xref: /linux/include/linux/sched.h (revision 0ade34c37012ea5c516d9aa4d19a56e9f40a55ed)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/mm_types_task.h>
29 #include <linux/task_io_accounting.h>
30 
31 /* task_struct member predeclarations (sorted alphabetically): */
32 struct audit_context;
33 struct backing_dev_info;
34 struct bio_list;
35 struct blk_plug;
36 struct cfs_rq;
37 struct fs_struct;
38 struct futex_pi_state;
39 struct io_context;
40 struct mempolicy;
41 struct nameidata;
42 struct nsproxy;
43 struct perf_event_context;
44 struct pid_namespace;
45 struct pipe_inode_info;
46 struct rcu_node;
47 struct reclaim_state;
48 struct robust_list_head;
49 struct sched_attr;
50 struct sched_param;
51 struct seq_file;
52 struct sighand_struct;
53 struct signal_struct;
54 struct task_delay_info;
55 struct task_group;
56 
57 /*
58  * Task state bitmask. NOTE! These bits are also
59  * encoded in fs/proc/array.c: get_task_state().
60  *
61  * We have two separate sets of flags: task->state
62  * is about runnability, while task->exit_state are
63  * about the task exiting. Confusing, but this way
64  * modifying one set can't modify the other one by
65  * mistake.
66  */
67 
68 /* Used in tsk->state: */
69 #define TASK_RUNNING			0x0000
70 #define TASK_INTERRUPTIBLE		0x0001
71 #define TASK_UNINTERRUPTIBLE		0x0002
72 #define __TASK_STOPPED			0x0004
73 #define __TASK_TRACED			0x0008
74 /* Used in tsk->exit_state: */
75 #define EXIT_DEAD			0x0010
76 #define EXIT_ZOMBIE			0x0020
77 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
78 /* Used in tsk->state again: */
79 #define TASK_PARKED			0x0040
80 #define TASK_DEAD			0x0080
81 #define TASK_WAKEKILL			0x0100
82 #define TASK_WAKING			0x0200
83 #define TASK_NOLOAD			0x0400
84 #define TASK_NEW			0x0800
85 #define TASK_STATE_MAX			0x1000
86 
87 /* Convenience macros for the sake of set_current_state: */
88 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
89 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
90 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
91 
92 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
93 
94 /* Convenience macros for the sake of wake_up(): */
95 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
96 #define TASK_ALL			(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
97 
98 /* get_task_state(): */
99 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
100 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
101 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
102 					 TASK_PARKED)
103 
104 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
105 
106 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
107 
108 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109 
110 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 					 (task->flags & PF_FROZEN) == 0 && \
112 					 (task->state & TASK_NOLOAD) == 0)
113 
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115 
116 #define __set_current_state(state_value)			\
117 	do {							\
118 		current->task_state_change = _THIS_IP_;		\
119 		current->state = (state_value);			\
120 	} while (0)
121 #define set_current_state(state_value)				\
122 	do {							\
123 		current->task_state_change = _THIS_IP_;		\
124 		smp_store_mb(current->state, (state_value));	\
125 	} while (0)
126 
127 #else
128 /*
129  * set_current_state() includes a barrier so that the write of current->state
130  * is correctly serialised wrt the caller's subsequent test of whether to
131  * actually sleep:
132  *
133  *   for (;;) {
134  *	set_current_state(TASK_UNINTERRUPTIBLE);
135  *	if (!need_sleep)
136  *		break;
137  *
138  *	schedule();
139  *   }
140  *   __set_current_state(TASK_RUNNING);
141  *
142  * If the caller does not need such serialisation (because, for instance, the
143  * condition test and condition change and wakeup are under the same lock) then
144  * use __set_current_state().
145  *
146  * The above is typically ordered against the wakeup, which does:
147  *
148  *	need_sleep = false;
149  *	wake_up_state(p, TASK_UNINTERRUPTIBLE);
150  *
151  * Where wake_up_state() (and all other wakeup primitives) imply enough
152  * barriers to order the store of the variable against wakeup.
153  *
154  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
155  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
156  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
157  *
158  * This is obviously fine, since they both store the exact same value.
159  *
160  * Also see the comments of try_to_wake_up().
161  */
162 #define __set_current_state(state_value) do { current->state = (state_value); } while (0)
163 #define set_current_state(state_value)	 smp_store_mb(current->state, (state_value))
164 #endif
165 
166 /* Task command name length: */
167 #define TASK_COMM_LEN			16
168 
169 extern void scheduler_tick(void);
170 
171 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
172 
173 extern long schedule_timeout(long timeout);
174 extern long schedule_timeout_interruptible(long timeout);
175 extern long schedule_timeout_killable(long timeout);
176 extern long schedule_timeout_uninterruptible(long timeout);
177 extern long schedule_timeout_idle(long timeout);
178 asmlinkage void schedule(void);
179 extern void schedule_preempt_disabled(void);
180 
181 extern int __must_check io_schedule_prepare(void);
182 extern void io_schedule_finish(int token);
183 extern long io_schedule_timeout(long timeout);
184 extern void io_schedule(void);
185 
186 /**
187  * struct prev_cputime - snapshot of system and user cputime
188  * @utime: time spent in user mode
189  * @stime: time spent in system mode
190  * @lock: protects the above two fields
191  *
192  * Stores previous user/system time values such that we can guarantee
193  * monotonicity.
194  */
195 struct prev_cputime {
196 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
197 	u64				utime;
198 	u64				stime;
199 	raw_spinlock_t			lock;
200 #endif
201 };
202 
203 /**
204  * struct task_cputime - collected CPU time counts
205  * @utime:		time spent in user mode, in nanoseconds
206  * @stime:		time spent in kernel mode, in nanoseconds
207  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
208  *
209  * This structure groups together three kinds of CPU time that are tracked for
210  * threads and thread groups.  Most things considering CPU time want to group
211  * these counts together and treat all three of them in parallel.
