1 #ifndef _LINUX_SCHED_H 2 #define _LINUX_SCHED_H 3 4 #include <uapi/linux/sched.h> 5 6 7 struct sched_param { 8 int sched_priority; 9 }; 10 11 #include <asm/param.h> /* for HZ */ 12 13 #include <linux/capability.h> 14 #include <linux/threads.h> 15 #include <linux/kernel.h> 16 #include <linux/types.h> 17 #include <linux/timex.h> 18 #include <linux/jiffies.h> 19 #include <linux/rbtree.h> 20 #include <linux/thread_info.h> 21 #include <linux/cpumask.h> 22 #include <linux/errno.h> 23 #include <linux/nodemask.h> 24 #include <linux/mm_types.h> 25 26 #include <asm/page.h> 27 #include <asm/ptrace.h> 28 #include <asm/cputime.h> 29 30 #include <linux/smp.h> 31 #include <linux/sem.h> 32 #include <linux/signal.h> 33 #include <linux/compiler.h> 34 #include <linux/completion.h> 35 #include <linux/pid.h> 36 #include <linux/percpu.h> 37 #include <linux/topology.h> 38 #include <linux/proportions.h> 39 #include <linux/seccomp.h> 40 #include <linux/rcupdate.h> 41 #include <linux/rculist.h> 42 #include <linux/rtmutex.h> 43 44 #include <linux/time.h> 45 #include <linux/param.h> 46 #include <linux/resource.h> 47 #include <linux/timer.h> 48 #include <linux/hrtimer.h> 49 #include <linux/task_io_accounting.h> 50 #include <linux/latencytop.h> 51 #include <linux/cred.h> 52 #include <linux/llist.h> 53 #include <linux/uidgid.h> 54 55 #include <asm/processor.h> 56 57 struct exec_domain; 58 struct futex_pi_state; 59 struct robust_list_head; 60 struct bio_list; 61 struct fs_struct; 62 struct perf_event_context; 63 struct blk_plug; 64 65 /* 66 * List of flags we want to share for kernel threads, 67 * if only because they are not used by them anyway. 68 */ 69 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 70 71 /* 72 * These are the constant used to fake the fixed-point load-average 73 * counting. Some notes: 74 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 75 * a load-average precision of 10 bits integer + 11 bits fractional 76 * - if you want to count load-averages more often, you need more 77 * precision, or rounding will get you. With 2-second counting freq, 78 * the EXP_n values would be 1981, 2034 and 2043 if still using only 79 * 11 bit fractions. 80 */ 81 extern unsigned long avenrun[]; /* Load averages */ 82 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 83 84 #define FSHIFT 11 /* nr of bits of precision */ 85 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 86 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 87 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 88 #define EXP_5 2014 /* 1/exp(5sec/5min) */ 89 #define EXP_15 2037 /* 1/exp(5sec/15min) */ 90 91 #define CALC_LOAD(load,exp,n) \ 92 load *= exp; \ 93 load += n*(FIXED_1-exp); \ 94 load >>= FSHIFT; 95 96 extern unsigned long total_forks; 97 extern int nr_threads; 98 DECLARE_PER_CPU(unsigned long, process_counts); 99 extern int nr_processes(void); 100 extern unsigned long nr_running(void); 101 extern unsigned long nr_uninterruptible(void); 102 extern unsigned long nr_iowait(void); 103 extern unsigned long nr_iowait_cpu(int cpu); 104 extern unsigned long this_cpu_load(void); 105 106 107 extern void calc_global_load(unsigned long ticks); 108 extern void update_cpu_load_nohz(void); 109 110 extern unsigned long get_parent_ip(unsigned long addr); 111 112 struct seq_file; 113 struct cfs_rq; 114 struct task_group; 115 #ifdef CONFIG_SCHED_DEBUG 116 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 117 extern void proc_sched_set_task(struct task_struct *p); 118 extern void 119 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 120 #else 121 static inline void 122 proc_sched_show_task(struct task_struct *p, struct seq_file *m) 123 { 124 } 125 static inline void proc_sched_set_task(struct task_struct *p) 126 { 127 } 128 static inline void 129 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 130 { 131 } 132 #endif 133 134 /* 135 * Task state bitmask. NOTE! These bits are also 136 * encoded in fs/proc/array.c: get_task_state(). 137 * 138 * We have two separate sets of flags: task->state 139 * is about runnability, while task->exit_state are 140 * about the task exiting. Confusing, but this way 141 * modifying one set can't modify the other one by 142 * mistake. 143 */ 144 #define TASK_RUNNING 0 145 #define TASK_INTERRUPTIBLE 1 146 #define TASK_UNINTERRUPTIBLE 2 147 #define __TASK_STOPPED 4 148 #define __TASK_TRACED 8 149 /* in tsk->exit_state */ 150 #define EXIT_ZOMBIE 16 151 #define EXIT_DEAD 32 152 /* in tsk->state again */ 153 #define TASK_DEAD 64 154 #define TASK_WAKEKILL 128 155 #define TASK_WAKING 256 156 #define TASK_STATE_MAX 512 157 158 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" 159 160 extern char ___assert_task_state[1 - 2*!!( 161 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 162 163 /* Convenience macros for the sake of set_task_state */ 164 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 165 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 166 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 167 168 /* Convenience macros for the sake of wake_up */ 169 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 170 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 171 172 /* get_task_state() */ 173 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 174 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 175 __TASK_TRACED) 176 177 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 178 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 179 #define task_is_dead(task) ((task)->exit_state != 0) 180 #define task_is_stopped_or_traced(task) \ 181 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 182 #define task_contributes_to_load(task) \ 183 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 184 (task->flags & PF_FROZEN) == 0) 185 186 #define __set_task_state(tsk, state_value) \ 187 do { (tsk)->state = (state_value); } while (0) 188 #define set_task_state(tsk, state_value) \ 189 set_mb((tsk)->state, (state_value)) 190 191 /* 192 * set_current_state() includes a barrier so that the write of current->state 193 * is correctly serialised wrt the caller's subsequent test of whether to 194 * actually sleep: 195 * 196 * set_current_state(TASK_UNINTERRUPTIBLE); 197 * if (do_i_need_to_sleep()) 198 * schedule(); 199 * 200 * If the caller does not need such serialisation then use __set_current_state() 201 */ 202 #define __set_current_state(state_value) \ 203 do { current->state = (state_value); } while (0) 204 #define set_current_state(state_value) \ 205 set_mb(current->state, (state_value)) 206 207 /* Task command name length */ 208 #define TASK_COMM_LEN 16 209 210 #include <linux/spinlock.h> 211 212 /* 213 * This serializes "schedule()" and also protects 214 * the run-queue from deletions/modifications (but 215 * _adding_ to the beginning of the run-queue has 216 * a separate lock). 217 */ 218 extern rwlock_t tasklist_lock; 219 extern spinlock_t mmlist_lock; 220 221 struct task_struct; 222 223 #ifdef CONFIG_PROVE_RCU 224 extern int lockdep_tasklist_lock_is_held(void); 225 #endif /* #ifdef CONFIG_PROVE_RCU */ 226 227 extern void sched_init(void); 228 extern void sched_init_smp(void); 229 extern asmlinkage void schedule_tail(struct task_struct *prev); 230 extern void init_idle(struct task_struct *idle, int cpu); 231 extern void init_idle_bootup_task(struct task_struct *idle); 232 233 extern int runqueue_is_locked(int cpu); 234 235 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 236 extern void nohz_balance_enter_idle(int cpu); 237 extern void set_cpu_sd_state_idle(void); 238 extern int get_nohz_timer_target(void); 239 #else 240 static inline void nohz_balance_enter_idle(int cpu) { } 241 static inline void set_cpu_sd_state_idle(void) { } 242 #endif 243 244 /* 245 * Only dump TASK_* tasks. (0 for all tasks) 246 */ 247 extern void show_state_filter(unsigned long state_filter); 248 249 static inline void show_state(void) 250 { 251 show_state_filter(0); 252 } 253 254 extern void show_regs(struct pt_regs *); 255 256 /* 257 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 258 * task), SP is the stack pointer of the first frame that should be shown in the back 259 * trace (or NULL if the entire call-chain of the task should be shown). 260 */ 261 extern void show_stack(struct task_struct *task, unsigned long *sp); 262 263 void io_schedule(void); 264 long io_schedule_timeout(long timeout); 265 266 extern void cpu_init (void); 267 extern void trap_init(void); 268 extern void update_process_times(int user); 269 extern void scheduler_tick(void); 270 271 extern void sched_show_task(struct task_struct *p); 272 273 #ifdef CONFIG_LOCKUP_DETECTOR 274 extern void touch_softlockup_watchdog(void); 275 extern void touch_softlockup_watchdog_sync(void); 276 extern void touch_all_softlockup_watchdogs(void); 277 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 278 void __user *buffer, 279 size_t *lenp, loff_t *ppos); 280 extern unsigned int softlockup_panic; 281 void lockup_detector_init(void); 282 #else 283 static inline void touch_softlockup_watchdog(void) 284 { 285 } 286 static inline void touch_softlockup_watchdog_sync(void) 287 { 288 } 289 static inline void touch_all_softlockup_watchdogs(void) 290 { 291 } 292 static inline void lockup_detector_init(void) 293 { 294 } 295 #endif 296 297 #ifdef CONFIG_DETECT_HUNG_TASK 298 extern unsigned int sysctl_hung_task_panic; 299 extern unsigned long sysctl_hung_task_check_count; 300 extern unsigned long sysctl_hung_task_timeout_secs; 301 extern unsigned long sysctl_hung_task_warnings; 302 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, 303 void __user *buffer, 304 size_t *lenp, loff_t *ppos); 305 #else 306 /* Avoid need for ifdefs elsewhere in the code */ 307 enum { sysctl_hung_task_timeout_secs = 0 }; 308 #endif 309 310 /* Attach to any functions which should be ignored in wchan output. */ 311 #define __sched __attribute__((__section__(".sched.text"))) 312 313 /* Linker adds these: start and end of __sched functions */ 314 extern char __sched_text_start[], __sched_text_end[]; 315 316 /* Is this address in the __sched functions? */ 317 extern int in_sched_functions(unsigned long addr); 318 319 #define MAX_SCHEDULE_TIMEOUT LONG_MAX 320 extern signed long schedule_timeout(signed long timeout); 321 extern signed long schedule_timeout_interruptible(signed long timeout); 322 extern signed long schedule_timeout_killable(signed long timeout); 323 extern signed long schedule_timeout_uninterruptible(signed long timeout); 324 asmlinkage void schedule(void); 325 extern void schedule_preempt_disabled(void); 326 extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 327 328 struct nsproxy; 329 struct user_namespace; 330 331 /* 332 * Default maximum number of active map areas, this limits the number of vmas 333 * per mm struct. Users can overwrite this number by sysctl but there is a 334 * problem. 335 * 336 * When a program's coredump is generated as ELF format, a section is created 337 * per a vma. In ELF, the number of sections is represented in unsigned short. 338 * This means the number of sections should be smaller than 65535 at coredump. 