xref: /linux/include/linux/sched.h (revision 055ee0d69887af1d511246d745610bdf9d627e75)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/resource.h>
25 #include <linux/latencytop.h>
26 #include <linux/sched/prio.h>
27 #include <linux/signal_types.h>
28 #include <linux/mm_types_task.h>
29 #include <linux/task_io_accounting.h>
30 
31 /* task_struct member predeclarations (sorted alphabetically): */
32 struct audit_context;
33 struct backing_dev_info;
34 struct bio_list;
35 struct blk_plug;
36 struct cfs_rq;
37 struct fs_struct;
38 struct futex_pi_state;
39 struct io_context;
40 struct mempolicy;
41 struct nameidata;
42 struct nsproxy;
43 struct perf_event_context;
44 struct pid_namespace;
45 struct pipe_inode_info;
46 struct rcu_node;
47 struct reclaim_state;
48 struct robust_list_head;
49 struct sched_attr;
50 struct sched_param;
51 struct seq_file;
52 struct sighand_struct;
53 struct signal_struct;
54 struct task_delay_info;
55 struct task_group;
56 
57 /*
58  * Task state bitmask. NOTE! These bits are also
59  * encoded in fs/proc/array.c: get_task_state().
60  *
61  * We have two separate sets of flags: task->state
62  * is about runnability, while task->exit_state are
63  * about the task exiting. Confusing, but this way
64  * modifying one set can't modify the other one by
65  * mistake.
66  */
67 
68 /* Used in tsk->state: */
69 #define TASK_RUNNING			0x0000
70 #define TASK_INTERRUPTIBLE		0x0001
71 #define TASK_UNINTERRUPTIBLE		0x0002
72 #define __TASK_STOPPED			0x0004
73 #define __TASK_TRACED			0x0008
74 /* Used in tsk->exit_state: */
75 #define EXIT_DEAD			0x0010
76 #define EXIT_ZOMBIE			0x0020
77 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
78 /* Used in tsk->state again: */
79 #define TASK_PARKED			0x0040
80 #define TASK_DEAD			0x0080
81 #define TASK_WAKEKILL			0x0100
82 #define TASK_WAKING			0x0200
83 #define TASK_NOLOAD			0x0400
84 #define TASK_NEW			0x0800
85 #define TASK_STATE_MAX			0x1000
86 
87 /* Convenience macros for the sake of set_current_state: */
88 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
89 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
90 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
91 
92 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
93 
94 /* Convenience macros for the sake of wake_up(): */
95 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
96 
97 /* get_task_state(): */
98 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
99 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
100 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
101 					 TASK_PARKED)
102 
103 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
104 
105 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
106 
107 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
108 
109 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
110 					 (task->flags & PF_FROZEN) == 0 && \
111 					 (task->state & TASK_NOLOAD) == 0)
112 
113 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
114 
115 /*
116  * Special states are those that do not use the normal wait-loop pattern. See
117  * the comment with set_special_state().
118  */
119 #define is_special_task_state(state)				\
120 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_DEAD))
121 
122 #define __set_current_state(state_value)			\
123 	do {							\
124 		WARN_ON_ONCE(is_special_task_state(state_value));\
125 		current->task_state_change = _THIS_IP_;		\
126 		current->state = (state_value);			\
127 	} while (0)
128 
129 #define set_current_state(state_value)				\
130 	do {							\
131 		WARN_ON_ONCE(is_special_task_state(state_value));\
132 		current->task_state_change = _THIS_IP_;		\
133 		smp_store_mb(current->state, (state_value));	\
134 	} while (0)
135 
136 #define set_special_state(state_value)					\
137 	do {								\
138 		unsigned long flags; /* may shadow */			\
139 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
140 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
141 		current->task_state_change = _THIS_IP_;			\
142 		current->state = (state_value);				\
143 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
144 	} while (0)
145 #else
146 /*
147  * set_current_state() includes a barrier so that the write of current->state
148  * is correctly serialised wrt the caller's subsequent test of whether to
149  * actually sleep:
150  *
151  *   for (;;) {
152  *	set_current_state(TASK_UNINTERRUPTIBLE);
153  *	if (!need_sleep)
154  *		break;
155  *
156  *	schedule();
157  *   }
158  *   __set_current_state(TASK_RUNNING);
159  *
160  * If the caller does not need such serialisation (because, for instance, the
161  * condition test and condition change and wakeup are under the same lock) then
162  * use __set_current_state().
163  *
164  * The above is typically ordered against the wakeup, which does:
165  *
166  *   need_sleep = false;
167  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
168  *
169  * Where wake_up_state() (and all other wakeup primitives) imply enough
170  * barriers to order the store of the variable against wakeup.
171  *
172  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
173  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
174  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
175  *
176  * However, with slightly different timing the wakeup TASK_RUNNING store can
177  * also collide with the TASK_UNINTERRUPTIBLE store. Loosing that store is not
178  * a problem either because that will result in one extra go around the loop
179  * and our @cond test will save the day.
180  *
181  * Also see the comments of try_to_wake_up().
182  */
183 #define __set_current_state(state_value)				\
184 	current->state = (state_value)
185 
186 #define set_current_state(state_value)					\
187 	smp_store_mb(current->state, (state_value))
188 
189 /*
190  * set_special_state() should be used for those states when the blocking task
191  * can not use the regular condition based wait-loop. In that case we must
192  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
193  * will not collide with our state change.
194  */
195 #define set_special_state(state_value)					\
196 	do {								\
197 		unsigned long flags; /* may shadow */			\
198 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
199 		current->state = (state_value);				\
200 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
201 	} while (0)
202 
203 #endif
204 
205 /* Task command name length: */
206 #define TASK_COMM_LEN			16
207 
208 extern void scheduler_tick(void);
209 
210 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
211 
212 extern long schedule_timeout(long timeout);
213 extern long schedule_timeout_interruptible(long timeout);
214 extern long schedule_timeout_killable(long timeout);
215 extern long schedule_timeout_uninterruptible(long timeout);
216 extern long schedule_timeout_idle(long timeout);
217 asmlinkage void schedule(void);
218 extern void schedule_preempt_disabled(void);
219 
220 extern int __must_check io_schedule_prepare(void);
221 extern void io_schedule_finish(int token);
222 extern long io_schedule_timeout(long timeout);
223 extern void io_schedule(void);
224 
225 /**
226  * struct prev_cputime - snapshot of system and user cputime
227  * @utime: time spent in user mode
228  * @stime: time spent in system mode
229  * @lock: protects the above two fields
230  *
231  * Stores previous user/system time values such that we can guarantee
232  * monotonicity.