212  */
213 struct task_cputime {
214 	u64				utime;
215 	u64				stime;
216 	unsigned long long		sum_exec_runtime;
217 };
218 
219 /* Alternate field names when used on cache expirations: */
220 #define virt_exp			utime
221 #define prof_exp			stime
222 #define sched_exp			sum_exec_runtime
223 
224 enum vtime_state {
225 	/* Task is sleeping or running in a CPU with VTIME inactive: */
226 	VTIME_INACTIVE = 0,
227 	/* Task runs in userspace in a CPU with VTIME active: */
228 	VTIME_USER,
229 	/* Task runs in kernelspace in a CPU with VTIME active: */
230 	VTIME_SYS,
231 };
232 
233 struct vtime {
234 	seqcount_t		seqcount;
235 	unsigned long long	starttime;
236 	enum vtime_state	state;
237 	u64			utime;
238 	u64			stime;
239 	u64			gtime;
240 };
241 
242 struct sched_info {
243 #ifdef CONFIG_SCHED_INFO
244 	/* Cumulative counters: */
245 
246 	/* # of times we have run on this CPU: */
247 	unsigned long			pcount;
248 
249 	/* Time spent waiting on a runqueue: */
250 	unsigned long long		run_delay;
251 
252 	/* Timestamps: */
253 
254 	/* When did we last run on a CPU? */
255 	unsigned long long		last_arrival;
256 
257 	/* When were we last queued to run? */
258 	unsigned long long		last_queued;
259 
260 #endif /* CONFIG_SCHED_INFO */
261 };
262 
263 /*
264  * Integer metrics need fixed point arithmetic, e.g., sched/fair
265  * has a few: load, load_avg, util_avg, freq, and capacity.
266  *
267  * We define a basic fixed point arithmetic range, and then formalize
268  * all these metrics based on that basic range.
269  */
270 # define SCHED_FIXEDPOINT_SHIFT		10
271 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
272 
273 struct load_weight {
274 	unsigned long			weight;
275 	u32				inv_weight;
276 };
277 
278 /*
279  * The load_avg/util_avg accumulates an infinite geometric series
280  * (see __update_load_avg() in kernel/sched/fair.c).
281  *
282  * [load_avg definition]
283  *
284  *   load_avg = runnable% * scale_load_down(load)
285  *
286  * where runnable% is the time ratio that a sched_entity is runnable.
287  * For cfs_rq, it is the aggregated load_avg of all runnable and
288  * blocked sched_entities.
289  *
290  * load_avg may also take frequency scaling into account:
291  *
292  *   load_avg = runnable% * scale_load_down(load) * freq%
293  *
294  * where freq% is the CPU frequency normalized to the highest frequency.
295  *
296  * [util_avg definition]
297  *
298  *   util_avg = running% * SCHED_CAPACITY_SCALE
299  *
300  * where running% is the time ratio that a sched_entity is running on
301  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
302  * and blocked sched_entities.
303  *
304  * util_avg may also factor frequency scaling and CPU capacity scaling:
305  *
306  *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
307  *
308  * where freq% is the same as above, and capacity% is the CPU capacity
309  * normalized to the greatest capacity (due to uarch differences, etc).
310  *
311  * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
312  * themselves are in the range of [0, 1]. To do fixed point arithmetics,
313  * we therefore scale them to as large a range as necessary. This is for
314  * example reflected by util_avg's SCHED_CAPACITY_SCALE.
315  *
316  * [Overflow issue]
317  *
318  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
319  * with the highest load (=88761), always runnable on a single cfs_rq,
320  * and should not overflow as the number already hits PID_MAX_LIMIT.
321  *
322  * For all other cases (including 32-bit kernels), struct load_weight's
323  * weight will overflow first before we do, because:
324  *
325  *    Max(load_avg) <= Max(load.weight)
326  *
327  * Then it is the load_weight's responsibility to consider overflow
328  * issues.
329  */
330 struct sched_avg {
331 	u64				last_update_time;
332 	u64				load_sum;
333 	u64				runnable_load_sum;
334 	u32				util_sum;
335 	u32				period_contrib;
336 	unsigned long			load_avg;
337 	unsigned long			runnable_load_avg;
338 	unsigned long			util_avg;
339 };
340 
341 struct sched_statistics {
342 #ifdef CONFIG_SCHEDSTATS
343 	u64				wait_start;
344 	u64				wait_max;
345 	u64				wait_count;
346 	u64				wait_sum;
347 	u64				iowait_count;
348 	u64				iowait_sum;
349 
350 	u64				sleep_start;
351 	u64				sleep_max;
352 	s64				sum_sleep_runtime;
353 
354 	u64				block_start;
355 	u64				block_max;
356 	u64				exec_max;
357 	u64				slice_max;
358 
359 	u64				nr_migrations_cold;
360 	u64				nr_failed_migrations_affine;
361 	u64				nr_failed_migrations_running;
362 	u64				nr_failed_migrations_hot;
363 	u64				nr_forced_migrations;
364 
365 	u64				nr_wakeups;
366 	u64				nr_wakeups_sync;
367 	u64				nr_wakeups_migrate;
368 	u64				nr_wakeups_local;
369 	u64				nr_wakeups_remote;
370 	u64				nr_wakeups_affine;
371 	u64				nr_wakeups_affine_attempts;
372 	u64				nr_wakeups_passive;
373 	u64				nr_wakeups_idle;
374 #endif
375 };
376 
377 struct sched_entity {
378 	/* For load-balancing: */
379 	struct load_weight		load;
380 	unsigned long			runnable_weight;
381 	struct rb_node			run_node;
382 	struct list_head		group_node;
383 	unsigned int			on_rq;
384 
385 	u64				exec_start;
386 	u64				sum_exec_runtime;
387 	u64				vruntime;
388 	u64				prev_sum_exec_runtime;
389 
390 	u64				nr_migrations;
391 
392 	struct sched_statistics		statistics;
393 
394 #ifdef CONFIG_FAIR_GROUP_SCHED
395 	int				depth;
396 	struct sched_entity		*parent;
397 	/* rq on which this entity is (to be) queued: */
398 	struct cfs_rq			*cfs_rq;
399 	/* rq "owned" by this entity/group: */
400 	struct cfs_rq			*my_q;
401 #endif
402 
403 #ifdef CONFIG_SMP
404 	/*
405 	 * Per entity load average tracking.
406 	 *
407 	 * Put into separate cache line so it does not
408 	 * collide with read-mostly values above.
409 	 */
410 	struct sched_avg		avg ____cacheline_aligned_in_smp;
411 #endif
412 };
413 
414 struct sched_rt_entity {
415 	struct list_head		run_list;
416 	unsigned long			timeout;
417 	unsigned long			watchdog_stamp;
418 	unsigned int			time_slice;
419 	unsigned short			on_rq;
420 	unsigned short			on_list;
421 
422 	struct sched_rt_entity		*back;
423 #ifdef CONFIG_RT_GROUP_SCHED
424 	struct sched_rt_entity		*parent;
425 	/* rq on which this entity is (to be) queued: */
426 	struct rt_rq			*rt_rq;
427 	/* rq "owned" by this entity/group: */
428 	struct rt_rq			*my_q;
429 #endif
430 } __randomize_layout;
431 
432 struct sched_dl_entity {
433 	struct rb_node			rb_node;
434 
435 	/*
436 	 * Original scheduling parameters. Copied here from sched_attr
437 	 * during sched_setattr(), they will remain the same until
438 	 * the next sched_setattr().