339 * Because the kernel adds some informative sections to a image of program at 340 * generating coredump, we need some margin. The number of extra sections is 341 * 1-3 now and depends on arch. We use "5" as safe margin, here. 342 */ 343 #define MAPCOUNT_ELF_CORE_MARGIN (5) 344 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 345 346 extern int sysctl_max_map_count; 347 348 #include <linux/aio.h> 349 350 #ifdef CONFIG_MMU 351 extern void arch_pick_mmap_layout(struct mm_struct *mm); 352 extern unsigned long 353 arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 354 unsigned long, unsigned long); 355 extern unsigned long 356 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 357 unsigned long len, unsigned long pgoff, 358 unsigned long flags); 359 extern void arch_unmap_area(struct mm_struct *, unsigned long); 360 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 361 #else 362 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 363 #endif 364 365 366 extern void set_dumpable(struct mm_struct *mm, int value); 367 extern int get_dumpable(struct mm_struct *mm); 368 369 /* get/set_dumpable() values */ 370 #define SUID_DUMPABLE_DISABLED 0 371 #define SUID_DUMPABLE_ENABLED 1 372 #define SUID_DUMPABLE_SAFE 2 373 374 /* mm flags */ 375 /* dumpable bits */ 376 #define MMF_DUMPABLE 0 /* core dump is permitted */ 377 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 378 379 #define MMF_DUMPABLE_BITS 2 380 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 381 382 /* coredump filter bits */ 383 #define MMF_DUMP_ANON_PRIVATE 2 384 #define MMF_DUMP_ANON_SHARED 3 385 #define MMF_DUMP_MAPPED_PRIVATE 4 386 #define MMF_DUMP_MAPPED_SHARED 5 387 #define MMF_DUMP_ELF_HEADERS 6 388 #define MMF_DUMP_HUGETLB_PRIVATE 7 389 #define MMF_DUMP_HUGETLB_SHARED 8 390 391 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 392 #define MMF_DUMP_FILTER_BITS 7 393 #define MMF_DUMP_FILTER_MASK \ 394 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 395 #define MMF_DUMP_FILTER_DEFAULT \ 396 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 397 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 398 399 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 400 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 401 #else 402 # define MMF_DUMP_MASK_DEFAULT_ELF 0 403 #endif 404 /* leave room for more dump flags */ 405 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 406 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 407 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 408 409 #define MMF_HAS_UPROBES 19 /* has uprobes */ 410 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 411 412 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 413 414 struct sighand_struct { 415 atomic_t count; 416 struct k_sigaction action[_NSIG]; 417 spinlock_t siglock; 418 wait_queue_head_t signalfd_wqh; 419 }; 420 421 struct pacct_struct { 422 int ac_flag; 423 long ac_exitcode; 424 unsigned long ac_mem; 425 cputime_t ac_utime, ac_stime; 426 unsigned long ac_minflt, ac_majflt; 427 }; 428 429 struct cpu_itimer { 430 cputime_t expires; 431 cputime_t incr; 432 u32 error; 433 u32 incr_error; 434 }; 435 436 /** 437 * struct task_cputime - collected CPU time counts 438 * @utime: time spent in user mode, in &cputime_t units 439 * @stime: time spent in kernel mode, in &cputime_t units 440 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 441 * 442 * This structure groups together three kinds of CPU time that are 443 * tracked for threads and thread groups. Most things considering 444 * CPU time want to group these counts together and treat all three 445 * of them in parallel. 446 */ 447 struct task_cputime { 448 cputime_t utime; 449 cputime_t stime; 450 unsigned long long sum_exec_runtime; 451 }; 452 /* Alternate field names when used to cache expirations. */ 453 #define prof_exp stime 454 #define virt_exp utime 455 #define sched_exp sum_exec_runtime 456 457 #define INIT_CPUTIME \ 458 (struct task_cputime) { \ 459 .utime = 0, \ 460 .stime = 0, \ 461 .sum_exec_runtime = 0, \ 462 } 463 464 /* 465 * Disable preemption until the scheduler is running. 466 * Reset by start_kernel()->sched_init()->init_idle(). 467 * 468 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 469 * before the scheduler is active -- see should_resched(). 470 */ 471 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 472 473 /** 474 * struct thread_group_cputimer - thread group interval timer counts 475 * @cputime: thread group interval timers. 476 * @running: non-zero when there are timers running and 477 * @cputime receives updates. 478 * @lock: lock for fields in this struct. 479 * 480 * This structure contains the version of task_cputime, above, that is 481 * used for thread group CPU timer calculations. 482 */ 483 struct thread_group_cputimer { 484 struct task_cputime cputime; 485 int running; 486 raw_spinlock_t lock; 487 }; 488 489 #include <linux/rwsem.h> 490 struct autogroup; 491 492 /* 493 * NOTE! "signal_struct" does not have its own 494 * locking, because a shared signal_struct always 495 * implies a shared sighand_struct, so locking 496 * sighand_struct is always a proper superset of 497 * the locking of signal_struct. 498 */ 499 struct signal_struct { 500 atomic_t sigcnt; 501 atomic_t live; 502 int nr_threads; 503 504 wait_queue_head_t wait_chldexit; /* for wait4() */ 505 506 /* current thread group signal load-balancing target: */ 507 struct task_struct *curr_target; 508 509 /* shared signal handling: */ 510 struct sigpending shared_pending; 511 512 /* thread group exit support */ 513 int group_exit_code; 514 /* overloaded: 515 * - notify group_exit_task when ->count is equal to notify_count 516 * - everyone except group_exit_task is stopped during signal delivery 517 * of fatal signals, group_exit_task processes the signal. 518 */ 519 int notify_count; 520 struct task_struct *group_exit_task; 521 522 /* thread group stop support, overloads group_exit_code too */ 523 int group_stop_count; 524 unsigned int flags; /* see SIGNAL_* flags below */ 525 526 /* 527 * PR_SET_CHILD_SUBREAPER marks a process, like a service 528 * manager, to re-parent orphan (double-forking) child processes 529 * to this process instead of 'init'. The service manager is 530 * able to receive SIGCHLD signals and is able to investigate 531 * the process until it calls wait(). All children of this 532 * process will inherit a flag if they should look for a 533 * child_subreaper process at exit. 534 */ 535 unsigned int is_child_subreaper:1; 536 unsigned int has_child_subreaper:1; 537 538 /* POSIX.1b Interval Timers */ 539 struct list_head posix_timers; 540 541 /* ITIMER_REAL timer for the process */ 542 struct hrtimer real_timer; 543 struct pid *leader_pid; 544 ktime_t it_real_incr; 545 546 /* 547 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 548 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 549 * values are defined to 0 and 1 respectively 550 */ 551 struct cpu_itimer it[2]; 552 553 /* 554 * Thread group totals for process CPU timers. 555 * See thread_group_cputimer(), et al, for details. 556 */ 557 struct thread_group_cputimer cputimer; 558 559 /* Earliest-expiration cache. */ 560 struct task_cputime cputime_expires; 561 562 struct list_head cpu_timers[3]; 563 564 struct pid *tty_old_pgrp; 565 566 /* boolean value for session group leader */ 567 int leader; 568 569 struct tty_struct *tty; /* NULL if no tty */ 570 571 #ifdef CONFIG_SCHED_AUTOGROUP 572 struct autogroup *autogroup; 573 #endif 574 /* 575 * Cumulative resource counters for dead threads in the group, 576 * and for reaped dead child processes forked by this group. 577 * Live threads maintain their own counters and add to these 578 * in __exit_signal, except for the group leader. 579 */ 580 cputime_t utime, stime, cutime, cstime; 581 cputime_t gtime; 582 cputime_t cgtime; 583 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 584 cputime_t prev_utime, prev_stime; 585 #endif 586 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 587 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 588 unsigned long inblock, oublock, cinblock, coublock; 589 unsigned long maxrss, cmaxrss; 590 struct task_io_accounting ioac; 591 592 /* 593 * Cumulative ns of schedule CPU time fo dead threads in the 594 * group, not including a zombie group leader, (This only differs 595 * from jiffies_to_ns(utime + stime) if sched_clock uses something 596 * other than jiffies.) 597 */ 598 unsigned long long sum_sched_runtime; 599 600 /* 601 * We don't bother to synchronize most readers of this at all, 602 * because there is no reader checking a limit that actually needs 603 * to get both rlim_cur and rlim_max atomically, and either one 604 * alone is a single word that can safely be read normally. 605 * getrlimit/setrlimit use task_lock(current->group_leader) to 606 * protect this instead of the siglock, because they really 607 * have no need to disable irqs. 608 */ 609 struct rlimit rlim[RLIM_NLIMITS]; 610 611 #ifdef CONFIG_BSD_PROCESS_ACCT 612 struct pacct_struct pacct; /* per-process accounting information */ 613 #endif 614 #ifdef CONFIG_TASKSTATS 615 struct taskstats *stats; 616 #endif 617 #ifdef CONFIG_AUDIT 618 unsigned audit_tty; 619 struct tty_audit_buf *tty_audit_buf; 620 #endif 621 #ifdef CONFIG_CGROUPS 622 /* 623 * group_rwsem prevents new tasks from entering the threadgroup and 624 * member tasks from exiting,a more specifically, setting of 625 * PF_EXITING. fork and exit paths are protected with this rwsem 626 * using threadgroup_change_begin/end(). Users which require 627 * threadgroup to remain stable should use threadgroup_[un]lock() 628 * which also takes care of exec path. Currently, cgroup is the 629 * only user. 630 */ 631 struct rw_semaphore group_rwsem; 632 #endif 633 634 int oom_score_adj; /* OOM kill score adjustment */ 635 int oom_score_adj_min; /* OOM kill score adjustment minimum value. 636 * Only settable by CAP_SYS_RESOURCE. */ 637 638 struct mutex cred_guard_mutex; /* guard against foreign influences on 639 * credential calculations 640 * (notably. ptrace) */ 641 }; 642 643 /* 644 * Bits in flags field of signal_struct. 645 */ 646 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 647 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 648 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 649 /* 650 * Pending notifications to parent. 651 */ 652 #define SIGNAL_CLD_STOPPED 0x00000010 653 #define SIGNAL_CLD_CONTINUED 0x00000020 654 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 655 656 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 657 658 /* If true, all threads except ->group_exit_task have pending SIGKILL */ 659 static inline int signal_group_exit(const struct signal_struct *sig) 660 { 661 return (sig->flags & SIGNAL_GROUP_EXIT) || 662 (sig->group_exit_task != NULL); 663 } 664 665 /* 666 * Some day this will be a full-fledged user tracking system.. 