xref: /linux/include/linux/sched.h (revision 0cb4228f6cc9ed0ca2be0d9ddf29168a8e3a3905)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <linux/rv.h>
39 #include <asm/kmap_size.h>
40 
41 /* task_struct member predeclarations (sorted alphabetically): */
42 struct audit_context;
43 struct backing_dev_info;
44 struct bio_list;
45 struct blk_plug;
46 struct bpf_local_storage;
47 struct bpf_run_ctx;
48 struct capture_control;
49 struct cfs_rq;
50 struct fs_struct;
51 struct futex_pi_state;
52 struct io_context;
53 struct io_uring_task;
54 struct mempolicy;
55 struct nameidata;
56 struct nsproxy;
57 struct perf_event_context;
58 struct pid_namespace;
59 struct pipe_inode_info;
60 struct rcu_node;
61 struct reclaim_state;
62 struct robust_list_head;
63 struct root_domain;
64 struct rq;
65 struct sched_attr;
66 struct sched_param;
67 struct seq_file;
68 struct sighand_struct;
69 struct signal_struct;
70 struct task_delay_info;
71 struct task_group;
72 
73 /*
74  * Task state bitmask. NOTE! These bits are also
75  * encoded in fs/proc/array.c: get_task_state().
76  *
77  * We have two separate sets of flags: task->state
78  * is about runnability, while task->exit_state are
79  * about the task exiting. Confusing, but this way
80  * modifying one set can't modify the other one by
81  * mistake.
82  */
83 
84 /* Used in tsk->state: */
85 #define TASK_RUNNING			0x00000000
86 #define TASK_INTERRUPTIBLE		0x00000001
87 #define TASK_UNINTERRUPTIBLE		0x00000002
88 #define __TASK_STOPPED			0x00000004
89 #define __TASK_TRACED			0x00000008
90 /* Used in tsk->exit_state: */
91 #define EXIT_DEAD			0x00000010
92 #define EXIT_ZOMBIE			0x00000020
93 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
94 /* Used in tsk->state again: */
95 #define TASK_PARKED			0x00000040
96 #define TASK_DEAD			0x00000080
97 #define TASK_WAKEKILL			0x00000100
98 #define TASK_WAKING			0x00000200
99 #define TASK_NOLOAD			0x00000400
100 #define TASK_NEW			0x00000800
101 #define TASK_RTLOCK_WAIT		0x00001000
102 #define TASK_FREEZABLE			0x00002000
103 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
104 #define TASK_FROZEN			0x00008000
105 #define TASK_STATE_MAX			0x00010000
106 
107 #define TASK_ANY			(TASK_STATE_MAX-1)
108 
109 /*
110  * DO NOT ADD ANY NEW USERS !
111  */
112 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
113 
114 /* Convenience macros for the sake of set_current_state: */
115 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
116 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
117 #define TASK_TRACED			__TASK_TRACED
118 
119 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
120 
121 /* Convenience macros for the sake of wake_up(): */
122 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
123 
124 /* get_task_state(): */
125 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
126 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
127 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
128 					 TASK_PARKED)
129 
130 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
131 
132 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
133 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
134 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
135 
136 /*
137  * Special states are those that do not use the normal wait-loop pattern. See
138  * the comment with set_special_state().
139  */
140 #define is_special_task_state(state)				\
141 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
142 
143 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
144 # define debug_normal_state_change(state_value)				\
145 	do {								\
146 		WARN_ON_ONCE(is_special_task_state(state_value));	\
147 		current->task_state_change = _THIS_IP_;			\
148 	} while (0)
149 
150 # define debug_special_state_change(state_value)			\
151 	do {								\
152 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
153 		current->task_state_change = _THIS_IP_;			\
154 	} while (0)
155 
156 # define debug_rtlock_wait_set_state()					\
157 	do {								 \
158 		current->saved_state_change = current->task_state_change;\
159 		current->task_state_change = _THIS_IP_;			 \
160 	} while (0)
161 
162 # define debug_rtlock_wait_restore_state()				\
163 	do {								 \
164 		current->task_state_change = current->saved_state_change;\
165 	} while (0)
166 
167 #else
168 # define debug_normal_state_change(cond)	do { } while (0)
169 # define debug_special_state_change(cond)	do { } while (0)
170 # define debug_rtlock_wait_set_state()		do { } while (0)
171 # define debug_rtlock_wait_restore_state()	do { } while (0)
172 #endif
173 
174 /*
175  * set_current_state() includes a barrier so that the write of current->state
176  * is correctly serialised wrt the caller's subsequent test of whether to
177  * actually sleep:
178  *
179  *   for (;;) {
180  *	set_current_state(TASK_UNINTERRUPTIBLE);
181  *	if (CONDITION)
182  *	   break;
183  *
184  *	schedule();
185  *   }
186  *   __set_current_state(TASK_RUNNING);
187  *
188  * If the caller does not need such serialisation (because, for instance, the
189  * CONDITION test and condition change and wakeup are under the same lock) then
190  * use __set_current_state().
191  *
192  * The above is typically ordered against the wakeup, which does:
193  *
194  *   CONDITION = 1;
195  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
196  *
197  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
198  * accessing p->state.
199  *
200  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
201  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
202  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
203  *
204  * However, with slightly different timing the wakeup TASK_RUNNING store can
205  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
206  * a problem either because that will result in one extra go around the loop
207  * and our @cond test will save the day.
208  *
209  * Also see the comments of try_to_wake_up().
210  */
211 #define __set_current_state(state_value)				\
212 	do {								\
213 		debug_normal_state_change((state_value));		\
214 		WRITE_ONCE(current->__state, (state_value));		\
215 	} while (0)
216 
217 #define set_current_state(state_value)					\
218 	do {								\
219 		debug_normal_state_change((state_value));		\
220 		smp_store_mb(current->__state, (state_value));		\
221 	} while (0)
222 
223 /*
224  * set_special_state() should be used for those states when the blocking task
225  * can not use the regular condition based wait-loop. In that case we must
226  * serialize against wakeups such that any possible in-flight TASK_RUNNING
227  * stores will not collide with our state change.
228  */
229 #define set_special_state(state_value)					\
230 	do {								\
231 		unsigned long flags; /* may shadow */			\
232 									\
233 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
234 		debug_special_state_change((state_value));		\
235 		WRITE_ONCE(current->__state, (state_value));		\
236 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
237 	} while (0)
238 
239 /*
240  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
241  *
242  * RT's spin/rwlock substitutions are state preserving. The state of the
243  * task when blocking on the lock is saved in task_struct::saved_state and
244  * restored after the lock has been acquired.  These operations are
245  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
246  * lock related wakeups while the task is blocked on the lock are
247  * redirected to operate on task_struct::saved_state to ensure that these
248  * are not dropped. On restore task_struct::saved_state is set to
249  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
250  *
251  * The lock operation looks like this:
252  *
253  *	current_save_and_set_rtlock_wait_state();
254  *	for (;;) {
255  *		if (try_lock())
256  *			break;
257  *		raw_spin_unlock_irq(&lock->wait_lock);
258  *		schedule_rtlock();
259  *		raw_spin_lock_irq(&lock->wait_lock);
260  *		set_current_state(TASK_RTLOCK_WAIT);
261  *	}
262  *	current_restore_rtlock_saved_state();
263  */
264 #define current_save_and_set_rtlock_wait_state()			\
265 	do {								\
266 		lockdep_assert_irqs_disabled();				\
267 		raw_spin_lock(&current->pi_lock);			\
268 		current->saved_state = current->__state;		\
269 		debug_rtlock_wait_set_state();				\
270 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
271 		raw_spin_unlock(&current->pi_lock);			\
272 	} while (0);
273 
274 #define current_restore_rtlock_saved_state()				\
275 	do {								\
276 		lockdep_assert_irqs_disabled();				\
277 		raw_spin_lock(&current->pi_lock);			\
278 		debug_rtlock_wait_restore_state();			\
279 		WRITE_ONCE(current->__state, current->saved_state);	\
280 		current->saved_state = TASK_RUNNING;			\
281 		raw_spin_unlock(&current->pi_lock);			\
282 	} while (0);
283 
284 #define get_current_state()	READ_ONCE(current->__state)
285 
286 /*
287  * Define the task command name length as enum, then it can be visible to
288  * BPF programs.
289  */
290 enum {
291 	TASK_COMM_LEN = 16,
292 };
293 
294 extern void scheduler_tick(void);
295 
296 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
297 
298 extern long schedule_timeout(long timeout);
299 extern long schedule_timeout_interruptible(long timeout);
300 extern long schedule_timeout_killable(long timeout);
301 extern long schedule_timeout_uninterruptible(long timeout);
302 extern long schedule_timeout_idle(long timeout);
303 asmlinkage void schedule(void);
304 extern void schedule_preempt_disabled(void);
305 asmlinkage void preempt_schedule_irq(void);
306 #ifdef CONFIG_PREEMPT_RT
307  extern void schedule_rtlock(void);
308 #endif
309 
310 extern int __must_check io_schedule_prepare(void);
311 extern void io_schedule_finish(int token);
312 extern long io_schedule_timeout(long timeout);
313 extern void io_schedule(void);
314 
315 /**
316  * struct prev_cputime - snapshot of system and user cputime
317  * @utime: time spent in user mode
318  * @stime: time spent in system mode
319  * @lock: protects the above two fields
320  *
321  * Stores previous user/system time values such that we can guarantee
322  * monotonicity.