439 	 */
440 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
441 	u64				dl_deadline;	/* Relative deadline of each instance	*/
442 	u64				dl_period;	/* Separation of two instances (period) */
443 	u64				dl_bw;		/* dl_runtime / dl_period		*/
444 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
445 
446 	/*
447 	 * Actual scheduling parameters. Initialized with the values above,
448 	 * they are continously updated during task execution. Note that
449 	 * the remaining runtime could be < 0 in case we are in overrun.
450 	 */
451 	s64				runtime;	/* Remaining runtime for this instance	*/
452 	u64				deadline;	/* Absolute deadline for this instance	*/
453 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
454 
455 	/*
456 	 * Some bool flags:
457 	 *
458 	 * @dl_throttled tells if we exhausted the runtime. If so, the
459 	 * task has to wait for a replenishment to be performed at the
460 	 * next firing of dl_timer.
461 	 *
462 	 * @dl_boosted tells if we are boosted due to DI. If so we are
463 	 * outside bandwidth enforcement mechanism (but only until we
464 	 * exit the critical section);
465 	 *
466 	 * @dl_yielded tells if task gave up the CPU before consuming
467 	 * all its available runtime during the last job.
468 	 *
469 	 * @dl_non_contending tells if the task is inactive while still
470 	 * contributing to the active utilization. In other words, it
471 	 * indicates if the inactive timer has been armed and its handler
472 	 * has not been executed yet. This flag is useful to avoid race
473 	 * conditions between the inactive timer handler and the wakeup
474 	 * code.
475 	 *
476 	 * @dl_overrun tells if the task asked to be informed about runtime
477 	 * overruns.
478 	 */
479 	unsigned int			dl_throttled      : 1;
480 	unsigned int			dl_boosted        : 1;
481 	unsigned int			dl_yielded        : 1;
482 	unsigned int			dl_non_contending : 1;
483 	unsigned int			dl_overrun	  : 1;
484 
485 	/*
486 	 * Bandwidth enforcement timer. Each -deadline task has its
487 	 * own bandwidth to be enforced, thus we need one timer per task.
488 	 */
489 	struct hrtimer			dl_timer;
490 
491 	/*
492 	 * Inactive timer, responsible for decreasing the active utilization
493 	 * at the "0-lag time". When a -deadline task blocks, it contributes
494 	 * to GRUB's active utilization until the "0-lag time", hence a
495 	 * timer is needed to decrease the active utilization at the correct
496 	 * time.
497 	 */
498 	struct hrtimer inactive_timer;
499 };
500 
501 union rcu_special {
502 	struct {
503 		u8			blocked;
504 		u8			need_qs;
505 		u8			exp_need_qs;
506 
507 		/* Otherwise the compiler can store garbage here: */
508 		u8			pad;
509 	} b; /* Bits. */
510 	u32 s; /* Set of bits. */
511 };
512 
513 enum perf_event_task_context {
514 	perf_invalid_context = -1,
515 	perf_hw_context = 0,
516 	perf_sw_context,
517 	perf_nr_task_contexts,
518 };
519 
520 struct wake_q_node {
521 	struct wake_q_node *next;
522 };
523 
524 struct task_struct {
525 #ifdef CONFIG_THREAD_INFO_IN_TASK
526 	/*
527 	 * For reasons of header soup (see current_thread_info()), this
528 	 * must be the first element of task_struct.
529 	 */
530 	struct thread_info		thread_info;
531 #endif
532 	/* -1 unrunnable, 0 runnable, >0 stopped: */
533 	volatile long			state;
534 
535 	/*
536 	 * This begins the randomizable portion of task_struct. Only
537 	 * scheduling-critical items should be added above here.
538 	 */
539 	randomized_struct_fields_start
540 
541 	void				*stack;
542 	atomic_t			usage;
543 	/* Per task flags (PF_*), defined further below: */
544 	unsigned int			flags;
545 	unsigned int			ptrace;
546 
547 #ifdef CONFIG_SMP
548 	struct llist_node		wake_entry;
549 	int				on_cpu;
550 #ifdef CONFIG_THREAD_INFO_IN_TASK
551 	/* Current CPU: */
552 	unsigned int			cpu;
553 #endif
554 	unsigned int			wakee_flips;
555 	unsigned long			wakee_flip_decay_ts;
556 	struct task_struct		*last_wakee;
557 
558 	int				wake_cpu;
559 #endif
560 	int				on_rq;
561 
562 	int				prio;
563 	int				static_prio;
564 	int				normal_prio;
565 	unsigned int			rt_priority;
566 
567 	const struct sched_class	*sched_class;
568 	struct sched_entity		se;
569 	struct sched_rt_entity		rt;
570 #ifdef CONFIG_CGROUP_SCHED
571 	struct task_group		*sched_task_group;
572 #endif
573 	struct sched_dl_entity		dl;
574 
575 #ifdef CONFIG_PREEMPT_NOTIFIERS
576 	/* List of struct preempt_notifier: */
577 	struct hlist_head		preempt_notifiers;
578 #endif
579 
580 #ifdef CONFIG_BLK_DEV_IO_TRACE
581 	unsigned int			btrace_seq;
582 #endif
583 
584 	unsigned int			policy;
585 	int				nr_cpus_allowed;
586 	cpumask_t			cpus_allowed;
587 
588 #ifdef CONFIG_PREEMPT_RCU
589 	int				rcu_read_lock_nesting;
590 	union rcu_special		rcu_read_unlock_special;