667 */ 668 struct user_struct { 669 atomic_t __count; /* reference count */ 670 atomic_t processes; /* How many processes does this user have? */ 671 atomic_t files; /* How many open files does this user have? */ 672 atomic_t sigpending; /* How many pending signals does this user have? */ 673 #ifdef CONFIG_INOTIFY_USER 674 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 675 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 676 #endif 677 #ifdef CONFIG_FANOTIFY 678 atomic_t fanotify_listeners; 679 #endif 680 #ifdef CONFIG_EPOLL 681 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 682 #endif 683 #ifdef CONFIG_POSIX_MQUEUE 684 /* protected by mq_lock */ 685 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 686 #endif 687 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 688 689 #ifdef CONFIG_KEYS 690 struct key *uid_keyring; /* UID specific keyring */ 691 struct key *session_keyring; /* UID's default session keyring */ 692 #endif 693 694 /* Hash table maintenance information */ 695 struct hlist_node uidhash_node; 696 kuid_t uid; 697 698 #ifdef CONFIG_PERF_EVENTS 699 atomic_long_t locked_vm; 700 #endif 701 }; 702 703 extern int uids_sysfs_init(void); 704 705 extern struct user_struct *find_user(kuid_t); 706 707 extern struct user_struct root_user; 708 #define INIT_USER (&root_user) 709 710 711 struct backing_dev_info; 712 struct reclaim_state; 713 714 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 715 struct sched_info { 716 /* cumulative counters */ 717 unsigned long pcount; /* # of times run on this cpu */ 718 unsigned long long run_delay; /* time spent waiting on a runqueue */ 719 720 /* timestamps */ 721 unsigned long long last_arrival,/* when we last ran on a cpu */ 722 last_queued; /* when we were last queued to run */ 723 }; 724 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 725 726 #ifdef CONFIG_TASK_DELAY_ACCT 727 struct task_delay_info { 728 spinlock_t lock; 729 unsigned int flags; /* Private per-task flags */ 730 731 /* For each stat XXX, add following, aligned appropriately 732 * 733 * struct timespec XXX_start, XXX_end; 734 * u64 XXX_delay; 735 * u32 XXX_count; 736 * 737 * Atomicity of updates to XXX_delay, XXX_count protected by 738 * single lock above (split into XXX_lock if contention is an issue). 739 */ 740 741 /* 742 * XXX_count is incremented on every XXX operation, the delay 743 * associated with the operation is added to XXX_delay. 744 * XXX_delay contains the accumulated delay time in nanoseconds. 745 */ 746 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 747 u64 blkio_delay; /* wait for sync block io completion */ 748 u64 swapin_delay; /* wait for swapin block io completion */ 749 u32 blkio_count; /* total count of the number of sync block */ 750 /* io operations performed */ 751 u32 swapin_count; /* total count of the number of swapin block */ 752 /* io operations performed */ 753 754 struct timespec freepages_start, freepages_end; 755 u64 freepages_delay; /* wait for memory reclaim */ 756 u32 freepages_count; /* total count of memory reclaim */ 757 }; 758 #endif /* CONFIG_TASK_DELAY_ACCT */ 759 760 static inline int sched_info_on(void) 761 { 762 #ifdef CONFIG_SCHEDSTATS 763 return 1; 764 #elif defined(CONFIG_TASK_DELAY_ACCT) 765 extern int delayacct_on; 766 return delayacct_on; 767 #else 768 return 0; 769 #endif 770 } 771 772 enum cpu_idle_type { 773 CPU_IDLE, 774 CPU_NOT_IDLE, 775 CPU_NEWLY_IDLE, 776 CPU_MAX_IDLE_TYPES 777 }; 778 779 /* 780 * Increase resolution of nice-level calculations for 64-bit architectures. 781 * The extra resolution improves shares distribution and load balancing of 782 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 783 * hierarchies, especially on larger systems. This is not a user-visible change 784 * and does not change the user-interface for setting shares/weights. 785 * 786 * We increase resolution only if we have enough bits to allow this increased 787 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 788 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 789 * increased costs. 790 */ 791 #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 792 # define SCHED_LOAD_RESOLUTION 10 793 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 794 # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 795 #else 796 # define SCHED_LOAD_RESOLUTION 0 797 # define scale_load(w) (w) 798 # define scale_load_down(w) (w) 799 #endif 800 801 #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 802 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 803 804 /* 805 * Increase resolution of cpu_power calculations 806 */ 807 #define SCHED_POWER_SHIFT 10 808 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 809 810 /* 811 * sched-domains (multiprocessor balancing) declarations: 812 */ 813 #ifdef CONFIG_SMP 814 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 815 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 816 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 817 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 818 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 819 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 820 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 821 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 822 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 823 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 824 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 825 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 826 827 extern int __weak arch_sd_sibiling_asym_packing(void); 828 829 struct sched_group_power { 830 atomic_t ref; 831 /* 832 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 833 * single CPU. 834 */ 835 unsigned int power, power_orig; 836 unsigned long next_update; 837 /* 838 * Number of busy cpus in this group. 839 */ 840 atomic_t nr_busy_cpus; 841 842 unsigned long cpumask[0]; /* iteration mask */ 843 }; 844 845 struct sched_group { 846 struct sched_group *next; /* Must be a circular list */ 847 atomic_t ref; 848 849 unsigned int group_weight; 850 struct sched_group_power *sgp; 851 852 /* 853 * The CPUs this group covers. 854 * 855 * NOTE: this field is variable length. (Allocated dynamically 856 * by attaching extra space to the end of the structure, 857 * depending on how many CPUs the kernel has booted up with) 858 */ 859 unsigned long cpumask[0]; 860 }; 861 862 static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 863 { 864 return to_cpumask(sg->cpumask); 865 } 866 867 /* 868 * cpumask masking which cpus in the group are allowed to iterate up the domain 869 * tree. 870 */ 871 static inline struct cpumask *sched_group_mask(struct sched_group *sg) 872 { 873 return to_cpumask(sg->sgp->cpumask); 874 } 875 876 /** 877 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 878 * @group: The group whose first cpu is to be returned. 879 */ 880 static inline unsigned int group_first_cpu(struct sched_group *group) 881 { 882 return cpumask_first(sched_group_cpus(group)); 883 } 884 885 struct sched_domain_attr { 886 int relax_domain_level; 887 }; 888 889 #define SD_ATTR_INIT (struct sched_domain_attr) { \ 890 .relax_domain_level = -1, \ 891 } 892 893 extern int sched_domain_level_max; 894 895 struct sched_domain { 896 /* These fields must be setup */ 897 struct sched_domain *parent; /* top domain must be null terminated */ 898 struct sched_domain *child; /* bottom domain must be null terminated */ 899 struct sched_group *groups; /* the balancing groups of the domain */ 900 unsigned long min_interval; /* Minimum balance interval ms */ 901 unsigned long max_interval; /* Maximum balance interval ms */ 902 unsigned int busy_factor; /* less balancing by factor if busy */ 903 unsigned int imbalance_pct; /* No balance until over watermark */ 904 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 905 unsigned int busy_idx; 906 unsigned int idle_idx; 907 unsigned int newidle_idx; 908 unsigned int wake_idx; 909 unsigned int forkexec_idx; 910 unsigned int smt_gain; 911 int flags; /* See SD_* */ 912 int level; 913 914 /* Runtime fields. */ 915 unsigned long last_balance; /* init to jiffies. units in jiffies */ 916 unsigned int balance_interval; /* initialise to 1. units in ms. */ 917 unsigned int nr_balance_failed; /* initialise to 0 */ 918 919 u64 last_update; 920 921 #ifdef CONFIG_SCHEDSTATS 922 /* load_balance() stats */ 923 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 924 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 925 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 926 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 927 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 928 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 929 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 930 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 931 932 /* Active load balancing */ 933 unsigned int alb_count; 934 unsigned int alb_failed; 935 unsigned int alb_pushed; 936 937 /* SD_BALANCE_EXEC stats */ 938 unsigned int sbe_count; 939 unsigned int sbe_balanced; 940 unsigned int sbe_pushed; 941 942 /* SD_BALANCE_FORK stats */ 943 unsigned int sbf_count; 944 unsigned int sbf_balanced; 945 unsigned int sbf_pushed; 946 947 /* try_to_wake_up() stats */ 948 unsigned int ttwu_wake_remote; 949 unsigned int ttwu_move_affine; 950 unsigned int ttwu_move_balance; 951 #endif 952 #ifdef CONFIG_SCHED_DEBUG 953 char *name; 954 #endif 955 union { 956 void *private; /* used during construction */ 957 struct rcu_head rcu; /* used during destruction */ 958 }; 959 960 unsigned int span_weight; 961 /* 962 * Span of all CPUs in this domain. 963 * 964 * NOTE: this field is variable length. (Allocated dynamically 965 * by attaching extra space to the end of the structure, 966 * depending on how many CPUs the kernel has booted up with) 967 */ 968 unsigned long span[0]; 969 }; 970 971 static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 972 { 973 return to_cpumask(sd->span); 974 } 975 976 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 977 struct sched_domain_attr *dattr_new); 978 979 /* Allocate an array of sched domains, for partition_sched_domains(). */ 980 cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 981 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 982 983 /* Test a flag in parent sched domain */ 984 static inline int test_sd_parent(struct sched_domain *sd, int flag) 985 { 986 if (sd->parent && (sd->parent->flags & flag)) 987 return 1; 988 989 return 0; 990 } 991 992 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 993 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 994 995 bool cpus_share_cache(int this_cpu, int that_cpu); 996 997 #else /* CONFIG_SMP */ 998 999 struct sched_domain_attr; 1000 1001 static inline void 1002 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1003 struct sched_domain_attr *dattr_new) 1004 { 1005 } 1006 1007 static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1008 { 1009 return true; 1010 } 1011 1012 #endif /* !CONFIG_SMP */ 1013 1014 1015 struct io_context; /* See blkdev.h */ 1016 1017 1018 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1019 extern void prefetch_stack(struct task_struct *t); 1020 #else 1021 static inline void prefetch_stack(struct task_struct *t) { } 1022 #endif 1023 1024 struct audit_context; /* See audit.c */ 1025 struct mempolicy; 1026 struct pipe_inode_info; 1027 struct uts_namespace; 1028 1029 struct rq; 1030 struct sched_domain; 1031 1032 /* 1033 * wake flags 1034 */ 1035 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1036 #define WF_FORK 0x02 /* child wakeup after fork */ 1037 #define