233  */
234 struct prev_cputime {
235 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
236 	u64				utime;
237 	u64				stime;
238 	raw_spinlock_t			lock;
239 #endif
240 };
241 
242 /**
243  * struct task_cputime - collected CPU time counts
244  * @utime:		time spent in user mode, in nanoseconds
245  * @stime:		time spent in kernel mode, in nanoseconds
246  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
247  *
248  * This structure groups together three kinds of CPU time that are tracked for
249  * threads and thread groups.  Most things considering CPU time want to group
250  * these counts together and treat all three of them in parallel.
251  */
252 struct task_cputime {
253 	u64				utime;
254 	u64				stime;
255 	unsigned long long		sum_exec_runtime;
256 };
257 
258 /* Alternate field names when used on cache expirations: */
259 #define virt_exp			utime
260 #define prof_exp			stime
261 #define sched_exp			sum_exec_runtime
262 
263 enum vtime_state {
264 	/* Task is sleeping or running in a CPU with VTIME inactive: */
265 	VTIME_INACTIVE = 0,
266 	/* Task runs in userspace in a CPU with VTIME active: */
267 	VTIME_USER,
268 	/* Task runs in kernelspace in a CPU with VTIME active: */
269 	VTIME_SYS,
270 };
271 
272 struct vtime {
273 	seqcount_t		seqcount;
274 	unsigned long long	starttime;
275 	enum vtime_state	state;
276 	u64			utime;
277 	u64			stime;
278 	u64			gtime;
279 };
280 
281 struct sched_info {
282 #ifdef CONFIG_SCHED_INFO
283 	/* Cumulative counters: */
284 
285 	/* # of times we have run on this CPU: */
286 	unsigned long			pcount;
287 
288 	/* Time spent waiting on a runqueue: */
289 	unsigned long long		run_delay;
290 
291 	/* Timestamps: */
292 
293 	/* When did we last run on a CPU? */
294 	unsigned long long		last_arrival;
295 
296 	/* When were we last queued to run? */
297 	unsigned long long		last_queued;
298 
299 #endif /* CONFIG_SCHED_INFO */
300 };
301 
302 /*
303  * Integer metrics need fixed point arithmetic, e.g., sched/fair
304  * has a few: load, load_avg, util_avg, freq, and capacity.
305  *
306  * We define a basic fixed point arithmetic range, and then formalize
307  * all these metrics based on that basic range.
308  */
309 # define SCHED_FIXEDPOINT_SHIFT		10
310 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
311 
312 struct load_weight {
313 	unsigned long			weight;
314 	u32				inv_weight;
315 };
316 
317 /**
318  * struct util_est - Estimation utilization of FAIR tasks
319  * @enqueued: instantaneous estimated utilization of a task/cpu
320  * @ewma:     the Exponential Weighted Moving Average (EWMA)
321  *            utilization of a task
322  *
323  * Support data structure to track an Exponential Weighted Moving Average
324  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
325  * average each time a task completes an activation. Sample's weight is chosen
326  * so that the EWMA will be relatively insensitive to transient changes to the
327  * task's workload.
328  *
329  * The enqueued attribute has a slightly different meaning for tasks and cpus:
330  * - task:   the task's util_avg at last task dequeue time
331  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
332  * Thus, the util_est.enqueued of a task represents the contribution on the
333  * estimated utilization of the CPU where that task is currently enqueued.
334  *
335  * Only for tasks we track a moving average of the past instantaneous
336  * estimated utilization. This allows to absorb sporadic drops in utilization
337  * of an otherwise almost periodic task.
338  */
339 struct util_est {
340 	unsigned int			enqueued;
341 	unsigned int			ewma;
342 #define UTIL_EST_WEIGHT_SHIFT		2
343 } __attribute__((__aligned__(sizeof(u64))));
344 
345 /*
346  * The load_avg/util_avg accumulates an infinite geometric series
347  * (see __update_load_avg() in kernel/sched/fair.c).
348  *
349  * [load_avg definition]
350  *
351  *   load_avg = runnable% * scale_load_down(load)
352  *
353  * where runnable% is the time ratio that a sched_entity is runnable.
354  * For cfs_rq, it is the aggregated load_avg of all runnable and
355  * blocked sched_entities.
356  *
357  * load_avg may also take frequency scaling into account:
358  *
359  *   load_avg = runnable% * scale_load_down(load) * freq%
360  *
361  * where freq% is the CPU frequency normalized to the highest frequency.
362  *
363  * [util_avg definition]
364  *
365  *   util_avg = running% * SCHED_CAPACITY_SCALE
366  *
367  * where running% is the time ratio that a sched_entity is running on
368  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
369  * and blocked sched_entities.
370  *
371  * util_avg may also factor frequency scaling and CPU capacity scaling:
372  *
373  *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
374  *
375  * where freq% is the same as above, and capacity% is the CPU capacity
376  * normalized to the greatest capacity (due to uarch differences, etc).
377  *
378  * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
379  * themselves are in the range of [0, 1]. To do fixed point arithmetics,
380  * we therefore scale them to as large a range as necessary. This is for
381  * example reflected by util_avg's SCHED_CAPACITY_SCALE.
382  *
383  * [Overflow issue]
384  *
385  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
386  * with the highest load (=88761), always runnable on a single cfs_rq,
387  * and should not overflow as the number already hits PID_MAX_LIMIT.
388  *
389  * For all other cases (including 32-bit kernels), struct load_weight's
390  * weight will overflow first before we do, because:
391  *
392  *    Max(load_avg) <= Max(load.weight)
393  *
394  * Then it is the load_weight's responsibility to consider overflow
395  * issues.
396  */
397 struct sched_avg {
398 	u64				last_update_time;
399 	u64				load_sum;
400 	u64				runnable_load_sum;
401 	u32				util_sum;
402 	u32				period_contrib;
403 	unsigned long			load_avg;
404 	unsigned long			runnable_load_avg;
405 	unsigned long			util_avg;
406 	struct util_est			util_est;
407 } ____cacheline_aligned;
408 
409 struct sched_statistics {
410 #ifdef CONFIG_SCHEDSTATS
411 	u64				wait_start;
412 	u64				wait_max;
413 	u64				wait_count;
414 	u64				wait_sum;
415 	u64				iowait_count;
416 	u64				iowait_sum;
417 
418 	u64				sleep_start;
419 	u64				sleep_max;
420 	s64				sum_sleep_runtime;
421 
422 	u64				block_start;
423 	u64				block_max;
424 	u64				exec_max;
425 	u64				slice_max;
426 
427 	u64				nr_migrations_cold;
428 	u64				nr_failed_migrations_affine;
429 	u64				nr_failed_migrations_running;
430 	u64				nr_failed_migrations_hot;
431 	u64				nr_forced_migrations;
432 
433 	u64				nr_wakeups;
434 	u64				nr_wakeups_sync;
435 	u64				nr_wakeups_migrate;
436 	u64				nr_wakeups_local;
437 	u64				nr_wakeups_remote;
438 	u64				nr_wakeups_affine;
439 	u64				nr_wakeups_affine_attempts;
440 	u64				nr_wakeups_passive;
441 	u64				nr_wakeups_idle;
442 #endif
443 };
444 
445 struct sched_entity {
446 	/* For load-balancing: */
447 	struct load_weight		load;
448 	unsigned long			runnable_weight;
449 	struct rb_node			run_node;
450 	struct list_head		group_node;
451 	unsigned int			on_rq;
452 
453 	u64				exec_start;
454 	u64				sum_exec_runtime;
455 	u64				vruntime;
456 	u64				prev_sum_exec_runtime;
457 
458 	u64				nr_migrations;
459 
460 	struct sched_statistics		statistics;
461 
462 #ifdef CONFIG_FAIR_GROUP_SCHED
463 	int				depth;
464 	struct sched_entity		*parent;
465 	/* rq on which this entity is (to be) queued: */
466 	struct cfs_rq			*cfs_rq;
467 	/* rq "owned" by this entity/group: */
468 	struct cfs_rq			*my_q;
469 #endif
470 
471 #ifdef CONFIG_SMP
472 	/*
473 	 * Per entity load average tracking.