323  */
324 struct prev_cputime {
325 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
326 	u64				utime;
327 	u64				stime;
328 	raw_spinlock_t			lock;
329 #endif
330 };
331 
332 enum vtime_state {
333 	/* Task is sleeping or running in a CPU with VTIME inactive: */
334 	VTIME_INACTIVE = 0,
335 	/* Task is idle */
336 	VTIME_IDLE,
337 	/* Task runs in kernelspace in a CPU with VTIME active: */
338 	VTIME_SYS,
339 	/* Task runs in userspace in a CPU with VTIME active: */
340 	VTIME_USER,
341 	/* Task runs as guests in a CPU with VTIME active: */
342 	VTIME_GUEST,
343 };
344 
345 struct vtime {
346 	seqcount_t		seqcount;
347 	unsigned long long	starttime;
348 	enum vtime_state	state;
349 	unsigned int		cpu;
350 	u64			utime;
351 	u64			stime;
352 	u64			gtime;
353 };
354 
355 /*
356  * Utilization clamp constraints.
357  * @UCLAMP_MIN:	Minimum utilization
358  * @UCLAMP_MAX:	Maximum utilization
359  * @UCLAMP_CNT:	Utilization clamp constraints count
360  */
361 enum uclamp_id {
362 	UCLAMP_MIN = 0,
363 	UCLAMP_MAX,
364 	UCLAMP_CNT
365 };
366 
367 #ifdef CONFIG_SMP
368 extern struct root_domain def_root_domain;
369 extern struct mutex sched_domains_mutex;
370 #endif
371 
372 struct sched_info {
373 #ifdef CONFIG_SCHED_INFO
374 	/* Cumulative counters: */
375 
376 	/* # of times we have run on this CPU: */
377 	unsigned long			pcount;
378 
379 	/* Time spent waiting on a runqueue: */
380 	unsigned long long		run_delay;
381 
382 	/* Timestamps: */
383 
384 	/* When did we last run on a CPU? */
385 	unsigned long long		last_arrival;
386 
387 	/* When were we last queued to run? */
388 	unsigned long long		last_queued;
389 
390 #endif /* CONFIG_SCHED_INFO */
391 };
392 
393 /*
394  * Integer metrics need fixed point arithmetic, e.g., sched/fair
395  * has a few: load, load_avg, util_avg, freq, and capacity.
396  *
397  * We define a basic fixed point arithmetic range, and then formalize
398  * all these metrics based on that basic range.
399  */
400 # define SCHED_FIXEDPOINT_SHIFT		10
401 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
402 
403 /* Increase resolution of cpu_capacity calculations */
404 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
405 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
406 
407 struct load_weight {
408 	unsigned long			weight;
409 	u32				inv_weight;
410 };
411 
412 /**
413  * struct util_est - Estimation utilization of FAIR tasks
414  * @enqueued: instantaneous estimated utilization of a task/cpu
415  * @ewma:     the Exponential Weighted Moving Average (EWMA)
416  *            utilization of a task
417  *
418  * Support data structure to track an Exponential Weighted Moving Average
419  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
420  * average each time a task completes an activation. Sample's weight is chosen
421  * so that the EWMA will be relatively insensitive to transient changes to the
422  * task's workload.
423  *
424  * The enqueued attribute has a slightly different meaning for tasks and cpus:
425  * - task:   the task's util_avg at last task dequeue time
426  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
427  * Thus, the util_est.enqueued of a task represents the contribution on the
428  * estimated utilization of the CPU where that task is currently enqueued.
429  *
430  * Only for tasks we track a moving average of the past instantaneous
431  * estimated utilization. This allows to absorb sporadic drops in utilization
432  * of an otherwise almost periodic task.
433  *
434  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
435  * updates. When a task is dequeued, its util_est should not be updated if its
436  * util_avg has not been updated in the meantime.
437  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
438  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
439  * for a task) it is safe to use MSB.
440  */
441 struct util_est {
442 	unsigned int			enqueued;
443 	unsigned int			ewma;
444 #define UTIL_EST_WEIGHT_SHIFT		2
445 #define UTIL_AVG_UNCHANGED		0x80000000
446 } __attribute__((__aligned__(sizeof(u64))));
447 
448 /*
449  * The load/runnable/util_avg accumulates an infinite geometric series
450  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
451  *
452  * [load_avg definition]
453  *
454  *   load_avg = runnable% * scale_load_down(load)
455  *
456  * [runnable_avg definition]
457  *
458  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
459  *
460  * [util_avg definition]
461  *
462  *   util_avg = running% * SCHED_CAPACITY_SCALE
463  *
464  * where runnable% is the time ratio that a sched_entity is runnable and
465  * running% the time ratio that a sched_entity is running.
466  *
467  * For cfs_rq, they are the aggregated values of all runnable and blocked
468  * sched_entities.
469  *
470  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
471  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
472  * for computing those signals (see update_rq_clock_pelt())
473  *
474  * N.B., the above ratios (runnable% and running%) themselves are in the
475  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
476  * to as large a range as necessary. This is for example reflected by
477  * util_avg's SCHED_CAPACITY_SCALE.
478  *
479  * [Overflow issue]
480  *
481  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
482  * with the highest load (=88761), always runnable on a single cfs_rq,
483  * and should not overflow as the number already hits PID_MAX_LIMIT.
484  *
485  * For all other cases (including 32-bit kernels), struct load_weight's
486  * weight will overflow first before we do, because:
487  *
488  *    Max(load_avg) <= Max(load.weight)
489  *
490  * Then it is the load_weight's responsibility to consider overflow
491  * issues.
492  */
493 struct sched_avg {
494 	u64				last_update_time;
495 	u64				load_sum;
496 	u64				runnable_sum;
497 	u32				util_sum;
498 	u32				period_contrib;
499 	unsigned long			load_avg;
500 	unsigned long			runnable_avg;
501 	unsigned long			util_avg;
502 	struct util_est			util_est;
503 } ____cacheline_aligned;
504 
505 struct sched_statistics {
506 #ifdef CONFIG_SCHEDSTATS
507 	u64				wait_start;
508 	u64				wait_max;
509 	u64				wait_count;
510 	u64				wait_sum;
511 	u64				iowait_count;
512 	u64				iowait_sum;
513 
514 	u64				sleep_start;
515 	u64				sleep_max;
516 	s64				sum_sleep_runtime;
517 
518 	u64				block_start;
519 	u64				block_max;
520 	s64				sum_block_runtime;
521 
522 	u64				exec_max;
523 	u64				slice_max;
524 
525 	u64				nr_migrations_cold;
526 	u64				nr_failed_migrations_affine;
527 	u64				nr_failed_migrations_running;
528 	u64				nr_failed_migrations_hot;
529 	u64				nr_forced_migrations;
530 
531 	u64				nr_wakeups;
532 	u64				nr_wakeups_sync;
533 	u64				nr_wakeups_migrate;
534 	u64				nr_wakeups_local;
535 	u64				nr_wakeups_remote;
536 	u64				nr_wakeups_affine;
537 	u64				nr_wakeups_affine_attempts;
538 	u64				nr_wakeups_passive;
539 	u64				nr_wakeups_idle;
540 
541 #ifdef CONFIG_SCHED_CORE
542 	u64				core_forceidle_sum;
543 #endif
544 #endif /* CONFIG_SCHEDSTATS */
545 } ____cacheline_aligned;
546 
547 struct sched_entity {
548 	/* For load-balancing: */
549 	struct load_weight		load;
550 	struct rb_node			run_node;
551 	struct list_head		group_node;
552 	unsigned int			on_rq;
553 
554 	u64				exec_start;
555 	u64				sum_exec_runtime;
556 	u64				vruntime;
557 	u64				prev_sum_exec_runtime;
558 
559 	u64				nr_migrations;
560 
561 #ifdef CONFIG_FAIR_GROUP_SCHED
562 	int				depth;
563 	struct sched_entity		*parent;
564 	/* rq on which this entity is (to be) queued: */
565 	struct cfs_rq			*cfs_rq;
566 	/* rq "owned" by this entity/group: */
567 	struct cfs_rq			*my_q;
568 	/* cached value of my_q->h_nr_running */
569 	unsigned long			runnable_weight;
570 #endif
571 
572 #ifdef CONFIG_SMP
573 	/*
574 	 * Per entity load average tracking.
575 	 *
576 	 * Put into separate cache line so it does not
577 	 * collide with read-mostly values above.
578 	 */
579 	struct sched_avg		avg;
580 #endif
581 };
582 
583 struct sched_rt_entity {
584 	struct list_head		run_list;
585 	unsigned long			timeout;
586 	unsigned long			watchdog_stamp;
587 	unsigned int			time_slice;
588 	unsigned short			on_rq;
589 	unsigned short			on_list;
590 
591 	struct sched_rt_entity		*back;
592 #ifdef CONFIG_RT_GROUP_SCHED
593 	struct sched_rt_entity		*parent;
594 	/* rq on which this entity is (to be) queued: */
595 	struct rt_rq			*rt_rq;
596 	/* rq "owned" by this entity/group: */
597 	struct rt_rq			*my_q;
598 #endif
599 } __randomize_layout;
600 
601 struct sched_dl_entity {
602 	struct rb_node			rb_node;
603 
604 	/*
605 	 * Original scheduling parameters. Copied here from sched_attr
606 	 * during sched_setattr(), they will remain the same until
607 	 * the next sched_setattr().
