xref: /linux/include/linux/sched.h (revision 031fba65fc202abf1f193e321be7a2c274fd88ba)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <linux/rv.h>
39 #include <linux/livepatch_sched.h>
40 #include <asm/kmap_size.h>
41 
42 /* task_struct member predeclarations (sorted alphabetically): */
43 struct audit_context;
44 struct bio_list;
45 struct blk_plug;
46 struct bpf_local_storage;
47 struct bpf_run_ctx;
48 struct capture_control;
49 struct cfs_rq;
50 struct fs_struct;
51 struct futex_pi_state;
52 struct io_context;
53 struct io_uring_task;
54 struct mempolicy;
55 struct nameidata;
56 struct nsproxy;
57 struct perf_event_context;
58 struct pid_namespace;
59 struct pipe_inode_info;
60 struct rcu_node;
61 struct reclaim_state;
62 struct robust_list_head;
63 struct root_domain;
64 struct rq;
65 struct sched_attr;
66 struct seq_file;
67 struct sighand_struct;
68 struct signal_struct;
69 struct task_delay_info;
70 struct task_group;
71 struct user_event_mm;
72 
73 /*
74  * Task state bitmask. NOTE! These bits are also
75  * encoded in fs/proc/array.c: get_task_state().
76  *
77  * We have two separate sets of flags: task->__state
78  * is about runnability, while task->exit_state are
79  * about the task exiting. Confusing, but this way
80  * modifying one set can't modify the other one by
81  * mistake.
82  */
83 
84 /* Used in tsk->__state: */
85 #define TASK_RUNNING			0x00000000
86 #define TASK_INTERRUPTIBLE		0x00000001
87 #define TASK_UNINTERRUPTIBLE		0x00000002
88 #define __TASK_STOPPED			0x00000004
89 #define __TASK_TRACED			0x00000008
90 /* Used in tsk->exit_state: */
91 #define EXIT_DEAD			0x00000010
92 #define EXIT_ZOMBIE			0x00000020
93 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
94 /* Used in tsk->__state again: */
95 #define TASK_PARKED			0x00000040
96 #define TASK_DEAD			0x00000080
97 #define TASK_WAKEKILL			0x00000100
98 #define TASK_WAKING			0x00000200
99 #define TASK_NOLOAD			0x00000400
100 #define TASK_NEW			0x00000800
101 #define TASK_RTLOCK_WAIT		0x00001000
102 #define TASK_FREEZABLE			0x00002000
103 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
104 #define TASK_FROZEN			0x00008000
105 #define TASK_STATE_MAX			0x00010000
106 
107 #define TASK_ANY			(TASK_STATE_MAX-1)
108 
109 /*
110  * DO NOT ADD ANY NEW USERS !
111  */
112 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
113 
114 /* Convenience macros for the sake of set_current_state: */
115 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
116 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
117 #define TASK_TRACED			__TASK_TRACED
118 
119 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
120 
121 /* Convenience macros for the sake of wake_up(): */
122 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
123 
124 /* get_task_state(): */
125 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
126 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
127 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
128 					 TASK_PARKED)
129 
130 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
131 
132 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
133 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
134 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
135 
136 /*
137  * Special states are those that do not use the normal wait-loop pattern. See
138  * the comment with set_special_state().
139  */
140 #define is_special_task_state(state)				\
141 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
142 
143 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
144 # define debug_normal_state_change(state_value)				\
145 	do {								\
146 		WARN_ON_ONCE(is_special_task_state(state_value));	\
147 		current->task_state_change = _THIS_IP_;			\
148 	} while (0)
149 
150 # define debug_special_state_change(state_value)			\
151 	do {								\
152 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
153 		current->task_state_change = _THIS_IP_;			\
154 	} while (0)
155 
156 # define debug_rtlock_wait_set_state()					\
157 	do {								 \
158 		current->saved_state_change = current->task_state_change;\
159 		current->task_state_change = _THIS_IP_;			 \
160 	} while (0)
161 
162 # define debug_rtlock_wait_restore_state()				\
163 	do {								 \
164 		current->task_state_change = current->saved_state_change;\
165 	} while (0)
166 
167 #else
168 # define debug_normal_state_change(cond)	do { } while (0)
169 # define debug_special_state_change(cond)	do { } while (0)
170 # define debug_rtlock_wait_set_state()		do { } while (0)
171 # define debug_rtlock_wait_restore_state()	do { } while (0)
172 #endif
173 
174 /*
175  * set_current_state() includes a barrier so that the write of current->__state
176  * is correctly serialised wrt the caller's subsequent test of whether to
177  * actually sleep:
178  *
179  *   for (;;) {
180  *	set_current_state(TASK_UNINTERRUPTIBLE);
181  *	if (CONDITION)
182  *	   break;
183  *
184  *	schedule();
185  *   }
186  *   __set_current_state(TASK_RUNNING);
187  *
188  * If the caller does not need such serialisation (because, for instance, the
189  * CONDITION test and condition change and wakeup are under the same lock) then
190  * use __set_current_state().
