1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 #include <linux/sched/prio.h> 7 8 9 struct sched_param { 10 int sched_priority; 11 }; 12 13 #include <asm/param.h> /* for HZ */ 14 15 #include <linux/capability.h> 16 #include <linux/threads.h> 17 #include <linux/kernel.h> 18 #include <linux/types.h> 19 #include <linux/timex.h> 20 #include <linux/jiffies.h> 21 #include <linux/plist.h> 22 #include <linux/rbtree.h> 23 #include <linux/thread_info.h> 24 #include <linux/cpumask.h> 25 #include <linux/errno.h> 26 #include <linux/nodemask.h> 27 #include <linux/mm_types.h> 28 #include <linux/preempt.h> 29 30 #include <asm/page.h> 31 #include <asm/ptrace.h> 32 #include <linux/cputime.h> 33 34 #include <linux/smp.h> 35 #include <linux/sem.h> 36 #include <linux/shm.h> 37 #include <linux/signal.h> 38 #include <linux/compiler.h> 39 #include <linux/completion.h> 40 #include <linux/pid.h> 41 #include <linux/percpu.h> 42 #include <linux/topology.h> 43 #include <linux/seccomp.h> 44 #include <linux/rcupdate.h> 45 #include <linux/rculist.h> 46 #include <linux/rtmutex.h> 47 48 #include <linux/time.h> 49 #include <linux/param.h> 50 #include <linux/resource.h> 51 #include <linux/timer.h> 52 #include <linux/hrtimer.h> 53 #include <linux/kcov.h> 54 #include <linux/task_io_accounting.h> 55 #include <linux/latencytop.h> 56 #include <linux/cred.h> 57 #include <linux/llist.h> 58 #include <linux/uidgid.h> 59 #include <linux/gfp.h> 60 #include <linux/magic.h> 61 #include <linux/cgroup-defs.h> 62 63 #include <asm/processor.h> 64 65 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67 /* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111 struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127 }; 128 129 struct futex_pi_state; 130 struct robust_list_head; 131 struct bio_list; 132 struct fs_struct; 133 struct perf_event_context; 134 struct blk_plug; 135 struct filename; 136 struct nameidata; 137 138 #define VMACACHE_BITS 2 139 #define VMACACHE_SIZE (1U << VMACACHE_BITS) 140 #define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142 /* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152 extern unsigned long avenrun[]; /* Load averages */ 153 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155 #define FSHIFT 11 /* nr of bits of precision */ 156 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 160 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162 #define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167 extern unsigned long total_forks; 168 extern int nr_threads; 169 DECLARE_PER_CPU(unsigned long, process_counts); 170 extern int nr_processes(void); 171 extern unsigned long nr_running(void); 172 extern bool single_task_running(void); 173 extern unsigned long nr_iowait(void); 174 extern unsigned long nr_iowait_cpu(int cpu); 175 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177 extern void calc_global_load(unsigned long ticks); 178 179 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180 extern void cpu_load_update_nohz_start(void); 181 extern void cpu_load_update_nohz_stop(void); 182 #else 183 static inline void cpu_load_update_nohz_start(void) { } 184 static inline void cpu_load_update_nohz_stop(void) { } 185 #endif 186 187 extern void dump_cpu_task(int cpu); 188 189 struct seq_file; 190 struct cfs_rq; 191 struct task_group; 192 #ifdef CONFIG_SCHED_DEBUG 193 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194 extern void proc_sched_set_task(struct task_struct *p); 195 #endif 196 197 /* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207 #define TASK_RUNNING 0 208 #define TASK_INTERRUPTIBLE 1 209 #define TASK_UNINTERRUPTIBLE 2 210 #define __TASK_STOPPED 4 211 #define __TASK_TRACED 8 212 /* in tsk->exit_state */ 213 #define EXIT_DEAD 16 214 #define EXIT_ZOMBIE 32 215 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216 /* in tsk->state again */ 217 #define TASK_DEAD 64 218 #define TASK_WAKEKILL 128 219 #define TASK_WAKING 256 220 #define TASK_PARKED 512 221 #define TASK_NOLOAD 1024 222 #define TASK_STATE_MAX 2048 223 224 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN" 225 226 extern char ___assert_task_state[1 - 2*!!( 227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 228 229 /* Convenience macros for the sake of set_task_state */ 230 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 231 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 232 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 233 234 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 235 236 /* Convenience macros for the sake of wake_up */ 237 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 238 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 239 240 /* get_task_state() */ 241 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 244 245 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 246 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 247 #define task_is_stopped_or_traced(task) \ 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 249 #define task_contributes_to_load(task) \ 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 251 (task->flags & PF_FROZEN) == 0 && \ 252 (task->state & TASK_NOLOAD) == 0) 253 254 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 255 256 #define __set_task_state(tsk, state_value) \ 257 do { \ 258 (tsk)->task_state_change = _THIS_IP_; \ 259 (tsk)->state = (state_value); \ 260 } while (0) 261 #define set_task_state(tsk, state_value) \ 262 do { \ 263 (tsk)->task_state_change = _THIS_IP_; \ 264 smp_store_mb((tsk)->state, (state_value)); \ 265 } while (0) 266 267 /* 268 * set_current_state() includes a barrier so that the write of current->state 269 * is correctly serialised wrt the caller's subsequent test of whether to 270 * actually sleep: 271 * 272 * set_current_state(TASK_UNINTERRUPTIBLE); 273 * if (do_i_need_to_sleep()) 274 * schedule(); 275 * 276 * If the caller does not need such serialisation then use __set_current_state() 277 */ 278 #define __set_current_state(state_value) \ 279 do { \ 280 current->task_state_change = _THIS_IP_; \ 281 current->state = (state_value); \ 282 } while (0) 283 #define set_current_state(state_value) \ 284 do { \ 285 current->task_state_change = _THIS_IP_; \ 286 smp_store_mb(current->state, (state_value)); \ 287 } while (0) 288 289 #else 290 291 #define __set_task_state(tsk, state_value) \ 292 do { (tsk)->state = (state_value); } while (0) 293 #define set_task_state(tsk, state_value) \ 294 smp_store_mb((tsk)->state, (state_value)) 295 296 /* 297 * set_current_state() includes a barrier so that the write of current->state 298 * is correctly serialised wrt the caller's subsequent test of whether to 299 * actually sleep: 300 * 301 * set_current_state(TASK_UNINTERRUPTIBLE); 302 * if (do_i_need_to_sleep()) 303 * schedule(); 304 * 305 * If the caller does not need such serialisation then use __set_current_state() 306 */ 307 #define __set_current_state(state_value) \ 308 do { current->state = (state_value); } while (0) 309 #define set_current_state(state_value) \ 310 smp_store_mb(current->state, (state_value)) 311 312 #endif 313 314 /* Task command name length */ 315 #define TASK_COMM_LEN 16 316 317 #include <linux/spinlock.h> 318 319 /* 320 * This serializes "schedule()" and also protects 321 * the run-queue from deletions/modifications (but 322 * _adding_ to the beginning of the run-queue has 323 * a separate lock). 324 */ 325 extern rwlock_t tasklist_lock; 326 extern spinlock_t mmlist_lock; 327 328 struct task_struct; 329 330 #ifdef CONFIG_PROVE_RCU 331 extern int lockdep_tasklist_lock_is_held(void); 332 #endif /* #ifdef CONFIG_PROVE_RCU */ 333 334 extern void sched_init(void); 335 extern void sched_init_smp(void); 336 extern asmlinkage void schedule_tail(struct task_struct *prev); 337 extern void init_idle(struct task_struct *idle, int cpu); 338 extern void init_idle_bootup_task(struct task_struct *idle); 339 340 extern cpumask_var_t cpu_isolated_map; 341 342 extern int runqueue_is_locked(int cpu); 343 344 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 345 extern void nohz_balance_enter_idle(int cpu); 346 extern void set_cpu_sd_state_idle(void); 347 extern int get_nohz_timer_target(void); 348 #else 349 static inline void nohz_balance_enter_idle(int cpu) { } 350 static inline void set_cpu_sd_state_idle(void) { } 351 #endif 352 353 /* 354 * Only dump TASK_* tasks. (0 for all tasks) 355 */ 356 extern void show_state_filter(unsigned long state_filter); 357 358 static inline void show_state(void) 359 { 360 show_state_filter(0); 361 } 362 363 extern void show_regs(struct pt_regs *); 364 365 /* 366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 367 * task), SP is the stack pointer of the first frame that should be shown in the back 368 * trace (or NULL if the entire call-chain of the task should be shown). 369 */ 370 extern void show_stack(struct task_struct *task, unsigned long *sp); 371 372 extern void cpu_init (void); 373 extern void trap_init(void); 374 extern void update_process_times(int user); 375 extern void scheduler_tick(void); 376 extern int sched_cpu_starting(unsigned int cpu); 377 extern int sched_cpu_activate(unsigned int cpu); 378 extern int sched_cpu_deactivate(unsigned int cpu); 379 380 #ifdef CONFIG_HOTPLUG_CPU 381 extern int sched_cpu_dying(unsigned int cpu); 382 #else 383 # define sched_cpu_dying NULL 384 #endif 385 386 extern void sched_show_task(struct task_struct *p); 387 388 #ifdef CONFIG_LOCKUP_DETECTOR 389 extern void touch_softlockup_watchdog_sched(void); 390 extern void touch_softlockup_watchdog(void); 391 extern void touch_softlockup_watchdog_sync(void); 392 extern void touch_all_softlockup_watchdogs(void); 393 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 394 void __user *buffer, 395 size_t *lenp, loff_t *ppos); 396 extern unsigned int softlockup_panic; 397 extern unsigned int hardlockup_panic; 398 void lockup_detector_init(void); 399 #else 400 static inline void touch_softlockup_watchdog_sched(void) 401 { 402 } 403 static inline void touch_softlockup_watchdog(void) 404 { 405 } 406 static inline void touch_softlockup_watchdog_sync(void) 407 { 408 } 409 static inline void touch_all_softlockup_watchdogs(void) 410 { 411 } 412 static inline void lockup_detector_init(void) 413 { 414 } 415 #endif 416 417 #ifdef CONFIG_DETECT_HUNG_TASK 418 void reset_hung_task_detector(void); 419 #else 420 static inline void reset_hung_task_detector(void) 421 { 422 } 423 #endif 424 425 /* Attach to any functions which should be ignored in wchan output. */ 426 #define __sched __attribute__((__section__(".sched.text"))) 427 428 /* Linker adds these: start and end of __sched functions */ 429 extern char __sched_text_start[], __sched_text_end[]; 430 431 /* Is this address in the __sched functions? */ 432 extern int in_sched_functions(unsigned long addr); 433 434 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 435 extern signed long schedule_timeout(signed long timeout); 436 extern signed long schedule_timeout_interruptible(signed long timeout); 437 extern signed long schedule_timeout_killable(signed long timeout); 438 extern signed long schedule_timeout_uninterruptible(signed long timeout); 439 extern signed long schedule_timeout_idle(signed long timeout); 440 asmlinkage void schedule(void); 441 extern void schedule_preempt_disabled(void); 442 443 extern long io_schedule_timeout(long timeout); 444 445 static inline void io_schedule(void) 446 { 447 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 448 } 449 450 struct nsproxy; 451 struct user_namespace; 452 453 #ifdef CONFIG_MMU 454 extern void arch_pick_mmap_layout(struct mm_struct *mm); 455 extern unsigned long 456 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 457 unsigned long, unsigned long); 458 extern unsigned long 459 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 460 unsigned long len, unsigned long pgoff, 461 unsigned long flags); 462 #else 463 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 464 #endif 465 466 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 467 #define SUID_DUMP_USER 1 /* Dump as user of process */ 468 #define SUID_DUMP_ROOT 2 /* Dump as root */ 469 470 /* mm flags */ 471 472 /* for SUID_DUMP_* above */ 473 #define MMF_DUMPABLE_BITS 2 474 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 475 476 extern void set_dumpable(struct mm_struct *mm, int value); 477 /* 478 * This returns the actual value of the suid_dumpable flag. For things 479 * that are using this for checking for privilege transitions, it must 480 * test against SUID_DUMP_USER rather than treating it as a boolean 481 * value. 