608 	 */
609 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
610 	u64				dl_deadline;	/* Relative deadline of each instance	*/
611 	u64				dl_period;	/* Separation of two instances (period) */
612 	u64				dl_bw;		/* dl_runtime / dl_period		*/
613 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
614 
615 	/*
616 	 * Actual scheduling parameters. Initialized with the values above,
617 	 * they are continuously updated during task execution. Note that
618 	 * the remaining runtime could be < 0 in case we are in overrun.
619 	 */
620 	s64				runtime;	/* Remaining runtime for this instance	*/
621 	u64				deadline;	/* Absolute deadline for this instance	*/
622 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
623 
624 	/*
625 	 * Some bool flags:
626 	 *
627 	 * @dl_throttled tells if we exhausted the runtime. If so, the
628 	 * task has to wait for a replenishment to be performed at the
629 	 * next firing of dl_timer.
630 	 *
631 	 * @dl_yielded tells if task gave up the CPU before consuming
632 	 * all its available runtime during the last job.
633 	 *
634 	 * @dl_non_contending tells if the task is inactive while still
635 	 * contributing to the active utilization. In other words, it
636 	 * indicates if the inactive timer has been armed and its handler
637 	 * has not been executed yet. This flag is useful to avoid race
638 	 * conditions between the inactive timer handler and the wakeup
639 	 * code.
640 	 *
641 	 * @dl_overrun tells if the task asked to be informed about runtime
642 	 * overruns.
643 	 */
644 	unsigned int			dl_throttled      : 1;
645 	unsigned int			dl_yielded        : 1;
646 	unsigned int			dl_non_contending : 1;
647 	unsigned int			dl_overrun	  : 1;
648 
649 	/*
650 	 * Bandwidth enforcement timer. Each -deadline task has its
651 	 * own bandwidth to be enforced, thus we need one timer per task.
652 	 */
653 	struct hrtimer			dl_timer;
654 
655 	/*
656 	 * Inactive timer, responsible for decreasing the active utilization
657 	 * at the "0-lag time". When a -deadline task blocks, it contributes
658 	 * to GRUB's active utilization until the "0-lag time", hence a
659 	 * timer is needed to decrease the active utilization at the correct
660 	 * time.
661 	 */
662 	struct hrtimer inactive_timer;
663 
664 #ifdef CONFIG_RT_MUTEXES
665 	/*
666 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
667 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
668 	 * to (the original one/itself).
669 	 */
670 	struct sched_dl_entity *pi_se;
671 #endif
672 };
673 
674 #ifdef CONFIG_UCLAMP_TASK
675 /* Number of utilization clamp buckets (shorter alias) */
676 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
677 
678 /*
679  * Utilization clamp for a scheduling entity
680  * @value:		clamp value "assigned" to a se
681  * @bucket_id:		bucket index corresponding to the "assigned" value
682  * @active:		the se is currently refcounted in a rq's bucket
683  * @user_defined:	the requested clamp value comes from user-space
684  *
685  * The bucket_id is the index of the clamp bucket matching the clamp value
686  * which is pre-computed and stored to avoid expensive integer divisions from
687  * the fast path.
688  *
689  * The active bit is set whenever a task has got an "effective" value assigned,
690  * which can be different from the clamp value "requested" from user-space.
691  * This allows to know a task is refcounted in the rq's bucket corresponding
692  * to the "effective" bucket_id.
693  *
694  * The user_defined bit is set whenever a task has got a task-specific clamp
695  * value requested from userspace, i.e. the system defaults apply to this task
696  * just as a restriction. This allows to relax default clamps when a less
697  * restrictive task-specific value has been requested, thus allowing to
698  * implement a "nice" semantic. For example, a task running with a 20%
699  * default boost can still drop its own boosting to 0%.
700  */
701 struct uclamp_se {
702 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
703 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
704 	unsigned int active		: 1;
705 	unsigned int user_defined	: 1;
706 };
707 #endif /* CONFIG_UCLAMP_TASK */
708 
709 union rcu_special {
710 	struct {
711 		u8			blocked;
712 		u8			need_qs;
713 		u8			exp_hint; /* Hint for performance. */
714 		u8			need_mb; /* Readers need smp_mb(). */
715 	} b; /* Bits. */
716 	u32 s; /* Set of bits. */
717 };
718 
719 enum perf_event_task_context {
720 	perf_invalid_context = -1,
721 	perf_hw_context = 0,
722 	perf_sw_context,
723 	perf_nr_task_contexts,
724 };
725 
726 struct wake_q_node {
727 	struct wake_q_node *next;
728 };
729 
730 struct kmap_ctrl {
731 #ifdef CONFIG_KMAP_LOCAL
732 	int				idx;
733 	pte_t				pteval[KM_MAX_IDX];
734 #endif
735 };
736 
737 struct task_struct {
738 #ifdef CONFIG_THREAD_INFO_IN_TASK
739 	/*
740 	 * For reasons of header soup (see current_thread_info()), this
741 	 * must be the first element of task_struct.
742 	 */
743 	struct thread_info		thread_info;
744 #endif
745 	unsigned int			__state;
746 
747 #ifdef CONFIG_PREEMPT_RT
748 	/* saved state for "spinlock sleepers" */
749 	unsigned int			saved_state;
750 #endif
751 
752 	/*
753 	 * This begins the randomizable portion of task_struct. Only
754 	 * scheduling-critical items should be added above here.
755 	 */
756 	randomized_struct_fields_start
757 
758 	void				*stack;
759 	refcount_t			usage;
760 	/* Per task flags (PF_*), defined further below: */
761 	unsigned int			flags;
762 	unsigned int			ptrace;
763 
764 #ifdef CONFIG_SMP
765 	int				on_cpu;
766 	struct __call_single_node	wake_entry;
767 	unsigned int			wakee_flips;
768 	unsigned long			wakee_flip_decay_ts;
769 	struct task_struct		*last_wakee;
770 
771 	/*
772 	 * recent_used_cpu is initially set as the last CPU used by a task
773 	 * that wakes affine another task. Waker/wakee relationships can
774 	 * push tasks around a CPU where each wakeup moves to the next one.
775 	 * Tracking a recently used CPU allows a quick search for a recently
776 	 * used CPU that may be idle.
777 	 */
778 	int				recent_used_cpu;
779 	int				wake_cpu;
780 #endif
781 	int				on_rq;
782 
783 	int				prio;
784 	int				static_prio;
785 	int				normal_prio;
786 	unsigned int			rt_priority;
787 
788 	struct sched_entity		se;
789 	struct sched_rt_entity		rt;
790 	struct sched_dl_entity		dl;
791 	const struct sched_class	*sched_class;
792 
793 #ifdef CONFIG_SCHED_CORE
794 	struct rb_node			core_node;
795 	unsigned long			core_cookie;
796 	unsigned int			core_occupation;
797 #endif
798 
799 #ifdef CONFIG_CGROUP_SCHED
800 	struct task_group		*sched_task_group;
801 #endif
802 
803 #ifdef CONFIG_UCLAMP_TASK
804 	/*
805 	 * Clamp values requested for a scheduling entity.
806 	 * Must be updated with task_rq_lock() held.
807 	 */
808 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
809 	/*
810 	 * Effective clamp values used for a scheduling entity.
811 	 * Must be updated with task_rq_lock() held.
812 	 */
813 	struct uclamp_se		uclamp[UCLAMP_CNT];
814 #endif
815 
816 	struct sched_statistics         stats;
817 
818 #ifdef CONFIG_PREEMPT_NOTIFIERS
819 	/* List of struct preempt_notifier: */
820 	struct hlist_head		preempt_notifiers;
821 #endif
822 
823 #ifdef CONFIG_BLK_DEV_IO_TRACE
824 	unsigned int			btrace_seq;
825 #endif
826 
827 	unsigned int			policy;
828 	int				nr_cpus_allowed;
829 	const cpumask_t			*cpus_ptr;
830 	cpumask_t			*user_cpus_ptr;
831 	cpumask_t			cpus_mask;
832 	void				*migration_pending;
833 #ifdef CONFIG_SMP
834 	unsigned short			migration_disabled;
835 #endif
836 	unsigned short			migration_flags;
837 
838 #ifdef CONFIG_PREEMPT_RCU
839 	int				rcu_read_lock_nesting;
840 	union rcu_special		rcu_read_unlock_special;
841 	struct list_head		rcu_node_entry;
842 	struct rcu_node			*rcu_blocked_node;
843 #endif /* #ifdef CONFIG_PREEMPT_RCU */
844 
845 #ifdef CONFIG_TASKS_RCU
846 	unsigned long			rcu_tasks_nvcsw;
847 	u8				rcu_tasks_holdout;
848 	u8				rcu_tasks_idx;
849 	int				rcu_tasks_idle_cpu;
850 	struct list_head		rcu_tasks_holdout_list;
851 #endif /* #ifdef CONFIG_TASKS_RCU */
852 
853 #ifdef CONFIG_TASKS_TRACE_RCU
854 	int				trc_reader_nesting;
855 	int				trc_ipi_to_cpu;
856 	union rcu_special		trc_reader_special;
857 	struct list_head		trc_holdout_list;
858 	struct list_head		trc_blkd_node;
859 	int				trc_blkd_cpu;
860 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
861 
862 	struct sched_info		sched_info;
863 
864 	struct list_head		tasks;
865 #ifdef CONFIG_SMP
866 	struct plist_node		pushable_tasks;
867 	struct rb_node			pushable_dl_tasks;
868 #endif
869 
870 	struct mm_struct		*mm;
871 	struct mm_struct		*active_mm;
872 
873 	int				exit_state;
874 	int				exit_code;
875 	int				exit_signal;
876 	/* The signal sent when the parent dies: */
877 	int				pdeath_signal;
878 	/* JOBCTL_*, siglock protected: */
879 	unsigned long			jobctl;
880 
881 	/* Used for emulating ABI behavior of previous Linux versions: */
882 	unsigned int			personality;
883 
884 	/* Scheduler bits, serialized by scheduler locks: */
885 	unsigned			sched_reset_on_fork:1;
886 	unsigned			sched_contributes_to_load:1;
887 	unsigned			sched_migrated:1;
888 
889 	/* Force alignment to the next boundary: */
890 	unsigned			:0;
891 
892 	/* Unserialized, strictly 'current' */
893 
894 	/*
895 	 * This field must not be in the scheduler word above due to wakelist
896 	 * queueing no longer being serialized by p->on_cpu. However:
897 	 *
898 	 * p->XXX = X;			ttwu()
899 	 * schedule()			  if (p->on_rq && ..) // false
900 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
901 	 *   deactivate_task()		      ttwu_queue_wakelist())
902 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
903 	 *
904 	 * guarantees all stores of 'current' are visible before
905 	 * ->sched_remote_wakeup gets used, so it can be in this word.