591 	struct list_head		rcu_node_entry;
592 	struct rcu_node			*rcu_blocked_node;
593 #endif /* #ifdef CONFIG_PREEMPT_RCU */
594 
595 #ifdef CONFIG_TASKS_RCU
596 	unsigned long			rcu_tasks_nvcsw;
597 	u8				rcu_tasks_holdout;
598 	u8				rcu_tasks_idx;
599 	int				rcu_tasks_idle_cpu;
600 	struct list_head		rcu_tasks_holdout_list;
601 #endif /* #ifdef CONFIG_TASKS_RCU */
602 
603 	struct sched_info		sched_info;
604 
605 	struct list_head		tasks;
606 #ifdef CONFIG_SMP
607 	struct plist_node		pushable_tasks;
608 	struct rb_node			pushable_dl_tasks;
609 #endif
610 
611 	struct mm_struct		*mm;
612 	struct mm_struct		*active_mm;
613 
614 	/* Per-thread vma caching: */
615 	struct vmacache			vmacache;
616 
617 #ifdef SPLIT_RSS_COUNTING
618 	struct task_rss_stat		rss_stat;
619 #endif
620 	int				exit_state;
621 	int				exit_code;
622 	int				exit_signal;
623 	/* The signal sent when the parent dies: */
624 	int				pdeath_signal;
625 	/* JOBCTL_*, siglock protected: */
626 	unsigned long			jobctl;
627 
628 	/* Used for emulating ABI behavior of previous Linux versions: */
629 	unsigned int			personality;
630 
631 	/* Scheduler bits, serialized by scheduler locks: */
632 	unsigned			sched_reset_on_fork:1;
633 	unsigned			sched_contributes_to_load:1;
634 	unsigned			sched_migrated:1;
635 	unsigned			sched_remote_wakeup:1;
636 	/* Force alignment to the next boundary: */
637 	unsigned			:0;
638 
639 	/* Unserialized, strictly 'current' */
640 
641 	/* Bit to tell LSMs we're in execve(): */
642 	unsigned			in_execve:1;
643 	unsigned			in_iowait:1;
644 #ifndef TIF_RESTORE_SIGMASK
645 	unsigned			restore_sigmask:1;
646 #endif
647 #ifdef CONFIG_MEMCG
648 	unsigned			memcg_may_oom:1;
649 #ifndef CONFIG_SLOB
650 	unsigned			memcg_kmem_skip_account:1;
651 #endif
652 #endif
653 #ifdef CONFIG_COMPAT_BRK
654 	unsigned			brk_randomized:1;
655 #endif
656 #ifdef CONFIG_CGROUPS
657 	/* disallow userland-initiated cgroup migration */
658 	unsigned			no_cgroup_migration:1;
659 #endif
660 
661 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
662 
663 	struct restart_block		restart_block;
664 
665 	pid_t				pid;
666 	pid_t				tgid;
667 
668 #ifdef CONFIG_CC_STACKPROTECTOR
669 	/* Canary value for the -fstack-protector GCC feature: */
670 	unsigned long			stack_canary;
671 #endif
672 	/*
673 	 * Pointers to the (original) parent process, youngest child, younger sibling,
674 	 * older sibling, respectively.  (p->father can be replaced with
675 	 * p->real_parent->pid)
676 	 */
677 
678 	/* Real parent process: */
679 	struct task_struct __rcu	*real_parent;
680 
681 	/* Recipient of SIGCHLD, wait4() reports: */
682 	struct task_struct __rcu	*parent;
683 
684 	/*
685 	 * Children/sibling form the list of natural children:
686 	 */
687 	struct list_head		children;
688 	struct list_head		sibling;
689 	struct task_struct		*group_leader;
690 
691 	/*
692 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
693 	 *
694 	 * This includes both natural children and PTRACE_ATTACH targets.
695 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
696 	 */
697 	struct list_head		ptraced;
698 	struct list_head		ptrace_entry;
699 
700 	/* PID/PID hash table linkage. */
701 	struct pid_link			pids[PIDTYPE_MAX];
702 	struct list_head		thread_group;
703 	struct list_head		thread_node;
704 
705 	struct completion		*vfork_done;
706 
707 	/* CLONE_CHILD_SETTID: */
708 	int __user			*set_child_tid;
709 
710 	/* CLONE_CHILD_CLEARTID: */
711 	int __user			*clear_child_tid;
712 
713 	u64				utime;
714 	u64				stime;
715 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
716 	u64				utimescaled;
717 	u64				stimescaled;
718 #endif
719 	u64				gtime;
720 	struct prev_cputime		prev_cputime;
721 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
722 	struct vtime			vtime;
723 #endif
724 
725 #ifdef CONFIG_NO_HZ_FULL
726 	atomic_t			tick_dep_mask;
727 #endif
728 	/* Context switch counts: */
729 	unsigned long			nvcsw;
730 	unsigned long			nivcsw;
731 
732 	/* Monotonic time in nsecs: */
733 	u64				start_time;
734 
735 	/* Boot based time in nsecs: */
736 	u64				real_start_time;
737 
738 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
739 	unsigned long			min_flt;
740 	unsigned long			maj_flt;
741 
742 #ifdef CONFIG_POSIX_TIMERS
743 	struct task_cputime		cputime_expires;
744 	struct list_head		cpu_timers[3];
745 #endif
746 
747 	/* Process credentials: */
748 
749 	/* Tracer's credentials at attach: */
750 	const struct cred __rcu		*ptracer_cred;
751 
752 	/* Objective and real subjective task credentials (COW): */
753 	const struct cred __rcu		*real_cred;
754 
755 	/* Effective (overridable) subjective task credentials (COW): */
756 	const struct cred __rcu		*cred;
757 
758 	/*
759 	 * executable name, excluding path.