482 */ 483 static inline int __get_dumpable(unsigned long mm_flags) 484 { 485 return mm_flags & MMF_DUMPABLE_MASK; 486 } 487 488 static inline int get_dumpable(struct mm_struct *mm) 489 { 490 return __get_dumpable(mm->flags); 491 } 492 493 /* coredump filter bits */ 494 #define MMF_DUMP_ANON_PRIVATE 2 495 #define MMF_DUMP_ANON_SHARED 3 496 #define MMF_DUMP_MAPPED_PRIVATE 4 497 #define MMF_DUMP_MAPPED_SHARED 5 498 #define MMF_DUMP_ELF_HEADERS 6 499 #define MMF_DUMP_HUGETLB_PRIVATE 7 500 #define MMF_DUMP_HUGETLB_SHARED 8 501 #define MMF_DUMP_DAX_PRIVATE 9 502 #define MMF_DUMP_DAX_SHARED 10 503 504 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 505 #define MMF_DUMP_FILTER_BITS 9 506 #define MMF_DUMP_FILTER_MASK \ 507 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 508 #define MMF_DUMP_FILTER_DEFAULT \ 509 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 510 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 511 512 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 513 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 514 #else 515 # define MMF_DUMP_MASK_DEFAULT_ELF 0 516 #endif 517 /* leave room for more dump flags */ 518 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 519 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 520 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 521 522 #define MMF_HAS_UPROBES 19 /* has uprobes */ 523 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 524 #define MMF_OOM_REAPED 21 /* mm has been already reaped */ 525 526 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 527 528 struct sighand_struct { 529 atomic_t count; 530 struct k_sigaction action[_NSIG]; 531 spinlock_t siglock; 532 wait_queue_head_t signalfd_wqh; 533 }; 534 535 struct pacct_struct { 536 int ac_flag; 537 long ac_exitcode; 538 unsigned long ac_mem; 539 cputime_t ac_utime, ac_stime; 540 unsigned long ac_minflt, ac_majflt; 541 }; 542 543 struct cpu_itimer { 544 cputime_t expires; 545 cputime_t incr; 546 u32 error; 547 u32 incr_error; 548 }; 549 550 /** 551 * struct prev_cputime - snaphsot of system and user cputime 552 * @utime: time spent in user mode 553 * @stime: time spent in system mode 554 * @lock: protects the above two fields 555 * 556 * Stores previous user/system time values such that we can guarantee 557 * monotonicity. 558 */ 559 struct prev_cputime { 560 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 561 cputime_t utime; 562 cputime_t stime; 563 raw_spinlock_t lock; 564 #endif 565 }; 566 567 static inline void prev_cputime_init(struct prev_cputime *prev) 568 { 569 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 570 prev->utime = prev->stime = 0; 571 raw_spin_lock_init(&prev->lock); 572 #endif 573 } 574 575 /** 576 * struct task_cputime - collected CPU time counts 577 * @utime: time spent in user mode, in &cputime_t units 578 * @stime: time spent in kernel mode, in &cputime_t units 579 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 580 * 581 * This structure groups together three kinds of CPU time that are tracked for 582 * threads and thread groups. Most things considering CPU time want to group 583 * these counts together and treat all three of them in parallel. 584 */ 585 struct task_cputime { 586 cputime_t utime; 587 cputime_t stime; 588 unsigned long long sum_exec_runtime; 589 }; 590 591 /* Alternate field names when used to cache expirations. */ 592 #define virt_exp utime 593 #define prof_exp stime 594 #define sched_exp sum_exec_runtime 595 596 #define INIT_CPUTIME \ 597 (struct task_cputime) { \ 598 .utime = 0, \ 599 .stime = 0, \ 600 .sum_exec_runtime = 0, \ 601 } 602 603 /* 604 * This is the atomic variant of task_cputime, which can be used for 605 * storing and updating task_cputime statistics without locking. 606 */ 607 struct task_cputime_atomic { 608 atomic64_t utime; 609 atomic64_t stime; 610 atomic64_t sum_exec_runtime; 611 }; 612 613 #define INIT_CPUTIME_ATOMIC \ 614 (struct task_cputime_atomic) { \ 615 .utime = ATOMIC64_INIT(0), \ 616 .stime = ATOMIC64_INIT(0), \ 617 .sum_exec_runtime = ATOMIC64_INIT(0), \ 618 } 619 620 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 621 622 /* 623 * Disable preemption until the scheduler is running -- use an unconditional 624 * value so that it also works on !PREEMPT_COUNT kernels. 625 * 626 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 627 */ 628 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET 629 630 /* 631 * Initial preempt_count value; reflects the preempt_count schedule invariant 632 * which states that during context switches: 633 * 634 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 635 * 636 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 637 * Note: See finish_task_switch(). 638 */ 639 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 640 641 /** 642 * struct thread_group_cputimer - thread group interval timer counts 643 * @cputime_atomic: atomic thread group interval timers. 644 * @running: true when there are timers running and 645 * @cputime_atomic receives updates. 646 * @checking_timer: true when a thread in the group is in the 647 * process of checking for thread group timers. 648 * 649 * This structure contains the version of task_cputime, above, that is 650 * used for thread group CPU timer calculations. 651 */ 652 struct thread_group_cputimer { 653 struct task_cputime_atomic cputime_atomic; 654 bool running; 655 bool checking_timer; 656 }; 657 658 #include <linux/rwsem.h> 659 struct autogroup; 660 661 /* 662 * NOTE! "signal_struct" does not have its own 663 * locking, because a shared signal_struct always 664 * implies a shared sighand_struct, so locking 665 * sighand_struct is always a proper superset of 666 * the locking of signal_struct. 667 */ 668 struct signal_struct { 669 atomic_t sigcnt; 670 atomic_t live; 671 int nr_threads; 672 atomic_t oom_victims; /* # of TIF_MEDIE threads in this thread group */ 673 struct list_head thread_head; 674 675 wait_queue_head_t wait_chldexit; /* for wait4() */ 676 677 /* current thread group signal load-balancing target: */ 678 struct task_struct *curr_target; 679 680 /* shared signal handling: */ 681 struct sigpending shared_pending; 682 683 /* thread group exit support */ 684 int group_exit_code; 685 /* overloaded: 686 * - notify group_exit_task when ->count is equal to notify_count 687 * - everyone except group_exit_task is stopped during signal delivery 688 * of fatal signals, group_exit_task processes the signal. 689 */ 690 int notify_count; 691 struct task_struct *group_exit_task; 692 693 /* thread group stop support, overloads group_exit_code too */ 694 int group_stop_count; 695 unsigned int flags; /* see SIGNAL_* flags below */ 696 697 /* 698 * PR_SET_CHILD_SUBREAPER marks a process, like a service 699 * manager, to re-parent orphan (double-forking) child processes 700 * to this process instead of 'init'. The service manager is 701 * able to receive SIGCHLD signals and is able to investigate 702 * the process until it calls wait(). All children of this 703 * process will inherit a flag if they should look for a 704 * child_subreaper process at exit. 705 */ 706 unsigned int is_child_subreaper:1; 707 unsigned int has_child_subreaper:1; 708 709 /* POSIX.1b Interval Timers */ 710 int posix_timer_id; 711 struct list_head posix_timers; 712 713 /* ITIMER_REAL timer for the process */ 714 struct hrtimer real_timer; 715 struct pid *leader_pid; 716 ktime_t it_real_incr; 717 718 /* 719 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 720 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 721 * values are defined to 0 and 1 respectively 722 */ 723 struct cpu_itimer it[2]; 724 725 /* 726 * Thread group totals for process CPU timers. 727 * See thread_group_cputimer(), et al, for details. 728 */ 729 struct thread_group_cputimer cputimer; 730 731 /* Earliest-expiration cache. */ 732 struct task_cputime cputime_expires; 733 734 #ifdef CONFIG_NO_HZ_FULL 735 atomic_t tick_dep_mask; 736 #endif 737 738 struct list_head cpu_timers[3]; 739 740 struct pid *tty_old_pgrp; 741 742 /* boolean value for session group leader */ 743 int leader; 744 745 struct tty_struct *tty; /* NULL if no tty */ 746 747 #ifdef CONFIG_SCHED_AUTOGROUP 748 struct autogroup *autogroup; 749 #endif 750 /* 751 * Cumulative resource counters for dead threads in the group, 752 * and for reaped dead child processes forked by this group. 753 * Live threads maintain their own counters and add to these 754 * in __exit_signal, except for the group leader. 755 */ 756 seqlock_t stats_lock; 757 cputime_t utime, stime, cutime, cstime; 758 cputime_t gtime; 759 cputime_t cgtime; 760 struct prev_cputime prev_cputime; 761 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 762 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 763 unsigned long inblock, oublock, cinblock, coublock; 764 unsigned long maxrss, cmaxrss; 765 struct task_io_accounting ioac; 766 767 /* 768 * Cumulative ns of schedule CPU time fo dead threads in the 769 * group, not including a zombie group leader, (This only differs 770 * from jiffies_to_ns(utime + stime) if sched_clock uses something 771 * other than jiffies.) 772 */ 773 unsigned long long sum_sched_runtime; 774 775 /* 776 * We don't bother to synchronize most readers of this at all, 777 * because there is no reader checking a limit that actually needs 778 * to get both rlim_cur and rlim_max atomically, and either one 779 * alone is a single word that can safely be read normally. 780 * getrlimit/setrlimit use task_lock(current->group_leader) to 781 * protect this instead of the siglock, because they really 782 * have no need to disable irqs. 783 */ 784 struct rlimit rlim[RLIM_NLIMITS]; 785 786 #ifdef CONFIG_BSD_PROCESS_ACCT 787 struct pacct_struct pacct; /* per-process accounting information */ 788 #endif 789 #ifdef CONFIG_TASKSTATS 790 struct taskstats *stats; 791 #endif 792 #ifdef CONFIG_AUDIT 793 unsigned audit_tty; 794 struct tty_audit_buf *tty_audit_buf; 795 #endif 796 797 oom_flags_t oom_flags; 798 short oom_score_adj; /* OOM kill score adjustment */ 799 short oom_score_adj_min; /* OOM kill score adjustment min value. 800 * Only settable by CAP_SYS_RESOURCE. */ 801 802 struct mutex cred_guard_mutex; /* guard against foreign influences on 803 * credential calculations 804 * (notably. ptrace) */ 805 }; 806 807 /* 808 * Bits in flags field of signal_struct. 809 */ 810 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 811 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 812 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 813 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 814 /* 815 * Pending notifications to parent. 816 */ 817 #define SIGNAL_CLD_STOPPED 0x00000010 818 #define SIGNAL_CLD_CONTINUED 0x00000020 819 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 820 821 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 822 823 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 824 static inline int signal_group_exit(const struct signal_struct *sig) 825 { 826 return (sig->flags & SIGNAL_GROUP_EXIT) || 827 (sig->group_exit_task != NULL); 828 } 829 830 /* 831 * Some day this will be a full-fledged user tracking system.. 832 */ 833 struct user_struct { 834 atomic_t __count; /* reference count */ 835 atomic_t processes; /* How many processes does this user have? */ 836 atomic_t sigpending; /* How many pending signals does this user have? */ 837 #ifdef CONFIG_INOTIFY_USER 838 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 839 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 840 #endif 841 #ifdef CONFIG_FANOTIFY 842 atomic_t fanotify_listeners; 843 #endif 844 #ifdef CONFIG_EPOLL 845 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 846 #endif 847 #ifdef CONFIG_POSIX_MQUEUE 848 /* protected by mq_lock */ 849 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 850 #endif 851 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 852 unsigned long unix_inflight; /* How many files in flight in unix sockets */ 853 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ 854 855 #ifdef CONFIG_KEYS 856 struct key *uid_keyring; /* UID specific keyring */ 857 struct key *session_keyring; /* UID's default session keyring */ 858 #endif 859 860 /* Hash table maintenance information */ 861 struct hlist_node uidhash_node; 862 kuid_t uid; 863 864 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) 865 atomic_long_t locked_vm; 866 #endif 867 }; 868 869 extern int uids_sysfs_init(void); 870 871 extern struct user_struct *find_user(kuid_t); 872 873 extern struct user_struct root_user; 874 #define INIT_USER (&root_user) 875 876 877 struct backing_dev_info; 878 struct reclaim_state; 879 880 #ifdef CONFIG_SCHED_INFO 881 struct sched_info { 882 /* cumulative counters */ 883 unsigned long pcount; /* # of times run on this cpu */ 884 unsigned long long run_delay; /* time spent waiting on a runqueue */ 885 886 /* timestamps */ 887 unsigned long long last_arrival,/* when we last ran on a cpu */ 888 last_queued; /* when we were last queued to run */ 889 }; 890 #endif /* CONFIG_SCHED_INFO */ 891 892 #ifdef CONFIG_TASK_DELAY_ACCT 893 struct task_delay_info { 894 spinlock_t lock; 895 unsigned int flags; /* Private per-task flags */ 896 897 /* For each stat XXX, add following, aligned appropriately 898 * 899 * struct timespec XXX_start, XXX_end; 900 * u64 XXX_delay; 901 * u32 XXX_count; 902 * 903 * Atomicity of updates to XXX_delay, XXX_count protected by 904 * single lock above (split into XXX_lock if contention is an issue). 