906 	 */
907 	unsigned			sched_remote_wakeup:1;
908 
909 	/* Bit to tell LSMs we're in execve(): */
910 	unsigned			in_execve:1;
911 	unsigned			in_iowait:1;
912 #ifndef TIF_RESTORE_SIGMASK
913 	unsigned			restore_sigmask:1;
914 #endif
915 #ifdef CONFIG_MEMCG
916 	unsigned			in_user_fault:1;
917 #endif
918 #ifdef CONFIG_LRU_GEN
919 	/* whether the LRU algorithm may apply to this access */
920 	unsigned			in_lru_fault:1;
921 #endif
922 #ifdef CONFIG_COMPAT_BRK
923 	unsigned			brk_randomized:1;
924 #endif
925 #ifdef CONFIG_CGROUPS
926 	/* disallow userland-initiated cgroup migration */
927 	unsigned			no_cgroup_migration:1;
928 	/* task is frozen/stopped (used by the cgroup freezer) */
929 	unsigned			frozen:1;
930 #endif
931 #ifdef CONFIG_BLK_CGROUP
932 	unsigned			use_memdelay:1;
933 #endif
934 #ifdef CONFIG_PSI
935 	/* Stalled due to lack of memory */
936 	unsigned			in_memstall:1;
937 #endif
938 #ifdef CONFIG_PAGE_OWNER
939 	/* Used by page_owner=on to detect recursion in page tracking. */
940 	unsigned			in_page_owner:1;
941 #endif
942 #ifdef CONFIG_EVENTFD
943 	/* Recursion prevention for eventfd_signal() */
944 	unsigned			in_eventfd:1;
945 #endif
946 #ifdef CONFIG_IOMMU_SVA
947 	unsigned			pasid_activated:1;
948 #endif
949 #ifdef	CONFIG_CPU_SUP_INTEL
950 	unsigned			reported_split_lock:1;
951 #endif
952 #ifdef CONFIG_TASK_DELAY_ACCT
953 	/* delay due to memory thrashing */
954 	unsigned                        in_thrashing:1;
955 #endif
956 
957 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
958 
959 	struct restart_block		restart_block;
960 
961 	pid_t				pid;
962 	pid_t				tgid;
963 
964 #ifdef CONFIG_STACKPROTECTOR
965 	/* Canary value for the -fstack-protector GCC feature: */
966 	unsigned long			stack_canary;
967 #endif
968 	/*
969 	 * Pointers to the (original) parent process, youngest child, younger sibling,
970 	 * older sibling, respectively.  (p->father can be replaced with
971 	 * p->real_parent->pid)
972 	 */
973 
974 	/* Real parent process: */
975 	struct task_struct __rcu	*real_parent;
976 
977 	/* Recipient of SIGCHLD, wait4() reports: */
978 	struct task_struct __rcu	*parent;
979 
980 	/*
981 	 * Children/sibling form the list of natural children:
982 	 */
983 	struct list_head		children;
984 	struct list_head		sibling;
985 	struct task_struct		*group_leader;
986 
987 	/*
988 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
989 	 *
990 	 * This includes both natural children and PTRACE_ATTACH targets.
991 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
992 	 */
993 	struct list_head		ptraced;
994 	struct list_head		ptrace_entry;
995 
996 	/* PID/PID hash table linkage. */
997 	struct pid			*thread_pid;
998 	struct hlist_node		pid_links[PIDTYPE_MAX];
999 	struct list_head		thread_group;
1000 	struct list_head		thread_node;
1001 
1002 	struct completion		*vfork_done;
1003 
1004 	/* CLONE_CHILD_SETTID: */
1005 	int __user			*set_child_tid;
1006 
1007 	/* CLONE_CHILD_CLEARTID: */
1008 	int __user			*clear_child_tid;
1009 
1010 	/* PF_KTHREAD | PF_IO_WORKER */
1011 	void				*worker_private;
1012 
1013 	u64				utime;
1014 	u64				stime;
1015 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1016 	u64				utimescaled;
1017 	u64				stimescaled;
1018 #endif
1019 	u64				gtime;
1020 	struct prev_cputime		prev_cputime;
1021 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1022 	struct vtime			vtime;
1023 #endif
1024 
1025 #ifdef CONFIG_NO_HZ_FULL
1026 	atomic_t			tick_dep_mask;
1027 #endif
1028 	/* Context switch counts: */
1029 	unsigned long			nvcsw;
1030 	unsigned long			nivcsw;
1031 
1032 	/* Monotonic time in nsecs: */
1033 	u64				start_time;
1034 
1035 	/* Boot based time in nsecs: */
1036 	u64				start_boottime;
1037 
1038 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1039 	unsigned long			min_flt;
1040 	unsigned long			maj_flt;
1041 
1042 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1043 	struct posix_cputimers		posix_cputimers;
1044 
1045 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1046 	struct posix_cputimers_work	posix_cputimers_work;
1047 #endif
1048 
1049 	/* Process credentials: */
1050 
1051 	/* Tracer's credentials at attach: */
1052 	const struct cred __rcu		*ptracer_cred;
1053 
1054 	/* Objective and real subjective task credentials (COW): */
1055 	const struct cred __rcu		*real_cred;
1056 
1057 	/* Effective (overridable) subjective task credentials (COW): */
1058 	const struct cred __rcu		*cred;
1059 
1060 #ifdef CONFIG_KEYS
1061 	/* Cached requested key. */
1062 	struct key			*cached_requested_key;
1063 #endif
1064 
1065 	/*
1066 	 * executable name, excluding path.