760 	 *
761 	 * - normally initialized setup_new_exec()
762 	 * - access it with [gs]et_task_comm()
763 	 * - lock it with task_lock()
764 	 */
765 	char				comm[TASK_COMM_LEN];
766 
767 	struct nameidata		*nameidata;
768 
769 #ifdef CONFIG_SYSVIPC
770 	struct sysv_sem			sysvsem;
771 	struct sysv_shm			sysvshm;
772 #endif
773 #ifdef CONFIG_DETECT_HUNG_TASK
774 	unsigned long			last_switch_count;
775 #endif
776 	/* Filesystem information: */
777 	struct fs_struct		*fs;
778 
779 	/* Open file information: */
780 	struct files_struct		*files;
781 
782 	/* Namespaces: */
783 	struct nsproxy			*nsproxy;
784 
785 	/* Signal handlers: */
786 	struct signal_struct		*signal;
787 	struct sighand_struct		*sighand;
788 	sigset_t			blocked;
789 	sigset_t			real_blocked;
790 	/* Restored if set_restore_sigmask() was used: */
791 	sigset_t			saved_sigmask;
792 	struct sigpending		pending;
793 	unsigned long			sas_ss_sp;
794 	size_t				sas_ss_size;
795 	unsigned int			sas_ss_flags;
796 
797 	struct callback_head		*task_works;
798 
799 	struct audit_context		*audit_context;
800 #ifdef CONFIG_AUDITSYSCALL
801 	kuid_t				loginuid;
802 	unsigned int			sessionid;
803 #endif
804 	struct seccomp			seccomp;
805 
806 	/* Thread group tracking: */
807 	u32				parent_exec_id;
808 	u32				self_exec_id;
809 
810 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
811 	spinlock_t			alloc_lock;
812 
813 	/* Protection of the PI data structures: */
814 	raw_spinlock_t			pi_lock;
815 
816 	struct wake_q_node		wake_q;
817 
818 #ifdef CONFIG_RT_MUTEXES
819 	/* PI waiters blocked on a rt_mutex held by this task: */
820 	struct rb_root_cached		pi_waiters;
821 	/* Updated under owner's pi_lock and rq lock */
822 	struct task_struct		*pi_top_task;
823 	/* Deadlock detection and priority inheritance handling: */
824 	struct rt_mutex_waiter		*pi_blocked_on;
825 #endif
826 
827 #ifdef CONFIG_DEBUG_MUTEXES
828 	/* Mutex deadlock detection: */
829 	struct mutex_waiter		*blocked_on;
830 #endif
831 
832 #ifdef CONFIG_TRACE_IRQFLAGS
833 	unsigned int			irq_events;
834 	unsigned long			hardirq_enable_ip;
835 	unsigned long			hardirq_disable_ip;
836 	unsigned int			hardirq_enable_event;
837 	unsigned int			hardirq_disable_event;
838 	int				hardirqs_enabled;
839 	int				hardirq_context;
840 	unsigned long			softirq_disable_ip;
841 	unsigned long			softirq_enable_ip;
842 	unsigned int			softirq_disable_event;
843 	unsigned int			softirq_enable_event;
844 	int				softirqs_enabled;
845 	int				softirq_context;
846 #endif
847 
848 #ifdef CONFIG_LOCKDEP
849 # define MAX_LOCK_DEPTH			48UL
850 	u64				curr_chain_key;
851 	int				lockdep_depth;
852 	unsigned int			lockdep_recursion;
853 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
854 #endif
855 
856 #ifdef CONFIG_UBSAN
857 	unsigned int			in_ubsan;
858 #endif
859 
860 	/* Journalling filesystem info: */
861 	void				*journal_info;
862 
863 	/* Stacked block device info: */
864 	struct bio_list			*bio_list;
865 
866 #ifdef CONFIG_BLOCK
867 	/* Stack plugging: */
868 	struct blk_plug			*plug;
869 #endif
870 
871 	/* VM state: */
872 	struct reclaim_state		*reclaim_state;
873 
874 	struct backing_dev_info		*backing_dev_info;
875 
876 	struct io_context		*io_context;
877 
878 	/* Ptrace state: */
879 	unsigned long			ptrace_message;
880 	siginfo_t			*last_siginfo;
881 
882 	struct task_io_accounting	ioac;
883 #ifdef CONFIG_TASK_XACCT
884 	/* Accumulated RSS usage: */
885 	u64				acct_rss_mem1;
886 	/* Accumulated virtual memory usage: */
887 	u64				acct_vm_mem1;
888 	/* stime + utime since last update: */
889 	u64				acct_timexpd;
890 #endif
891 #ifdef CONFIG_CPUSETS
892 	/* Protected by ->alloc_lock: */
893 	nodemask_t			mems_allowed;
894 	/* Seqence number to catch updates: */
895 	seqcount_t			mems_allowed_seq;
896 	int				cpuset_mem_spread_rotor;
897 	int				cpuset_slab_spread_rotor;
898 #endif
899 #ifdef CONFIG_CGROUPS
900 	/* Control Group info protected by css_set_lock: */
901 	struct css_set __rcu		*cgroups;
902 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
903 	struct list_head		cg_list;
904 #endif
905 #ifdef CONFIG_INTEL_RDT
906 	u32				closid;
907 	u32				rmid;
908 #endif
909 #ifdef CONFIG_FUTEX
910 	struct robust_list_head __user	*robust_list;
911 #ifdef CONFIG_COMPAT
912 	struct compat_robust_list_head __user *compat_robust_list;
913 #endif
914 	struct list_head		pi_state_list;
915 	struct futex_pi_state		*pi_state_cache;
916 #endif
917 #ifdef CONFIG_PERF_EVENTS
918 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
919 	struct mutex			perf_event_mutex;
920 	struct list_head		perf_event_list;
921 #endif
922 #ifdef CONFIG_DEBUG_PREEMPT
923 	unsigned long			preempt_disable_ip;
924 #endif
925 #ifdef CONFIG_NUMA
926 	/* Protected by alloc_lock: */
927 	struct mempolicy		*mempolicy;
928 	short				il_prev;
929 	short				pref_node_fork;
930 #endif
931 #ifdef CONFIG_NUMA_BALANCING
932 	int				numa_scan_seq;
933 	unsigned int			numa_scan_period;
934 	unsigned int			numa_scan_period_max;
935 	int				numa_preferred_nid;
936 	unsigned long			numa_migrate_retry;
937 	/* Migration stamp: */
938 	u64				node_stamp;
939 	u64				last_task_numa_placement;
940 	u64				last_sum_exec_runtime;
941 	struct callback_head		numa_work;
942 
943 	struct list_head		numa_entry;
944 	struct numa_group		*numa_group;
945 
946 	/*
947 	 * numa_faults is an array split into four regions:
948 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
949 	 * in this precise order.
950 	 *
951 	 * faults_memory: Exponential decaying average of faults on a per-node
952 	 * basis. Scheduling placement decisions are made based on these
953 	 * counts. The values remain static for the duration of a PTE scan.
954 	 * faults_cpu: Track the nodes the process was running on when a NUMA
955 	 * hinting fault was incurred.
956 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
957 	 * during the current scan window. When the scan completes, the counts
958 	 * in faults_memory and faults_cpu decay and these values are copied.