905 */ 906 907 /* 908 * XXX_count is incremented on every XXX operation, the delay 909 * associated with the operation is added to XXX_delay. 910 * XXX_delay contains the accumulated delay time in nanoseconds. 911 */ 912 u64 blkio_start; /* Shared by blkio, swapin */ 913 u64 blkio_delay; /* wait for sync block io completion */ 914 u64 swapin_delay; /* wait for swapin block io completion */ 915 u32 blkio_count; /* total count of the number of sync block */ 916 /* io operations performed */ 917 u32 swapin_count; /* total count of the number of swapin block */ 918 /* io operations performed */ 919 920 u64 freepages_start; 921 u64 freepages_delay; /* wait for memory reclaim */ 922 u32 freepages_count; /* total count of memory reclaim */ 923 }; 924 #endif /* CONFIG_TASK_DELAY_ACCT */ 925 926 static inline int sched_info_on(void) 927 { 928 #ifdef CONFIG_SCHEDSTATS 929 return 1; 930 #elif defined(CONFIG_TASK_DELAY_ACCT) 931 extern int delayacct_on; 932 return delayacct_on; 933 #else 934 return 0; 935 #endif 936 } 937 938 #ifdef CONFIG_SCHEDSTATS 939 void force_schedstat_enabled(void); 940 #endif 941 942 enum cpu_idle_type { 943 CPU_IDLE, 944 CPU_NOT_IDLE, 945 CPU_NEWLY_IDLE, 946 CPU_MAX_IDLE_TYPES 947 }; 948 949 /* 950 * Integer metrics need fixed point arithmetic, e.g., sched/fair 951 * has a few: load, load_avg, util_avg, freq, and capacity. 952 * 953 * We define a basic fixed point arithmetic range, and then formalize 954 * all these metrics based on that basic range. 955 */ 956 # define SCHED_FIXEDPOINT_SHIFT 10 957 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 958 959 /* 960 * Increase resolution of cpu_capacity calculations 961 */ 962 #define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 963 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 964 965 /* 966 * Wake-queues are lists of tasks with a pending wakeup, whose 967 * callers have already marked the task as woken internally, 968 * and can thus carry on. A common use case is being able to 969 * do the wakeups once the corresponding user lock as been 970 * released. 971 * 972 * We hold reference to each task in the list across the wakeup, 973 * thus guaranteeing that the memory is still valid by the time 974 * the actual wakeups are performed in wake_up_q(). 975 * 976 * One per task suffices, because there's never a need for a task to be 977 * in two wake queues simultaneously; it is forbidden to abandon a task 978 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 979 * already in a wake queue, the wakeup will happen soon and the second 980 * waker can just skip it. 981 * 982 * The WAKE_Q macro declares and initializes the list head. 983 * wake_up_q() does NOT reinitialize the list; it's expected to be 984 * called near the end of a function, where the fact that the queue is 985 * not used again will be easy to see by inspection. 986 * 987 * Note that this can cause spurious wakeups. schedule() callers 988 * must ensure the call is done inside a loop, confirming that the 989 * wakeup condition has in fact occurred. 990 */ 991 struct wake_q_node { 992 struct wake_q_node *next; 993 }; 994 995 struct wake_q_head { 996 struct wake_q_node *first; 997 struct wake_q_node **lastp; 998 }; 999 1000 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 1001 1002 #define WAKE_Q(name) \ 1003 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 1004 1005 extern void wake_q_add(struct wake_q_head *head, 1006 struct task_struct *task); 1007 extern void wake_up_q(struct wake_q_head *head); 1008 1009 /* 1010 * sched-domains (multiprocessor balancing) declarations: 1011 */ 1012 #ifdef CONFIG_SMP 1013 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 1014 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 1015 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 1016 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 1017 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 1018 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 1019 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */ 1020 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 1021 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 1022 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 1023 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 1024 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 1025 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 1026 #define SD_NUMA 0x4000 /* cross-node balancing */ 1027 1028 #ifdef CONFIG_SCHED_SMT 1029 static inline int cpu_smt_flags(void) 1030 { 1031 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1032 } 1033 #endif 1034 1035 #ifdef CONFIG_SCHED_MC 1036 static inline int cpu_core_flags(void) 1037 { 1038 return SD_SHARE_PKG_RESOURCES; 1039 } 1040 #endif 1041 1042 #ifdef CONFIG_NUMA 1043 static inline int cpu_numa_flags(void) 1044 { 1045 return SD_NUMA; 1046 } 1047 #endif 1048 1049 struct sched_domain_attr { 1050 int relax_domain_level; 1051 }; 1052 1053 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 1054 .relax_domain_level = -1, \ 1055 } 1056 1057 extern int sched_domain_level_max; 1058 1059 struct sched_group; 1060 1061 struct sched_domain { 1062 /* These fields must be setup */ 1063 struct sched_domain *parent; /* top domain must be null terminated */ 1064 struct sched_domain *child; /* bottom domain must be null terminated */ 1065 struct sched_group *groups; /* the balancing groups of the domain */ 1066 unsigned long min_interval; /* Minimum balance interval ms */ 1067 unsigned long max_interval; /* Maximum balance interval ms */ 1068 unsigned int busy_factor; /* less balancing by factor if busy */ 1069 unsigned int imbalance_pct; /* No balance until over watermark */ 1070 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1071 unsigned int busy_idx; 1072 unsigned int idle_idx; 1073 unsigned int newidle_idx; 1074 unsigned int wake_idx; 1075 unsigned int forkexec_idx; 1076 unsigned int smt_gain; 1077 1078 int nohz_idle; /* NOHZ IDLE status */ 1079 int flags; /* See SD_* */ 1080 int level; 1081 1082 /* Runtime fields. */ 1083 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1084 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1085 unsigned int nr_balance_failed; /* initialise to 0 */ 1086 1087 /* idle_balance() stats */ 1088 u64 max_newidle_lb_cost; 1089 unsigned long next_decay_max_lb_cost; 1090 1091 #ifdef CONFIG_SCHEDSTATS 1092 /* load_balance() stats */ 1093 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1094 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1095 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1096 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1097 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1098 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1099 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1100 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1101 1102 /* Active load balancing */ 1103 unsigned int alb_count; 1104 unsigned int alb_failed; 1105 unsigned int alb_pushed; 1106 1107 /* SD_BALANCE_EXEC stats */ 1108 unsigned int sbe_count; 1109 unsigned int sbe_balanced; 1110 unsigned int sbe_pushed; 1111 1112 /* SD_BALANCE_FORK stats */ 1113 unsigned int sbf_count; 1114 unsigned int sbf_balanced; 1115 unsigned int sbf_pushed; 1116 1117 /* try_to_wake_up() stats */ 1118 unsigned int ttwu_wake_remote; 1119 unsigned int ttwu_move_affine; 1120 unsigned int ttwu_move_balance; 1121 #endif 1122 #ifdef CONFIG_SCHED_DEBUG 1123 char *name; 1124 #endif 1125 union { 1126 void *private; /* used during construction */ 1127 struct rcu_head rcu; /* used during destruction */ 1128 }; 1129 1130 unsigned int span_weight; 1131 /* 1132 * Span of all CPUs in this domain. 1133 * 1134 * NOTE: this field is variable length. (Allocated dynamically 1135 * by attaching extra space to the end of the structure, 1136 * depending on how many CPUs the kernel has booted up with) 1137 */ 1138 unsigned long span[0]; 1139 }; 1140 1141 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1142 { 1143 return to_cpumask(sd->span); 1144 } 1145 1146 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1147 struct sched_domain_attr *dattr_new); 1148 1149 /* Allocate an array of sched domains, for partition_sched_domains(). */ 1150 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1151 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1152 1153 bool cpus_share_cache(int this_cpu, int that_cpu); 1154 1155 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1156 typedef int (*sched_domain_flags_f)(void); 1157 1158 #define SDTL_OVERLAP 0x01 1159 1160 struct sd_data { 1161 struct sched_domain **__percpu sd; 1162 struct sched_group **__percpu sg; 1163 struct sched_group_capacity **__percpu sgc; 1164 }; 1165 1166 struct sched_domain_topology_level { 1167 sched_domain_mask_f mask; 1168 sched_domain_flags_f sd_flags; 1169 int flags; 1170 int numa_level; 1171 struct sd_data data; 1172 #ifdef CONFIG_SCHED_DEBUG 1173 char *name; 1174 #endif 1175 }; 1176 1177 extern void set_sched_topology(struct sched_domain_topology_level *tl); 1178 extern void wake_up_if_idle(int cpu); 1179 1180 #ifdef CONFIG_SCHED_DEBUG 1181 # define SD_INIT_NAME(type) .name = #type 1182 #else 1183 # define SD_INIT_NAME(type) 1184 #endif 1185 1186 #else /* CONFIG_SMP */ 1187 1188 struct sched_domain_attr; 1189 1190 static inline void 1191 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1192 struct sched_domain_attr *dattr_new) 1193 { 1194 } 1195 1196 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1197 { 1198 return true; 1199 } 1200 1201 #endif /* !CONFIG_SMP */ 1202 1203 1204 struct io_context; /* See blkdev.h */ 1205 1206 1207 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1208 extern void prefetch_stack(struct task_struct *t); 1209 #else 1210 static inline void prefetch_stack(struct task_struct *t) { } 1211 #endif 1212 1213 struct audit_context; /* See audit.c */ 1214 struct mempolicy; 1215 struct pipe_inode_info; 1216 struct uts_namespace; 1217 1218 struct load_weight { 1219 unsigned long weight; 1220 u32 inv_weight; 1221 }; 1222 1223 /* 1224 * The load_avg/util_avg accumulates an infinite geometric series 1225 * (see __update_load_avg() in kernel/sched/fair.c). 1226 * 1227 * [load_avg definition] 1228 * 1229 * load_avg = runnable% * scale_load_down(load) 1230 * 1231 * where runnable% is the time ratio that a sched_entity is runnable. 1232 * For cfs_rq, it is the aggregated load_avg of all runnable and 1233 * blocked sched_entities. 1234 * 1235 * load_avg may also take frequency scaling into account: 1236 * 1237 * load_avg = runnable% * scale_load_down(load) * freq% 1238 * 1239 * where freq% is the CPU frequency normalized to the highest frequency. 1240 * 1241 * [util_avg definition] 1242 * 1243 * util_avg = running% * SCHED_CAPACITY_SCALE 1244 * 1245 * where running% is the time ratio that a sched_entity is running on 1246 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 1247 * and blocked sched_entities. 1248 * 1249 * util_avg may also factor frequency scaling and CPU capacity scaling: 1250 * 1251 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% 1252 * 1253 * where freq% is the same as above, and capacity% is the CPU capacity 1254 * normalized to the greatest capacity (due to uarch differences, etc). 1255 * 1256 * N.B., the above ratios (runnable%, running%, freq%, and capacity%) 1257 * themselves are in the range of [0, 1]. To do fixed point arithmetics, 1258 * we therefore scale them to as large a range as necessary. This is for 1259 * example reflected by util_avg's SCHED_CAPACITY_SCALE. 1260 * 1261 * [Overflow issue] 1262 * 1263 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 1264 * with the highest load (=88761), always runnable on a single cfs_rq, 1265 * and should not overflow as the number already hits PID_MAX_LIMIT. 1266 * 1267 * For all other cases (including 32-bit kernels), struct load_weight's 1268 * weight will overflow first before we do, because: 1269 * 1270 * Max(load_avg) <= Max(load.weight) 1271 * 1272 * Then it is the load_weight's responsibility to consider overflow 1273 * issues. 1274 */ 1275 struct sched_avg { 1276 u64 last_update_time, load_sum; 1277 u32 util_sum, period_contrib; 1278 unsigned long load_avg, util_avg; 1279 }; 1280 1281 #ifdef CONFIG_SCHEDSTATS 1282 struct sched_statistics { 1283 u64 wait_start; 1284 u64 wait_max; 1285 u64 wait_count; 1286 u64 wait_sum; 1287 u64 iowait_count; 1288 u64 iowait_sum; 1289 1290 u64 sleep_start; 1291 u64 sleep_max; 1292 s64 sum_sleep_runtime; 1293 1294 u64 block_start; 1295 u64 block_max; 1296 u64 exec_max; 1297 u64 slice_max; 1298 1299 u64 nr_migrations_cold; 1300 u64 nr_failed_migrations_affine; 1301 u64 nr_failed_migrations_running; 1302 u64 nr_failed_migrations_hot; 1303 u64 nr_forced_migrations; 1304 1305 u64 nr_wakeups; 1306 u64 nr_wakeups_sync; 1307 u64 nr_wakeups_migrate; 1308 u64 nr_wakeups_local; 1309 u64 nr_wakeups_remote; 1310 u64 nr_wakeups_affine; 1311 u64 nr_wakeups_affine_attempts; 1312 u64 nr_wakeups_passive; 1313 u64 nr_wakeups_idle; 1314 }; 1315 #endif 1316 1317 struct sched_entity { 1318 struct load_weight load; /* for load-balancing */ 1319 struct rb_node run_node; 1320 struct list_head group_node; 1321 unsigned int on_rq; 1322 1323 u64 exec_start; 1324 u64 sum_exec_runtime; 1325 u64 vruntime; 1326 u64 prev_sum_exec_runtime; 1327 1328 u64 nr_migrations; 1329 1330 #ifdef CONFIG_SCHEDSTATS 1331 struct sched_statistics statistics; 1332 #endif 1333 1334 #ifdef CONFIG_FAIR_GROUP_SCHED 1335 int depth; 1336 struct sched_entity *parent; 1337 /* rq on which this entity is (to be) queued: */ 1338 struct cfs_rq *cfs_rq; 1339 /* rq "owned" by this entity/group: */ 1340 struct cfs_rq *my_q; 1341 #endif 1342 1343 #ifdef CONFIG_SMP 1344 /* 1345 * Per entity load average tracking. 