1067 	 *
1068 	 * - normally initialized setup_new_exec()
1069 	 * - access it with [gs]et_task_comm()
1070 	 * - lock it with task_lock()
1071 	 */
1072 	char				comm[TASK_COMM_LEN];
1073 
1074 	struct nameidata		*nameidata;
1075 
1076 #ifdef CONFIG_SYSVIPC
1077 	struct sysv_sem			sysvsem;
1078 	struct sysv_shm			sysvshm;
1079 #endif
1080 #ifdef CONFIG_DETECT_HUNG_TASK
1081 	unsigned long			last_switch_count;
1082 	unsigned long			last_switch_time;
1083 #endif
1084 	/* Filesystem information: */
1085 	struct fs_struct		*fs;
1086 
1087 	/* Open file information: */
1088 	struct files_struct		*files;
1089 
1090 #ifdef CONFIG_IO_URING
1091 	struct io_uring_task		*io_uring;
1092 #endif
1093 
1094 	/* Namespaces: */
1095 	struct nsproxy			*nsproxy;
1096 
1097 	/* Signal handlers: */
1098 	struct signal_struct		*signal;
1099 	struct sighand_struct __rcu		*sighand;
1100 	sigset_t			blocked;
1101 	sigset_t			real_blocked;
1102 	/* Restored if set_restore_sigmask() was used: */
1103 	sigset_t			saved_sigmask;
1104 	struct sigpending		pending;
1105 	unsigned long			sas_ss_sp;
1106 	size_t				sas_ss_size;
1107 	unsigned int			sas_ss_flags;
1108 
1109 	struct callback_head		*task_works;
1110 
1111 #ifdef CONFIG_AUDIT
1112 #ifdef CONFIG_AUDITSYSCALL
1113 	struct audit_context		*audit_context;
1114 #endif
1115 	kuid_t				loginuid;
1116 	unsigned int			sessionid;
1117 #endif
1118 	struct seccomp			seccomp;
1119 	struct syscall_user_dispatch	syscall_dispatch;
1120 
1121 	/* Thread group tracking: */
1122 	u64				parent_exec_id;
1123 	u64				self_exec_id;
1124 
1125 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1126 	spinlock_t			alloc_lock;
1127 
1128 	/* Protection of the PI data structures: */
1129 	raw_spinlock_t			pi_lock;
1130 
1131 	struct wake_q_node		wake_q;
1132 
1133 #ifdef CONFIG_RT_MUTEXES
1134 	/* PI waiters blocked on a rt_mutex held by this task: */
1135 	struct rb_root_cached		pi_waiters;
1136 	/* Updated under owner's pi_lock and rq lock */
1137 	struct task_struct		*pi_top_task;
1138 	/* Deadlock detection and priority inheritance handling: */
1139 	struct rt_mutex_waiter		*pi_blocked_on;
1140 #endif
1141 
1142 #ifdef CONFIG_DEBUG_MUTEXES
1143 	/* Mutex deadlock detection: */
1144 	struct mutex_waiter		*blocked_on;
1145 #endif
1146 
1147 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1148 	int				non_block_count;
1149 #endif
1150 
1151 #ifdef CONFIG_TRACE_IRQFLAGS
1152 	struct irqtrace_events		irqtrace;
1153 	unsigned int			hardirq_threaded;
1154 	u64				hardirq_chain_key;
1155 	int				softirqs_enabled;
1156 	int				softirq_context;
1157 	int				irq_config;
1158 #endif
1159 #ifdef CONFIG_PREEMPT_RT
1160 	int				softirq_disable_cnt;
1161 #endif
1162 
1163 #ifdef CONFIG_LOCKDEP
1164 # define MAX_LOCK_DEPTH			48UL
1165 	u64				curr_chain_key;
1166 	int				lockdep_depth;
1167 	unsigned int			lockdep_recursion;
1168 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1169 #endif
1170 
1171 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1172 	unsigned int			in_ubsan;
1173 #endif
1174 
1175 	/* Journalling filesystem info: */
1176 	void				*journal_info;
1177 
1178 	/* Stacked block device info: */
1179 	struct bio_list			*bio_list;
1180 
1181 	/* Stack plugging: */
1182 	struct blk_plug			*plug;
1183 
1184 	/* VM state: */
1185 	struct reclaim_state		*reclaim_state;
1186 
1187 	struct backing_dev_info		*backing_dev_info;
1188 
1189 	struct io_context		*io_context;
1190 
1191 #ifdef CONFIG_COMPACTION
1192 	struct capture_control		*capture_control;
1193 #endif
1194 	/* Ptrace state: */
1195 	unsigned long			ptrace_message;
1196 	kernel_siginfo_t		*last_siginfo;
1197 
1198 	struct task_io_accounting	ioac;
1199 #ifdef CONFIG_PSI
1200 	/* Pressure stall state */
1201 	unsigned int			psi_flags;
1202 #endif
1203 #ifdef CONFIG_TASK_XACCT
1204 	/* Accumulated RSS usage: */
1205 	u64				acct_rss_mem1;
1206 	/* Accumulated virtual memory usage: */
1207 	u64				acct_vm_mem1;
1208 	/* stime + utime since last update: */
1209 	u64				acct_timexpd;
1210 #endif
1211 #ifdef CONFIG_CPUSETS
1212 	/* Protected by ->alloc_lock: */
1213 	nodemask_t			mems_allowed;
1214 	/* Sequence number to catch updates: */
1215 	seqcount_spinlock_t		mems_allowed_seq;
1216 	int				cpuset_mem_spread_rotor;
1217 	int				cpuset_slab_spread_rotor;
1218 #endif
1219 #ifdef CONFIG_CGROUPS
1220 	/* Control Group info protected by css_set_lock: */
1221 	struct css_set __rcu		*cgroups;
1222 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1223 	struct list_head		cg_list;
1224 #endif
1225 #ifdef CONFIG_X86_CPU_RESCTRL
1226 	u32				closid;
1227 	u32				rmid;
1228 #endif
1229 #ifdef CONFIG_FUTEX
1230 	struct robust_list_head __user	*robust_list;
1231 #ifdef CONFIG_COMPAT
1232 	struct compat_robust_list_head __user *compat_robust_list;
1233 #endif
1234 	struct list_head		pi_state_list;
1235 	struct futex_pi_state		*pi_state_cache;
1236 	struct mutex			futex_exit_mutex;
1237 	unsigned int			futex_state;
1238 #endif
1239 #ifdef CONFIG_PERF_EVENTS
1240 	struct perf_event_context	*perf_event_ctxp;
1241 	struct mutex			perf_event_mutex;
1242 	struct list_head		perf_event_list;
1243 #endif
1244 #ifdef CONFIG_DEBUG_PREEMPT
1245 	unsigned long			preempt_disable_ip;
1246 #endif
1247 #ifdef CONFIG_NUMA
1248 	/* Protected by alloc_lock: */
1249 	struct mempolicy		*mempolicy;
1250 	short				il_prev;
1251 	short				pref_node_fork;
1252 #endif
1253 #ifdef CONFIG_NUMA_BALANCING
1254 	int				numa_scan_seq;
1255 	unsigned int			numa_scan_period;
1256 	unsigned int			numa_scan_period_max;
1257 	int				numa_preferred_nid;
1258 	unsigned long			numa_migrate_retry;
1259 	/* Migration stamp: */
1260 	u64				node_stamp;
1261 	u64				last_task_numa_placement;
1262 	u64				last_sum_exec_runtime;
1263 	struct callback_head		numa_work;
1264 
1265 	/*
1266 	 * This pointer is only modified for current in syscall and
1267 	 * pagefault context (and for tasks being destroyed), so it can be read
1268 	 * from any of the following contexts:
1269 	 *  - RCU read-side critical section
1270 	 *  - current->numa_group from everywhere
1271 	 *  - task's runqueue locked, task not running
1272 	 */
1273 	struct numa_group __rcu		*numa_group;
1274 
1275 	/*
1276 	 * numa_faults is an array split into four regions:
1277 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1278 	 * in this precise order.
1279 	 *
1280 	 * faults_memory: Exponential decaying average of faults on a per-node
1281 	 * basis. Scheduling placement decisions are made based on these
1282 	 * counts. The values remain static for the duration of a PTE scan.
1283 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1284 	 * hinting fault was incurred.
1285 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1286 	 * during the current scan window. When the scan completes, the counts
1287 	 * in faults_memory and faults_cpu decay and these values are copied.
1288 	 */
1289 	unsigned long			*numa_faults;
1290 	unsigned long			total_numa_faults;
1291 
1292 	/*
1293 	 * numa_faults_locality tracks if faults recorded during the last
1294 	 * scan window were remote/local or failed to migrate. The task scan
1295 	 * period is adapted based on the locality of the faults with different
1296 	 * weights depending on whether they were shared or private faults
1297 	 */
1298 	unsigned long			numa_faults_locality[3];
1299 
1300 	unsigned long			numa_pages_migrated;
1301 #endif /* CONFIG_NUMA_BALANCING */
1302 
1303 #ifdef CONFIG_RSEQ
1304 	struct rseq __user *rseq;
1305 	u32 rseq_sig;
1306 	/*
1307 	 * RmW on rseq_event_mask must be performed atomically
1308 	 * with respect to preemption.
1309 	 */
1310 	unsigned long rseq_event_mask;
1311 #endif
1312 
1313 	struct tlbflush_unmap_batch	tlb_ubc;
1314 
1315 	union {
1316 		refcount_t		rcu_users;
1317 		struct rcu_head		rcu;
1318 	};
1319 
1320 	/* Cache last used pipe for splice(): */
1321 	struct pipe_inode_info		*splice_pipe;
1322 
1323 	struct page_frag		task_frag;
1324 
1325 #ifdef CONFIG_TASK_DELAY_ACCT
1326 	struct task_delay_info		*delays;
1327 #endif
1328 
1329 #ifdef CONFIG_FAULT_INJECTION
1330 	int				make_it_fail;
1331 	unsigned int			fail_nth;
1332 #endif
1333 	/*
1334 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1335 	 * balance_dirty_pages() for a dirty throttling pause:
1336 	 */
1337 	int				nr_dirtied;
1338 	int				nr_dirtied_pause;
1339 	/* Start of a write-and-pause period: */
1340 	unsigned long			dirty_paused_when;
1341 
1342 #ifdef CONFIG_LATENCYTOP
1343 	int				latency_record_count;
1344 	struct latency_record		latency_record[LT_SAVECOUNT];
1345 #endif
1346 	/*
1347 	 * Time slack values; these are used to round up poll() and
1348 	 * select() etc timeout values. These are in nanoseconds.