WF_MIGRATED 0x04 /* internal use, task got migrated */ 1038 1039 #define ENQUEUE_WAKEUP 1 1040 #define ENQUEUE_HEAD 2 1041 #ifdef CONFIG_SMP 1042 #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1043 #else 1044 #define ENQUEUE_WAKING 0 1045 #endif 1046 1047 #define DEQUEUE_SLEEP 1 1048 1049 struct sched_class { 1050 const struct sched_class *next; 1051 1052 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1053 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1054 void (*yield_task) (struct rq *rq); 1055 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1056 1057 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1058 1059 struct task_struct * (*pick_next_task) (struct rq *rq); 1060 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1061 1062 #ifdef CONFIG_SMP 1063 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1064 1065 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1066 void (*post_schedule) (struct rq *this_rq); 1067 void (*task_waking) (struct task_struct *task); 1068 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1069 1070 void (*set_cpus_allowed)(struct task_struct *p, 1071 const struct cpumask *newmask); 1072 1073 void (*rq_online)(struct rq *rq); 1074 void (*rq_offline)(struct rq *rq); 1075 #endif 1076 1077 void (*set_curr_task) (struct rq *rq); 1078 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1079 void (*task_fork) (struct task_struct *p); 1080 1081 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1082 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1083 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1084 int oldprio); 1085 1086 unsigned int (*get_rr_interval) (struct rq *rq, 1087 struct task_struct *task); 1088 1089 #ifdef CONFIG_FAIR_GROUP_SCHED 1090 void (*task_move_group) (struct task_struct *p, int on_rq); 1091 #endif 1092 }; 1093 1094 struct load_weight { 1095 unsigned long weight, inv_weight; 1096 }; 1097 1098 #ifdef CONFIG_SCHEDSTATS 1099 struct sched_statistics { 1100 u64 wait_start; 1101 u64 wait_max; 1102 u64 wait_count; 1103 u64 wait_sum; 1104 u64 iowait_count; 1105 u64 iowait_sum; 1106 1107 u64 sleep_start; 1108 u64 sleep_max; 1109 s64 sum_sleep_runtime; 1110 1111 u64 block_start; 1112 u64 block_max; 1113 u64 exec_max; 1114 u64 slice_max; 1115 1116 u64 nr_migrations_cold; 1117 u64 nr_failed_migrations_affine; 1118 u64 nr_failed_migrations_running; 1119 u64 nr_failed_migrations_hot; 1120 u64 nr_forced_migrations; 1121 1122 u64 nr_wakeups; 1123 u64 nr_wakeups_sync; 1124 u64 nr_wakeups_migrate; 1125 u64 nr_wakeups_local; 1126 u64 nr_wakeups_remote; 1127 u64 nr_wakeups_affine; 1128 u64 nr_wakeups_affine_attempts; 1129 u64 nr_wakeups_passive; 1130 u64 nr_wakeups_idle; 1131 }; 1132 #endif 1133 1134 struct sched_entity { 1135 struct load_weight load; /* for load-balancing */ 1136 struct rb_node run_node; 1137 struct list_head group_node; 1138 unsigned int on_rq; 1139 1140 u64 exec_start; 1141 u64 sum_exec_runtime; 1142 u64 vruntime; 1143 u64 prev_sum_exec_runtime; 1144 1145 u64 nr_migrations; 1146 1147 #ifdef CONFIG_SCHEDSTATS 1148 struct sched_statistics statistics; 1149 #endif 1150 1151 #ifdef CONFIG_FAIR_GROUP_SCHED 1152 struct sched_entity *parent; 1153 /* rq on which this entity is (to be) queued: */ 1154 struct cfs_rq *cfs_rq; 1155 /* rq "owned" by this entity/group: */ 1156 struct cfs_rq *my_q; 1157 #endif 1158 }; 1159 1160 struct sched_rt_entity { 1161 struct list_head run_list; 1162 unsigned long timeout; 1163 unsigned int time_slice; 1164 1165 struct sched_rt_entity *back; 1166 #ifdef CONFIG_RT_GROUP_SCHED 1167 struct sched_rt_entity *parent; 1168 /* rq on which this entity is (to be) queued: */ 1169 struct rt_rq *rt_rq; 1170 /* rq "owned" by this entity/group: */ 1171 struct rt_rq *my_q; 1172 #endif 1173 }; 1174 1175 /* 1176 * default timeslice is 100 msecs (used only for SCHED_RR tasks). 1177 * Timeslices get refilled after they expire. 1178 */ 1179 #define RR_TIMESLICE (100 * HZ / 1000) 1180 1181 struct rcu_node; 1182 1183 enum perf_event_task_context { 1184 perf_invalid_context = -1, 1185 perf_hw_context = 0, 1186 perf_sw_context, 1187 perf_nr_task_contexts, 1188 }; 1189 1190 struct task_struct { 1191 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1192 void *stack; 1193 atomic_t usage; 1194 unsigned int flags; /* per process flags, defined below */ 1195 unsigned int ptrace; 1196 1197 #ifdef CONFIG_SMP 1198 struct llist_node wake_entry; 1199 int on_cpu; 1200 #endif 1201 int on_rq; 1202 1203 int prio, static_prio, normal_prio; 1204 unsigned int rt_priority; 1205 const struct sched_class *sched_class; 1206 struct sched_entity se; 1207 struct sched_rt_entity rt; 1208 #ifdef CONFIG_CGROUP_SCHED 1209 struct task_group *sched_task_group; 1210 #endif 1211 1212 #ifdef CONFIG_PREEMPT_NOTIFIERS 1213 /* list of struct preempt_notifier: */ 1214 struct hlist_head preempt_notifiers; 1215 #endif 1216 1217 /* 1218 * fpu_counter contains the number of consecutive context switches 1219 * that the FPU is used. If this is over a threshold, the lazy fpu 1220 * saving becomes unlazy to save the trap. This is an unsigned char 1221 * so that after 256 times the counter wraps and the behavior turns 1222 * lazy again; this to deal with bursty apps that only use FPU for 1223 * a short time 1224 */ 1225 unsigned char fpu_counter; 1226 #ifdef CONFIG_BLK_DEV_IO_TRACE 1227 unsigned int btrace_seq; 1228 #endif 1229 1230 unsigned int policy; 1231 int nr_cpus_allowed; 1232 cpumask_t cpus_allowed; 1233 1234 #ifdef CONFIG_PREEMPT_RCU 1235 int rcu_read_lock_nesting; 1236 char rcu_read_unlock_special; 1237 struct list_head rcu_node_entry; 1238 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1239 #ifdef CONFIG_TREE_PREEMPT_RCU 1240 struct rcu_node *rcu_blocked_node; 1241 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1242 #ifdef CONFIG_RCU_BOOST 1243 struct rt_mutex *rcu_boost_mutex; 1244 #endif /* #ifdef CONFIG_RCU_BOOST */ 1245 1246 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1247 struct sched_info sched_info; 1248 #endif 1249 1250 struct list_head tasks; 1251 #ifdef CONFIG_SMP 1252 struct plist_node pushable_tasks; 1253 #endif 1254 1255 struct mm_struct *mm, *active_mm; 1256 #ifdef CONFIG_COMPAT_BRK 1257 unsigned brk_randomized:1; 1258 #endif 1259 #if defined(SPLIT_RSS_COUNTING) 1260 struct task_rss_stat rss_stat; 1261 #endif 1262 /* task state */ 1263 int exit_state; 1264 int exit_code, exit_signal; 1265 int pdeath_signal; /* The signal sent when the parent dies */ 1266 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1267 /* ??? */ 1268 unsigned int personality; 1269 unsigned did_exec:1; 1270 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1271 * execve */ 1272 unsigned in_iowait:1; 1273 1274 /* task may not gain privileges */ 1275 unsigned no_new_privs:1; 1276 1277 /* Revert to default priority/policy when forking */ 1278 unsigned sched_reset_on_fork:1; 1279 unsigned sched_contributes_to_load:1; 1280 1281 pid_t pid; 1282 pid_t tgid; 1283 1284 #ifdef CONFIG_CC_STACKPROTECTOR 1285 /* Canary value for the -fstack-protector gcc feature */ 1286 unsigned long stack_canary; 1287 #endif 1288 /* 1289 * pointers to (original) parent process, youngest child, younger sibling, 1290 * older sibling, respectively. (p->father can be replaced with 1291 * p->real_parent->pid) 1292 */ 1293 struct task_struct __rcu *real_parent; /* real parent process */ 1294 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1295 /* 1296 * children/sibling forms the list of my natural children 1297 */ 1298 struct list_head children; /* list of my children */ 1299 struct list_head sibling; /* linkage in my parent's children list */ 1300 struct task_struct *group_leader; /* threadgroup leader */ 1301 1302 /* 1303 * ptraced is the list of tasks this task is using ptrace on. 1304 * This includes both natural children and PTRACE_ATTACH targets. 1305 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1306 */ 1307 struct list_head ptraced; 1308 struct list_head ptrace_entry; 1309 1310 /* PID/PID hash table linkage. */ 1311 struct pid_link pids[PIDTYPE_MAX]; 1312 struct list_head thread_group; 1313 1314 struct completion *vfork_done; /* for vfork() */ 1315 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1316 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1317 1318 cputime_t utime, stime, utimescaled, stimescaled; 1319 cputime_t gtime; 1320 #ifndef CONFIG_VIRT_CPU_ACCOUNTING 1321 cputime_t prev_utime, prev_stime; 1322 #endif 1323 unsigned long nvcsw, nivcsw; /* context switch counts */ 1324 struct timespec start_time; /* monotonic time */ 1325 struct timespec real_start_time; /* boot based time */ 1326 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1327 unsigned long min_flt, maj_flt; 1328 1329 struct task_cputime cputime_expires; 1330 struct list_head cpu_timers[3]; 1331 1332 /* process credentials */ 1333 const struct cred __rcu *real_cred; /* objective and real subjective task 1334 * credentials (COW) */ 1335 const struct cred __rcu *cred; /* effective (overridable) subjective task 1336 * credentials (COW) */ 1337 char comm[TASK_COMM_LEN]; /* executable name excluding path 1338 - access with [gs]et_task_comm (which lock 1339 it with task_lock()) 1340 - initialized normally by setup_new_exec */ 1341 /* file system info */ 1342 int link_count, total_link_count; 1343 #ifdef CONFIG_SYSVIPC 1344 /* ipc stuff */ 1345 struct sysv_sem sysvsem; 1346 #endif 1347 #ifdef CONFIG_DETECT_HUNG_TASK 1348 /* hung task detection */ 1349 unsigned long last_switch_count; 1350 #endif 1351 /* CPU-specific state of this task */ 1352 struct thread_struct thread; 1353 /* filesystem information */ 1354 struct fs_struct *fs; 1355 /* open file information */ 1356 struct files_struct *files; 1357 /* namespaces */ 1358 struct nsproxy *nsproxy; 1359 /* signal handlers */ 1360 struct signal_struct *signal; 1361 struct sighand_struct *sighand; 1362 1363 sigset_t blocked, real_blocked; 1364 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1365 struct sigpending pending; 1366 1367 unsigned long sas_ss_sp; 1368 size_t sas_ss_size; 1369 int (*notifier)(void *priv); 1370 void *notifier_data; 1371 sigset_t *notifier_mask; 1372 struct callback_head *task_works; 1373 1374 struct audit_context *audit_context; 1375 #ifdef CONFIG_AUDITSYSCALL 1376 kuid_t loginuid; 1377 unsigned int sessionid; 1378 #endif 1379 struct seccomp seccomp; 1380 1381 /* Thread group tracking */ 1382 u32 parent_exec_id; 1383 u32 self_exec_id; 1384 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1385 * mempolicy */ 1386 spinlock_t alloc_lock; 1387 1388 /* Protection of the PI data structures: */ 1389 raw_spinlock_t pi_lock; 1390 1391 #ifdef CONFIG_RT_MUTEXES 1392 /* PI waiters blocked on a rt_mutex held by this task */ 1393 struct plist_head pi_waiters; 1394 /* Deadlock detection and priority inheritance handling */ 1395 struct rt_mutex_waiter *pi_blocked_on; 1396 #endif 1397 1398 #ifdef CONFIG_DEBUG_MUTEXES 1399 /* mutex deadlock detection */ 1400 struct mutex_waiter *blocked_on; 1401 #endif 1402 #ifdef CONFIG_TRACE_IRQFLAGS 1403 unsigned int irq_events; 1404 unsigned long hardirq_enable_ip; 1405 unsigned long hardirq_disable_ip; 1406 unsigned int hardirq_enable_event; 1407 unsigned int