474 	 *
475 	 * Put into separate cache line so it does not
476 	 * collide with read-mostly values above.
477 	 */
478 	struct sched_avg		avg;
479 #endif
480 };
481 
482 struct sched_rt_entity {
483 	struct list_head		run_list;
484 	unsigned long			timeout;
485 	unsigned long			watchdog_stamp;
486 	unsigned int			time_slice;
487 	unsigned short			on_rq;
488 	unsigned short			on_list;
489 
490 	struct sched_rt_entity		*back;
491 #ifdef CONFIG_RT_GROUP_SCHED
492 	struct sched_rt_entity		*parent;
493 	/* rq on which this entity is (to be) queued: */
494 	struct rt_rq			*rt_rq;
495 	/* rq "owned" by this entity/group: */
496 	struct rt_rq			*my_q;
497 #endif
498 } __randomize_layout;
499 
500 struct sched_dl_entity {
501 	struct rb_node			rb_node;
502 
503 	/*
504 	 * Original scheduling parameters. Copied here from sched_attr
505 	 * during sched_setattr(), they will remain the same until
506 	 * the next sched_setattr().
507 	 */
508 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
509 	u64				dl_deadline;	/* Relative deadline of each instance	*/
510 	u64				dl_period;	/* Separation of two instances (period) */
511 	u64				dl_bw;		/* dl_runtime / dl_period		*/
512 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
513 
514 	/*
515 	 * Actual scheduling parameters. Initialized with the values above,
516 	 * they are continously updated during task execution. Note that
517 	 * the remaining runtime could be < 0 in case we are in overrun.
518 	 */
519 	s64				runtime;	/* Remaining runtime for this instance	*/
520 	u64				deadline;	/* Absolute deadline for this instance	*/
521 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
522 
523 	/*
524 	 * Some bool flags:
525 	 *
526 	 * @dl_throttled tells if we exhausted the runtime. If so, the
527 	 * task has to wait for a replenishment to be performed at the
528 	 * next firing of dl_timer.
529 	 *
530 	 * @dl_boosted tells if we are boosted due to DI. If so we are
531 	 * outside bandwidth enforcement mechanism (but only until we
532 	 * exit the critical section);
533 	 *
534 	 * @dl_yielded tells if task gave up the CPU before consuming
535 	 * all its available runtime during the last job.
536 	 *
537 	 * @dl_non_contending tells if the task is inactive while still
538 	 * contributing to the active utilization. In other words, it
539 	 * indicates if the inactive timer has been armed and its handler
540 	 * has not been executed yet. This flag is useful to avoid race
541 	 * conditions between the inactive timer handler and the wakeup
542 	 * code.
543 	 *
544 	 * @dl_overrun tells if the task asked to be informed about runtime
545 	 * overruns.
546 	 */
547 	unsigned int			dl_throttled      : 1;
548 	unsigned int			dl_boosted        : 1;
549 	unsigned int			dl_yielded        : 1;
550 	unsigned int			dl_non_contending : 1;
551 	unsigned int			dl_overrun	  : 1;
552 
553 	/*
554 	 * Bandwidth enforcement timer. Each -deadline task has its
555 	 * own bandwidth to be enforced, thus we need one timer per task.
556 	 */
557 	struct hrtimer			dl_timer;
558 
559 	/*
560 	 * Inactive timer, responsible for decreasing the active utilization
561 	 * at the "0-lag time". When a -deadline task blocks, it contributes
562 	 * to GRUB's active utilization until the "0-lag time", hence a
563 	 * timer is needed to decrease the active utilization at the correct
564 	 * time.
565 	 */
566 	struct hrtimer inactive_timer;
567 };
568 
569 union rcu_special {
570 	struct {
571 		u8			blocked;
572 		u8			need_qs;
573 		u8			exp_need_qs;
574 
575 		/* Otherwise the compiler can store garbage here: */
576 		u8			pad;
577 	} b; /* Bits. */
578 	u32 s; /* Set of bits. */
579 };
580 
581 enum perf_event_task_context {
582 	perf_invalid_context = -1,
583 	perf_hw_context = 0,
584 	perf_sw_context,
585 	perf_nr_task_contexts,
586 };
587 
588 struct wake_q_node {
589 	struct wake_q_node *next;
590 };
591 
592 struct task_struct {
593 #ifdef CONFIG_THREAD_INFO_IN_TASK
594 	/*
595 	 * For reasons of header soup (see current_thread_info()), this
596 	 * must be the first element of task_struct.
597 	 */
598 	struct thread_info		thread_info;
599 #endif
600 	/* -1 unrunnable, 0 runnable, >0 stopped: */
601 	volatile long			state;
602 
603 	/*
604 	 * This begins the randomizable portion of task_struct. Only
605 	 * scheduling-critical items should be added above here.
606 	 */
607 	randomized_struct_fields_start
608 
609 	void				*stack;
610 	atomic_t			usage;
611 	/* Per task flags (PF_*), defined further below: */
612 	unsigned int			flags;
613 	unsigned int			ptrace;
614 
615 #ifdef CONFIG_SMP
616 	struct llist_node		wake_entry;
617 	int				on_cpu;
618 #ifdef CONFIG_THREAD_INFO_IN_TASK
619 	/* Current CPU: */
620 	unsigned int			cpu;
621 #endif
622 	unsigned int			wakee_flips;
623 	unsigned long			wakee_flip_decay_ts;
624 	struct task_struct		*last_wakee;
625 
626 	/*
627 	 * recent_used_cpu is initially set as the last CPU used by a task
628 	 * that wakes affine another task. Waker/wakee relationships can
629 	 * push tasks around a CPU where each wakeup moves to the next one.
630 	 * Tracking a recently used CPU allows a quick search for a recently
631 	 * used CPU that may be idle.