1349 	 */
1350 	u64				timer_slack_ns;
1351 	u64				default_timer_slack_ns;
1352 
1353 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1354 	unsigned int			kasan_depth;
1355 #endif
1356 
1357 #ifdef CONFIG_KCSAN
1358 	struct kcsan_ctx		kcsan_ctx;
1359 #ifdef CONFIG_TRACE_IRQFLAGS
1360 	struct irqtrace_events		kcsan_save_irqtrace;
1361 #endif
1362 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1363 	int				kcsan_stack_depth;
1364 #endif
1365 #endif
1366 
1367 #ifdef CONFIG_KMSAN
1368 	struct kmsan_ctx		kmsan_ctx;
1369 #endif
1370 
1371 #if IS_ENABLED(CONFIG_KUNIT)
1372 	struct kunit			*kunit_test;
1373 #endif
1374 
1375 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1376 	/* Index of current stored address in ret_stack: */
1377 	int				curr_ret_stack;
1378 	int				curr_ret_depth;
1379 
1380 	/* Stack of return addresses for return function tracing: */
1381 	struct ftrace_ret_stack		*ret_stack;
1382 
1383 	/* Timestamp for last schedule: */
1384 	unsigned long long		ftrace_timestamp;
1385 
1386 	/*
1387 	 * Number of functions that haven't been traced
1388 	 * because of depth overrun:
1389 	 */
1390 	atomic_t			trace_overrun;
1391 
1392 	/* Pause tracing: */
1393 	atomic_t			tracing_graph_pause;
1394 #endif
1395 
1396 #ifdef CONFIG_TRACING
1397 	/* Bitmask and counter of trace recursion: */
1398 	unsigned long			trace_recursion;
1399 #endif /* CONFIG_TRACING */
1400 
1401 #ifdef CONFIG_KCOV
1402 	/* See kernel/kcov.c for more details. */
1403 
1404 	/* Coverage collection mode enabled for this task (0 if disabled): */
1405 	unsigned int			kcov_mode;
1406 
1407 	/* Size of the kcov_area: */
1408 	unsigned int			kcov_size;
1409 
1410 	/* Buffer for coverage collection: */
1411 	void				*kcov_area;
1412 
1413 	/* KCOV descriptor wired with this task or NULL: */
1414 	struct kcov			*kcov;
1415 
1416 	/* KCOV common handle for remote coverage collection: */
1417 	u64				kcov_handle;
1418 
1419 	/* KCOV sequence number: */
1420 	int				kcov_sequence;
1421 
1422 	/* Collect coverage from softirq context: */
1423 	unsigned int			kcov_softirq;
1424 #endif
1425 
1426 #ifdef CONFIG_MEMCG
1427 	struct mem_cgroup		*memcg_in_oom;
1428 	gfp_t				memcg_oom_gfp_mask;
1429 	int				memcg_oom_order;
1430 
1431 	/* Number of pages to reclaim on returning to userland: */
1432 	unsigned int			memcg_nr_pages_over_high;
1433 
1434 	/* Used by memcontrol for targeted memcg charge: */
1435 	struct mem_cgroup		*active_memcg;
1436 #endif
1437 
1438 #ifdef CONFIG_BLK_CGROUP
1439 	struct request_queue		*throttle_queue;
1440 #endif
1441 
1442 #ifdef CONFIG_UPROBES
1443 	struct uprobe_task		*utask;
1444 #endif
1445 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1446 	unsigned int			sequential_io;
1447 	unsigned int			sequential_io_avg;
1448 #endif
1449 	struct kmap_ctrl		kmap_ctrl;
1450 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1451 	unsigned long			task_state_change;
1452 # ifdef CONFIG_PREEMPT_RT
1453 	unsigned long			saved_state_change;
1454 # endif
1455 #endif
1456 	int				pagefault_disabled;
1457 #ifdef CONFIG_MMU
1458 	struct task_struct		*oom_reaper_list;
1459 	struct timer_list		oom_reaper_timer;
1460 #endif
1461 #ifdef CONFIG_VMAP_STACK
1462 	struct vm_struct		*stack_vm_area;
1463 #endif
1464 #ifdef CONFIG_THREAD_INFO_IN_TASK
1465 	/* A live task holds one reference: */
1466 	refcount_t			stack_refcount;
1467 #endif
1468 #ifdef CONFIG_LIVEPATCH
1469 	int patch_state;
1470 #endif
1471 #ifdef CONFIG_SECURITY
1472 	/* Used by LSM modules for access restriction: */
1473 	void				*security;
1474 #endif
1475 #ifdef CONFIG_BPF_SYSCALL
1476 	/* Used by BPF task local storage */
1477 	struct bpf_local_storage __rcu	*bpf_storage;
1478 	/* Used for BPF run context */
1479 	struct bpf_run_ctx		*bpf_ctx;
1480 #endif
1481 
1482 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1483 	unsigned long			lowest_stack;
1484 	unsigned long			prev_lowest_stack;
1485 #endif
1486 
1487 #ifdef CONFIG_X86_MCE
1488 	void __user			*mce_vaddr;
1489 	__u64				mce_kflags;
1490 	u64				mce_addr;
1491 	__u64				mce_ripv : 1,
1492 					mce_whole_page : 1,
1493 					__mce_reserved : 62;
1494 	struct callback_head		mce_kill_me;
1495 	int				mce_count;
1496 #endif
1497 
1498 #ifdef CONFIG_KRETPROBES
1499 	struct llist_head               kretprobe_instances;
1500 #endif
1501 #ifdef CONFIG_RETHOOK
1502 	struct llist_head               rethooks;
1503 #endif
1504 
1505 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1506 	/*
1507 	 * If L1D flush is supported on mm context switch
1508 	 * then we use this callback head to queue kill work
1509 	 * to kill tasks that are not running on SMT disabled
1510 	 * cores
1511 	 */
1512 	struct callback_head		l1d_flush_kill;
1513 #endif
1514 
1515 #ifdef CONFIG_RV
1516 	/*
1517 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1518 	 * If we find justification for more monitors, we can think
1519 	 * about adding more or developing a dynamic method. So far,
1520 	 * none of these are justified.
1521 	 */
1522 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1523 #endif
1524 
1525 	/*
1526 	 * New fields for task_struct should be added above here, so that
1527 	 * they are included in the randomized portion of task_struct.
1528 	 */
1529 	randomized_struct_fields_end
1530 
1531 	/* CPU-specific state of this task: */
1532 	struct thread_struct		thread;
1533 
1534 	/*
1535 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1536 	 * structure.  It *MUST* be at the end of 'task_struct'.
1537 	 *
1538 	 * Do not put anything below here!
1539 	 */
1540 };
1541 
1542 static inline struct pid *task_pid(struct task_struct *task)
1543 {
1544 	return task->thread_pid;
1545 }
1546 
1547 /*
1548  * the helpers to get the task's different pids as they are seen
1549  * from various namespaces
1550  *
1551  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1552  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1553  *                     current.
1554  * task_xid_nr_ns()  : id seen from the ns specified;
1555  *
1556  * see also pid_nr() etc in include/linux/pid.h
1557  */
1558 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1559 
1560 static inline pid_t task_pid_nr(struct task_struct *tsk)
1561 {
1562 	return tsk->pid;
1563 }
1564 
1565 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1566 {
1567 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1568 }
1569 
1570 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1571 {
1572 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1573 }
1574 
1575 
1576 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1577 {
1578 	return tsk->tgid;
1579 }
1580 
1581 /**
1582  * pid_alive - check that a task structure is not stale
1583  * @p: Task structure to be checked.
1584  *
1585  * Test if a process is not yet dead (at most zombie state)
1586  * If pid_alive fails, then pointers within the task structure
1587  * can be stale and must not be dereferenced.
1588  *
1589  * Return: 1 if the process is alive. 0 otherwise.
1590  */
1591 static inline int pid_alive(const struct task_struct *p)
1592 {
1593 	return p->thread_pid != NULL;
1594 }
1595 
1596 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1597 {
1598 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1599 }
1600 
1601 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1602 {
1603 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1604 }
1605 
1606 
1607 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1608 {
1609 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1610 }
1611 
1612 static inline pid_t task_session_vnr(struct task_struct *tsk)
1613 {
1614 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1615 }
1616 
1617 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1618 {
1619 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1620 }
1621 
1622 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1623 {
1624 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1625 }
1626 
1627 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1628 {
1629 	pid_t pid = 0;
1630 
1631 	rcu_read_lock();
1632 	if (pid_alive(tsk))
1633 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1634 	rcu_read_unlock();
1635 
1636 	return pid;
1637 }
1638 
1639 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1640 {
1641 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1642 }
1643 
1644 /* Obsolete, do not use: */
1645 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1646 {
1647 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1648 }
1649 
1650 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1651 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1652 
1653 static inline unsigned int __task_state_index(unsigned int tsk_state,
1654 					      unsigned int tsk_exit_state)
1655 {
1656 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1657 
1658 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1659 
1660 	if (tsk_state == TASK_IDLE)
1661 		state = TASK_REPORT_IDLE;
1662 
1663 	/*
1664 	 * We're lying here, but rather than expose a completely new task state
1665 	 * to userspace, we can make this appear as if the task has gone through
1666 	 * a regular rt_mutex_lock() call.
1667 	 */
1668 	if (tsk_state == TASK_RTLOCK_WAIT)
1669 		state = TASK_UNINTERRUPTIBLE;
1670 
1671 	return fls(state);
1672 }
1673 
1674 static inline unsigned int task_state_index(struct task_struct *tsk)
1675 {
1676 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1677 }
1678 
1679 static inline char task_index_to_char(unsigned int state)
1680 {
1681 	static const char state_char[] = "RSDTtXZPI";
1682 
1683 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1684 
1685 	return state_char[state];
1686 }
1687 
1688 static inline char task_state_to_char(struct task_struct *tsk)
1689 {
1690 	return task_index_to_char(task_state_index(tsk));
1691 }
1692 
1693 /**
1694  * is_global_init - check if a task structure is init. Since init
1695  * is free to have sub-threads we need to check tgid.
1696  * @tsk: Task structure to be checked.
1697  *
1698  * Check if a task structure is the first user space task the kernel created.
1699  *
1700  * Return: 1 if the task structure is init. 0 otherwise.