hardirq_disable_event; 1408 int hardirqs_enabled; 1409 int hardirq_context; 1410 unsigned long softirq_disable_ip; 1411 unsigned long softirq_enable_ip; 1412 unsigned int softirq_disable_event; 1413 unsigned int softirq_enable_event; 1414 int softirqs_enabled; 1415 int softirq_context; 1416 #endif 1417 #ifdef CONFIG_LOCKDEP 1418 # define MAX_LOCK_DEPTH 48UL 1419 u64 curr_chain_key; 1420 int lockdep_depth; 1421 unsigned int lockdep_recursion; 1422 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1423 gfp_t lockdep_reclaim_gfp; 1424 #endif 1425 1426 /* journalling filesystem info */ 1427 void *journal_info; 1428 1429 /* stacked block device info */ 1430 struct bio_list *bio_list; 1431 1432 #ifdef CONFIG_BLOCK 1433 /* stack plugging */ 1434 struct blk_plug *plug; 1435 #endif 1436 1437 /* VM state */ 1438 struct reclaim_state *reclaim_state; 1439 1440 struct backing_dev_info *backing_dev_info; 1441 1442 struct io_context *io_context; 1443 1444 unsigned long ptrace_message; 1445 siginfo_t *last_siginfo; /* For ptrace use. */ 1446 struct task_io_accounting ioac; 1447 #if defined(CONFIG_TASK_XACCT) 1448 u64 acct_rss_mem1; /* accumulated rss usage */ 1449 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1450 cputime_t acct_timexpd; /* stime + utime since last update */ 1451 #endif 1452 #ifdef CONFIG_CPUSETS 1453 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1454 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1455 int cpuset_mem_spread_rotor; 1456 int cpuset_slab_spread_rotor; 1457 #endif 1458 #ifdef CONFIG_CGROUPS 1459 /* Control Group info protected by css_set_lock */ 1460 struct css_set __rcu *cgroups; 1461 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1462 struct list_head cg_list; 1463 #endif 1464 #ifdef CONFIG_FUTEX 1465 struct robust_list_head __user *robust_list; 1466 #ifdef CONFIG_COMPAT 1467 struct compat_robust_list_head __user *compat_robust_list; 1468 #endif 1469 struct list_head pi_state_list; 1470 struct futex_pi_state *pi_state_cache; 1471 #endif 1472 #ifdef CONFIG_PERF_EVENTS 1473 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1474 struct mutex perf_event_mutex; 1475 struct list_head perf_event_list; 1476 #endif 1477 #ifdef CONFIG_NUMA 1478 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1479 short il_next; 1480 short pref_node_fork; 1481 #endif 1482 struct rcu_head rcu; 1483 1484 /* 1485 * cache last used pipe for splice 1486 */ 1487 struct pipe_inode_info *splice_pipe; 1488 1489 struct page_frag task_frag; 1490 1491 #ifdef CONFIG_TASK_DELAY_ACCT 1492 struct task_delay_info *delays; 1493 #endif 1494 #ifdef CONFIG_FAULT_INJECTION 1495 int make_it_fail; 1496 #endif 1497 /* 1498 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1499 * balance_dirty_pages() for some dirty throttling pause 1500 */ 1501 int nr_dirtied; 1502 int nr_dirtied_pause; 1503 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1504 1505 #ifdef CONFIG_LATENCYTOP 1506 int latency_record_count; 1507 struct latency_record latency_record[LT_SAVECOUNT]; 1508 #endif 1509 /* 1510 * time slack values; these are used to round up poll() and 1511 * select() etc timeout values. These are in nanoseconds. 1512 */ 1513 unsigned long timer_slack_ns; 1514 unsigned long default_timer_slack_ns; 1515 1516 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1517 /* Index of current stored address in ret_stack */ 1518 int curr_ret_stack; 1519 /* Stack of return addresses for return function tracing */ 1520 struct ftrace_ret_stack *ret_stack; 1521 /* time stamp for last schedule */ 1522 unsigned long long ftrace_timestamp; 1523 /* 1524 * Number of functions that haven't been traced 1525 * because of depth overrun. 1526 */ 1527 atomic_t trace_overrun; 1528 /* Pause for the tracing */ 1529 atomic_t tracing_graph_pause; 1530 #endif 1531 #ifdef CONFIG_TRACING 1532 /* state flags for use by tracers */ 1533 unsigned long trace; 1534 /* bitmask and counter of trace recursion */ 1535 unsigned long trace_recursion; 1536 #endif /* CONFIG_TRACING */ 1537 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1538 struct memcg_batch_info { 1539 int do_batch; /* incremented when batch uncharge started */ 1540 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1541 unsigned long nr_pages; /* uncharged usage */ 1542 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1543 } memcg_batch; 1544 #endif 1545 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1546 atomic_t ptrace_bp_refcnt; 1547 #endif 1548 #ifdef CONFIG_UPROBES 1549 struct uprobe_task *utask; 1550 #endif 1551 }; 1552 1553 /* Future-safe accessor for struct task_struct's cpus_allowed. */ 1554 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1555 1556 /* 1557 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 1558 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH 1559 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority 1560 * values are inverted: lower p->prio value means higher priority. 1561 * 1562 * The MAX_USER_RT_PRIO value allows the actual maximum 1563 * RT priority to be separate from the value exported to 1564 * user-space. This allows kernel threads to set their 1565 * priority to a value higher than any user task. Note: 1566 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 1567 */ 1568 1569 #define MAX_USER_RT_PRIO 100 1570 #define MAX_RT_PRIO MAX_USER_RT_PRIO 1571 1572 #define MAX_PRIO (MAX_RT_PRIO + 40) 1573 #define DEFAULT_PRIO (MAX_RT_PRIO + 20) 1574 1575 static inline int rt_prio(int prio) 1576 { 1577 if (unlikely(prio < MAX_RT_PRIO)) 1578 return 1; 1579 return 0; 1580 } 1581 1582 static inline int rt_task(struct task_struct *p) 1583 { 1584 return rt_prio(p->prio); 1585 } 1586 1587 static inline struct pid *task_pid(struct task_struct *task) 1588 { 1589 return task->pids[PIDTYPE_PID].pid; 1590 } 1591 1592 static inline struct pid *task_tgid(struct task_struct *task) 1593 { 1594 return task->group_leader->pids[PIDTYPE_PID].pid; 1595 } 1596 1597 /* 1598 * Without tasklist or rcu lock it is not safe to dereference 1599 * the result of task_pgrp/task_session even if task == current, 1600 * we can race with another thread doing sys_setsid/sys_setpgid. 1601 */ 1602 static inline struct pid *task_pgrp(struct task_struct *task) 1603 { 1604 return task->group_leader->pids[PIDTYPE_PGID].pid; 1605 } 1606 1607 static inline struct pid *task_session(struct task_struct *task) 1608 { 1609 return task->group_leader->pids[PIDTYPE_SID].pid; 1610 } 1611 1612 struct pid_namespace; 1613 1614 /* 1615 * the helpers to get the task's different pids as they are seen 1616 * from various namespaces 1617 * 1618 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1619 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1620 * current. 1621 * task_xid_nr_ns() : id seen from the ns specified; 1622 * 1623 * set_task_vxid() : assigns a virtual id to a task; 1624 * 1625 * see also pid_nr() etc in include/linux/pid.h 1626 */ 1627 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1628 struct pid_namespace *ns); 1629 1630 static inline pid_t task_pid_nr(struct task_struct *tsk) 1631 { 1632 return tsk->pid; 1633 } 1634 1635 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1636 struct pid_namespace *ns) 1637 { 1638 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1639 } 1640 1641 static inline pid_t task_pid_vnr(struct task_struct *tsk) 1642 { 1643 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1644 } 1645 1646 1647 static inline pid_t task_tgid_nr(struct task_struct *tsk) 1648 { 1649 return tsk->tgid; 1650 } 1651 1652 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1653 1654 static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1655 { 1656 return pid_vnr(task_tgid(tsk)); 1657 } 1658 1659 1660 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1661 struct pid_namespace *ns) 1662 { 1663 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1664 } 1665 1666 static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1667 { 1668 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1669 } 1670 1671 1672 static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1673 struct pid_namespace *ns) 1674 { 1675 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1676 } 1677 1678 static inline pid_t task_session_vnr(struct task_struct *tsk) 1679 { 1680 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1681 } 1682 1683 /* obsolete, do not use */ 1684 static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1685 { 1686 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1687 } 1688 1689 /** 1690 * pid_alive - check that a task structure is not stale 1691 * @p: Task structure to be checked. 1692 * 1693 * Test if a process is not yet dead (at most zombie state) 1694 * If pid_alive fails, then pointers within the task structure 1695 * can be stale and must not be dereferenced. 1696 */ 1697 static inline int pid_alive(struct task_struct *p) 1698 { 1699 return p->pids[PIDTYPE_PID].pid != NULL; 1700 } 1701 1702 /** 1703 * is_global_init - check if a task structure is init 1704 * @tsk: Task structure to be checked. 1705 * 1706 * Check if a task structure is the first user space task the kernel created. 1707 */ 1708 static inline int is_global_init(struct task_struct *tsk) 1709 { 1710 return tsk->pid == 1; 1711 } 1712 1713 /* 1714 * is_container_init: 1715 * check whether in the task is init in its own pid namespace. 1716 */ 1717 extern int is_container_init(struct task_struct *tsk); 1718 1719 extern struct pid *cad_pid; 1720 1721 extern void free_task(struct task_struct *tsk); 1722 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1723 1724 extern void __put_task_struct(struct task_struct *t); 1725 1726 static inline void put_task_struct(struct task_struct *t) 1727 { 1728 if (atomic_dec_and_test(&t->usage)) 1729 __put_task_struct(t); 1730 } 1731 1732 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1733 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); 1734 1735 /* 1736 * Per process flags 1737 */ 1738 #define PF_EXITING 0x00000004 /* getting shut down */ 1739 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1740 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1741 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1742 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1743 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1744 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1745 #define PF_DUMPCORE 0x00000200 /* dumped core */ 1746 #define PF_SIGNALED 0x00000400 /* killed by a signal */ 1747 #define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1748 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1749 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1750 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1751 #define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1752 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1753 #define PF_KSWAPD 0x00040000 /* I am kswapd */ 1754 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1755 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1756 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1757 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1758 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1759 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1760 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1761 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1762 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1763 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1764 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1765 1766 /* 1767 * Only the _current_ task can read/write to tsk->flags, but other 1768 * tasks can access tsk->flags in readonly mode for example 1769 * with tsk_used_math (like during threaded core dumping). 