632 	 */
633 	int				recent_used_cpu;
634 	int				wake_cpu;
635 #endif
636 	int				on_rq;
637 
638 	int				prio;
639 	int				static_prio;
640 	int				normal_prio;
641 	unsigned int			rt_priority;
642 
643 	const struct sched_class	*sched_class;
644 	struct sched_entity		se;
645 	struct sched_rt_entity		rt;
646 #ifdef CONFIG_CGROUP_SCHED
647 	struct task_group		*sched_task_group;
648 #endif
649 	struct sched_dl_entity		dl;
650 
651 #ifdef CONFIG_PREEMPT_NOTIFIERS
652 	/* List of struct preempt_notifier: */
653 	struct hlist_head		preempt_notifiers;
654 #endif
655 
656 #ifdef CONFIG_BLK_DEV_IO_TRACE
657 	unsigned int			btrace_seq;
658 #endif
659 
660 	unsigned int			policy;
661 	int				nr_cpus_allowed;
662 	cpumask_t			cpus_allowed;
663 
664 #ifdef CONFIG_PREEMPT_RCU
665 	int				rcu_read_lock_nesting;
666 	union rcu_special		rcu_read_unlock_special;
667 	struct list_head		rcu_node_entry;
668 	struct rcu_node			*rcu_blocked_node;
669 #endif /* #ifdef CONFIG_PREEMPT_RCU */
670 
671 #ifdef CONFIG_TASKS_RCU
672 	unsigned long			rcu_tasks_nvcsw;
673 	u8				rcu_tasks_holdout;
674 	u8				rcu_tasks_idx;
675 	int				rcu_tasks_idle_cpu;
676 	struct list_head		rcu_tasks_holdout_list;
677 #endif /* #ifdef CONFIG_TASKS_RCU */
678 
679 	struct sched_info		sched_info;
680 
681 	struct list_head		tasks;
682 #ifdef CONFIG_SMP
683 	struct plist_node		pushable_tasks;
684 	struct rb_node			pushable_dl_tasks;
685 #endif
686 
687 	struct mm_struct		*mm;
688 	struct mm_struct		*active_mm;
689 
690 	/* Per-thread vma caching: */
691 	struct vmacache			vmacache;
692 
693 #ifdef SPLIT_RSS_COUNTING
694 	struct task_rss_stat		rss_stat;
695 #endif
696 	int				exit_state;
697 	int				exit_code;
698 	int				exit_signal;
699 	/* The signal sent when the parent dies: */
700 	int				pdeath_signal;
701 	/* JOBCTL_*, siglock protected: */
702 	unsigned long			jobctl;
703 
704 	/* Used for emulating ABI behavior of previous Linux versions: */
705 	unsigned int			personality;
706 
707 	/* Scheduler bits, serialized by scheduler locks: */
708 	unsigned			sched_reset_on_fork:1;
709 	unsigned			sched_contributes_to_load:1;
710 	unsigned			sched_migrated:1;
711 	unsigned			sched_remote_wakeup:1;
712 	/* Force alignment to the next boundary: */
713 	unsigned			:0;
714 
715 	/* Unserialized, strictly 'current' */
716 
717 	/* Bit to tell LSMs we're in execve(): */
718 	unsigned			in_execve:1;
719 	unsigned			in_iowait:1;
720 #ifndef TIF_RESTORE_SIGMASK
721 	unsigned			restore_sigmask:1;
722 #endif
723 #ifdef CONFIG_MEMCG
724 	unsigned			memcg_may_oom:1;
725 #ifndef CONFIG_SLOB
726 	unsigned			memcg_kmem_skip_account:1;
727 #endif
728 #endif
729 #ifdef CONFIG_COMPAT_BRK
730 	unsigned			brk_randomized:1;
731 #endif
732 #ifdef CONFIG_CGROUPS
733 	/* disallow userland-initiated cgroup migration */
734 	unsigned			no_cgroup_migration:1;
735 #endif
736 
737 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
738 
739 	struct restart_block		restart_block;
740 
741 	pid_t				pid;
742 	pid_t				tgid;
743 
744 #ifdef CONFIG_CC_STACKPROTECTOR
745 	/* Canary value for the -fstack-protector GCC feature: */
746 	unsigned long			stack_canary;
747 #endif
748 	/*
749 	 * Pointers to the (original) parent process, youngest child, younger sibling,
750 	 * older sibling, respectively.  (p->father can be replaced with
751 	 * p->real_parent->pid)
752 	 */
753 
754 	/* Real parent process: */
755 	struct task_struct __rcu	*real_parent;
756 
757 	/* Recipient of SIGCHLD, wait4() reports: */
758 	struct task_struct __rcu	*parent;
759 
760 	/*
761 	 * Children/sibling form the list of natural children:
762 	 */
763 	struct list_head		children;
764 	struct list_head		sibling;
765 	struct task_struct		*group_leader;
766 
767 	/*
768 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
769 	 *
770 	 * This includes both natural children and PTRACE_ATTACH targets.
771 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
772 	 */
773 	struct list_head		ptraced;
774 	struct list_head		ptrace_entry;
775 
776 	/* PID/PID hash table linkage. */
777 	struct pid_link			pids[PIDTYPE_MAX];
778 	struct list_head		thread_group;
779 	struct list_head		thread_node;
780 
781 	struct completion		*vfork_done;
782 
783 	/* CLONE_CHILD_SETTID: */
784 	int __user			*set_child_tid;
785 
786 	/* CLONE_CHILD_CLEARTID: */
787 	int __user			*clear_child_tid;
788 
789 	u64				utime;
790 	u64				stime;
791 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
792 	u64				utimescaled;
793 	u64				stimescaled;
794 #endif
795 	u64				gtime;
796 	struct prev_cputime		prev_cputime;
797 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
798 	struct vtime			vtime;
799 #endif
800 
801 #ifdef CONFIG_NO_HZ_FULL
802 	atomic_t			tick_dep_mask;
803 #endif
804 	/* Context switch counts: */
805 	unsigned long			nvcsw;
806 	unsigned long			nivcsw;
807 
808 	/* Monotonic time in nsecs: */
809 	u64				start_time;
810 
811 	/* Boot based time in nsecs: */
812 	u64				real_start_time;
813 
814 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
815 	unsigned long			min_flt;
816 	unsigned long			maj_flt;
817 
818 #ifdef CONFIG_POSIX_TIMERS
819 	struct task_cputime		cputime_expires;
820 	struct list_head		cpu_timers[3];
821 #endif
822 
823 	/* Process credentials: */
824 
825 	/* Tracer's credentials at attach: */
826 	const struct cred __rcu		*ptracer_cred;
827 
828 	/* Objective and real subjective task credentials (COW): */
829 	const struct cred __rcu		*real_cred;
830 
831 	/* Effective (overridable) subjective task credentials (COW): */
832 	const struct cred __rcu		*cred;
833 
834 	/*
835 	 * executable name, excluding path.