191  *
192  * The above is typically ordered against the wakeup, which does:
193  *
194  *   CONDITION = 1;
195  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
196  *
197  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
198  * accessing p->__state.
199  *
200  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
201  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
202  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
203  *
204  * However, with slightly different timing the wakeup TASK_RUNNING store can
205  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
206  * a problem either because that will result in one extra go around the loop
207  * and our @cond test will save the day.
208  *
209  * Also see the comments of try_to_wake_up().
210  */
211 #define __set_current_state(state_value)				\
212 	do {								\
213 		debug_normal_state_change((state_value));		\
214 		WRITE_ONCE(current->__state, (state_value));		\
215 	} while (0)
216 
217 #define set_current_state(state_value)					\
218 	do {								\
219 		debug_normal_state_change((state_value));		\
220 		smp_store_mb(current->__state, (state_value));		\
221 	} while (0)
222 
223 /*
224  * set_special_state() should be used for those states when the blocking task
225  * can not use the regular condition based wait-loop. In that case we must
226  * serialize against wakeups such that any possible in-flight TASK_RUNNING
227  * stores will not collide with our state change.
228  */
229 #define set_special_state(state_value)					\
230 	do {								\
231 		unsigned long flags; /* may shadow */			\
232 									\
233 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
234 		debug_special_state_change((state_value));		\
235 		WRITE_ONCE(current->__state, (state_value));		\
236 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
237 	} while (0)
238 
239 /*
240  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
241  *
242  * RT's spin/rwlock substitutions are state preserving. The state of the
243  * task when blocking on the lock is saved in task_struct::saved_state and
244  * restored after the lock has been acquired.  These operations are
245  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
246  * lock related wakeups while the task is blocked on the lock are
247  * redirected to operate on task_struct::saved_state to ensure that these
248  * are not dropped. On restore task_struct::saved_state is set to
249  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
250  *
251  * The lock operation looks like this:
252  *
253  *	current_save_and_set_rtlock_wait_state();
254  *	for (;;) {
255  *		if (try_lock())
256  *			break;
257  *		raw_spin_unlock_irq(&lock->wait_lock);
258  *		schedule_rtlock();
259  *		raw_spin_lock_irq(&lock->wait_lock);
260  *		set_current_state(TASK_RTLOCK_WAIT);
261  *	}
262  *	current_restore_rtlock_saved_state();
263  */
264 #define current_save_and_set_rtlock_wait_state()			\
265 	do {								\
266 		lockdep_assert_irqs_disabled();				\
267 		raw_spin_lock(&current->pi_lock);			\
268 		current->saved_state = current->__state;		\
269 		debug_rtlock_wait_set_state();				\
270 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
271 		raw_spin_unlock(&current->pi_lock);			\
272 	} while (0);
273 
274 #define current_restore_rtlock_saved_state()				\
275 	do {								\
276 		lockdep_assert_irqs_disabled();				\
277 		raw_spin_lock(&current->pi_lock);			\
278 		debug_rtlock_wait_restore_state();			\
279 		WRITE_ONCE(current->__state, current->saved_state);	\
280 		current->saved_state = TASK_RUNNING;			\
281 		raw_spin_unlock(&current->pi_lock);			\
282 	} while (0);
283 
284 #define get_current_state()	READ_ONCE(current->__state)
285 
286 /*
287  * Define the task command name length as enum, then it can be visible to
288  * BPF programs.