1770 * There is however an exception to this rule during ptrace 1771 * or during fork: the ptracer task is allowed to write to the 1772 * child->flags of its traced child (same goes for fork, the parent 1773 * can write to the child->flags), because we're guaranteed the 1774 * child is not running and in turn not changing child->flags 1775 * at the same time the parent does it. 1776 */ 1777 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1778 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1779 #define clear_used_math() clear_stopped_child_used_math(current) 1780 #define set_used_math() set_stopped_child_used_math(current) 1781 #define conditional_stopped_child_used_math(condition, child) \ 1782 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1783 #define conditional_used_math(condition) \ 1784 conditional_stopped_child_used_math(condition, current) 1785 #define copy_to_stopped_child_used_math(child) \ 1786 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1787 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1788 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1789 #define used_math() tsk_used_math(current) 1790 1791 /* 1792 * task->jobctl flags 1793 */ 1794 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1795 1796 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1797 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1798 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1799 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1800 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1801 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1802 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1803 1804 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1805 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1806 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1807 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1808 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1809 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1810 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1811 1812 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1813 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1814 1815 extern bool task_set_jobctl_pending(struct task_struct *task, 1816 unsigned int mask); 1817 extern void task_clear_jobctl_trapping(struct task_struct *task); 1818 extern void task_clear_jobctl_pending(struct task_struct *task, 1819 unsigned int mask); 1820 1821 #ifdef CONFIG_PREEMPT_RCU 1822 1823 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1824 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1825 1826 static inline void rcu_copy_process(struct task_struct *p) 1827 { 1828 p->rcu_read_lock_nesting = 0; 1829 p->rcu_read_unlock_special = 0; 1830 #ifdef CONFIG_TREE_PREEMPT_RCU 1831 p->rcu_blocked_node = NULL; 1832 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1833 #ifdef CONFIG_RCU_BOOST 1834 p->rcu_boost_mutex = NULL; 1835 #endif /* #ifdef CONFIG_RCU_BOOST */ 1836 INIT_LIST_HEAD(&p->rcu_node_entry); 1837 } 1838 1839 #else 1840 1841 static inline void rcu_copy_process(struct task_struct *p) 1842 { 1843 } 1844 1845 #endif 1846 1847 static inline void rcu_switch(struct task_struct *prev, 1848 struct task_struct *next) 1849 { 1850 #ifdef CONFIG_RCU_USER_QS 1851 rcu_user_hooks_switch(prev, next); 1852 #endif 1853 } 1854 1855 static inline void tsk_restore_flags(struct task_struct *task, 1856 unsigned long orig_flags, unsigned long flags) 1857 { 1858 task->flags &= ~flags; 1859 task->flags |= orig_flags & flags; 1860 } 1861 1862 #ifdef CONFIG_SMP 1863 extern void do_set_cpus_allowed(struct task_struct *p, 1864 const struct cpumask *new_mask); 1865 1866 extern int set_cpus_allowed_ptr(struct task_struct *p, 1867 const struct cpumask *new_mask); 1868 #else 1869 static inline void do_set_cpus_allowed(struct task_struct *p, 1870 const struct cpumask *new_mask) 1871 { 1872 } 1873 static inline int set_cpus_allowed_ptr(struct task_struct *p, 1874 const struct cpumask *new_mask) 1875 { 1876 if (!cpumask_test_cpu(0, new_mask)) 1877 return -EINVAL; 1878 return 0; 1879 } 1880 #endif 1881 1882 #ifdef CONFIG_NO_HZ 1883 void calc_load_enter_idle(void); 1884 void calc_load_exit_idle(void); 1885 #else 1886 static inline void calc_load_enter_idle(void) { } 1887 static inline void calc_load_exit_idle(void) { } 1888 #endif /* CONFIG_NO_HZ */ 1889 1890 #ifndef CONFIG_CPUMASK_OFFSTACK 1891 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1892 { 1893 return set_cpus_allowed_ptr(p, &new_mask); 1894 } 1895 #endif 1896 1897 /* 1898 * Do not use outside of architecture code which knows its limitations. 1899 * 1900 * sched_clock() has no promise of monotonicity or bounded drift between 1901 * CPUs, use (which you should not) requires disabling IRQs. 1902 * 1903 * Please use one of the three interfaces below. 1904 */ 1905 extern unsigned long long notrace sched_clock(void); 1906 /* 1907 * See the comment in kernel/sched/clock.c 1908 */ 1909 extern u64 cpu_clock(int cpu); 1910 extern u64 local_clock(void); 1911 extern u64 sched_clock_cpu(int cpu); 1912 1913 1914 extern void sched_clock_init(void); 1915 1916 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1917 static inline void sched_clock_tick(void) 1918 { 1919 } 1920 1921 static inline void sched_clock_idle_sleep_event(void) 1922 { 1923 } 1924 1925 static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1926 { 1927 } 1928 #else 1929 /* 1930 * Architectures can set this to 1 if they have specified 1931 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1932 * but then during bootup it turns out that sched_clock() 1933 * is reliable after all: 1934 */ 1935 extern int sched_clock_stable; 1936 1937 extern void sched_clock_tick(void); 1938 extern void sched_clock_idle_sleep_event(void); 1939 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1940 #endif 1941 1942 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1943 /* 1944 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1945 * The reason for this explicit opt-in is not to have perf penalty with 1946 * slow sched_clocks. 1947 */ 1948 extern void enable_sched_clock_irqtime(void); 1949 extern void disable_sched_clock_irqtime(void); 1950 #else 1951 static inline void enable_sched_clock_irqtime(void) {} 1952 static inline void disable_sched_clock_irqtime(void) {} 1953 #endif 1954 1955 extern unsigned long long 1956 task_sched_runtime(struct task_struct *task); 1957 1958 /* sched_exec is called by processes performing an exec */ 1959 #ifdef CONFIG_SMP 1960 extern void sched_exec(void); 1961 #else 1962 #define sched_exec() {} 1963 #endif 1964 1965 extern void sched_clock_idle_sleep_event(void); 1966 extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1967 1968 #ifdef CONFIG_HOTPLUG_CPU 1969 extern void idle_task_exit(void); 1970 #else 1971 static inline void idle_task_exit(void) {} 1972 #endif 1973 1974 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 1975 extern void wake_up_idle_cpu(int cpu); 1976 #else 1977 static inline void wake_up_idle_cpu(int cpu) { } 1978 #endif 1979 1980 extern unsigned int sysctl_sched_latency; 1981 extern unsigned int sysctl_sched_min_granularity; 1982 extern unsigned int sysctl_sched_wakeup_granularity; 1983 extern unsigned int sysctl_sched_child_runs_first; 1984 1985 enum sched_tunable_scaling { 1986 SCHED_TUNABLESCALING_NONE, 1987 SCHED_TUNABLESCALING_LOG, 1988 SCHED_TUNABLESCALING_LINEAR, 1989 SCHED_TUNABLESCALING_END, 1990 }; 1991 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; 1992 1993 #ifdef CONFIG_SCHED_DEBUG 1994 extern unsigned int sysctl_sched_migration_cost; 1995 extern unsigned int sysctl_sched_nr_migrate; 1996 extern unsigned int sysctl_sched_time_avg; 1997 extern unsigned int sysctl_timer_migration; 1998 extern unsigned int sysctl_sched_shares_window; 1999 2000 int sched_proc_update_handler(struct ctl_table *table, int write, 2001 void __user *buffer, size_t *length, 2002 loff_t *ppos); 2003 #endif 2004 #ifdef CONFIG_SCHED_DEBUG 2005 static inline unsigned int get_sysctl_timer_migration(void) 2006 { 2007 return sysctl_timer_migration; 2008 } 2009 #else 2010 static inline unsigned int get_sysctl_timer_migration(void) 2011 { 2012 return 1; 2013 } 2014 #endif 2015 extern unsigned int sysctl_sched_rt_period; 2016 extern int sysctl_sched_rt_runtime; 2017 2018 int sched_rt_handler(struct ctl_table *table, int write, 2019 void __user *buffer, size_t *lenp, 2020 loff_t *ppos); 2021 2022 #ifdef CONFIG_SCHED_AUTOGROUP 2023 extern unsigned int sysctl_sched_autogroup_enabled; 2024 2025 extern void sched_autogroup_create_attach(struct task_struct *p); 2026 extern void sched_autogroup_detach(struct task_struct *p); 2027 extern void sched_autogroup_fork(struct signal_struct *sig); 2028 extern void sched_autogroup_exit(struct signal_struct *sig); 2029 #ifdef CONFIG_PROC_FS 2030 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2031 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2032 #endif 2033 #else 2034 static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2035 static inline void sched_autogroup_detach(struct task_struct *p) { } 2036 static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2037 static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2038 #endif 2039 2040 #ifdef CONFIG_CFS_BANDWIDTH 2041 extern unsigned int sysctl_sched_cfs_bandwidth_slice; 2042 #endif 2043 2044 #ifdef CONFIG_RT_MUTEXES 2045 extern int rt_mutex_getprio(struct task_struct *p); 2046 extern void rt_mutex_setprio(struct task_struct *p, int prio); 2047 extern void rt_mutex_adjust_pi(struct task_struct *p); 2048 static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2049 { 2050 return tsk->pi_blocked_on != NULL; 2051 } 2052 #else 2053 static inline int rt_mutex_getprio(struct task_struct *p) 2054 { 2055 return p->normal_prio; 2056 } 2057 # define rt_mutex_adjust_pi(p) do { } while (0) 2058 static inline bool tsk_is_pi_blocked(struct task_struct *tsk) 2059 { 2060 return false; 2061 } 2062 #endif 2063 2064 extern bool yield_to(struct task_struct *p, bool preempt); 2065 extern void set_user_nice(struct task_struct *p, long nice); 2066 extern int task_prio(const struct task_struct *p); 2067 extern int task_nice(const struct task_struct *p); 2068 extern int can_nice(const struct task_struct *p, const int nice); 2069 extern int task_curr(const struct task_struct *p); 2070 extern int idle_cpu(int cpu); 2071 extern int sched_setscheduler(struct task_struct *, int, 2072 const struct sched_param *); 2073 extern int sched_setscheduler_nocheck(struct task_struct *, int, 2074 const struct sched_param *); 2075 extern struct task_struct *idle_task(int cpu); 2076 /** 2077 * is_idle_task - is the specified task an idle task? 2078 * @p: the task in question. 