959 	 */
960 	unsigned long			*numa_faults;
961 	unsigned long			total_numa_faults;
962 
963 	/*
964 	 * numa_faults_locality tracks if faults recorded during the last
965 	 * scan window were remote/local or failed to migrate. The task scan
966 	 * period is adapted based on the locality of the faults with different
967 	 * weights depending on whether they were shared or private faults
968 	 */
969 	unsigned long			numa_faults_locality[3];
970 
971 	unsigned long			numa_pages_migrated;
972 #endif /* CONFIG_NUMA_BALANCING */
973 
974 	struct tlbflush_unmap_batch	tlb_ubc;
975 
976 	struct rcu_head			rcu;
977 
978 	/* Cache last used pipe for splice(): */
979 	struct pipe_inode_info		*splice_pipe;
980 
981 	struct page_frag		task_frag;
982 
983 #ifdef CONFIG_TASK_DELAY_ACCT
984 	struct task_delay_info		*delays;
985 #endif
986 
987 #ifdef CONFIG_FAULT_INJECTION
988 	int				make_it_fail;
989 	unsigned int			fail_nth;
990 #endif
991 	/*
992 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
993 	 * balance_dirty_pages() for a dirty throttling pause:
994 	 */
995 	int				nr_dirtied;
996 	int				nr_dirtied_pause;
997 	/* Start of a write-and-pause period: */
998 	unsigned long			dirty_paused_when;
999 
1000 #ifdef CONFIG_LATENCYTOP
1001 	int				latency_record_count;
1002 	struct latency_record		latency_record[LT_SAVECOUNT];
1003 #endif
1004 	/*
1005 	 * Time slack values; these are used to round up poll() and
1006 	 * select() etc timeout values. These are in nanoseconds.
1007 	 */
1008 	u64				timer_slack_ns;
1009 	u64				default_timer_slack_ns;
1010 
1011 #ifdef CONFIG_KASAN
1012 	unsigned int			kasan_depth;
1013 #endif
1014 
1015 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1016 	/* Index of current stored address in ret_stack: */
1017 	int				curr_ret_stack;
1018 
1019 	/* Stack of return addresses for return function tracing: */
1020 	struct ftrace_ret_stack		*ret_stack;
1021 
1022 	/* Timestamp for last schedule: */
1023 	unsigned long long		ftrace_timestamp;
1024 
1025 	/*
1026 	 * Number of functions that haven't been traced
1027 	 * because of depth overrun:
1028 	 */
1029 	atomic_t			trace_overrun;
1030 
1031 	/* Pause tracing: */
1032 	atomic_t			tracing_graph_pause;
1033 #endif
1034 
1035 #ifdef CONFIG_TRACING
1036 	/* State flags for use by tracers: */
1037 	unsigned long			trace;
1038 
1039 	/* Bitmask and counter of trace recursion: */
1040 	unsigned long			trace_recursion;
1041 #endif /* CONFIG_TRACING */
1042 
1043 #ifdef CONFIG_KCOV
1044 	/* Coverage collection mode enabled for this task (0 if disabled): */
1045 	enum kcov_mode			kcov_mode;
1046 
1047 	/* Size of the kcov_area: */
1048 	unsigned int			kcov_size;
1049 
1050 	/* Buffer for coverage collection: */
1051 	void				*kcov_area;
1052 
1053 	/* KCOV descriptor wired with this task or NULL: */
1054 	struct kcov			*kcov;
1055 #endif
1056 
1057 #ifdef CONFIG_MEMCG
1058 	struct mem_cgroup		*memcg_in_oom;
1059 	gfp_t				memcg_oom_gfp_mask;
1060 	int				memcg_oom_order;
1061 
1062 	/* Number of pages to reclaim on returning to userland: */
1063 	unsigned int			memcg_nr_pages_over_high;
1064 #endif
1065 
1066 #ifdef CONFIG_UPROBES
1067 	struct uprobe_task		*utask;
1068 #endif
1069 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1070 	unsigned int			sequential_io;
1071 	unsigned int			sequential_io_avg;
1072 #endif
1073 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1074 	unsigned long			task_state_change;
1075 #endif
1076 	int				pagefault_disabled;
1077 #ifdef CONFIG_MMU
1078 	struct task_struct		*oom_reaper_list;
1079 #endif
1080 #ifdef CONFIG_VMAP_STACK
1081 	struct vm_struct		*stack_vm_area;
1082 #endif
1083 #ifdef CONFIG_THREAD_INFO_IN_TASK
1084 	/* A live task holds one reference: */
1085 	atomic_t			stack_refcount;
1086 #endif
1087 #ifdef CONFIG_LIVEPATCH
1088 	int patch_state;
1089 #endif
1090 #ifdef CONFIG_SECURITY
1091 	/* Used by LSM modules for access restriction: */
1092 	void				*security;
1093 #endif
1094 
1095 	/*
1096 	 * New fields for task_struct should be added above here, so that
1097 	 * they are included in the randomized portion of task_struct.
1098 	 */
1099 	randomized_struct_fields_end
1100 
1101 	/* CPU-specific state of this task: */
1102 	struct thread_struct		thread;
1103 
1104 	/*
1105 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1106 	 * structure.  It *MUST* be at the end of 'task_struct'.
1107 	 *
1108 	 * Do not put anything below here!
1109 	 */
1110 };
1111 
1112 static inline struct pid *task_pid(struct task_struct *task)
1113 {
1114 	return task->pids[PIDTYPE_PID].pid;
1115 }
1116 
1117 static inline struct pid *task_tgid(struct task_struct *task)
1118 {
1119 	return task->group_leader->pids[PIDTYPE_PID].pid;
1120 }
1121 
1122 /*
1123  * Without tasklist or RCU lock it is not safe to dereference
1124  * the result of task_pgrp/task_session even if task == current,
1125  * we can race with another thread doing sys_setsid/sys_setpgid.
1126  */
1127 static inline struct pid *task_pgrp(struct task_struct *task)
1128 {
1129 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1130 }
1131 
1132 static inline struct pid *task_session(struct task_struct *task)
1133 {
1134 	return task->group_leader->pids[PIDTYPE_SID].pid;
1135 }
1136 
1137 /*
1138  * the helpers to get the task's different pids as they are seen
1139  * from various namespaces
1140  *
1141  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1142  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1143  *                     current.
1144  * task_xid_nr_ns()  : id seen from the ns specified;
1145  *
1146  * see also pid_nr() etc in include/linux/pid.h
1147  */
1148 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1149 
1150 static inline pid_t task_pid_nr(struct task_struct *tsk)
1151 {
1152 	return tsk->pid;
1153 }
1154 
1155 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1156 {
1157 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1158 }
1159 
1160 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1161 {
1162 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1163 }
1164 
1165 
1166 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1167 {
1168 	return tsk->tgid;
1169 }
1170 
1171 /**
1172  * pid_alive - check that a task structure is not stale
1173  * @p: Task structure to be checked.