836 	 *
837 	 * - normally initialized setup_new_exec()
838 	 * - access it with [gs]et_task_comm()
839 	 * - lock it with task_lock()
840 	 */
841 	char				comm[TASK_COMM_LEN];
842 
843 	struct nameidata		*nameidata;
844 
845 #ifdef CONFIG_SYSVIPC
846 	struct sysv_sem			sysvsem;
847 	struct sysv_shm			sysvshm;
848 #endif
849 #ifdef CONFIG_DETECT_HUNG_TASK
850 	unsigned long			last_switch_count;
851 #endif
852 	/* Filesystem information: */
853 	struct fs_struct		*fs;
854 
855 	/* Open file information: */
856 	struct files_struct		*files;
857 
858 	/* Namespaces: */
859 	struct nsproxy			*nsproxy;
860 
861 	/* Signal handlers: */
862 	struct signal_struct		*signal;
863 	struct sighand_struct		*sighand;
864 	sigset_t			blocked;
865 	sigset_t			real_blocked;
866 	/* Restored if set_restore_sigmask() was used: */
867 	sigset_t			saved_sigmask;
868 	struct sigpending		pending;
869 	unsigned long			sas_ss_sp;
870 	size_t				sas_ss_size;
871 	unsigned int			sas_ss_flags;
872 
873 	struct callback_head		*task_works;
874 
875 	struct audit_context		*audit_context;
876 #ifdef CONFIG_AUDITSYSCALL
877 	kuid_t				loginuid;
878 	unsigned int			sessionid;
879 #endif
880 	struct seccomp			seccomp;
881 
882 	/* Thread group tracking: */
883 	u32				parent_exec_id;
884 	u32				self_exec_id;
885 
886 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
887 	spinlock_t			alloc_lock;
888 
889 	/* Protection of the PI data structures: */
890 	raw_spinlock_t			pi_lock;
891 
892 	struct wake_q_node		wake_q;
893 
894 #ifdef CONFIG_RT_MUTEXES
895 	/* PI waiters blocked on a rt_mutex held by this task: */
896 	struct rb_root_cached		pi_waiters;
897 	/* Updated under owner's pi_lock and rq lock */
898 	struct task_struct		*pi_top_task;
899 	/* Deadlock detection and priority inheritance handling: */
900 	struct rt_mutex_waiter		*pi_blocked_on;
901 #endif
902 
903 #ifdef CONFIG_DEBUG_MUTEXES
904 	/* Mutex deadlock detection: */
905 	struct mutex_waiter		*blocked_on;
906 #endif
907 
908 #ifdef CONFIG_TRACE_IRQFLAGS
909 	unsigned int			irq_events;
910 	unsigned long			hardirq_enable_ip;
911 	unsigned long			hardirq_disable_ip;
912 	unsigned int			hardirq_enable_event;
913 	unsigned int			hardirq_disable_event;
914 	int				hardirqs_enabled;
915 	int				hardirq_context;
916 	unsigned long			softirq_disable_ip;
917 	unsigned long			softirq_enable_ip;
918 	unsigned int			softirq_disable_event;
919 	unsigned int			softirq_enable_event;
920 	int				softirqs_enabled;
921 	int				softirq_context;
922 #endif
923 
924 #ifdef CONFIG_LOCKDEP
925 # define MAX_LOCK_DEPTH			48UL
926 	u64				curr_chain_key;
927 	int				lockdep_depth;
928 	unsigned int			lockdep_recursion;
929 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
930 #endif
931 
932 #ifdef CONFIG_UBSAN
933 	unsigned int			in_ubsan;
934 #endif
935 
936 	/* Journalling filesystem info: */
937 	void				*journal_info;
938 
939 	/* Stacked block device info: */
940 	struct bio_list			*bio_list;
941 
942 #ifdef CONFIG_BLOCK
943 	/* Stack plugging: */
944 	struct blk_plug			*plug;
945 #endif
946 
947 	/* VM state: */
948 	struct reclaim_state		*reclaim_state;
949 
950 	struct backing_dev_info		*backing_dev_info;
951 
952 	struct io_context		*io_context;
953 
954 	/* Ptrace state: */
955 	unsigned long			ptrace_message;
956 	siginfo_t			*last_siginfo;
957 
958 	struct task_io_accounting	ioac;
959 #ifdef CONFIG_TASK_XACCT
960 	/* Accumulated RSS usage: */
961 	u64				acct_rss_mem1;
962 	/* Accumulated virtual memory usage: */
963 	u64				acct_vm_mem1;
964 	/* stime + utime since last update: */
965 	u64				acct_timexpd;
966 #endif
967 #ifdef CONFIG_CPUSETS
968 	/* Protected by ->alloc_lock: */
969 	nodemask_t			mems_allowed;
970 	/* Seqence number to catch updates: */
971 	seqcount_t			mems_allowed_seq;
972 	int				cpuset_mem_spread_rotor;
973 	int				cpuset_slab_spread_rotor;
974 #endif
975 #ifdef CONFIG_CGROUPS
976 	/* Control Group info protected by css_set_lock: */
977 	struct css_set __rcu		*cgroups;
978 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
979 	struct list_head		cg_list;
980 #endif
981 #ifdef CONFIG_INTEL_RDT
982 	u32				closid;
983 	u32				rmid;
984 #endif
985 #ifdef CONFIG_FUTEX
986 	struct robust_list_head __user	*robust_list;
987 #ifdef CONFIG_COMPAT
988 	struct compat_robust_list_head __user *compat_robust_list;
989 #endif
990 	struct list_head		pi_state_list;
991 	struct futex_pi_state		*pi_state_cache;
992 #endif
993 #ifdef CONFIG_PERF_EVENTS
994 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
995 	struct mutex			perf_event_mutex;
996 	struct list_head		perf_event_list;
997 #endif
998 #ifdef CONFIG_DEBUG_PREEMPT
999 	unsigned long			preempt_disable_ip;
1000 #endif
1001 #ifdef CONFIG_NUMA
1002 	/* Protected by alloc_lock: */
1003 	struct mempolicy		*mempolicy;
1004 	short				il_prev;
1005 	short				pref_node_fork;
1006 #endif
1007 #ifdef CONFIG_NUMA_BALANCING
1008 	int				numa_scan_seq;
1009 	unsigned int			numa_scan_period;
1010 	unsigned int			numa_scan_period_max;
1011 	int				numa_preferred_nid;
1012 	unsigned long			numa_migrate_retry;
1013 	/* Migration stamp: */
1014 	u64				node_stamp;
1015 	u64				last_task_numa_placement;
1016 	u64				last_sum_exec_runtime;
1017 	struct callback_head		numa_work;
1018 
1019 	struct list_head		numa_entry;
1020 	struct numa_group		*numa_group;
1021 
1022 	/*
1023 	 * numa_faults is an array split into four regions:
1024 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1025 	 * in this precise order.