1701  */
1702 static inline int is_global_init(struct task_struct *tsk)
1703 {
1704 	return task_tgid_nr(tsk) == 1;
1705 }
1706 
1707 extern struct pid *cad_pid;
1708 
1709 /*
1710  * Per process flags
1711  */
1712 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1713 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1714 #define PF_EXITING		0x00000004	/* Getting shut down */
1715 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1716 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1717 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1718 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1719 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1720 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1721 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1722 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1723 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1724 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1725 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1726 #define PF__HOLE__00004000	0x00004000
1727 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1728 #define PF__HOLE__00010000	0x00010000
1729 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1730 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1731 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1732 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1733 						 * I am cleaning dirty pages from some other bdi. */
1734 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1735 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1736 #define PF__HOLE__00800000	0x00800000
1737 #define PF__HOLE__01000000	0x01000000
1738 #define PF__HOLE__02000000	0x02000000
1739 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1740 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1741 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1742 #define PF__HOLE__20000000	0x20000000
1743 #define PF__HOLE__40000000	0x40000000
1744 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1745 
1746 /*
1747  * Only the _current_ task can read/write to tsk->flags, but other
1748  * tasks can access tsk->flags in readonly mode for example
1749  * with tsk_used_math (like during threaded core dumping).
1750  * There is however an exception to this rule during ptrace
1751  * or during fork: the ptracer task is allowed to write to the
1752  * child->flags of its traced child (same goes for fork, the parent
1753  * can write to the child->flags), because we're guaranteed the
1754  * child is not running and in turn not changing child->flags
1755  * at the same time the parent does it.
1756  */
1757 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1758 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1759 #define clear_used_math()			clear_stopped_child_used_math(current)
1760 #define set_used_math()				set_stopped_child_used_math(current)
1761 
1762 #define conditional_stopped_child_used_math(condition, child) \
1763 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1764 
1765 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1766 
1767 #define copy_to_stopped_child_used_math(child) \
1768 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1769 
1770 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1771 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1772 #define used_math()				tsk_used_math(current)
1773 
1774 static __always_inline bool is_percpu_thread(void)
1775 {
1776 #ifdef CONFIG_SMP
1777 	return (current->flags & PF_NO_SETAFFINITY) &&
1778 		(current->nr_cpus_allowed  == 1);
1779 #else
1780 	return true;
1781 #endif
1782 }
1783 
1784 /* Per-process atomic flags. */
1785 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1786 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1787 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1788 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1789 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1790 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1791 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1792 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1793 
1794 #define TASK_PFA_TEST(name, func)					\
1795 	static inline bool task_##func(struct task_struct *p)		\
1796 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1797 
1798 #define TASK_PFA_SET(name, func)					\
1799 	static inline void task_set_##func(struct task_struct *p)	\
1800 	{ set_bit(PFA_##name, &p->atomic_flags); }
1801 
1802 #define TASK_PFA_CLEAR(name, func)					\
1803 	static inline void task_clear_##func(struct task_struct *p)	\
1804 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1805 
1806 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1807 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1808 
1809 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1810 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1811 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1812 
1813 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1814 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1815 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1816 
1817 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1818 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1819 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1820 
1821 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1822 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1823 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1824 
1825 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1826 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1827 
1828 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1829 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1830 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1831 
1832 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1833 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1834 
1835 static inline void
1836 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1837 {
1838 	current->flags &= ~flags;
1839 	current->flags |= orig_flags & flags;
1840 }
1841 
1842 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1843 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_effective_cpus);
1844 #ifdef CONFIG_SMP
1845 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1846 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1847 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1848 extern void release_user_cpus_ptr(struct task_struct *p);
1849 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1850 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1851 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1852 #else
1853 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1854 {
1855 }
1856 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1857 {
1858 	if (!cpumask_test_cpu(0, new_mask))
1859 		return -EINVAL;
1860 	return 0;
1861 }
1862 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1863 {
1864 	if (src->user_cpus_ptr)
1865 		return -EINVAL;
1866 	return 0;
1867 }
1868 static inline void release_user_cpus_ptr(struct task_struct *p)
1869 {
1870 	WARN_ON(p->user_cpus_ptr);
1871 }
1872 
1873 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1874 {
1875 	return 0;
1876 }
1877 #endif
1878 
1879 extern int yield_to(struct task_struct *p, bool preempt);
1880 extern void set_user_nice(struct task_struct *p, long nice);
1881 extern int task_prio(const struct task_struct *p);
1882 
1883 /**
1884  * task_nice - return the nice value of a given task.
1885  * @p: the task in question.
1886  *
1887  * Return: The nice value [ -20 ... 0 ... 19 ].
1888  */
1889 static inline int task_nice(const struct task_struct *p)
1890 {
1891 	return PRIO_TO_NICE((p)->static_prio);
1892 }
1893 
1894 extern int can_nice(const struct task_struct *p, const int nice);
1895 extern int task_curr(const struct task_struct *p);
1896 extern int idle_cpu(int cpu);
1897 extern int available_idle_cpu(int cpu);
1898 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1899 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1900 extern void sched_set_fifo(struct task_struct *p);
1901 extern void sched_set_fifo_low(struct task_struct *p);
1902 extern void sched_set_normal(struct task_struct *p, int nice);
1903 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1904 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1905 extern struct task_struct *idle_task(int cpu);
1906 
1907 /**
1908  * is_idle_task - is the specified task an idle task?
1909  * @p: the task in question.
1910  *
1911  * Return: 1 if @p is an idle task. 0 otherwise.
1912  */
1913 static __always_inline bool is_idle_task(const struct task_struct *p)
1914 {
1915 	return !!(p->flags & PF_IDLE);
1916 }
1917 
1918 extern struct task_struct *curr_task(int cpu);
1919 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1920 
1921 void yield(void);
1922 
1923 union thread_union {
1924 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1925 	struct task_struct task;
1926 #endif
1927 #ifndef CONFIG_THREAD_INFO_IN_TASK
1928 	struct thread_info thread_info;
1929 #endif
1930 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1931 };
1932 
1933 #ifndef CONFIG_THREAD_INFO_IN_TASK
1934 extern struct thread_info init_thread_info;
1935 #endif
1936 
1937 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1938 
1939 #ifdef CONFIG_THREAD_INFO_IN_TASK
1940 # define task_thread_info(task)	(&(task)->thread_info)
1941 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1942 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1943 #endif
1944 
1945 /*
1946  * find a task by one of its numerical ids
1947  *
1948  * find_task_by_pid_ns():
1949  *      finds a task by its pid in the specified namespace
1950  * find_task_by_vpid():
1951  *      finds a task by its virtual pid
1952  *
1953  * see also find_vpid() etc in include/linux/pid.h
1954  */
1955 
1956 extern struct task_struct *find_task_by_vpid(pid_t nr);
1957 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1958 
1959 /*
1960  * find a task by its virtual pid and get the task struct
1961  */
1962 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1963 
1964 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1965 extern int wake_up_process(struct task_struct *tsk);
1966 extern void wake_up_new_task(struct task_struct *tsk);
1967 
1968 #ifdef CONFIG_SMP
1969 extern void kick_process(struct task_struct *tsk);
1970 #else
1971 static inline void kick_process(struct task_struct *tsk) { }
1972 #endif
1973 
1974 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1975 
1976 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1977 {
1978 	__set_task_comm(tsk, from, false);
1979 }
1980 
1981 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1982 #define get_task_comm(buf, tsk) ({			\
1983 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1984 	__get_task_comm(buf, sizeof(buf), tsk);		\
1985 })
1986 
1987 #ifdef CONFIG_SMP
1988 static __always_inline void scheduler_ipi(void)
1989 {
1990 	/*
1991 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1992 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1993 	 * this IPI.
1994 	 */
1995 	preempt_fold_need_resched();
1996 }
1997 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1998 #else
1999 static inline void scheduler_ipi(void) { }
2000 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2001 {
2002 	return 1;
2003 }
2004 #endif
2005 
2006 /*
2007  * Set thread flags in other task's structures.
2008  * See asm/thread_info.h for TIF_xxxx flags available:
2009  */
2010 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2011 {
2012 	set_ti_thread_flag(task_thread_info(tsk), flag);
2013 }
2014 
2015 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2016 {
2017 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2018 }
2019 
2020 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2021 					  bool value)
2022 {
2023 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2024 }
2025 
2026 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2027 {
2028 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2029 }
2030 
2031 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2032 {
2033 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2034 }
2035 
2036 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2037 {
2038 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2039 }
2040 
2041 static inline void set_tsk_need_resched(struct task_struct *tsk)
2042 {
2043 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2044 }
2045 
2046 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2047 {
2048 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2049 }
2050 
2051 static inline int test_tsk_need_resched(struct task_struct *tsk)
2052 {
2053 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2054 }
2055 
2056 /*
2057  * cond_resched() and cond_resched_lock(): latency reduction via
2058  * explicit rescheduling in places that are safe. The return
2059  * value indicates whether a reschedule was done in fact.