1174  *
1175  * Test if a process is not yet dead (at most zombie state)
1176  * If pid_alive fails, then pointers within the task structure
1177  * can be stale and must not be dereferenced.
1178  *
1179  * Return: 1 if the process is alive. 0 otherwise.
1180  */
1181 static inline int pid_alive(const struct task_struct *p)
1182 {
1183 	return p->pids[PIDTYPE_PID].pid != NULL;
1184 }
1185 
1186 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1187 {
1188 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1189 }
1190 
1191 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1192 {
1193 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1194 }
1195 
1196 
1197 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1198 {
1199 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1200 }
1201 
1202 static inline pid_t task_session_vnr(struct task_struct *tsk)
1203 {
1204 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1205 }
1206 
1207 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1208 {
1209 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1210 }
1211 
1212 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1213 {
1214 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1215 }
1216 
1217 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1218 {
1219 	pid_t pid = 0;
1220 
1221 	rcu_read_lock();
1222 	if (pid_alive(tsk))
1223 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1224 	rcu_read_unlock();
1225 
1226 	return pid;
1227 }
1228 
1229 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1230 {
1231 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1232 }
1233 
1234 /* Obsolete, do not use: */
1235 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1236 {
1237 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1238 }
1239 
1240 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1241 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1242 
1243 static inline unsigned int task_state_index(struct task_struct *tsk)
1244 {
1245 	unsigned int tsk_state = READ_ONCE(tsk->state);
1246 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1247 
1248 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1249 
1250 	if (tsk_state == TASK_IDLE)
1251 		state = TASK_REPORT_IDLE;
1252 
1253 	return fls(state);
1254 }
1255 
1256 static inline char task_index_to_char(unsigned int state)
1257 {
1258 	static const char state_char[] = "RSDTtXZPI";
1259 
1260 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1261 
1262 	return state_char[state];
1263 }
1264 
1265 static inline char task_state_to_char(struct task_struct *tsk)
1266 {
1267 	return task_index_to_char(task_state_index(tsk));
1268 }
1269 
1270 /**
1271  * is_global_init - check if a task structure is init. Since init
1272  * is free to have sub-threads we need to check tgid.
1273  * @tsk: Task structure to be checked.
1274  *
1275  * Check if a task structure is the first user space task the kernel created.
1276  *
1277  * Return: 1 if the task structure is init. 0 otherwise.
1278  */
1279 static inline int is_global_init(struct task_struct *tsk)
1280 {
1281 	return task_tgid_nr(tsk) == 1;
1282 }
1283 
1284 extern struct pid *cad_pid;
1285 
1286 /*
1287  * Per process flags
1288  */
1289 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1290 #define PF_EXITING		0x00000004	/* Getting shut down */
1291 #define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
1292 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1293 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1294 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1295 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1296 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1297 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1298 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1299 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1300 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1301 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1302 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1303 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1304 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1305 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1306 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1307 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1308 #define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
1309 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1310 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1311 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1312 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1313 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1314 #define PF_MUTEX_TESTER		0x20000000	/* Thread belongs to the rt mutex tester */
1315 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1316 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1317 
1318 /*
1319  * Only the _current_ task can read/write to tsk->flags, but other
1320  * tasks can access tsk->flags in readonly mode for example
1321  * with tsk_used_math (like during threaded core dumping).
1322  * There is however an exception to this rule during ptrace
1323  * or during fork: the ptracer task is allowed to write to the
1324  * child->flags of its traced child (same goes for fork, the parent
1325  * can write to the child->flags), because we're guaranteed the
1326  * child is not running and in turn not changing child->flags
1327  * at the same time the parent does it.
1328  */
1329 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1330 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1331 #define clear_used_math()			clear_stopped_child_used_math(current)
1332 #define set_used_math()				set_stopped_child_used_math(current)
1333 
1334 #define conditional_stopped_child_used_math(condition, child) \
1335 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1336 
1337 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1338 
1339 #define copy_to_stopped_child_used_math(child) \
1340 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1341 
1342 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1343 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1344 #define used_math()				tsk_used_math(current)
1345 
1346 static inline bool is_percpu_thread(void)
1347 {
1348 #ifdef CONFIG_SMP
1349 	return (current->flags & PF_NO_SETAFFINITY) &&
1350 		(current->nr_cpus_allowed  == 1);
1351 #else
1352 	return true;
1353 #endif
1354 }
1355 
1356 /* Per-process atomic flags. */
1357 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1358 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1359 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1360 
1361 
1362 #define TASK_PFA_TEST(name, func)					\
1363 	static inline bool task_##func(struct task_struct *p)		\
1364 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1365 
1366 #define TASK_PFA_SET(name, func)					\
1367 	static inline void task_set_##func(struct task_struct *p)	\
1368 	{ set_bit(PFA_##name, &p->atomic_flags); }
1369 
1370 #define TASK_PFA_CLEAR(name, func)					\
1371 	static inline void task_clear_##func(struct task_struct *p)	\
1372 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1373 
1374 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1375 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1376 
1377 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1378 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1379 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1380 
1381 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1382 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1383 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1384 
1385 static inline void
1386 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1387 {
1388 	current->flags &= ~flags;
1389 	current->flags |= orig_flags & flags;
1390 }
1391 
1392 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1393 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1394 #ifdef CONFIG_SMP
1395 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1396 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1397 #else
1398 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1399 {
1400 }
1401 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1402 {
1403 	if (!cpumask_test_cpu(0, new_mask))
1404 		return -EINVAL;
1405 	return 0;
1406 }
1407 #endif
1408 
1409 #ifndef cpu_relax_yield
1410 #define cpu_relax_yield() cpu_relax()
1411 #endif
1412 
1413 extern int yield_to(struct task_struct *p, bool preempt);
1414 extern void set_user_nice(struct task_struct *p, long nice);
1415 extern int task_prio(const struct task_struct *p);
1416 
1417 /**
1418  * task_nice - return the nice value of a given task.
1419  * @p: the task in question.
1420  *
1421  * Return: The nice value [ -20 ... 0 ... 19 ].
1422  */
1423 static inline int task_nice(const struct task_struct *p)
1424 {
1425 	return PRIO_TO_NICE((p)->static_prio);
1426 }
1427 
1428 extern int can_nice(const struct task_struct *p, const int nice);
1429 extern int task_curr(const struct task_struct *p);
1430 extern int idle_cpu(int cpu);
1431 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1432 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1433 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1434 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1435 extern struct task_struct *idle_task(int cpu);
1436 
1437 /**
1438  * is_idle_task - is the specified task an idle task?