1026 	 *
1027 	 * faults_memory: Exponential decaying average of faults on a per-node
1028 	 * basis. Scheduling placement decisions are made based on these
1029 	 * counts. The values remain static for the duration of a PTE scan.
1030 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1031 	 * hinting fault was incurred.
1032 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1033 	 * during the current scan window. When the scan completes, the counts
1034 	 * in faults_memory and faults_cpu decay and these values are copied.
1035 	 */
1036 	unsigned long			*numa_faults;
1037 	unsigned long			total_numa_faults;
1038 
1039 	/*
1040 	 * numa_faults_locality tracks if faults recorded during the last
1041 	 * scan window were remote/local or failed to migrate. The task scan
1042 	 * period is adapted based on the locality of the faults with different
1043 	 * weights depending on whether they were shared or private faults
1044 	 */
1045 	unsigned long			numa_faults_locality[3];
1046 
1047 	unsigned long			numa_pages_migrated;
1048 #endif /* CONFIG_NUMA_BALANCING */
1049 
1050 	struct tlbflush_unmap_batch	tlb_ubc;
1051 
1052 	struct rcu_head			rcu;
1053 
1054 	/* Cache last used pipe for splice(): */
1055 	struct pipe_inode_info		*splice_pipe;
1056 
1057 	struct page_frag		task_frag;
1058 
1059 #ifdef CONFIG_TASK_DELAY_ACCT
1060 	struct task_delay_info		*delays;
1061 #endif
1062 
1063 #ifdef CONFIG_FAULT_INJECTION
1064 	int				make_it_fail;
1065 	unsigned int			fail_nth;
1066 #endif
1067 	/*
1068 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1069 	 * balance_dirty_pages() for a dirty throttling pause:
1070 	 */
1071 	int				nr_dirtied;
1072 	int				nr_dirtied_pause;
1073 	/* Start of a write-and-pause period: */
1074 	unsigned long			dirty_paused_when;
1075 
1076 #ifdef CONFIG_LATENCYTOP
1077 	int				latency_record_count;
1078 	struct latency_record		latency_record[LT_SAVECOUNT];
1079 #endif
1080 	/*
1081 	 * Time slack values; these are used to round up poll() and
1082 	 * select() etc timeout values. These are in nanoseconds.
1083 	 */
1084 	u64				timer_slack_ns;
1085 	u64				default_timer_slack_ns;
1086 
1087 #ifdef CONFIG_KASAN
1088 	unsigned int			kasan_depth;
1089 #endif
1090 
1091 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1092 	/* Index of current stored address in ret_stack: */
1093 	int				curr_ret_stack;
1094 
1095 	/* Stack of return addresses for return function tracing: */
1096 	struct ftrace_ret_stack		*ret_stack;
1097 
1098 	/* Timestamp for last schedule: */
1099 	unsigned long long		ftrace_timestamp;
1100 
1101 	/*
1102 	 * Number of functions that haven't been traced
1103 	 * because of depth overrun:
1104 	 */
1105 	atomic_t			trace_overrun;
1106 
1107 	/* Pause tracing: */
1108 	atomic_t			tracing_graph_pause;
1109 #endif
1110 
1111 #ifdef CONFIG_TRACING
1112 	/* State flags for use by tracers: */
1113 	unsigned long			trace;
1114 
1115 	/* Bitmask and counter of trace recursion: */
1116 	unsigned long			trace_recursion;
1117 #endif /* CONFIG_TRACING */
1118 
1119 #ifdef CONFIG_KCOV
1120 	/* Coverage collection mode enabled for this task (0 if disabled): */
1121 	enum kcov_mode			kcov_mode;
1122 
1123 	/* Size of the kcov_area: */
1124 	unsigned int			kcov_size;
1125 
1126 	/* Buffer for coverage collection: */
1127 	void				*kcov_area;
1128 
1129 	/* KCOV descriptor wired with this task or NULL: */
1130 	struct kcov			*kcov;
1131 #endif
1132 
1133 #ifdef CONFIG_MEMCG
1134 	struct mem_cgroup		*memcg_in_oom;
1135 	gfp_t				memcg_oom_gfp_mask;
1136 	int				memcg_oom_order;
1137 
1138 	/* Number of pages to reclaim on returning to userland: */
1139 	unsigned int			memcg_nr_pages_over_high;
1140 #endif
1141 
1142 #ifdef CONFIG_UPROBES
1143 	struct uprobe_task		*utask;
1144 #endif
1145 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1146 	unsigned int			sequential_io;
1147 	unsigned int			sequential_io_avg;
1148 #endif
1149 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1150 	unsigned long			task_state_change;
1151 #endif
1152 	int				pagefault_disabled;
1153 #ifdef CONFIG_MMU
1154 	struct task_struct		*oom_reaper_list;
1155 #endif
1156 #ifdef CONFIG_VMAP_STACK
1157 	struct vm_struct		*stack_vm_area;
1158 #endif
1159 #ifdef CONFIG_THREAD_INFO_IN_TASK
1160 	/* A live task holds one reference: */
1161 	atomic_t			stack_refcount;
1162 #endif
1163 #ifdef CONFIG_LIVEPATCH
1164 	int patch_state;
1165 #endif
1166 #ifdef CONFIG_SECURITY
1167 	/* Used by LSM modules for access restriction: */
1168 	void				*security;
1169 #endif
1170 
1171 	/*
1172 	 * New fields for task_struct should be added above here, so that
1173 	 * they are included in the randomized portion of task_struct.
1174 	 */
1175 	randomized_struct_fields_end
1176 
1177 	/* CPU-specific state of this task: */
1178 	struct thread_struct		thread;
1179 
1180 	/*
1181 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1182 	 * structure.  It *MUST* be at the end of 'task_struct'.
1183 	 *
1184 	 * Do not put anything below here!
1185 	 */
1186 };
1187 
1188 static inline struct pid *task_pid(struct task_struct *task)
1189 {
1190 	return task->pids[PIDTYPE_PID].pid;
1191 }
1192 
1193 static inline struct pid *task_tgid(struct task_struct *task)
1194 {
1195 	return task->group_leader->pids[PIDTYPE_PID].pid;
1196 }
1197 
1198 /*
1199  * Without tasklist or RCU lock it is not safe to dereference
1200  * the result of task_pgrp/task_session even if task == current,
1201  * we can race with another thread doing sys_setsid/sys_setpgid.
1202  */
1203 static inline struct pid *task_pgrp(struct task_struct *task)
1204 {
1205 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1206 }
1207 
1208 static inline struct pid *task_session(struct task_struct *task)
1209 {
1210 	return task->group_leader->pids[PIDTYPE_SID].pid;
1211 }
1212 
1213 /*
1214  * the helpers to get the task's different pids as they are seen
1215  * from various namespaces
1216  *
1217  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1218  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1219  *                     current.