1346 * 1347 * Put into separate cache line so it does not 1348 * collide with read-mostly values above. 1349 */ 1350 struct sched_avg avg ____cacheline_aligned_in_smp; 1351 #endif 1352 }; 1353 1354 struct sched_rt_entity { 1355 struct list_head run_list; 1356 unsigned long timeout; 1357 unsigned long watchdog_stamp; 1358 unsigned int time_slice; 1359 unsigned short on_rq; 1360 unsigned short on_list; 1361 1362 struct sched_rt_entity *back; 1363 #ifdef CONFIG_RT_GROUP_SCHED 1364 struct sched_rt_entity *parent; 1365 /* rq on which this entity is (to be) queued: */ 1366 struct rt_rq *rt_rq; 1367 /* rq "owned" by this entity/group: */ 1368 struct rt_rq *my_q; 1369 #endif 1370 }; 1371 1372 struct sched_dl_entity { 1373 struct rb_node rb_node; 1374 1375 /* 1376 * Original scheduling parameters. Copied here from sched_attr 1377 * during sched_setattr(), they will remain the same until 1378 * the next sched_setattr(). 1379 */ 1380 u64 dl_runtime; /* maximum runtime for each instance */ 1381 u64 dl_deadline; /* relative deadline of each instance */ 1382 u64 dl_period; /* separation of two instances (period) */ 1383 u64 dl_bw; /* dl_runtime / dl_deadline */ 1384 1385 /* 1386 * Actual scheduling parameters. Initialized with the values above, 1387 * they are continously updated during task execution. Note that 1388 * the remaining runtime could be < 0 in case we are in overrun. 1389 */ 1390 s64 runtime; /* remaining runtime for this instance */ 1391 u64 deadline; /* absolute deadline for this instance */ 1392 unsigned int flags; /* specifying the scheduler behaviour */ 1393 1394 /* 1395 * Some bool flags: 1396 * 1397 * @dl_throttled tells if we exhausted the runtime. If so, the 1398 * task has to wait for a replenishment to be performed at the 1399 * next firing of dl_timer. 1400 * 1401 * @dl_boosted tells if we are boosted due to DI. If so we are 1402 * outside bandwidth enforcement mechanism (but only until we 1403 * exit the critical section); 1404 * 1405 * @dl_yielded tells if task gave up the cpu before consuming 1406 * all its available runtime during the last job. 1407 */ 1408 int dl_throttled, dl_boosted, dl_yielded; 1409 1410 /* 1411 * Bandwidth enforcement timer. Each -deadline task has its 1412 * own bandwidth to be enforced, thus we need one timer per task. 1413 */ 1414 struct hrtimer dl_timer; 1415 }; 1416 1417 union rcu_special { 1418 struct { 1419 u8 blocked; 1420 u8 need_qs; 1421 u8 exp_need_qs; 1422 u8 pad; /* Otherwise the compiler can store garbage here. */ 1423 } b; /* Bits. */ 1424 u32 s; /* Set of bits. */ 1425 }; 1426 struct rcu_node; 1427 1428 enum perf_event_task_context { 1429 perf_invalid_context = -1, 1430 perf_hw_context = 0, 1431 perf_sw_context, 1432 perf_nr_task_contexts, 1433 }; 1434 1435 /* Track pages that require TLB flushes */ 1436 struct tlbflush_unmap_batch { 1437 /* 1438 * Each bit set is a CPU that potentially has a TLB entry for one of 1439 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1440 */ 1441 struct cpumask cpumask; 1442 1443 /* True if any bit in cpumask is set */ 1444 bool flush_required; 1445 1446 /* 1447 * If true then the PTE was dirty when unmapped. The entry must be 1448 * flushed before IO is initiated or a stale TLB entry potentially 1449 * allows an update without redirtying the page. 1450 */ 1451 bool writable; 1452 }; 1453 1454 struct task_struct { 1455 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1456 void *stack; 1457 atomic_t usage; 1458 unsigned int flags; /* per process flags, defined below */ 1459 unsigned int ptrace; 1460 1461 #ifdef CONFIG_SMP 1462 struct llist_node wake_entry; 1463 int on_cpu; 1464 unsigned int wakee_flips; 1465 unsigned long wakee_flip_decay_ts; 1466 struct task_struct *last_wakee; 1467 1468 int wake_cpu; 1469 #endif 1470 int on_rq; 1471 1472 int prio, static_prio, normal_prio; 1473 unsigned int rt_priority; 1474 const struct sched_class *sched_class; 1475 struct sched_entity se; 1476 struct sched_rt_entity rt; 1477 #ifdef CONFIG_CGROUP_SCHED 1478 struct task_group *sched_task_group; 1479 #endif 1480 struct sched_dl_entity dl; 1481 1482 #ifdef CONFIG_PREEMPT_NOTIFIERS 1483 /* list of struct preempt_notifier: */ 1484 struct hlist_head preempt_notifiers; 1485 #endif 1486 1487 #ifdef CONFIG_BLK_DEV_IO_TRACE 1488 unsigned int btrace_seq; 1489 #endif 1490 1491 unsigned int policy; 1492 int nr_cpus_allowed; 1493 cpumask_t cpus_allowed; 1494 1495 #ifdef CONFIG_PREEMPT_RCU 1496 int rcu_read_lock_nesting; 1497 union rcu_special rcu_read_unlock_special; 1498 struct list_head rcu_node_entry; 1499 struct rcu_node *rcu_blocked_node; 1500 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1501 #ifdef CONFIG_TASKS_RCU 1502 unsigned long rcu_tasks_nvcsw; 1503 bool rcu_tasks_holdout; 1504 struct list_head rcu_tasks_holdout_list; 1505 int rcu_tasks_idle_cpu; 1506 #endif /* #ifdef CONFIG_TASKS_RCU */ 1507 1508 #ifdef CONFIG_SCHED_INFO 1509 struct sched_info sched_info; 1510 #endif 1511 1512 struct list_head tasks; 1513 #ifdef CONFIG_SMP 1514 struct plist_node pushable_tasks; 1515 struct rb_node pushable_dl_tasks; 1516 #endif 1517 1518 struct mm_struct *mm, *active_mm; 1519 /* per-thread vma caching */ 1520 u32 vmacache_seqnum; 1521 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1522 #if defined(SPLIT_RSS_COUNTING) 1523 struct task_rss_stat rss_stat; 1524 #endif 1525 /* task state */ 1526 int exit_state; 1527 int exit_code, exit_signal; 1528 int pdeath_signal; /* The signal sent when the parent dies */ 1529 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1530 1531 /* Used for emulating ABI behavior of previous Linux versions */ 1532 unsigned int personality; 1533 1534 /* scheduler bits, serialized by scheduler locks */ 1535 unsigned sched_reset_on_fork:1; 1536 unsigned sched_contributes_to_load:1; 1537 unsigned sched_migrated:1; 1538 unsigned :0; /* force alignment to the next boundary */ 1539 1540 /* unserialized, strictly 'current' */ 1541 unsigned in_execve:1; /* bit to tell LSMs we're in execve */ 1542 unsigned in_iowait:1; 1543 #ifdef CONFIG_MEMCG 1544 unsigned memcg_may_oom:1; 1545 #ifndef CONFIG_SLOB 1546 unsigned memcg_kmem_skip_account:1; 1547 #endif 1548 #endif 1549 #ifdef CONFIG_COMPAT_BRK 1550 unsigned brk_randomized:1; 1551 #endif 1552 1553 unsigned long atomic_flags; /* Flags needing atomic access. */ 1554 1555 struct restart_block restart_block; 1556 1557 pid_t pid; 1558 pid_t tgid; 1559 1560 #ifdef CONFIG_CC_STACKPROTECTOR 1561 /* Canary value for the -fstack-protector gcc feature */ 1562 unsigned long stack_canary; 1563 #endif 1564 /* 1565 * pointers to (original) parent process, youngest child, younger sibling, 1566 * older sibling, respectively. (p->father can be replaced with 1567 * p->real_parent->pid) 1568 */ 1569 struct task_struct __rcu *real_parent; /* real parent process */ 1570 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1571 /* 1572 * children/sibling forms the list of my natural children 1573 */ 1574 struct list_head children; /* list of my children */ 1575 struct list_head sibling; /* linkage in my parent's children list */ 1576 struct task_struct *group_leader; /* threadgroup leader */ 1577 1578 /* 1579 * ptraced is the list of tasks this task is using ptrace on. 1580 * This includes both natural children and PTRACE_ATTACH targets. 1581 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1582 */ 1583 struct list_head ptraced; 1584 struct list_head ptrace_entry; 1585 1586 /* PID/PID hash table linkage. */ 1587 struct pid_link pids[PIDTYPE_MAX]; 1588 struct list_head thread_group; 1589 struct list_head thread_node; 1590 1591 struct completion *vfork_done; /* for vfork() */ 1592 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1593 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1594 1595 cputime_t utime, stime, utimescaled, stimescaled; 1596 cputime_t gtime; 1597 struct prev_cputime prev_cputime; 1598 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1599 seqcount_t vtime_seqcount; 1600 unsigned long long vtime_snap; 1601 enum { 1602 /* Task is sleeping or running in a CPU with VTIME inactive */ 1603 VTIME_INACTIVE = 0, 1604 /* Task runs in userspace in a CPU with VTIME active */ 1605 VTIME_USER, 1606 /* Task runs in kernelspace in a CPU with VTIME active */ 1607 VTIME_SYS, 1608 } vtime_snap_whence; 1609 #endif 1610 1611 #ifdef CONFIG_NO_HZ_FULL 1612 atomic_t tick_dep_mask; 1613 #endif 1614 unsigned long nvcsw, nivcsw; /* context switch counts */ 1615 u64 start_time; /* monotonic time in nsec */ 1616 u64 real_start_time; /* boot based time in nsec */ 1617 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1618 unsigned long min_flt, maj_flt; 1619 1620 struct task_cputime cputime_expires; 1621 struct list_head cpu_timers[3]; 1622 1623 /* process credentials */ 1624 const struct cred __rcu *real_cred; /* objective and real subjective task 1625 * credentials (COW) */ 1626 const struct cred __rcu *cred; /* effective (overridable) subjective task 1627 * credentials (COW) */ 1628 char comm[TASK_COMM_LEN]; /* executable name excluding path 1629 - access with [gs]et_task_comm (which lock 1630 it with task_lock()) 1631 - initialized normally by setup_new_exec */ 1632 /* file system info */ 1633 struct nameidata *nameidata; 1634 #ifdef CONFIG_SYSVIPC 1635 /* ipc stuff */ 1636 struct sysv_sem sysvsem; 1637 struct sysv_shm sysvshm; 1638 #endif 1639 #ifdef CONFIG_DETECT_HUNG_TASK 1640 /* hung task detection */ 1641 unsigned long last_switch_count; 1642 #endif 1643 /* filesystem information */ 1644 struct fs_struct *fs; 1645 /* open file information */ 1646 struct files_struct *files; 1647 /* namespaces */ 1648 struct nsproxy *nsproxy; 1649 /* signal handlers */ 1650 struct signal_struct *signal; 1651 struct sighand_struct *sighand; 1652 1653 sigset_t blocked, real_blocked; 1654 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1655 struct sigpending pending; 1656 1657 unsigned long sas_ss_sp; 1658 size_t sas_ss_size; 1659 unsigned sas_ss_flags; 1660 1661 struct callback_head *task_works; 1662 1663 struct audit_context *audit_context; 1664 #ifdef CONFIG_AUDITSYSCALL 1665 kuid_t loginuid; 1666 unsigned int sessionid; 1667 #endif 1668 struct seccomp seccomp; 1669 1670 /* Thread group tracking */ 1671 u32 parent_exec_id; 1672 u32 self_exec_id; 1673 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1674 * mempolicy */ 1675 spinlock_t alloc_lock; 1676 1677 /* Protection of the PI data structures: */ 1678 raw_spinlock_t pi_lock; 1679 1680 struct wake_q_node wake_q; 1681 1682 #ifdef CONFIG_RT_MUTEXES 1683 /* PI waiters blocked on a rt_mutex held by this task */ 1684 struct rb_root pi_waiters; 1685 struct rb_node *pi_waiters_leftmost; 1686 /* Deadlock detection and priority inheritance handling */ 1687 struct rt_mutex_waiter *pi_blocked_on; 1688 #endif 1689 1690 #ifdef CONFIG_DEBUG_MUTEXES 1691 /* mutex deadlock detection */ 1692 struct mutex_waiter *blocked_on; 1693 #endif 1694 #ifdef CONFIG_TRACE_IRQFLAGS 1695 unsigned int irq_events; 1696 unsigned long hardirq_enable_ip; 1697 unsigned long hardirq_disable_ip; 1698 unsigned int hardirq_enable_event; 1699 unsigned int hardirq_disable_event; 1700 int hardirqs_enabled; 1701 int hardirq_context; 1702 unsigned long softirq_disable_ip; 1703 unsigned long softirq_enable_ip; 1704 unsigned int softirq_disable_event; 1705 unsigned int softirq_enable_event; 1706 int softirqs_enabled; 1707 int softirq_context; 1708 #endif 1709 #ifdef CONFIG_LOCKDEP 1710 # define MAX_LOCK_DEPTH 48UL 1711 u64 curr_chain_key; 1712 int lockdep_depth; 1713 unsigned int lockdep_recursion; 1714 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1715 gfp_t lockdep_reclaim_gfp; 1716 #endif 1717 #ifdef CONFIG_UBSAN 1718 unsigned int in_ubsan; 1719 #endif 1720 1721 /* journalling filesystem info */ 1722 void *journal_info; 1723 1724 /* stacked block device info */ 1725 struct bio_list *bio_list; 1726 1727 #ifdef CONFIG_BLOCK 1728 /* stack plugging */ 1729 struct blk_plug *plug; 1730 #endif 1731 1732 /* VM state */ 1733 struct reclaim_state *reclaim_state; 1734 1735 struct backing_dev_info *backing_dev_info; 1736 1737 struct io_context *io_context; 1738 1739 unsigned long ptrace_message; 1740 siginfo_t *last_siginfo; /* For ptrace use. */ 1741 struct task_io_accounting ioac; 1742 #if defined(CONFIG_TASK_XACCT) 1743 u64 acct_rss_mem1; /* accumulated rss usage */ 1744 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1745 cputime_t acct_timexpd; /* stime + utime since last update */ 1746 #endif 1747 #ifdef CONFIG_CPUSETS 1748 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1749 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1750 int cpuset_mem_spread_rotor; 1751 int cpuset_slab_spread_rotor; 1752 #endif 1753 #ifdef CONFIG_CGROUPS 1754 /* Control Group info protected by css_set_lock */ 1755 struct css_set __rcu *cgroups; 1756 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1757 struct list_head cg_list; 1758 #endif 1759 #ifdef CONFIG_FUTEX 1760 struct robust_list_head __user *robust_list; 1761 #ifdef CONFIG_COMPAT 1762 struct compat_robust_list_head __user *compat_robust_list; 1763 #endif 1764 struct list_head pi_state_list; 1765 struct futex_pi_state *pi_state_cache; 1766 #endif 1767 #ifdef CONFIG_PERF_EVENTS 1768 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1769 struct mutex perf_event_mutex; 1770 struct list_head perf_event_list; 1771 #endif 1772 #ifdef CONFIG_DEBUG_PREEMPT 1773 unsigned long preempt_disable_ip; 1774 #endif 1775 #ifdef CONFIG_NUMA 1776 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1777 short il_next; 1778 short pref_node_fork; 1779 #endif 1780 #ifdef CONFIG_NUMA_BALANCING 1781 int numa_scan_seq; 1782 unsigned int numa_scan_period; 1783 unsigned int numa_scan_period_max; 1784 int numa_preferred_nid; 1785 unsigned long numa_migrate_retry; 1786 u64 node_stamp; /* migration stamp */ 1787 u64 last_task_numa_placement; 1788 u64 last_sum_exec_runtime; 1789 struct callback_head numa_work; 1790 1791 struct list_head numa_entry; 1792 struct numa_group *numa_group; 1793 1794 /* 1795 * numa_faults is an array split into four regions: 1796 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1797 * in this precise order. 