1439  * @p: the task in question.
1440  *
1441  * Return: 1 if @p is an idle task. 0 otherwise.
1442  */
1443 static inline bool is_idle_task(const struct task_struct *p)
1444 {
1445 	return !!(p->flags & PF_IDLE);
1446 }
1447 
1448 extern struct task_struct *curr_task(int cpu);
1449 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1450 
1451 void yield(void);
1452 
1453 union thread_union {
1454 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1455 	struct task_struct task;
1456 #endif
1457 #ifndef CONFIG_THREAD_INFO_IN_TASK
1458 	struct thread_info thread_info;
1459 #endif
1460 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1461 };
1462 
1463 #ifndef CONFIG_THREAD_INFO_IN_TASK
1464 extern struct thread_info init_thread_info;
1465 #endif
1466 
1467 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1468 
1469 #ifdef CONFIG_THREAD_INFO_IN_TASK
1470 static inline struct thread_info *task_thread_info(struct task_struct *task)
1471 {
1472 	return &task->thread_info;
1473 }
1474 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1475 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1476 #endif
1477 
1478 /*
1479  * find a task by one of its numerical ids
1480  *
1481  * find_task_by_pid_ns():
1482  *      finds a task by its pid in the specified namespace
1483  * find_task_by_vpid():
1484  *      finds a task by its virtual pid
1485  *
1486  * see also find_vpid() etc in include/linux/pid.h
1487  */
1488 
1489 extern struct task_struct *find_task_by_vpid(pid_t nr);
1490 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1491 
1492 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1493 extern int wake_up_process(struct task_struct *tsk);
1494 extern void wake_up_new_task(struct task_struct *tsk);
1495 
1496 #ifdef CONFIG_SMP
1497 extern void kick_process(struct task_struct *tsk);
1498 #else
1499 static inline void kick_process(struct task_struct *tsk) { }
1500 #endif
1501 
1502 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1503 
1504 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1505 {
1506 	__set_task_comm(tsk, from, false);
1507 }
1508 
1509 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1510 #define get_task_comm(buf, tsk) ({			\
1511 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1512 	__get_task_comm(buf, sizeof(buf), tsk);		\
1513 })
1514 
1515 #ifdef CONFIG_SMP
1516 void scheduler_ipi(void);
1517 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1518 #else
1519 static inline void scheduler_ipi(void) { }
1520 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1521 {
1522 	return 1;
1523 }
1524 #endif
1525 
1526 /*
1527  * Set thread flags in other task's structures.
1528  * See asm/thread_info.h for TIF_xxxx flags available:
1529  */
1530 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1531 {
1532 	set_ti_thread_flag(task_thread_info(tsk), flag);
1533 }
1534 
1535 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1536 {
1537 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1538 }
1539 
1540 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1541 {
1542 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1543 }
1544 
1545 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1546 {
1547 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1548 }
1549 
1550 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1551 {
1552 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1553 }
1554 
1555 static inline void set_tsk_need_resched(struct task_struct *tsk)
1556 {
1557 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1558 }
1559 
1560 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1561 {
1562 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1563 }
1564 
1565 static inline int test_tsk_need_resched(struct task_struct *tsk)
1566 {
1567 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1568 }
1569 
1570 /*
1571  * cond_resched() and cond_resched_lock(): latency reduction via
1572  * explicit rescheduling in places that are safe. The return
1573  * value indicates whether a reschedule was done in fact.
1574  * cond_resched_lock() will drop the spinlock before scheduling,
1575  * cond_resched_softirq() will enable bhs before scheduling.
1576  */
1577 #ifndef CONFIG_PREEMPT
1578 extern int _cond_resched(void);
1579 #else
1580 static inline int _cond_resched(void) { return 0; }
1581 #endif
1582 
1583 #define cond_resched() ({			\
1584 	___might_sleep(__FILE__, __LINE__, 0);	\
1585 	_cond_resched();			\
1586 })
1587 
1588 extern int __cond_resched_lock(spinlock_t *lock);
1589 
1590 #define cond_resched_lock(lock) ({				\
1591 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1592 	__cond_resched_lock(lock);				\
1593 })
1594 
1595 extern int __cond_resched_softirq(void);
1596 
1597 #define cond_resched_softirq() ({					\
1598 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
1599 	__cond_resched_softirq();					\
1600 })
1601 
1602 static inline void cond_resched_rcu(void)
1603 {
1604 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1605 	rcu_read_unlock();
1606 	cond_resched();
1607 	rcu_read_lock();
1608 #endif
1609 }
1610 
1611 /*
1612  * Does a critical section need to be broken due to another
1613  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1614  * but a general need for low latency)
1615  */
1616 static inline int spin_needbreak(spinlock_t *lock)
1617 {
1618 #ifdef CONFIG_PREEMPT
1619 	return spin_is_contended(lock);
1620 #else
1621 	return 0;
1622 #endif
1623 }
1624 
1625 static __always_inline bool need_resched(void)
1626 {
1627 	return unlikely(tif_need_resched());
1628 }
1629 
1630 /*
1631  * Wrappers for p->thread_info->cpu access. No-op on UP.
1632  */
1633 #ifdef CONFIG_SMP
1634 
1635 static inline unsigned int task_cpu(const struct task_struct *p)
1636 {
1637 #ifdef CONFIG_THREAD_INFO_IN_TASK
1638 	return p->cpu;
1639 #else
1640 	return task_thread_info(p)->cpu;
1641 #endif
1642 }
1643 
1644 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1645 
1646 #else
1647 
1648 static inline unsigned int task_cpu(const struct task_struct *p)
1649 {
1650 	return 0;
1651 }
1652 
1653 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1654 {
1655 }
1656 
1657 #endif /* CONFIG_SMP */
1658 
1659 /*
1660  * In order to reduce various lock holder preemption latencies provide an
1661  * interface to see if a vCPU is currently running or not.
1662  *
1663  * This allows us to terminate optimistic spin loops and block, analogous to
1664  * the native optimistic spin heuristic of testing if the lock owner task is
1665  * running or not.
1666  */
1667 #ifndef vcpu_is_preempted
1668 # define vcpu_is_preempted(cpu)	false
1669 #endif
1670 
1671 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1672 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1673 
1674 #ifndef TASK_SIZE_OF
1675 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1676 #endif
1677 
1678 #endif
1679