1220  * task_xid_nr_ns()  : id seen from the ns specified;
1221  *
1222  * see also pid_nr() etc in include/linux/pid.h
1223  */
1224 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1225 
1226 static inline pid_t task_pid_nr(struct task_struct *tsk)
1227 {
1228 	return tsk->pid;
1229 }
1230 
1231 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1232 {
1233 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1234 }
1235 
1236 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1237 {
1238 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1239 }
1240 
1241 
1242 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1243 {
1244 	return tsk->tgid;
1245 }
1246 
1247 /**
1248  * pid_alive - check that a task structure is not stale
1249  * @p: Task structure to be checked.
1250  *
1251  * Test if a process is not yet dead (at most zombie state)
1252  * If pid_alive fails, then pointers within the task structure
1253  * can be stale and must not be dereferenced.
1254  *
1255  * Return: 1 if the process is alive. 0 otherwise.
1256  */
1257 static inline int pid_alive(const struct task_struct *p)
1258 {
1259 	return p->pids[PIDTYPE_PID].pid != NULL;
1260 }
1261 
1262 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1263 {
1264 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1265 }
1266 
1267 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1268 {
1269 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1270 }
1271 
1272 
1273 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1274 {
1275 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1276 }
1277 
1278 static inline pid_t task_session_vnr(struct task_struct *tsk)
1279 {
1280 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1281 }
1282 
1283 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1284 {
1285 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, ns);
1286 }
1287 
1288 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1289 {
1290 	return __task_pid_nr_ns(tsk, __PIDTYPE_TGID, NULL);
1291 }
1292 
1293 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1294 {
1295 	pid_t pid = 0;
1296 
1297 	rcu_read_lock();
1298 	if (pid_alive(tsk))
1299 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1300 	rcu_read_unlock();
1301 
1302 	return pid;
1303 }
1304 
1305 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1306 {
1307 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1308 }
1309 
1310 /* Obsolete, do not use: */
1311 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1312 {
1313 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1314 }
1315 
1316 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1317 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1318 
1319 static inline unsigned int task_state_index(struct task_struct *tsk)
1320 {
1321 	unsigned int tsk_state = READ_ONCE(tsk->state);
1322 	unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1323 
1324 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1325 
1326 	if (tsk_state == TASK_IDLE)
1327 		state = TASK_REPORT_IDLE;
1328 
1329 	return fls(state);
1330 }
1331 
1332 static inline char task_index_to_char(unsigned int state)
1333 {
1334 	static const char state_char[] = "RSDTtXZPI";
1335 
1336 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1337 
1338 	return state_char[state];
1339 }
1340 
1341 static inline char task_state_to_char(struct task_struct *tsk)
1342 {
1343 	return task_index_to_char(task_state_index(tsk));
1344 }
1345 
1346 /**
1347  * is_global_init - check if a task structure is init. Since init
1348  * is free to have sub-threads we need to check tgid.
1349  * @tsk: Task structure to be checked.
1350  *
1351  * Check if a task structure is the first user space task the kernel created.
1352  *
1353  * Return: 1 if the task structure is init. 0 otherwise.
1354  */
1355 static inline int is_global_init(struct task_struct *tsk)
1356 {
1357 	return task_tgid_nr(tsk) == 1;
1358 }
1359 
1360 extern struct pid *cad_pid;
1361 
1362 /*
1363  * Per process flags
1364  */
1365 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1366 #define PF_EXITING		0x00000004	/* Getting shut down */
1367 #define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
1368 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1369 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1370 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1371 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1372 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1373 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1374 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1375 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1376 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1377 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1378 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1379 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1380 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1381 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1382 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1383 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1384 #define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
1385 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1386 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1387 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1388 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1389 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1390 #define PF_MUTEX_TESTER		0x20000000	/* Thread belongs to the rt mutex tester */
1391 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1392 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1393 
1394 /*
1395  * Only the _current_ task can read/write to tsk->flags, but other
1396  * tasks can access tsk->flags in readonly mode for example
1397  * with tsk_used_math (like during threaded core dumping).
1398  * There is however an exception to this rule during ptrace
1399  * or during fork: the ptracer task is allowed to write to the
1400  * child->flags of its traced child (same goes for fork, the parent
1401  * can write to the child->flags), because we're guaranteed the
1402  * child is not running and in turn not changing child->flags
1403  * at the same time the parent does it.
1404  */
1405 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1406 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1407 #define clear_used_math()			clear_stopped_child_used_math(current)
1408 #define set_used_math()				set_stopped_child_used_math(current)
1409 
1410 #define conditional_stopped_child_used_math(condition, child) \
1411 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1412 
1413 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1414 
1415 #define copy_to_stopped_child_used_math(child) \
1416 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1417 
1418 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1419 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1420 #define used_math()				tsk_used_math(current)
1421 
1422 static inline bool is_percpu_thread(void)
1423 {
1424 #ifdef CONFIG_SMP
1425 	return (current->flags & PF_NO_SETAFFINITY) &&
1426 		(current->nr_cpus_allowed  == 1);
1427 #else
1428 	return true;
1429 #endif
1430 }
1431 
1432 /* Per-process atomic flags. */
1433 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1434 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1435 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1436 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1437 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1438 
1439 #define TASK_PFA_TEST(name, func)					\
1440 	static inline bool task_##func(struct task_struct *p)		\
1441 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1442 
1443 #define TASK_PFA_SET(name, func)					\
1444 	static inline void task_set_##func(struct task_struct *p)	\
1445 	{ set_bit(PFA_##name, &p->atomic_flags); }
1446 
1447 #define TASK_PFA_CLEAR(name, func)					\
1448 	static inline void task_clear_##func(struct task_struct *p)	\
1449 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1450 
1451 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1452 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1453 
1454 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1455 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1456 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1457 
1458 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1459 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1460 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1461 
1462 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1463 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1464 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1465 
1466 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1467 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1468 
1469 static inline void
1470 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1471 {
1472 	current->flags &= ~flags;
1473 	current->flags |= orig_flags & flags;
1474 }
1475 
1476 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1477 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1478 #ifdef CONFIG_SMP
1479 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1480 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1481 #else
1482 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1483 {
1484 }
1485 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1486 {
1487 	if (!cpumask_test_cpu(0, new_mask))
1488 		return -EINVAL;
1489 	return 0;
1490 }
1491 #endif
1492 
1493 #ifndef cpu_relax_yield
1494 #define cpu_relax_yield() cpu_relax()
1495 #endif
1496 
1497 extern int yield_to(struct task_struct *p, bool preempt);
1498 extern void set_user_nice(struct task_struct *p, long nice);
1499 extern int task_prio(const struct task_struct *p);
1500 
1501 /**
1502  * task_nice - return the nice value of a given task.
1503  * @p: the task in question.
1504  *
1505  * Return: The nice value [ -20 ... 0 ... 19 ].