1798 * 1799 * faults_memory: Exponential decaying average of faults on a per-node 1800 * basis. Scheduling placement decisions are made based on these 1801 * counts. The values remain static for the duration of a PTE scan. 1802 * faults_cpu: Track the nodes the process was running on when a NUMA 1803 * hinting fault was incurred. 1804 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1805 * during the current scan window. When the scan completes, the counts 1806 * in faults_memory and faults_cpu decay and these values are copied. 1807 */ 1808 unsigned long *numa_faults; 1809 unsigned long total_numa_faults; 1810 1811 /* 1812 * numa_faults_locality tracks if faults recorded during the last 1813 * scan window were remote/local or failed to migrate. The task scan 1814 * period is adapted based on the locality of the faults with different 1815 * weights depending on whether they were shared or private faults 1816 */ 1817 unsigned long numa_faults_locality[3]; 1818 1819 unsigned long numa_pages_migrated; 1820 #endif /* CONFIG_NUMA_BALANCING */ 1821 1822 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1823 struct tlbflush_unmap_batch tlb_ubc; 1824 #endif 1825 1826 struct rcu_head rcu; 1827 1828 /* 1829 * cache last used pipe for splice 1830 */ 1831 struct pipe_inode_info *splice_pipe; 1832 1833 struct page_frag task_frag; 1834 1835 #ifdef CONFIG_TASK_DELAY_ACCT 1836 struct task_delay_info *delays; 1837 #endif 1838 #ifdef CONFIG_FAULT_INJECTION 1839 int make_it_fail; 1840 #endif 1841 /* 1842 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1843 * balance_dirty_pages() for some dirty throttling pause 1844 */ 1845 int nr_dirtied; 1846 int nr_dirtied_pause; 1847 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1848 1849 #ifdef CONFIG_LATENCYTOP 1850 int latency_record_count; 1851 struct latency_record latency_record[LT_SAVECOUNT]; 1852 #endif 1853 /* 1854 * time slack values; these are used to round up poll() and 1855 * select() etc timeout values. These are in nanoseconds. 1856 */ 1857 u64 timer_slack_ns; 1858 u64 default_timer_slack_ns; 1859 1860 #ifdef CONFIG_KASAN 1861 unsigned int kasan_depth; 1862 #endif 1863 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1864 /* Index of current stored address in ret_stack */ 1865 int curr_ret_stack; 1866 /* Stack of return addresses for return function tracing */ 1867 struct ftrace_ret_stack *ret_stack; 1868 /* time stamp for last schedule */ 1869 unsigned long long ftrace_timestamp; 1870 /* 1871 * Number of functions that haven't been traced 1872 * because of depth overrun. 1873 */ 1874 atomic_t trace_overrun; 1875 /* Pause for the tracing */ 1876 atomic_t tracing_graph_pause; 1877 #endif 1878 #ifdef CONFIG_TRACING 1879 /* state flags for use by tracers */ 1880 unsigned long trace; 1881 /* bitmask and counter of trace recursion */ 1882 unsigned long trace_recursion; 1883 #endif /* CONFIG_TRACING */ 1884 #ifdef CONFIG_KCOV 1885 /* Coverage collection mode enabled for this task (0 if disabled). */ 1886 enum kcov_mode kcov_mode; 1887 /* Size of the kcov_area. */ 1888 unsigned kcov_size; 1889 /* Buffer for coverage collection. */ 1890 void *kcov_area; 1891 /* kcov desciptor wired with this task or NULL. */ 1892 struct kcov *kcov; 1893 #endif 1894 #ifdef CONFIG_MEMCG 1895 struct mem_cgroup *memcg_in_oom; 1896 gfp_t memcg_oom_gfp_mask; 1897 int memcg_oom_order; 1898 1899 /* number of pages to reclaim on returning to userland */ 1900 unsigned int memcg_nr_pages_over_high; 1901 #endif 1902 #ifdef CONFIG_UPROBES 1903 struct uprobe_task *utask; 1904 #endif 1905 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1906 unsigned int sequential_io; 1907 unsigned int sequential_io_avg; 1908 #endif 1909 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1910 unsigned long task_state_change; 1911 #endif 1912 int pagefault_disabled; 1913 #ifdef CONFIG_MMU 1914 struct task_struct *oom_reaper_list; 1915 #endif 1916 /* CPU-specific state of this task */ 1917 struct thread_struct thread; 1918 /* 1919 * WARNING: on x86, 'thread_struct' contains a variable-sized 1920 * structure. It *MUST* be at the end of 'task_struct'. 1921 * 1922 * Do not put anything below here! 1923 */ 1924 }; 1925 1926 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1927 extern int arch_task_struct_size __read_mostly; 1928 #else 1929 # define arch_task_struct_size (sizeof(struct task_struct)) 1930 #endif 1931 1932 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1933 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1934 1935 static inline int tsk_nr_cpus_allowed(struct task_struct *p) 1936 { 1937 return p->nr_cpus_allowed; 1938 } 1939 1940 #define TNF_MIGRATED 0x01 1941 #define TNF_NO_GROUP 0x02 1942 #define TNF_SHARED 0x04 1943 #define TNF_FAULT_LOCAL 0x08 1944 #define TNF_MIGRATE_FAIL 0x10 1945 1946 #ifdef CONFIG_NUMA_BALANCING 1947 extern void task_numa_fault(int last_node, int node, int pages, int flags); 1948 extern pid_t task_numa_group_id(struct task_struct *p); 1949 extern void set_numabalancing_state(bool enabled); 1950 extern void task_numa_free(struct task_struct *p); 1951 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 1952 int src_nid, int dst_cpu); 1953 #else 1954 static inline void task_numa_fault(int last_node, int node, int pages, 1955 int flags) 1956 { 1957 } 1958 static inline pid_t task_numa_group_id(struct task_struct *p) 1959 { 1960 return 0; 1961 } 1962 static inline void set_numabalancing_state(bool enabled) 1963 { 1964 } 1965 static inline void task_numa_free(struct task_struct *p) 1966 { 1967 } 1968 static inline bool should_numa_migrate_memory(struct task_struct *p, 1969 struct page *page, int src_nid, int dst_cpu) 1970 { 1971 return true; 1972 } 1973 #endif 1974 1975 static inline struct pid *task_pid(struct task_struct *task) 1976 { 1977 return task->pids[PIDTYPE_PID].pid; 1978 } 1979 1980 static inline struct pid *task_tgid(struct task_struct *task) 1981 { 1982 return task->group_leader->pids[PIDTYPE_PID].pid; 1983 } 1984 1985 /* 1986 * Without tasklist or rcu lock it is not safe to dereference 1987 * the result of task_pgrp/task_session even if task == current, 1988 * we can race with another thread doing sys_setsid/sys_setpgid. 1989 */ 1990 static inline struct pid *task_pgrp(struct task_struct *task) 1991 { 1992 return task->group_leader->pids[PIDTYPE_PGID].pid; 1993 } 1994 1995 static inline struct pid *task_session(struct task_struct *task) 1996 { 1997 return task->group_leader->pids[PIDTYPE_SID].pid; 1998 } 1999 2000 struct pid_namespace; 2001 2002 /* 2003 * the helpers to get the task's different pids as they are seen 2004 * from various namespaces 2005 * 2006 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 2007 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 2008 * current. 2009 * task_xid_nr_ns() : id seen from the ns specified; 2010 * 2011 * set_task_vxid() : assigns a virtual id to a task; 2012 * 2013 * see also pid_nr() etc in include/linux/pid.h 2014 */ 2015 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 2016 struct pid_namespace *ns); 2017 2018 static inline pid_t task_pid_nr(struct task_struct *tsk) 2019 { 2020 return tsk->pid; 2021 } 2022 2023 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 2024 struct pid_namespace *ns) 2025 { 2026 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 2027 } 2028 2029 static inline pid_t task_pid_vnr(struct task_struct *tsk) 2030 { 2031 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 2032 } 2033 2034 2035 static inline pid_t task_tgid_nr(struct task_struct *tsk) 2036 { 2037 return tsk->tgid; 2038 } 2039 2040 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 2041 2042 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 2043 { 2044 return pid_vnr(task_tgid(tsk)); 2045 } 2046 2047 2048 static inline int pid_alive(const struct task_struct *p); 2049 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 2050 { 2051 pid_t pid = 0; 2052 2053 rcu_read_lock(); 2054 if (pid_alive(tsk)) 2055 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 2056 rcu_read_unlock(); 2057 2058 return pid; 2059 } 2060 2061 static inline pid_t task_ppid_nr(const struct task_struct *tsk) 2062 { 2063 return task_ppid_nr_ns(tsk, &init_pid_ns); 2064 } 2065 2066 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 2067 struct pid_namespace *ns) 2068 { 2069 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 2070 } 2071 2072 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 2073 { 2074 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 2075 } 2076 2077 2078 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 2079 struct pid_namespace *ns) 2080 { 2081 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 2082 } 2083 2084 static inline pid_t task_session_vnr(struct task_struct *tsk) 2085 { 2086 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 2087 } 2088 2089 /* obsolete, do not use */ 2090 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 2091 { 2092 return task_pgrp_nr_ns(tsk, &init_pid_ns); 2093 } 2094 2095 /** 2096 * pid_alive - check that a task structure is not stale 2097 * @p: Task structure to be checked. 2098 * 2099 * Test if a process is not yet dead (at most zombie state) 2100 * If pid_alive fails, then pointers within the task structure 2101 * can be stale and must not be dereferenced. 2102 * 2103 * Return: 1 if the process is alive. 0 otherwise. 2104 */ 2105 static inline int pid_alive(const struct task_struct *p) 2106 { 2107 return p->pids[PIDTYPE_PID].pid != NULL; 2108 } 2109 2110 /** 2111 * is_global_init - check if a task structure is init. Since init 2112 * is free to have sub-threads we need to check tgid. 2113 * @tsk: Task structure to be checked. 2114 * 2115 * Check if a task structure is the first user space task the kernel created. 2116 * 2117 * Return: 1 if the task structure is init. 0 otherwise. 