
1988 #ifdef CONFIG_SMP
1989 
1990 static inline unsigned int task_cpu(const struct task_struct *p)
1991 {
1992 #ifdef CONFIG_THREAD_INFO_IN_TASK
1993 	return READ_ONCE(p->cpu);
1994 #else
1995 	return READ_ONCE(task_thread_info(p)->cpu);
1996 #endif
1997 }
1998 
1999 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2000 
2001 #else
2002 
2003 static inline unsigned int task_cpu(const struct task_struct *p)
2004 {
2005 	return 0;
2006 }
2007 
2008 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2009 {
2010 }
2011 
2012 #endif /* CONFIG_SMP */
2013 
2014 /*
2015  * In order to reduce various lock holder preemption latencies provide an
2016  * interface to see if a vCPU is currently running or not.
2017  *
2018  * This allows us to terminate optimistic spin loops and block, analogous to
2019  * the native optimistic spin heuristic of testing if the lock owner task is
2020  * running or not.
2021  */
2022 #ifndef vcpu_is_preempted
2023 static inline bool vcpu_is_preempted(int cpu)
2024 {
2025 	return false;
2026 }
2027 #endif
2028 
2029 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2030 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2031 
2032 #ifndef TASK_SIZE_OF
2033 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2034 #endif
2035 
2036 #ifdef CONFIG_SMP
2037 /* Returns effective CPU energy utilization, as seen by the scheduler */
2038 unsigned long sched_cpu_util(int cpu, unsigned long max);
2039 #endif /* CONFIG_SMP */
2040 
2041 #ifdef CONFIG_RSEQ
2042 
2043 /*
2044  * Map the event mask on the user-space ABI enum rseq_cs_flags
2045  * for direct mask checks.
2046  */
2047 enum rseq_event_mask_bits {
2048 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2049 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2050 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2051 };
2052 
2053 enum rseq_event_mask {
2054 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2055 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2056 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2057 };
2058 
2059 static inline void rseq_set_notify_resume(struct task_struct *t)
2060 {
2061 	if (t->rseq)
2062 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2063 }
2064 
2065 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2066 
2067 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2068 					     struct pt_regs *regs)
2069 {
2070 	if (current->rseq)
2071 		__rseq_handle_notify_resume(ksig, regs);
2072 }
2073 
2074 static inline void rseq_signal_deliver(struct ksignal *ksig,
2075 				       struct pt_regs *regs)
2076 {
2077 	preempt_disable();
2078 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2079 	preempt_enable();
2080 	rseq_handle_notify_resume(ksig, regs);
2081 }
2082 
2083 /* rseq_preempt() requires preemption to be disabled. */
2084 static inline void rseq_preempt(struct task_struct *t)
2085 {
2086 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2087 	rseq_set_notify_resume(t);
2088 }
2089 
2090 /* rseq_migrate() requires preemption to be disabled. */
2091 static inline void rseq_migrate(struct task_struct *t)
2092 {
2093 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2094 	rseq_set_notify_resume(t);
2095 }
2096 
2097 /*
2098  * If parent process has a registered restartable sequences area, the
2099  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2100  */
2101 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2102 {
2103 	if (clone_flags & CLONE_VM) {
2104 		t->rseq = NULL;
2105 		t->rseq_sig = 0;
2106 		t->rseq_event_mask = 0;
2107 	} else {
2108 		t->rseq = current->rseq;
2109 		t->rseq_sig = current->rseq_sig;
2110 		t->rseq_event_mask = current->rseq_event_mask;
2111 	}
2112 }
2113 
2114 static inline void rseq_execve(struct task_struct *t)
2115 {
2116 	t->rseq = NULL;
2117 	t->rseq_sig = 0;
2118 	t->rseq_event_mask = 0;
2119 }
2120 
2121 #else
2122 
2123 static inline void rseq_set_notify_resume(struct task_struct *t)
2124 {
2125 }
2126 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2127 					     struct pt_regs *regs)
2128 {
2129 }
2130 static inline void rseq_signal_deliver(struct ksignal *ksig,
2131 				       struct pt_regs *regs)
2132 {
2133 }
2134 static inline void rseq_preempt(struct task_struct *t)
2135 {
2136 }
2137 static inline void rseq_migrate(struct task_struct *t)
2138 {
2139 }
2140 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2141 {
2142 }
2143 static inline void rseq_execve(struct task_struct *t)
2144 {
2145 }
2146 
2147 #endif
2148 
2149 #ifdef CONFIG_DEBUG_RSEQ
2150 
2151 void rseq_syscall(struct pt_regs *regs);
2152 
2153 #else
2154 
2155 static inline void rseq_syscall(struct pt_regs *regs)
2156 {
2157 }
2158 
2159 #endif
2160 
2161 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2162 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2163 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2164 
2165 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2166 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2167 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2168 
2169 int sched_trace_rq_cpu(struct rq *rq);
2170 int sched_trace_rq_cpu_capacity(struct rq *rq);
2171 int sched_trace_rq_nr_running(struct rq *rq);
2172 
2173 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2174 
2175 #endif
2176