1506  */
1507 static inline int task_nice(const struct task_struct *p)
1508 {
1509 	return PRIO_TO_NICE((p)->static_prio);
1510 }
1511 
1512 extern int can_nice(const struct task_struct *p, const int nice);
1513 extern int task_curr(const struct task_struct *p);
1514 extern int idle_cpu(int cpu);
1515 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1516 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1517 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1518 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1519 extern struct task_struct *idle_task(int cpu);
1520 
1521 /**
1522  * is_idle_task - is the specified task an idle task?
1523  * @p: the task in question.
1524  *
1525  * Return: 1 if @p is an idle task. 0 otherwise.
1526  */
1527 static inline bool is_idle_task(const struct task_struct *p)
1528 {
1529 	return !!(p->flags & PF_IDLE);
1530 }
1531 
1532 extern struct task_struct *curr_task(int cpu);
1533 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1534 
1535 void yield(void);
1536 
1537 union thread_union {
1538 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1539 	struct task_struct task;
1540 #endif
1541 #ifndef CONFIG_THREAD_INFO_IN_TASK
1542 	struct thread_info thread_info;
1543 #endif
1544 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1545 };
1546 
1547 #ifndef CONFIG_THREAD_INFO_IN_TASK
1548 extern struct thread_info init_thread_info;
1549 #endif
1550 
1551 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1552 
1553 #ifdef CONFIG_THREAD_INFO_IN_TASK
1554 static inline struct thread_info *task_thread_info(struct task_struct *task)
1555 {
1556 	return &task->thread_info;
1557 }
1558 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1559 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1560 #endif
1561 
1562 /*
1563  * find a task by one of its numerical ids
1564  *
1565  * find_task_by_pid_ns():
1566  *      finds a task by its pid in the specified namespace
1567  * find_task_by_vpid():
1568  *      finds a task by its virtual pid
1569  *
1570  * see also find_vpid() etc in include/linux/pid.h
1571  */
1572 
1573 extern struct task_struct *find_task_by_vpid(pid_t nr);
1574 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1575 
1576 /*
1577  * find a task by its virtual pid and get the task struct
1578  */
1579 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1580 
1581 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1582 extern int wake_up_process(struct task_struct *tsk);
1583 extern void wake_up_new_task(struct task_struct *tsk);
1584 
1585 #ifdef CONFIG_SMP
1586 extern void kick_process(struct task_struct *tsk);
1587 #else
1588 static inline void kick_process(struct task_struct *tsk) { }
1589 #endif
1590 
1591 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1592 
1593 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1594 {
1595 	__set_task_comm(tsk, from, false);
1596 }
1597 
1598 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1599 #define get_task_comm(buf, tsk) ({			\
1600 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
1601 	__get_task_comm(buf, sizeof(buf), tsk);		\
1602 })
1603 
1604 #ifdef CONFIG_SMP
1605 void scheduler_ipi(void);
1606 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1607 #else
1608 static inline void scheduler_ipi(void) { }
1609 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1610 {
1611 	return 1;
1612 }
1613 #endif
1614 
1615 /*
1616  * Set thread flags in other task's structures.
1617  * See asm/thread_info.h for TIF_xxxx flags available:
1618  */
1619 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1620 {
1621 	set_ti_thread_flag(task_thread_info(tsk), flag);
1622 }
1623 
1624 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1625 {
1626 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1627 }
1628 
1629 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1630 {
1631 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1632 }
1633 
1634 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1635 {
1636 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1637 }
1638 
1639 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1640 {
1641 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1642 }
1643 
1644 static inline void set_tsk_need_resched(struct task_struct *tsk)
1645 {
1646 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1647 }
1648 
1649 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1650 {
1651 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1652 }
1653 
1654 static inline int test_tsk_need_resched(struct task_struct *tsk)
1655 {
1656 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1657 }
1658 
1659 /*
1660  * cond_resched() and cond_resched_lock(): latency reduction via
1661  * explicit rescheduling in places that are safe. The return
1662  * value indicates whether a reschedule was done in fact.
1663  * cond_resched_lock() will drop the spinlock before scheduling,
1664  * cond_resched_softirq() will enable bhs before scheduling.
1665  */
1666 #ifndef CONFIG_PREEMPT
1667 extern int _cond_resched(void);
1668 #else
1669 static inline int _cond_resched(void) { return 0; }
1670 #endif
1671 
1672 #define cond_resched() ({			\
1673 	___might_sleep(__FILE__, __LINE__, 0);	\
1674 	_cond_resched();			\
1675 })
1676 
1677 extern int __cond_resched_lock(spinlock_t *lock);
1678 
1679 #define cond_resched_lock(lock) ({				\
1680 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1681 	__cond_resched_lock(lock);				\
1682 })
1683 
1684 extern int __cond_resched_softirq(void);
1685 
1686 #define cond_resched_softirq() ({					\
1687 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
1688 	__cond_resched_softirq();					\
1689 })
1690 
1691 static inline void cond_resched_rcu(void)
1692 {
1693 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1694 	rcu_read_unlock();
1695 	cond_resched();
1696 	rcu_read_lock();
1697 #endif
1698 }
1699 
1700 /*
1701  * Does a critical section need to be broken due to another
1702  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1703  * but a general need for low latency)
1704  */
1705 static inline int spin_needbreak(spinlock_t *lock)
1706 {
1707 #ifdef CONFIG_PREEMPT
1708 	return spin_is_contended(lock);
1709 #else
1710 	return 0;
1711 #endif
1712 }
1713 
1714 static __always_inline bool need_resched(void)
1715 {
1716 	return unlikely(tif_need_resched());
1717 }
1718 
1719 /*
1720  * Wrappers for p->thread_info->cpu access. No-op on UP.
1721  */
1722 #ifdef CONFIG_SMP
1723 
1724 static inline unsigned int task_cpu(const struct task_struct *p)
1725 {
1726 #ifdef CONFIG_THREAD_INFO_IN_TASK
1727 	return p->cpu;
1728 #else
1729 	return task_thread_info(p)->cpu;
1730 #endif
1731 }
1732 
1733 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1734 
1735 #else
1736 
1737 static inline unsigned int task_cpu(const struct task_struct *p)
1738 {
1739 	return 0;
1740 }
1741 
1742 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1743 {
1744 }
1745 
1746 #endif /* CONFIG_SMP */
1747 
1748 /*
1749  * In order to reduce various lock holder preemption latencies provide an
1750  * interface to see if a vCPU is currently running or not.
1751  *
1752  * This allows us to terminate optimistic spin loops and block, analogous to
1753  * the native optimistic spin heuristic of testing if the lock owner task is
1754  * running or not.
1755  */
1756 #ifndef vcpu_is_preempted
1757 # define vcpu_is_preempted(cpu)	false
1758 #endif
1759 
1760 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1761 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1762 
1763 #ifndef TASK_SIZE_OF
1764 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1765 #endif
1766 
1767 #endif
1768