2118 */ 2119 static inline int is_global_init(struct task_struct *tsk) 2120 { 2121 return task_tgid_nr(tsk) == 1; 2122 } 2123 2124 extern struct pid *cad_pid; 2125 2126 extern void free_task(struct task_struct *tsk); 2127 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2128 2129 extern void __put_task_struct(struct task_struct *t); 2130 2131 static inline void put_task_struct(struct task_struct *t) 2132 { 2133 if (atomic_dec_and_test(&t->usage)) 2134 __put_task_struct(t); 2135 } 2136 2137 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2138 extern void task_cputime(struct task_struct *t, 2139 cputime_t *utime, cputime_t *stime); 2140 extern void task_cputime_scaled(struct task_struct *t, 2141 cputime_t *utimescaled, cputime_t *stimescaled); 2142 extern cputime_t task_gtime(struct task_struct *t); 2143 #else 2144 static inline void task_cputime(struct task_struct *t, 2145 cputime_t *utime, cputime_t *stime) 2146 { 2147 if (utime) 2148 *utime = t->utime; 2149 if (stime) 2150 *stime = t->stime; 2151 } 2152 2153 static inline void task_cputime_scaled(struct task_struct *t, 2154 cputime_t *utimescaled, 2155 cputime_t *stimescaled) 2156 { 2157 if (utimescaled) 2158 *utimescaled = t->utimescaled; 2159 if (stimescaled) 2160 *stimescaled = t->stimescaled; 2161 } 2162 2163 static inline cputime_t task_gtime(struct task_struct *t) 2164 { 2165 return t->gtime; 2166 } 2167 #endif 2168 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2169 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2170 2171 /* 2172 * Per process flags 2173 */ 2174 #define PF_EXITING 0x00000004 /* getting shut down */ 2175 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2176 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2177 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2178 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2179 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2180 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2181 #define PF_DUMPCORE 0x00000200 /* dumped core */ 2182 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 2183 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2184 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2185 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2186 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2187 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2188 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2189 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2190 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 2191 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2192 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2193 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2194 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2195 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2196 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2197 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2198 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2199 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2200 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2201 2202 /* 2203 * Only the _current_ task can read/write to tsk->flags, but other 2204 * tasks can access tsk->flags in readonly mode for example 2205 * with tsk_used_math (like during threaded core dumping). 2206 * There is however an exception to this rule during ptrace 2207 * or during fork: the ptracer task is allowed to write to the 2208 * child->flags of its traced child (same goes for fork, the parent 2209 * can write to the child->flags), because we're guaranteed the 2210 * child is not running and in turn not changing child->flags 2211 * at the same time the parent does it. 2212 */ 2213 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2214 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2215 #define clear_used_math() clear_stopped_child_used_math(current) 2216 #define set_used_math() set_stopped_child_used_math(current) 2217 #define conditional_stopped_child_used_math(condition, child) \ 2218 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2219 #define conditional_used_math(condition) \ 2220 conditional_stopped_child_used_math(condition, current) 2221 #define copy_to_stopped_child_used_math(child) \ 2222 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2223 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2224 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2225 #define used_math() tsk_used_math(current) 2226 2227 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2228 * __GFP_FS is also cleared as it implies __GFP_IO. 2229 */ 2230 static inline gfp_t memalloc_noio_flags(gfp_t flags) 2231 { 2232 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2233 flags &= ~(__GFP_IO | __GFP_FS); 2234 return flags; 2235 } 2236 2237 static inline unsigned int memalloc_noio_save(void) 2238 { 2239 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2240 current->flags |= PF_MEMALLOC_NOIO; 2241 return flags; 2242 } 2243 2244 static inline void memalloc_noio_restore(unsigned int flags) 2245 { 2246 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2247 } 2248 2249 /* Per-process atomic flags. */ 2250 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2251 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2252 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2253 #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */ 2254 2255 2256 #define TASK_PFA_TEST(name, func) \ 2257 static inline bool task_##func(struct task_struct *p) \ 2258 { return test_bit(PFA_##name, &p->atomic_flags); } 2259 #define TASK_PFA_SET(name, func) \ 2260 static inline void task_set_##func(struct task_struct *p) \ 2261 { set_bit(PFA_##name, &p->atomic_flags); } 2262 #define TASK_PFA_CLEAR(name, func) \ 2263 static inline void task_clear_##func(struct task_struct *p) \ 2264 { clear_bit(PFA_##name, &p->atomic_flags); } 2265 2266 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2267 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2268 2269 TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2270 TASK_PFA_SET(SPREAD_PAGE, spread_page) 2271 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2272 2273 TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2274 TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2275 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2276 2277 TASK_PFA_TEST(LMK_WAITING, lmk_waiting) 2278 TASK_PFA_SET(LMK_WAITING, lmk_waiting) 2279 2280 /* 2281 * task->jobctl flags 2282 */ 2283 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2284 2285 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2286 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2287 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2288 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2289 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2290 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2291 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2292 2293 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2294 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2295 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2296 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2297 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2298 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2299 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2300 2301 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2302 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2303 2304 extern bool task_set_jobctl_pending(struct task_struct *task, 2305 unsigned long mask); 2306 extern void task_clear_jobctl_trapping(struct task_struct *task); 2307 extern void task_clear_jobctl_pending(struct task_struct *task, 2308 unsigned long mask); 2309 2310 static inline void rcu_copy_process(struct task_struct *p) 2311 { 2312 #ifdef CONFIG_PREEMPT_RCU 2313 p->rcu_read_lock_nesting = 0; 2314 p->rcu_read_unlock_special.s = 0; 2315 p->rcu_blocked_node = NULL; 2316 INIT_LIST_HEAD(&p->rcu_node_entry); 2317 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 2318 #ifdef CONFIG_TASKS_RCU 2319 p->rcu_tasks_holdout = false; 2320 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2321 p->rcu_tasks_idle_cpu = -1; 2322 #endif /* #ifdef CONFIG_TASKS_RCU */ 2323 } 2324 2325 static inline void tsk_restore_flags(struct task_struct *task, 2326 unsigned long orig_flags, unsigned long flags) 2327 { 2328 task->flags &= ~flags; 2329 task->flags |= orig_flags & flags; 2330 } 2331 2332 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2333 const struct cpumask *trial); 2334 extern int task_can_attach(struct task_struct *p, 2335 const struct cpumask *cs_cpus_allowed); 2336 #ifdef CONFIG_SMP 2337 extern void do_set_cpus_allowed(struct task_struct *p, 2338 const struct cpumask *new_mask); 2339 2340 extern int set_cpus_allowed_ptr(struct task_struct *p, 2341 const struct cpumask *new_mask); 2342 #else 2343 static inline void do_set_cpus_allowed(struct task_struct *p, 2344 const struct cpumask *new_mask) 2345 { 2346 } 2347 static inline int set_cpus_allowed_ptr(struct task_struct *p, 2348 const struct cpumask *new_mask) 2349 { 2350 if (!cpumask_test_cpu(0, new_mask)) 2351 return -EINVAL; 2352 return 0; 2353 } 2354 #endif 2355 2356 #ifdef CONFIG_NO_HZ_COMMON 2357 void calc_load_enter_idle(void); 2358 void calc_load_exit_idle(void); 2359 #else 2360 static inline void calc_load_enter_idle(void) { } 2361 static inline void calc_load_exit_idle(void) { } 2362 #endif /* CONFIG_NO_HZ_COMMON */ 2363 2364 /* 2365 * Do not use outside of architecture code which knows its limitations. 2366 * 2367 * sched_clock() has no promise of monotonicity or bounded drift between 2368 * CPUs, use (which you should not) requires disabling IRQs. 2369 * 2370 * Please use one of the three interfaces below. 2371 */ 2372 extern unsigned long long notrace sched_clock(void); 2373 /* 2374 * See the comment in kernel/sched/clock.c 2375 */ 2376 extern u64 running_clock(void); 2377 extern u64 sched_clock_cpu(int cpu); 2378 2379 2380 extern void sched_clock_init(void); 2381 2382 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2383 static inline void sched_clock_tick(void) 2384 { 2385 } 2386 2387 static inline void sched_clock_idle_sleep_event(void) 2388 { 2389 } 2390 2391 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2392 { 2393 } 2394 2395 static inline u64 cpu_clock(int cpu) 2396 { 2397 return sched_clock(); 2398 } 2399 2400 static inline u64 local_clock(void) 2401 { 2402 return sched_clock(); 2403 } 2404 #else 2405 /* 2406 * Architectures can set this to 1 if they have specified 2407 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2408 * but then during bootup it turns out that sched_clock() 2409 * is reliable after all: 2410 */ 2411 extern int sched_clock_stable(void); 2412 extern void set_sched_clock_stable(void); 2413 extern void clear_sched_clock_stable(void); 2414 2415 extern void sched_clock_tick(void); 2416 extern void sched_clock_idle_sleep_event(void); 2417 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2418 2419 /* 2420 * As outlined in clock.c, provides a fast, high resolution, nanosecond 2421 * time source that is monotonic per cpu argument and has bounded drift 2422 * between cpus. 2423 * 2424 * ######################### BIG FAT WARNING ########################## 2425 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 2426 * # go backwards !! # 2427 * #################################################################### 2428 */ 2429 static inline u64 cpu_clock(int cpu) 2430 { 2431 return sched_clock_cpu(cpu); 2432 } 2433 2434 static inline u64 local_clock(void) 2435 { 2436 return sched_clock_cpu(raw_smp_processor_id()); 2437 } 2438 #endif 2439 2440 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 2441 /* 2442 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2443 * The reason for this explicit opt-in is not to have perf penalty with 2444 * slow sched_clocks. 2445 */ 2446 extern void enable_sched_clock_irqtime(void); 2447 extern void disable_sched_clock_irqtime(void); 2448 #else 2449 static inline void enable_sched_clock_irqtime(void) {} 2450 static inline void disable_sched_clock_irqtime(void) {} 2451 #endif 2452 2453 extern unsigned long long 2454 task_sched_runtime(struct task_struct *task); 2455 2456 /* sched_exec is called by processes performing an exec */ 2457 #ifdef CONFIG_SMP 2458 extern void sched_exec(void); 2459 #else 2460 #define sched_exec() {} 2461 #endif 2462 2463 extern void sched_clock_idle_sleep_event(void); 2464 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2465 2466 #ifdef CONFIG_HOTPLUG_CPU 2467 extern void idle_task_exit(void); 2468 #else 2469 static inline void idle_task_exit(void) {} 2470 #endif 2471 2472 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2473 extern void wake_up_nohz_cpu(int cpu); 2474 #else 2475 static inline void wake_up_nohz_cpu(int cpu) { } 2476 #endif 2477 2478 #ifdef CONFIG_NO_HZ_FULL 2479 extern u64 scheduler_tick_max_deferment(void); 2480 #endif 2481 2482 #ifdef CONFIG_SCHED_AUTOGROUP 2483 extern void sched_autogroup_create_attach(struct task_struct *p); 2484 extern void sched_autogroup_detach(struct task_struct *p); 2485 extern void sched_autogroup_fork(struct signal_struct *sig); 2486 extern void sched_autogroup_exit(struct signal_struct *sig); 2487 #ifdef CONFIG_PROC_FS 2488 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2489 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2490 #endif 2491 #else 2492 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2493 static inline void sched_autogroup_detach(struct task_struct *p) { } 2494 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2495 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2496 #endif 2497 2498 extern int yield_to(struct task_struct *p, bool preempt); 2499 extern void set_user_nice(struct task_struct *p, long nice); 2500 extern int task_prio(const struct task_struct *p); 2501 /** 2502 * task_nice - return the nice value of a given task. 2503 * @p: the task in question. 2504 * 2505 * Return: The nice value [ -20 ... 0 ... 19 ]. 2506 */ 2507 static inline int task_nice(const struct task_struct *p) 2508 { 2509 return PRIO_TO_NICE((p)->static_prio); 2510 } 2511 extern int can_nice(const struct task_struct *p, const int nice); 2512 extern int task_curr(const struct task_struct *p); 2513 extern int idle_cpu(int cpu); 2514 extern int sched_setscheduler(struct task_struct *, int, 2515 const struct sched_param *); 2516 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2517 const struct sched_param *); 2518 extern int sched_setattr(struct task_struct *, 2519 const struct sched_attr *); 2520 extern struct task_struct *idle_task(int cpu); 2521 /** 2522 * is_idle_task - is the specified task an idle task? 2523 * @p: the task in question. 