2079 */ 2080 static inline bool is_idle_task(const struct task_struct *p) 2081 { 2082 return p->pid == 0; 2083 } 2084 extern struct task_struct *curr_task(int cpu); 2085 extern void set_curr_task(int cpu, struct task_struct *p); 2086 2087 void yield(void); 2088 2089 /* 2090 * The default (Linux) execution domain. 2091 */ 2092 extern struct exec_domain default_exec_domain; 2093 2094 union thread_union { 2095 struct thread_info thread_info; 2096 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2097 }; 2098 2099 #ifndef __HAVE_ARCH_KSTACK_END 2100 static inline int kstack_end(void *addr) 2101 { 2102 /* Reliable end of stack detection: 2103 * Some APM bios versions misalign the stack 2104 */ 2105 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2106 } 2107 #endif 2108 2109 extern union thread_union init_thread_union; 2110 extern struct task_struct init_task; 2111 2112 extern struct mm_struct init_mm; 2113 2114 extern struct pid_namespace init_pid_ns; 2115 2116 /* 2117 * find a task by one of its numerical ids 2118 * 2119 * find_task_by_pid_ns(): 2120 * finds a task by its pid in the specified namespace 2121 * find_task_by_vpid(): 2122 * finds a task by its virtual pid 2123 * 2124 * see also find_vpid() etc in include/linux/pid.h 2125 */ 2126 2127 extern struct task_struct *find_task_by_vpid(pid_t nr); 2128 extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2129 struct pid_namespace *ns); 2130 2131 extern void __set_special_pids(struct pid *pid); 2132 2133 /* per-UID process charging. */ 2134 extern struct user_struct * alloc_uid(kuid_t); 2135 static inline struct user_struct *get_uid(struct user_struct *u) 2136 { 2137 atomic_inc(&u->__count); 2138 return u; 2139 } 2140 extern void free_uid(struct user_struct *); 2141 2142 #include <asm/current.h> 2143 2144 extern void xtime_update(unsigned long ticks); 2145 2146 extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2147 extern int wake_up_process(struct task_struct *tsk); 2148 extern void wake_up_new_task(struct task_struct *tsk); 2149 #ifdef CONFIG_SMP 2150 extern void kick_process(struct task_struct *tsk); 2151 #else 2152 static inline void kick_process(struct task_struct *tsk) { } 2153 #endif 2154 extern void sched_fork(struct task_struct *p); 2155 extern void sched_dead(struct task_struct *p); 2156 2157 extern void proc_caches_init(void); 2158 extern void flush_signals(struct task_struct *); 2159 extern void __flush_signals(struct task_struct *); 2160 extern void ignore_signals(struct task_struct *); 2161 extern void flush_signal_handlers(struct task_struct *, int force_default); 2162 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2163 2164 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2165 { 2166 unsigned long flags; 2167 int ret; 2168 2169 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2170 ret = dequeue_signal(tsk, mask, info); 2171 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2172 2173 return ret; 2174 } 2175 2176 extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2177 sigset_t *mask); 2178 extern void unblock_all_signals(void); 2179 extern void release_task(struct task_struct * p); 2180 extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2181 extern int force_sigsegv(int, struct task_struct *); 2182 extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2183 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2184 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2185 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2186 const struct cred *, u32); 2187 extern int kill_pgrp(struct pid *pid, int sig, int priv); 2188 extern int kill_pid(struct pid *pid, int sig, int priv); 2189 extern int kill_proc_info(int, struct siginfo *, pid_t); 2190 extern __must_check bool do_notify_parent(struct task_struct *, int); 2191 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2192 extern void force_sig(int, struct task_struct *); 2193 extern int send_sig(int, struct task_struct *, int); 2194 extern int zap_other_threads(struct task_struct *p); 2195 extern struct sigqueue *sigqueue_alloc(void); 2196 extern void sigqueue_free(struct sigqueue *); 2197 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2198 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2199 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 2200 2201 static inline void restore_saved_sigmask(void) 2202 { 2203 if (test_and_clear_restore_sigmask()) 2204 __set_current_blocked(¤t->saved_sigmask); 2205 } 2206 2207 static inline sigset_t *sigmask_to_save(void) 2208 { 2209 sigset_t *res = ¤t->blocked; 2210 if (unlikely(test_restore_sigmask())) 2211 res = ¤t->saved_sigmask; 2212 return res; 2213 } 2214 2215 static inline int kill_cad_pid(int sig, int priv) 2216 { 2217 return kill_pid(cad_pid, sig, priv); 2218 } 2219 2220 /* These can be the second arg to send_sig_info/send_group_sig_info. */ 2221 #define SEND_SIG_NOINFO ((struct siginfo *) 0) 2222 #define SEND_SIG_PRIV ((struct siginfo *) 1) 2223 #define SEND_SIG_FORCED ((struct siginfo *) 2) 2224 2225 /* 2226 * True if we are on the alternate signal stack. 2227 */ 2228 static inline int on_sig_stack(unsigned long sp) 2229 { 2230 #ifdef CONFIG_STACK_GROWSUP 2231 return sp >= current->sas_ss_sp && 2232 sp - current->sas_ss_sp < current->sas_ss_size; 2233 #else 2234 return sp > current->sas_ss_sp && 2235 sp - current->sas_ss_sp <= current->sas_ss_size; 2236 #endif 2237 } 2238 2239 static inline int sas_ss_flags(unsigned long sp) 2240 { 2241 return (current->sas_ss_size == 0 ? SS_DISABLE 2242 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2243 } 2244 2245 /* 2246 * Routines for handling mm_structs 2247 */ 2248 extern struct mm_struct * mm_alloc(void); 2249 2250 /* mmdrop drops the mm and the page tables */ 2251 extern void __mmdrop(struct mm_struct *); 2252 static inline void mmdrop(struct mm_struct * mm) 2253 { 2254 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2255 __mmdrop(mm); 2256 } 2257 2258 /* mmput gets rid of the mappings and all user-space */ 2259 extern void mmput(struct mm_struct *); 2260 /* Grab a reference to a task's mm, if it is not already going away */ 2261 extern struct mm_struct *get_task_mm(struct task_struct *task); 2262 /* 2263 * Grab a reference to a task's mm, if it is not already going away 2264 * and ptrace_may_access with the mode parameter passed to it 2265 * succeeds. 2266 */ 2267 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2268 /* Remove the current tasks stale references to the old mm_struct */ 2269 extern void mm_release(struct task_struct *, struct mm_struct *); 2270 /* Allocate a new mm structure and copy contents from tsk->mm */ 2271 extern struct mm_struct *dup_mm(struct task_struct *tsk); 2272 2273 extern int copy_thread(unsigned long, unsigned long, unsigned long, 2274 struct task_struct *, struct pt_regs *); 2275 extern void flush_thread(void); 2276 extern void exit_thread(void); 2277 2278 extern void exit_files(struct task_struct *); 2279 extern void __cleanup_sighand(struct sighand_struct *); 2280 2281 extern void exit_itimers(struct signal_struct *); 2282 extern void flush_itimer_signals(void); 2283 2284 extern void do_group_exit(int); 2285 2286 extern void daemonize(const char *, ...); 2287 extern int allow_signal(int); 2288 extern int disallow_signal(int); 2289 2290 extern int do_execve(const char *, 2291 const char __user * const __user *, 2292 const char __user * const __user *, struct pt_regs *); 2293 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 2294 struct task_struct *fork_idle(int); 2295 #ifdef CONFIG_GENERIC_KERNEL_THREAD 2296 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2297 #endif 2298 2299 extern void set_task_comm(struct task_struct *tsk, char *from); 2300 extern char *get_task_comm(char *to, struct task_struct *tsk); 2301 2302 #ifdef CONFIG_SMP 2303 void scheduler_ipi(void); 2304 extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2305 #else 2306 static inline void scheduler_ipi(void) { } 2307 static inline unsigned long wait_task_inactive(struct task_struct *p, 2308 long match_state) 2309 { 2310 return 1; 2311 } 2312 #endif 2313 2314 #define next_task(p) \ 2315 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2316 2317 #define for_each_process(p) \ 2318 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2319 2320 extern bool current_is_single_threaded(void); 2321 2322 /* 2323 * Careful: do_each_thread/while_each_thread is a double loop so 2324 * 'break' will not work as expected - use goto instead. 2325 */ 2326 #define do_each_thread(g, t) \ 2327 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2328 2329 #define while_each_thread(g, t) \ 2330 while ((t = next_thread(t)) != g) 2331 2332 static inline int get_nr_threads(struct task_struct *tsk) 2333 { 2334 return tsk->signal->nr_threads; 2335 } 2336 2337 static inline bool thread_group_leader(struct task_struct *p) 2338 { 2339 return p->exit_signal >= 0; 2340 } 2341 2342 /* Do to the insanities of de_thread it is possible for a process 2343 * to have the pid of the thread group leader without actually being 2344 * the thread group leader. For iteration through the pids in proc 2345 * all we care about is that we have a task with the appropriate 2346 * pid, we don't actually care if we have the right task. 2347 */ 2348 static inline int has_group_leader_pid(struct task_struct *p) 2349 { 2350 return p->pid == p->tgid; 2351 } 2352 2353 static inline 2354 int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2355 { 2356 return p1->tgid == p2->tgid; 2357 } 2358 2359 static inline struct task_struct *next_thread(const struct task_struct *p) 2360 { 2361 return list_entry_rcu(p->thread_group.next, 2362 struct task_struct, thread_group); 2363 } 2364 2365 static inline int thread_group_empty(struct task_struct *p) 2366 { 2367 return list_empty(&p->thread_group); 2368 } 2369 2370 #define delay_group_leader(p) \ 2371 (thread_group_leader(p) && !thread_group_empty(p)) 2372 2373 /* 2374 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2375 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2376 * pins the final release of task.io_context. Also protects ->cpuset and 2377 * ->cgroup.subsys[]. And ->vfork_done. 2378 * 2379 * Nests both inside and outside of read_lock(&tasklist_lock). 2380 * It must not be nested with write_lock_irq(&tasklist_lock), 2381 * neither inside nor outside. 2382 */ 2383 static inline void task_lock(struct task_struct *p) 2384 { 2385 spin_lock(&p->alloc_lock); 2386 } 2387 2388 static inline void task_unlock(struct task_struct *p) 2389 { 2390 spin_unlock(&p->alloc_lock); 2391 } 2392 2393 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2394 unsigned long *flags); 2395 2396 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2397 unsigned long *flags) 2398 { 2399 struct sighand_struct *ret; 2400 2401 ret = __lock_task_sighand(tsk, flags); 2402 (void)__cond_lock(&tsk->sighand->siglock, ret); 2403 return ret; 2404 } 2405 2406 static inline void unlock_task_sighand(struct task_struct *tsk, 2407 unsigned long *flags) 2408 { 2409 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2410 } 2411 2412 #ifdef CONFIG_CGROUPS 2413 static inline void threadgroup_change_begin(struct task_struct *tsk) 2414 { 2415 down_read(&tsk->signal->group_rwsem); 2416 } 2417 static inline void threadgroup_change_end(struct task_struct *tsk) 2418 { 2419 up_read(&tsk->signal->group_rwsem); 2420 } 2421 2422 /** 2423 * threadgroup_lock - lock threadgroup 2424 * @tsk: member task of the threadgroup to lock 2425 * 2426 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2427 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2428 * perform exec. This is useful for cases where the threadgroup needs to 2429 * stay stable across blockable operations. 