289  */
290 enum {
291 	TASK_COMM_LEN = 16,
292 };
293 
294 extern void scheduler_tick(void);
295 
296 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
297 
298 extern long schedule_timeout(long timeout);
299 extern long schedule_timeout_interruptible(long timeout);
300 extern long schedule_timeout_killable(long timeout);
301 extern long schedule_timeout_uninterruptible(long timeout);
302 extern long schedule_timeout_idle(long timeout);
303 asmlinkage void schedule(void);
304 extern void schedule_preempt_disabled(void);
305 asmlinkage void preempt_schedule_irq(void);
306 #ifdef CONFIG_PREEMPT_RT
307  extern void schedule_rtlock(void);
308 #endif
309 
310 extern int __must_check io_schedule_prepare(void);
311 extern void io_schedule_finish(int token);
312 extern long io_schedule_timeout(long timeout);
313 extern void io_schedule(void);
314 
315 /**
316  * struct prev_cputime - snapshot of system and user cputime
317  * @utime: time spent in user mode
318  * @stime: time spent in system mode
319  * @lock: protects the above two fields
320  *
321  * Stores previous user/system time values such that we can guarantee
322  * monotonicity.
323  */
324 struct prev_cputime {
325 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
326 	u64				utime;
327 	u64				stime;
328 	raw_spinlock_t			lock;
329 #endif
330 };
331 
332 enum vtime_state {
333 	/* Task is sleeping or running in a CPU with VTIME inactive: */
334 	VTIME_INACTIVE = 0,
335 	/* Task is idle */
336 	VTIME_IDLE,
337 	/* Task runs in kernelspace in a CPU with VTIME active: */
338 	VTIME_SYS,
339 	/* Task runs in userspace in a CPU with VTIME active: */
340 	VTIME_USER,
341 	/* Task runs as guests in a CPU with VTIME active: */
342 	VTIME_GUEST,
343 };
344 
345 struct vtime {
346 	seqcount_t		seqcount;
347 	unsigned long long	starttime;
348 	enum vtime_state	state;
349 	unsigned int		cpu;
350 	u64			utime;
351 	u64			stime;
352 	u64			gtime;
353 };
354 
355 /*
356  * Utilization clamp constraints.
357  * @UCLAMP_MIN:	Minimum utilization
358  * @UCLAMP_MAX:	Maximum utilization
359  * @UCLAMP_CNT:	Utilization clamp constraints count
360  */
361 enum uclamp_id {
362 	UCLAMP_MIN = 0,
363 	UCLAMP_MAX,
364 	UCLAMP_CNT
365 };
366 
367 #ifdef CONFIG_SMP
368 extern struct root_domain def_root_domain;
369 extern struct mutex sched_domains_mutex;
370 #endif
371 
372 struct sched_param {
373 	int sched_priority;
374 };
375 
376 struct sched_info {
377 #ifdef CONFIG_SCHED_INFO
378 	/* Cumulative counters: */
379 
380 	/* # of times we have run on this CPU: */
381 	unsigned long			pcount;
382 
383 	/* Time spent waiting on a runqueue: */
384 	unsigned long long		run_delay;
385 
386 	/* Timestamps: */
387 
388 	/* When did we last run on a CPU? */
389 	unsigned long long		last_arrival;
390 
391 	/* When were we last queued to run? */
392 	unsigned long long		last_queued;
393 
394 #endif /* CONFIG_SCHED_INFO */
395 };
396 
397 /*
398  * Integer metrics need fixed point arithmetic, e.g., sched/fair
399  * has a few: load, load_avg, util_avg, freq, and capacity.
400  *
401  * We define a basic fixed point arithmetic range, and then formalize
402  * all these metrics based on that basic range.
403  */
404 # define SCHED_FIXEDPOINT_SHIFT		10
405 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
406 
407 /* Increase resolution of cpu_capacity calculations */
408 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
409 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
410 
411 struct load_weight {
412 	unsigned long			weight;
413 	u32				inv_weight;
414 };
415 
416 /**
417  * struct util_est - Estimation utilization of FAIR tasks
418  * @enqueued: instantaneous estimated utilization of a task/cpu
419  * @ewma:     the Exponential Weighted Moving Average (EWMA)
420  *            utilization of a task
421  *
422  * Support data structure to track an Exponential Weighted Moving Average
423  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
424  * average each time a task completes an activation. Sample's weight is chosen
425  * so that the EWMA will be relatively insensitive to transient changes to the
426  * task's workload.