2524 * 2525 * Return: 1 if @p is an idle task. 0 otherwise. 2526 */ 2527 static inline bool is_idle_task(const struct task_struct *p) 2528 { 2529 return p->pid == 0; 2530 } 2531 extern struct task_struct *curr_task(int cpu); 2532 extern void set_curr_task(int cpu, struct task_struct *p); 2533 2534 void yield(void); 2535 2536 union thread_union { 2537 struct thread_info thread_info; 2538 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2539 }; 2540 2541 #ifndef __HAVE_ARCH_KSTACK_END 2542 static inline int kstack_end(void *addr) 2543 { 2544 /* Reliable end of stack detection: 2545 * Some APM bios versions misalign the stack 2546 */ 2547 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2548 } 2549 #endif 2550 2551 extern union thread_union init_thread_union; 2552 extern struct task_struct init_task; 2553 2554 extern struct mm_struct init_mm; 2555 2556 extern struct pid_namespace init_pid_ns; 2557 2558 /* 2559 * find a task by one of its numerical ids 2560 * 2561 * find_task_by_pid_ns(): 2562 * finds a task by its pid in the specified namespace 2563 * find_task_by_vpid(): 2564 * finds a task by its virtual pid 2565 * 2566 * see also find_vpid() etc in include/linux/pid.h 2567 */ 2568 2569 extern struct task_struct *find_task_by_vpid(pid_t nr); 2570 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2571 struct pid_namespace *ns); 2572 2573 /* per-UID process charging. */ 2574 extern struct user_struct * alloc_uid(kuid_t); 2575 static inline struct user_struct *get_uid(struct user_struct *u) 2576 { 2577 atomic_inc(&u->__count); 2578 return u; 2579 } 2580 extern void free_uid(struct user_struct *); 2581 2582 #include <asm/current.h> 2583 2584 extern void xtime_update(unsigned long ticks); 2585 2586 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2587 extern int wake_up_process(struct task_struct *tsk); 2588 extern void wake_up_new_task(struct task_struct *tsk); 2589 #ifdef CONFIG_SMP 2590 extern void kick_process(struct task_struct *tsk); 2591 #else 2592 static inline void kick_process(struct task_struct *tsk) { } 2593 #endif 2594 extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2595 extern void sched_dead(struct task_struct *p); 2596 2597 extern void proc_caches_init(void); 2598 extern void flush_signals(struct task_struct *); 2599 extern void ignore_signals(struct task_struct *); 2600 extern void flush_signal_handlers(struct task_struct *, int force_default); 2601 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2602 2603 static inline int kernel_dequeue_signal(siginfo_t *info) 2604 { 2605 struct task_struct *tsk = current; 2606 siginfo_t __info; 2607 int ret; 2608 2609 spin_lock_irq(&tsk->sighand->siglock); 2610 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 2611 spin_unlock_irq(&tsk->sighand->siglock); 2612 2613 return ret; 2614 } 2615 2616 static inline void kernel_signal_stop(void) 2617 { 2618 spin_lock_irq(¤t->sighand->siglock); 2619 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 2620 __set_current_state(TASK_STOPPED); 2621 spin_unlock_irq(¤t->sighand->siglock); 2622 2623 schedule(); 2624 } 2625 2626 extern void release_task(struct task_struct * p); 2627 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2628 extern int force_sigsegv(int, struct task_struct *); 2629 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2630 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2631 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2632 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2633 const struct cred *, u32); 2634 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2635 extern int kill_pid(struct pid *pid, int sig, int priv); 2636 extern int kill_proc_info(int, struct siginfo *, pid_t); 2637 extern __must_check bool do_notify_parent(struct task_struct *, int); 2638 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2639 extern void force_sig(int, struct task_struct *); 2640 extern int send_sig(int, struct task_struct *, int); 2641 extern int zap_other_threads(struct task_struct *p); 2642 extern struct sigqueue *sigqueue_alloc(void); 2643 extern void sigqueue_free(struct sigqueue *); 2644 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2645 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2646 2647 static inline void restore_saved_sigmask(void) 2648 { 2649 if (test_and_clear_restore_sigmask()) 2650 __set_current_blocked(¤t->saved_sigmask); 2651 } 2652 2653 static inline sigset_t *sigmask_to_save(void) 2654 { 2655 sigset_t *res = ¤t->blocked; 2656 if (unlikely(test_restore_sigmask())) 2657 res = ¤t->saved_sigmask; 2658 return res; 2659 } 2660 2661 static inline int kill_cad_pid(int sig, int priv) 2662 { 2663 return kill_pid(cad_pid, sig, priv); 2664 } 2665 2666 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2667 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2668 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2669 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2670 2671 /* 2672 * True if we are on the alternate signal stack. 2673 */ 2674 static inline int on_sig_stack(unsigned long sp) 2675 { 2676 /* 2677 * If the signal stack is SS_AUTODISARM then, by construction, we 2678 * can't be on the signal stack unless user code deliberately set 2679 * SS_AUTODISARM when we were already on it. 2680 * 2681 * This improves reliability: if user state gets corrupted such that 2682 * the stack pointer points very close to the end of the signal stack, 2683 * then this check will enable the signal to be handled anyway. 2684 */ 2685 if (current->sas_ss_flags & SS_AUTODISARM) 2686 return 0; 2687 2688 #ifdef CONFIG_STACK_GROWSUP 2689 return sp >= current->sas_ss_sp && 2690 sp - current->sas_ss_sp < current->sas_ss_size; 2691 #else 2692 return sp > current->sas_ss_sp && 2693 sp - current->sas_ss_sp <= current->sas_ss_size; 2694 #endif 2695 } 2696 2697 static inline int sas_ss_flags(unsigned long sp) 2698 { 2699 if (!current->sas_ss_size) 2700 return SS_DISABLE; 2701 2702 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2703 } 2704 2705 static inline void sas_ss_reset(struct task_struct *p) 2706 { 2707 p->sas_ss_sp = 0; 2708 p->sas_ss_size = 0; 2709 p->sas_ss_flags = SS_DISABLE; 2710 } 2711 2712 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2713 { 2714 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2715 #ifdef CONFIG_STACK_GROWSUP 2716 return current->sas_ss_sp; 2717 #else 2718 return current->sas_ss_sp + current->sas_ss_size; 2719 #endif 2720 return sp; 2721 } 2722 2723 /* 2724 * Routines for handling mm_structs 2725 */ 2726 extern struct mm_struct * mm_alloc(void); 2727 2728 /* mmdrop drops the mm and the page tables */ 2729 extern void __mmdrop(struct mm_struct *); 2730 static inline void mmdrop(struct mm_struct *mm) 2731 { 2732 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2733 __mmdrop(mm); 2734 } 2735 2736 static inline bool mmget_not_zero(struct mm_struct *mm) 2737 { 2738 return atomic_inc_not_zero(&mm->mm_users); 2739 } 2740 2741 /* mmput gets rid of the mappings and all user-space */ 2742 extern void mmput(struct mm_struct *); 2743 /* same as above but performs the slow path from the async kontext. Can 2744 * be called from the atomic context as well 2745 */ 2746 extern void mmput_async(struct mm_struct *); 2747 2748 /* Grab a reference to a task's mm, if it is not already going away */ 2749 extern struct mm_struct *get_task_mm(struct task_struct *task); 2750 /* 2751 * Grab a reference to a task's mm, if it is not already going away 2752 * and ptrace_may_access with the mode parameter passed to it 2753 * succeeds. 2754 */ 2755 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2756 /* Remove the current tasks stale references to the old mm_struct */ 2757 extern void mm_release(struct task_struct *, struct mm_struct *); 2758 2759 #ifdef CONFIG_HAVE_COPY_THREAD_TLS 2760 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2761 struct task_struct *, unsigned long); 2762 #else 2763 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2764 struct task_struct *); 2765 2766 /* Architectures that haven't opted into copy_thread_tls get the tls argument 2767 * via pt_regs, so ignore the tls argument passed via C. */ 2768 static inline int copy_thread_tls( 2769 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2770 struct task_struct *p, unsigned long tls) 2771 { 2772 return copy_thread(clone_flags, sp, arg, p); 2773 } 2774 #endif 2775 extern void flush_thread(void); 2776 2777 #ifdef CONFIG_HAVE_EXIT_THREAD 2778 extern void exit_thread(struct task_struct *tsk); 2779 #else 2780 static inline void exit_thread(struct task_struct *tsk) 2781 { 2782 } 2783 #endif 2784 2785 extern void exit_files(struct task_struct *); 2786 extern void __cleanup_sighand(struct sighand_struct *); 2787 2788 extern void exit_itimers(struct signal_struct *); 2789 extern void flush_itimer_signals(void); 2790 2791 extern void do_group_exit(int); 2792 2793 extern int do_execve(struct filename *, 2794 const char __user * const __user *, 2795 const char __user * const __user *); 2796 extern int do_execveat(int, struct filename *, 2797 const char __user * const __user *, 2798 const char __user * const __user *, 2799 int); 2800 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 2801 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2802 struct task_struct *fork_idle(int); 2803 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2804 2805 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 2806 static inline void set_task_comm(struct task_struct *tsk, const char *from) 2807 { 2808 __set_task_comm(tsk, from, false); 2809 } 2810 extern char *get_task_comm(char *to, struct task_struct *tsk); 2811 2812 #ifdef CONFIG_SMP 2813 void scheduler_ipi(void); 2814 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2815 #else 2816 static inline void scheduler_ipi(void) { } 2817 static inline unsigned long wait_task_inactive(struct task_struct *p, 2818 long match_state) 2819 { 2820 return 1; 2821 } 2822 #endif 2823 2824 #define tasklist_empty() \ 2825 list_empty(&init_task.tasks) 2826 2827 #define next_task(p) \ 2828 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2829 2830 #define for_each_process(p) \ 2831 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2832 2833 extern bool current_is_single_threaded(void); 2834 2835 /* 2836 * Careful: do_each_thread/while_each_thread is a double loop so 2837 * 'break' will not work as expected - use goto instead. 2838 */ 2839 #define do_each_thread(g, t) \ 2840 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2841 2842 #define while_each_thread(g, t) \ 2843 while ((t = next_thread(t)) != g) 2844 2845 #define __for_each_thread(signal, t) \ 2846 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 2847 2848 #define for_each_thread(p, t) \ 2849 __for_each_thread((p)->signal, t) 2850 2851 /* Careful: this is a double loop, 'break' won't work as expected. */ 2852 #define for_each_process_thread(p, t) \ 2853 for_each_process(p) for_each_thread(p, t) 2854 2855 static inline int get_nr_threads(struct task_struct *tsk) 2856 { 2857 return tsk->signal->nr_threads; 2858 } 2859 2860 static inline bool thread_group_leader(struct task_struct *p) 2861 { 2862 return p->exit_signal >= 0; 2863 } 2864 2865 /* Do to the insanities of de_thread it is possible for a process 2866 * to have the pid of the thread group leader without actually being 2867 * the thread group leader. For iteration through the pids in proc 2868 * all we care about is that we have a task with the appropriate 2869 * pid, we don't actually care if we have the right task. 2870 */ 2871 static inline bool has_group_leader_pid(struct task_struct *p) 2872 { 2873 return task_pid(p) == p->signal->leader_pid; 2874 } 2875 2876 static inline 2877 bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 2878 { 2879 return p1->signal == p2->signal; 2880 } 2881 2882 static inline struct task_struct *next_thread(const struct task_struct *p) 2883 { 2884 return list_entry_rcu(p->thread_group.next, 2885 struct task_struct, thread_group); 2886 } 2887 2888 static inline int thread_group_empty(struct task_struct *p) 2889 { 2890 return list_empty(&p->thread_group); 2891 } 2892 2893 #define delay_group_leader(p) \ 2894 (thread_group_leader(p) && !thread_group_empty(p)) 2895 2896 /* 2897 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2898 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2899 * pins the final release of task.io_context. Also protects ->cpuset and 2900 * ->cgroup.subsys[]. And ->vfork_done. 2901 * 2902 * Nests both inside and outside of read_lock(&tasklist_lock). 2903 * It must not be nested with write_lock_irq(&tasklist_lock), 2904 * neither inside nor outside. 