2430 * 2431 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2432 * synchronization. While held, no new task will be added to threadgroup 2433 * and no existing live task will have its PF_EXITING set. 2434 * 2435 * During exec, a task goes and puts its thread group through unusual 2436 * changes. After de-threading, exclusive access is assumed to resources 2437 * which are usually shared by tasks in the same group - e.g. sighand may 2438 * be replaced with a new one. Also, the exec'ing task takes over group 2439 * leader role including its pid. Exclude these changes while locked by 2440 * grabbing cred_guard_mutex which is used to synchronize exec path. 2441 */ 2442 static inline void threadgroup_lock(struct task_struct *tsk) 2443 { 2444 /* 2445 * exec uses exit for de-threading nesting group_rwsem inside 2446 * cred_guard_mutex. Grab cred_guard_mutex first. 2447 */ 2448 mutex_lock(&tsk->signal->cred_guard_mutex); 2449 down_write(&tsk->signal->group_rwsem); 2450 } 2451 2452 /** 2453 * threadgroup_unlock - unlock threadgroup 2454 * @tsk: member task of the threadgroup to unlock 2455 * 2456 * Reverse threadgroup_lock(). 2457 */ 2458 static inline void threadgroup_unlock(struct task_struct *tsk) 2459 { 2460 up_write(&tsk->signal->group_rwsem); 2461 mutex_unlock(&tsk->signal->cred_guard_mutex); 2462 } 2463 #else 2464 static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2465 static inline void threadgroup_change_end(struct task_struct *tsk) {} 2466 static inline void threadgroup_lock(struct task_struct *tsk) {} 2467 static inline void threadgroup_unlock(struct task_struct *tsk) {} 2468 #endif 2469 2470 #ifndef __HAVE_THREAD_FUNCTIONS 2471 2472 #define task_thread_info(task) ((struct thread_info *)(task)->stack) 2473 #define task_stack_page(task) ((task)->stack) 2474 2475 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2476 { 2477 *task_thread_info(p) = *task_thread_info(org); 2478 task_thread_info(p)->task = p; 2479 } 2480 2481 static inline unsigned long *end_of_stack(struct task_struct *p) 2482 { 2483 return (unsigned long *)(task_thread_info(p) + 1); 2484 } 2485 2486 #endif 2487 2488 static inline int object_is_on_stack(void *obj) 2489 { 2490 void *stack = task_stack_page(current); 2491 2492 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2493 } 2494 2495 extern void thread_info_cache_init(void); 2496 2497 #ifdef CONFIG_DEBUG_STACK_USAGE 2498 static inline unsigned long stack_not_used(struct task_struct *p) 2499 { 2500 unsigned long *n = end_of_stack(p); 2501 2502 do { /* Skip over canary */ 2503 n++; 2504 } while (!*n); 2505 2506 return (unsigned long)n - (unsigned long)end_of_stack(p); 2507 } 2508 #endif 2509 2510 /* set thread flags in other task's structures 2511 * - see asm/thread_info.h for TIF_xxxx flags available 2512 */ 2513 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2514 { 2515 set_ti_thread_flag(task_thread_info(tsk), flag); 2516 } 2517 2518 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2519 { 2520 clear_ti_thread_flag(task_thread_info(tsk), flag); 2521 } 2522 2523 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2524 { 2525 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2526 } 2527 2528 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2529 { 2530 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2531 } 2532 2533 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2534 { 2535 return test_ti_thread_flag(task_thread_info(tsk), flag); 2536 } 2537 2538 static inline void set_tsk_need_resched(struct task_struct *tsk) 2539 { 2540 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2541 } 2542 2543 static inline void clear_tsk_need_resched(struct task_struct *tsk) 2544 { 2545 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2546 } 2547 2548 static inline int test_tsk_need_resched(struct task_struct *tsk) 2549 { 2550 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2551 } 2552 2553 static inline int restart_syscall(void) 2554 { 2555 set_tsk_thread_flag(current, TIF_SIGPENDING); 2556 return -ERESTARTNOINTR; 2557 } 2558 2559 static inline int signal_pending(struct task_struct *p) 2560 { 2561 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2562 } 2563 2564 static inline int __fatal_signal_pending(struct task_struct *p) 2565 { 2566 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2567 } 2568 2569 static inline int fatal_signal_pending(struct task_struct *p) 2570 { 2571 return signal_pending(p) && __fatal_signal_pending(p); 2572 } 2573 2574 static inline int signal_pending_state(long state, struct task_struct *p) 2575 { 2576 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2577 return 0; 2578 if (!signal_pending(p)) 2579 return 0; 2580 2581 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2582 } 2583 2584 static inline int need_resched(void) 2585 { 2586 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2587 } 2588 2589 /* 2590 * cond_resched() and cond_resched_lock(): latency reduction via 2591 * explicit rescheduling in places that are safe. The return 2592 * value indicates whether a reschedule was done in fact. 2593 * cond_resched_lock() will drop the spinlock before scheduling, 2594 * cond_resched_softirq() will enable bhs before scheduling. 2595 */ 2596 extern int _cond_resched(void); 2597 2598 #define cond_resched() ({ \ 2599 __might_sleep(__FILE__, __LINE__, 0); \ 2600 _cond_resched(); \ 2601 }) 2602 2603 extern int __cond_resched_lock(spinlock_t *lock); 2604 2605 #ifdef CONFIG_PREEMPT_COUNT 2606 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2607 #else 2608 #define PREEMPT_LOCK_OFFSET 0 2609 #endif 2610 2611 #define cond_resched_lock(lock) ({ \ 2612 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2613 __cond_resched_lock(lock); \ 2614 }) 2615 2616 extern int __cond_resched_softirq(void); 2617 2618 #define cond_resched_softirq() ({ \ 2619 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2620 __cond_resched_softirq(); \ 2621 }) 2622 2623 /* 2624 * Does a critical section need to be broken due to another 2625 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2626 * but a general need for low latency) 2627 */ 2628 static inline int spin_needbreak(spinlock_t *lock) 2629 { 2630 #ifdef CONFIG_PREEMPT 2631 return spin_is_contended(lock); 2632 #else 2633 return 0; 2634 #endif 2635 } 2636 2637 /* 2638 * Thread group CPU time accounting. 2639 */ 2640 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2641 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2642 2643 static inline void thread_group_cputime_init(struct signal_struct *sig) 2644 { 2645 raw_spin_lock_init(&sig->cputimer.lock); 2646 } 2647 2648 /* 2649 * Reevaluate whether the task has signals pending delivery. 2650 * Wake the task if so. 2651 * This is required every time the blocked sigset_t changes. 2652 * callers must hold sighand->siglock. 2653 */ 2654 extern void recalc_sigpending_and_wake(struct task_struct *t); 2655 extern void recalc_sigpending(void); 2656 2657 extern void signal_wake_up(struct task_struct *t, int resume_stopped); 2658 2659 /* 2660 * Wrappers for p->thread_info->cpu access. No-op on UP. 2661 */ 2662 #ifdef CONFIG_SMP 2663 2664 static inline unsigned int task_cpu(const struct task_struct *p) 2665 { 2666 return task_thread_info(p)->cpu; 2667 } 2668 2669 extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2670 2671 #else 2672 2673 static inline unsigned int task_cpu(const struct task_struct *p) 2674 { 2675 return 0; 2676 } 2677 2678 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2679 { 2680 } 2681 2682 #endif /* CONFIG_SMP */ 2683 2684 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2685 extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2686 2687 extern void normalize_rt_tasks(void); 2688 2689 #ifdef CONFIG_CGROUP_SCHED 2690 2691 extern struct task_group root_task_group; 2692 2693 extern struct task_group *sched_create_group(struct task_group *parent); 2694 extern void sched_destroy_group(struct task_group *tg); 2695 extern void sched_move_task(struct task_struct *tsk); 2696 #ifdef CONFIG_FAIR_GROUP_SCHED 2697 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2698 extern unsigned long sched_group_shares(struct task_group *tg); 2699 #endif 2700 #ifdef CONFIG_RT_GROUP_SCHED 2701 extern int sched_group_set_rt_runtime(struct task_group *tg, 2702 long rt_runtime_us); 2703 extern long sched_group_rt_runtime(struct task_group *tg); 2704 extern int sched_group_set_rt_period(struct task_group *tg, 2705 long rt_period_us); 2706 extern long sched_group_rt_period(struct task_group *tg); 2707 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2708 #endif 2709 #endif /* CONFIG_CGROUP_SCHED */ 2710 2711 extern int task_can_switch_user(struct user_struct *up, 2712 struct task_struct *tsk); 2713 2714 #ifdef CONFIG_TASK_XACCT 2715 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2716 { 2717 tsk->ioac.rchar += amt; 2718 } 2719 2720 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2721 { 2722 tsk->ioac.wchar += amt; 2723 } 2724 2725 static inline void inc_syscr(struct task_struct *tsk) 2726 { 2727 tsk->ioac.syscr++; 2728 } 2729 2730 static inline void inc_syscw(struct task_struct *tsk) 2731 { 2732 tsk->ioac.syscw++; 2733 } 2734 #else 2735 static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2736 { 2737 } 2738 2739 static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2740 { 2741 } 2742 2743 static inline void inc_syscr(struct task_struct *tsk) 2744 { 2745 } 2746 2747 static inline void inc_syscw(struct task_struct *tsk) 2748 { 2749 } 2750 #endif 2751 2752 #ifndef TASK_SIZE_OF 2753 #define TASK_SIZE_OF(tsk) TASK_SIZE 2754 #endif 2755 2756 #ifdef CONFIG_MM_OWNER 2757 extern void mm_update_next_owner(struct mm_struct *mm); 2758 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2759 #else 2760 static inline void mm_update_next_owner(struct mm_struct *mm) 2761 { 2762 } 2763 2764 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2765 { 2766 } 2767 #endif /* CONFIG_MM_OWNER */ 2768 2769 static inline unsigned long task_rlimit(const struct task_struct *tsk, 2770 unsigned int limit) 2771 { 2772 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2773 } 2774 2775 static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2776 unsigned int limit) 2777 { 2778 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2779 } 2780 2781 static inline unsigned long rlimit(unsigned int limit) 2782 { 2783 return task_rlimit(current, limit); 2784 } 2785 2786 static inline unsigned long rlimit_max(unsigned int limit) 2787 { 2788 return task_rlimit_max(current, limit); 2789 } 2790 2791 #endif 2792