2060  * cond_resched_lock() will drop the spinlock before scheduling,
2061  */
2062 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2063 extern int __cond_resched(void);
2064 
2065 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2066 
2067 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2068 
2069 static __always_inline int _cond_resched(void)
2070 {
2071 	return static_call_mod(cond_resched)();
2072 }
2073 
2074 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2075 extern int dynamic_cond_resched(void);
2076 
2077 static __always_inline int _cond_resched(void)
2078 {
2079 	return dynamic_cond_resched();
2080 }
2081 
2082 #else
2083 
2084 static inline int _cond_resched(void)
2085 {
2086 	return __cond_resched();
2087 }
2088 
2089 #endif /* CONFIG_PREEMPT_DYNAMIC */
2090 
2091 #else
2092 
2093 static inline int _cond_resched(void) { return 0; }
2094 
2095 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2096 
2097 #define cond_resched() ({			\
2098 	__might_resched(__FILE__, __LINE__, 0);	\
2099 	_cond_resched();			\
2100 })
2101 
2102 extern int __cond_resched_lock(spinlock_t *lock);
2103 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2104 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2105 
2106 #define MIGHT_RESCHED_RCU_SHIFT		8
2107 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2108 
2109 #ifndef CONFIG_PREEMPT_RT
2110 /*
2111  * Non RT kernels have an elevated preempt count due to the held lock,
2112  * but are not allowed to be inside a RCU read side critical section
2113  */
2114 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2115 #else
2116 /*
2117  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2118  * cond_resched*lock() has to take that into account because it checks for
2119  * preempt_count() and rcu_preempt_depth().
2120  */
2121 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2122 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2123 #endif
2124 
2125 #define cond_resched_lock(lock) ({						\
2126 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2127 	__cond_resched_lock(lock);						\
2128 })
2129 
2130 #define cond_resched_rwlock_read(lock) ({					\
2131 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2132 	__cond_resched_rwlock_read(lock);					\
2133 })
2134 
2135 #define cond_resched_rwlock_write(lock) ({					\
2136 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2137 	__cond_resched_rwlock_write(lock);					\
2138 })
2139 
2140 static inline void cond_resched_rcu(void)
2141 {
2142 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2143 	rcu_read_unlock();
2144 	cond_resched();
2145 	rcu_read_lock();
2146 #endif
2147 }
2148 
2149 #ifdef CONFIG_PREEMPT_DYNAMIC
2150 
2151 extern bool preempt_model_none(void);
2152 extern bool preempt_model_voluntary(void);
2153 extern bool preempt_model_full(void);
2154 
2155 #else
2156 
2157 static inline bool preempt_model_none(void)
2158 {
2159 	return IS_ENABLED(CONFIG_PREEMPT_NONE);
2160 }
2161 static inline bool preempt_model_voluntary(void)
2162 {
2163 	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2164 }
2165 static inline bool preempt_model_full(void)
2166 {
2167 	return IS_ENABLED(CONFIG_PREEMPT);
2168 }
2169 
2170 #endif
2171 
2172 static inline bool preempt_model_rt(void)
2173 {
2174 	return IS_ENABLED(CONFIG_PREEMPT_RT);
2175 }
2176 
2177 /*
2178  * Does the preemption model allow non-cooperative preemption?
2179  *
2180  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2181  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2182  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2183  * PREEMPT_NONE model.
2184  */
2185 static inline bool preempt_model_preemptible(void)
2186 {
2187 	return preempt_model_full() || preempt_model_rt();
2188 }
2189 
2190 /*
2191  * Does a critical section need to be broken due to another
2192  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2193  * but a general need for low latency)
2194  */
2195 static inline int spin_needbreak(spinlock_t *lock)
2196 {
2197 #ifdef CONFIG_PREEMPTION
2198 	return spin_is_contended(lock);
2199 #else
2200 	return 0;
2201 #endif
2202 }
2203 
2204 /*
2205  * Check if a rwlock is contended.
2206  * Returns non-zero if there is another task waiting on the rwlock.
2207  * Returns zero if the lock is not contended or the system / underlying
2208  * rwlock implementation does not support contention detection.
2209  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2210  * for low latency.
2211  */
2212 static inline int rwlock_needbreak(rwlock_t *lock)
2213 {
2214 #ifdef CONFIG_PREEMPTION
2215 	return rwlock_is_contended(lock);
2216 #else
2217 	return 0;
2218 #endif
2219 }
2220 
2221 static __always_inline bool need_resched(void)
2222 {
2223 	return unlikely(tif_need_resched());
2224 }
2225 
2226 /*
2227  * Wrappers for p->thread_info->cpu access. No-op on UP.
2228  */
2229 #ifdef CONFIG_SMP
2230 
2231 static inline unsigned int task_cpu(const struct task_struct *p)
2232 {
2233 	return READ_ONCE(task_thread_info(p)->cpu);
2234 }
2235 
2236 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2237 
2238 #else
2239 
2240 static inline unsigned int task_cpu(const struct task_struct *p)
2241 {
2242 	return 0;
2243 }
2244 
2245 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2246 {
2247 }
2248 
2249 #endif /* CONFIG_SMP */
2250 
2251 extern bool sched_task_on_rq(struct task_struct *p);
2252 extern unsigned long get_wchan(struct task_struct *p);
2253 extern struct task_struct *cpu_curr_snapshot(int cpu);
2254 
2255 /*
2256  * In order to reduce various lock holder preemption latencies provide an
2257  * interface to see if a vCPU is currently running or not.
2258  *
2259  * This allows us to terminate optimistic spin loops and block, analogous to
2260  * the native optimistic spin heuristic of testing if the lock owner task is
2261  * running or not.
2262  */
2263 #ifndef vcpu_is_preempted
2264 static inline bool vcpu_is_preempted(int cpu)
2265 {
2266 	return false;
2267 }
2268 #endif
2269 
2270 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2271 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2272 
2273 #ifndef TASK_SIZE_OF
2274 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2275 #endif
2276 
2277 #ifdef CONFIG_SMP
2278 static inline bool owner_on_cpu(struct task_struct *owner)
2279 {
2280 	/*
2281 	 * As lock holder preemption issue, we both skip spinning if
2282 	 * task is not on cpu or its cpu is preempted
2283 	 */
2284 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2285 }
2286 
2287 /* Returns effective CPU energy utilization, as seen by the scheduler */
2288 unsigned long sched_cpu_util(int cpu);
2289 #endif /* CONFIG_SMP */
2290 
2291 #ifdef CONFIG_RSEQ
2292 
2293 /*
2294  * Map the event mask on the user-space ABI enum rseq_cs_flags
2295  * for direct mask checks.
2296  */
2297 enum rseq_event_mask_bits {
2298 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2299 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2300 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2301 };
2302 
2303 enum rseq_event_mask {
2304 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2305 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2306 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2307 };
2308 
2309 static inline void rseq_set_notify_resume(struct task_struct *t)
2310 {
2311 	if (t->rseq)
2312 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2313 }
2314 
2315 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2316 
2317 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2318 					     struct pt_regs *regs)
2319 {
2320 	if (current->rseq)
2321 		__rseq_handle_notify_resume(ksig, regs);
2322 }
2323 
2324 static inline void rseq_signal_deliver(struct ksignal *ksig,
2325 				       struct pt_regs *regs)
2326 {
2327 	preempt_disable();
2328 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2329 	preempt_enable();
2330 	rseq_handle_notify_resume(ksig, regs);
2331 }
2332 
2333 /* rseq_preempt() requires preemption to be disabled. */
2334 static inline void rseq_preempt(struct task_struct *t)
2335 {
2336 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2337 	rseq_set_notify_resume(t);
2338 }
2339 
2340 /* rseq_migrate() requires preemption to be disabled. */
2341 static inline void rseq_migrate(struct task_struct *t)
2342 {
2343 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2344 	rseq_set_notify_resume(t);
2345 }
2346 
2347 /*
2348  * If parent process has a registered restartable sequences area, the
2349  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2350  */
2351 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2352 {
2353 	if (clone_flags & CLONE_VM) {
2354 		t->rseq = NULL;
2355 		t->rseq_sig = 0;
2356 		t->rseq_event_mask = 0;
2357 	} else {
2358 		t->rseq = current->rseq;
2359 		t->rseq_sig = current->rseq_sig;
2360 		t->rseq_event_mask = current->rseq_event_mask;
2361 	}
2362 }
2363 
2364 static inline void rseq_execve(struct task_struct *t)
2365 {
2366 	t->rseq = NULL;
2367 	t->rseq_sig = 0;
2368 	t->rseq_event_mask = 0;
2369 }
2370 
2371 #else
2372 
2373 static inline void rseq_set_notify_resume(struct task_struct *t)
2374 {
2375 }
2376 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2377 					     struct pt_regs *regs)
2378 {
2379 }
2380 static inline void rseq_signal_deliver(struct ksignal *ksig,
2381 				       struct pt_regs *regs)
2382 {
2383 }
2384 static inline void rseq_preempt(struct task_struct *t)
2385 {
2386 }
2387 static inline void rseq_migrate(struct task_struct *t)
2388 {
2389 }
2390 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2391 {
2392 }
2393 static inline void rseq_execve(struct task_struct *t)
2394 {
2395 }
2396 
2397 #endif
2398 
2399 #ifdef CONFIG_DEBUG_RSEQ
2400 
2401 void rseq_syscall(struct pt_regs *regs);
2402 
2403 #else
2404 
2405 static inline void rseq_syscall(struct pt_regs *regs)
2406 {
2407 }
2408 
2409 #endif
2410 
2411 #ifdef CONFIG_SCHED_CORE
2412 extern void sched_core_free(struct task_struct *tsk);
2413 extern void sched_core_fork(struct task_struct *p);
2414 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2415 				unsigned long uaddr);
2416 #else
2417 static inline void sched_core_free(struct task_struct *tsk) { }
2418 static inline void sched_core_fork(struct task_struct *p) { }
2419 #endif
2420 
2421 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2422 
2423 #endif
2424