2905 */ 2906 static inline void task_lock(struct task_struct *p) 2907 { 2908 spin_lock(&p->alloc_lock); 2909 } 2910 2911 static inline void task_unlock(struct task_struct *p) 2912 { 2913 spin_unlock(&p->alloc_lock); 2914 } 2915 2916 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2917 unsigned long *flags); 2918 2919 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2920 unsigned long *flags) 2921 { 2922 struct sighand_struct *ret; 2923 2924 ret = __lock_task_sighand(tsk, flags); 2925 (void)__cond_lock(&tsk->sighand->siglock, ret); 2926 return ret; 2927 } 2928 2929 static inline void unlock_task_sighand(struct task_struct *tsk, 2930 unsigned long *flags) 2931 { 2932 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2933 } 2934 2935 /** 2936 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 2937 * @tsk: task causing the changes 2938 * 2939 * All operations which modify a threadgroup - a new thread joining the 2940 * group, death of a member thread (the assertion of PF_EXITING) and 2941 * exec(2) dethreading the process and replacing the leader - are wrapped 2942 * by threadgroup_change_{begin|end}(). This is to provide a place which 2943 * subsystems needing threadgroup stability can hook into for 2944 * synchronization. 2945 */ 2946 static inline void threadgroup_change_begin(struct task_struct *tsk) 2947 { 2948 might_sleep(); 2949 cgroup_threadgroup_change_begin(tsk); 2950 } 2951 2952 /** 2953 * threadgroup_change_end - mark the end of changes to a threadgroup 2954 * @tsk: task causing the changes 2955 * 2956 * See threadgroup_change_begin(). 2957 */ 2958 static inline void threadgroup_change_end(struct task_struct *tsk) 2959 { 2960 cgroup_threadgroup_change_end(tsk); 2961 } 2962 2963 #ifndef __HAVE_THREAD_FUNCTIONS 2964 2965 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2966 #define task_stack_page(task) ((task)->stack) 2967 2968 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2969 { 2970 *task_thread_info(p) = *task_thread_info(org); 2971 task_thread_info(p)->task = p; 2972 } 2973 2974 /* 2975 * Return the address of the last usable long on the stack. 2976 * 2977 * When the stack grows down, this is just above the thread 2978 * info struct. Going any lower will corrupt the threadinfo. 2979 * 2980 * When the stack grows up, this is the highest address. 2981 * Beyond that position, we corrupt data on the next page. 2982 */ 2983 static inline unsigned long *end_of_stack(struct task_struct *p) 2984 { 2985 #ifdef CONFIG_STACK_GROWSUP 2986 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 2987 #else 2988 return (unsigned long *)(task_thread_info(p) + 1); 2989 #endif 2990 } 2991 2992 #endif 2993 #define task_stack_end_corrupted(task) \ 2994 (*(end_of_stack(task)) != STACK_END_MAGIC) 2995 2996 static inline int object_is_on_stack(void *obj) 2997 { 2998 void *stack = task_stack_page(current); 2999 3000 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 3001 } 3002 3003 extern void thread_info_cache_init(void); 3004 3005 #ifdef CONFIG_DEBUG_STACK_USAGE 3006 static inline unsigned long stack_not_used(struct task_struct *p) 3007 { 3008 unsigned long *n = end_of_stack(p); 3009 3010 do { /* Skip over canary */ 3011 # ifdef CONFIG_STACK_GROWSUP 3012 n--; 3013 # else 3014 n++; 3015 # endif 3016 } while (!*n); 3017 3018 # ifdef CONFIG_STACK_GROWSUP 3019 return (unsigned long)end_of_stack(p) - (unsigned long)n; 3020 # else 3021 return (unsigned long)n - (unsigned long)end_of_stack(p); 3022 # endif 3023 } 3024 #endif 3025 extern void set_task_stack_end_magic(struct task_struct *tsk); 3026 3027 /* set thread flags in other task's structures 3028 * - see asm/thread_info.h for TIF_xxxx flags available 3029 */ 3030 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 3031 { 3032 set_ti_thread_flag(task_thread_info(tsk), flag); 3033 } 3034 3035 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3036 { 3037 clear_ti_thread_flag(task_thread_info(tsk), flag); 3038 } 3039 3040 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 3041 { 3042 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 3043 } 3044 3045 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3046 { 3047 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 3048 } 3049 3050 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 3051 { 3052 return test_ti_thread_flag(task_thread_info(tsk), flag); 3053 } 3054 3055 static inline void set_tsk_need_resched(struct task_struct *tsk) 3056 { 3057 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3058 } 3059 3060 static inline void clear_tsk_need_resched(struct task_struct *tsk) 3061 { 3062 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3063 } 3064 3065 static inline int test_tsk_need_resched(struct task_struct *tsk) 3066 { 3067 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 3068 } 3069 3070 static inline int restart_syscall(void) 3071 { 3072 set_tsk_thread_flag(current, TIF_SIGPENDING); 3073 return -ERESTARTNOINTR; 3074 } 3075 3076 static inline int signal_pending(struct task_struct *p) 3077 { 3078 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 3079 } 3080 3081 static inline int __fatal_signal_pending(struct task_struct *p) 3082 { 3083 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 3084 } 3085 3086 static inline int fatal_signal_pending(struct task_struct *p) 3087 { 3088 return signal_pending(p) && __fatal_signal_pending(p); 3089 } 3090 3091 static inline int signal_pending_state(long state, struct task_struct *p) 3092 { 3093 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 3094 return 0; 3095 if (!signal_pending(p)) 3096 return 0; 3097 3098 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 3099 } 3100 3101 /* 3102 * cond_resched() and cond_resched_lock(): latency reduction via 3103 * explicit rescheduling in places that are safe. The return 3104 * value indicates whether a reschedule was done in fact. 3105 * cond_resched_lock() will drop the spinlock before scheduling, 3106 * cond_resched_softirq() will enable bhs before scheduling. 3107 */ 3108 extern int _cond_resched(void); 3109 3110 #define cond_resched() ({ \ 3111 ___might_sleep(__FILE__, __LINE__, 0); \ 3112 _cond_resched(); \ 3113 }) 3114 3115 extern int __cond_resched_lock(spinlock_t *lock); 3116 3117 #define cond_resched_lock(lock) ({ \ 3118 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 3119 __cond_resched_lock(lock); \ 3120 }) 3121 3122 extern int __cond_resched_softirq(void); 3123 3124 #define cond_resched_softirq() ({ \ 3125 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 3126 __cond_resched_softirq(); \ 3127 }) 3128 3129 static inline void cond_resched_rcu(void) 3130 { 3131 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 3132 rcu_read_unlock(); 3133 cond_resched(); 3134 rcu_read_lock(); 3135 #endif 3136 } 3137 3138 /* 3139 * Does a critical section need to be broken due to another 3140 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 3141 * but a general need for low latency) 3142 */ 3143 static inline int spin_needbreak(spinlock_t *lock) 3144 { 3145 #ifdef CONFIG_PREEMPT 3146 return spin_is_contended(lock); 3147 #else 3148 return 0; 3149 #endif 3150 } 3151 3152 /* 3153 * Idle thread specific functions to determine the need_resched 3154 * polling state. 3155 */ 3156 #ifdef TIF_POLLING_NRFLAG 3157 static inline int tsk_is_polling(struct task_struct *p) 3158 { 3159 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 3160 } 3161 3162 static inline void __current_set_polling(void) 3163 { 3164 set_thread_flag(TIF_POLLING_NRFLAG); 3165 } 3166 3167 static inline bool __must_check current_set_polling_and_test(void) 3168 { 3169 __current_set_polling(); 3170 3171 /* 3172 * Polling state must be visible before we test NEED_RESCHED, 3173 * paired by resched_curr() 3174 */ 3175 smp_mb__after_atomic(); 3176 3177 return unlikely(tif_need_resched()); 3178 } 3179 3180 static inline void __current_clr_polling(void) 3181 { 3182 clear_thread_flag(TIF_POLLING_NRFLAG); 3183 } 3184 3185 static inline bool __must_check current_clr_polling_and_test(void) 3186 { 3187 __current_clr_polling(); 3188 3189 /* 3190 * Polling state must be visible before we test NEED_RESCHED, 3191 * paired by resched_curr() 3192 */ 3193 smp_mb__after_atomic(); 3194 3195 return unlikely(tif_need_resched()); 3196 } 3197 3198 #else 3199 static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3200 static inline void __current_set_polling(void) { } 3201 static inline void __current_clr_polling(void) { } 3202 3203 static inline bool __must_check current_set_polling_and_test(void) 3204 { 3205 return unlikely(tif_need_resched()); 3206 } 3207 static inline bool __must_check current_clr_polling_and_test(void) 3208 { 3209 return unlikely(tif_need_resched()); 3210 } 3211 #endif 3212 3213 static inline void current_clr_polling(void) 3214 { 3215 __current_clr_polling(); 3216 3217 /* 3218 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3219 * Once the bit is cleared, we'll get IPIs with every new 3220 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3221 * fold. 3222 */ 3223 smp_mb(); /* paired with resched_curr() */ 3224 3225 preempt_fold_need_resched(); 3226 } 3227 3228 static __always_inline bool need_resched(void) 3229 { 3230 return unlikely(tif_need_resched()); 3231 } 3232 3233 /* 3234 * Thread group CPU time accounting. 3235 */ 3236 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3237 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3238 3239 /* 3240 * Reevaluate whether the task has signals pending delivery. 3241 * Wake the task if so. 3242 * This is required every time the blocked sigset_t changes. 3243 * callers must hold sighand->siglock. 3244 */ 3245 extern void recalc_sigpending_and_wake(struct task_struct *t); 3246 extern void recalc_sigpending(void); 3247 3248 extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3249 3250 static inline void signal_wake_up(struct task_struct *t, bool resume) 3251 { 3252 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3253 } 3254 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3255 { 3256 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3257 } 3258 3259 /* 3260 * Wrappers for p->thread_info->cpu access. No-op on UP. 3261 */ 3262 #ifdef CONFIG_SMP 3263 3264 static inline unsigned int task_cpu(const struct task_struct *p) 3265 { 3266 return task_thread_info(p)->cpu; 3267 } 3268 3269 static inline int task_node(const struct task_struct *p) 3270 { 3271 return cpu_to_node(task_cpu(p)); 3272 } 3273 3274 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3275 3276 #else 3277 3278 static inline unsigned int task_cpu(const struct task_struct *p) 3279 { 3280 return 0; 3281 } 3282 3283 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3284 { 3285 } 3286 3287 #endif /* CONFIG_SMP */ 3288 3289 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3290 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3291 3292 #ifdef CONFIG_CGROUP_SCHED 3293 extern struct task_group root_task_group; 3294 #endif /* CONFIG_CGROUP_SCHED */ 3295 3296 extern int task_can_switch_user(struct user_struct *up, 3297 struct task_struct *tsk); 3298 3299 #ifdef CONFIG_TASK_XACCT 3300 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3301 { 3302 tsk->ioac.rchar += amt; 3303 } 3304 3305 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3306 { 3307 tsk->ioac.wchar += amt; 3308 } 3309 3310 static inline void inc_syscr(struct task_struct *tsk) 3311 { 3312 tsk->ioac.syscr++; 3313 } 3314 3315 static inline void inc_syscw(struct task_struct *tsk) 3316 { 3317 tsk->ioac.syscw++; 3318 } 3319 #else 3320 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3321 { 3322 } 3323 3324 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3325 { 3326 } 3327 3328 static inline void inc_syscr(struct task_struct *tsk) 3329 { 3330 } 3331 3332 static inline void inc_syscw(struct task_struct *tsk) 3333 { 3334 } 3335 #endif 3336 3337 #ifndef TASK_SIZE_OF 3338 #define TASK_SIZE_OF(tsk) TASK_SIZE 3339 #endif 3340 3341 #ifdef CONFIG_MEMCG 3342 extern void mm_update_next_owner(struct mm_struct *mm); 3343 #else 3344 static inline void mm_update_next_owner(struct mm_struct *mm) 3345 { 3346 } 3347 #endif /* CONFIG_MEMCG */ 3348 3349 static inline unsigned long task_rlimit(const struct task_struct *tsk, 3350 unsigned int limit) 3351 { 3352 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3353 } 3354 3355 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3356 unsigned int limit) 3357 { 3358 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3359 } 3360 3361 static inline unsigned long rlimit(unsigned int limit) 3362 { 3363 return task_rlimit(current, limit); 3364 } 3365 3366 static inline unsigned long rlimit_max(unsigned int limit) 3367 { 3368 return task_rlimit_max(current, limit); 3369 } 3370 3371 #ifdef CONFIG_CPU_FREQ 3372 struct update_util_data { 3373 void (*func)(struct update_util_data *data, 3374 u64 time, unsigned long util, unsigned long max); 3375 }; 3376 3377 void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data, 3378 void (*func)(struct update_util_data *data, u64 time, 3379 unsigned long util, unsigned long max)); 3380 void cpufreq_remove_update_util_hook(int cpu); 3381 #endif /* CONFIG_CPU_FREQ */ 3382 3383 #endif 3384