427  *
428  * The enqueued attribute has a slightly different meaning for tasks and cpus:
429  * - task:   the task's util_avg at last task dequeue time
430  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
431  * Thus, the util_est.enqueued of a task represents the contribution on the
432  * estimated utilization of the CPU where that task is currently enqueued.
433  *
434  * Only for tasks we track a moving average of the past instantaneous
435  * estimated utilization. This allows to absorb sporadic drops in utilization
436  * of an otherwise almost periodic task.
437  *
438  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
439  * updates. When a task is dequeued, its util_est should not be updated if its
440  * util_avg has not been updated in the meantime.
441  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
442  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
443  * for a task) it is safe to use MSB.
444  */
445 struct util_est {
446 	unsigned int			enqueued;
447 	unsigned int			ewma;
448 #define UTIL_EST_WEIGHT_SHIFT		2
449 #define UTIL_AVG_UNCHANGED		0x80000000
450 } __attribute__((__aligned__(sizeof(u64))));
451 
452 /*
453  * The load/runnable/util_avg accumulates an infinite geometric series
454  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
455  *
456  * [load_avg definition]
457  *
458  *   load_avg = runnable% * scale_load_down(load)
459  *
460  * [runnable_avg definition]
461  *
462  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
463  *
464  * [util_avg definition]
465  *
466  *   util_avg = running% * SCHED_CAPACITY_SCALE
467  *
468  * where runnable% is the time ratio that a sched_entity is runnable and
469  * running% the time ratio that a sched_entity is running.
470  *
471  * For cfs_rq, they are the aggregated values of all runnable and blocked
472  * sched_entities.
473  *
474  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
475  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
476  * for computing those signals (see update_rq_clock_pelt())
477  *
478  * N.B., the above ratios (runnable% and running%) themselves are in the
479  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
480  * to as large a range as necessary. This is for example reflected by
481  * util_avg's SCHED_CAPACITY_SCALE.
482  *
483  * [Overflow issue]
484  *
485  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
486  * with the highest load (=88761), always runnable on a single cfs_rq,
487  * and should not overflow as the number already hits PID_MAX_LIMIT.
488  *
489  * For all other cases (including 32-bit kernels), struct load_weight's
490  * weight will overflow first before we do, because:
491  *
492  *    Max(load_avg) <= Max(load.weight)
493  *
494  * Then it is the load_weight's responsibility to consider overflow
495  * issues.
496  */
497 struct sched_avg {
498 	u64				last_update_time;
499 	u64				load_sum;
500 	u64				runnable_sum;
501 	u32				util_sum;
502 	u32				period_contrib;
503 	unsigned long			load_avg;
504 	unsigned long			runnable_avg;
505 	unsigned long			util_avg;
506 	struct util_est			util_est;
507 } ____cacheline_aligned;
508 
509 struct sched_statistics {
510 #ifdef CONFIG_SCHEDSTATS
511 	u64				wait_start;
512 	u64				wait_max;
513 	u64				wait_count;
514 	u64				wait_sum;
515 	u64				iowait_count;
516 	u64				iowait_sum;
517 
518 	u64				sleep_start;
519 	u64				sleep_max;
520 	s64				sum_sleep_runtime;
521 
522 	u64				block_start;
523 	u64				block_max;
524 	s64				sum_block_runtime;
525 
526 	u64				exec_max;
527 	u64				slice_max;
528 
529 	u64				nr_migrations_cold;
530 	u64				nr_failed_migrations_affine;
531 	u64				nr_failed_migrations_running;
532 	u64				nr_failed_migrations_hot;
533 	u64				nr_forced_migrations;
534 
535 	u64				nr_wakeups;
536 	u64				nr_wakeups_sync;
537 	u64				nr_wakeups_migrate;
538 	u64				nr_wakeups_local;
539 	u64				nr_wakeups_remote;
540 	u64				nr_wakeups_affine;
541 	u64				nr_wakeups_affine_attempts;
542 	u64				nr_wakeups_passive;
543 	u64				nr_wakeups_idle;
544 
545 #ifdef CONFIG_SCHED_CORE
546 	u64				core_forceidle_sum;
547 #endif
548 #endif /* CONFIG_SCHEDSTATS */
549 } ____cacheline_aligned;
550 
551 struct sched_entity {
552 	/* For load-balancing: */
553 	struct load_weight		load;
554 	struct rb_node			run_node;
555 	u64				deadline;
556 	u64				min_deadline;
557 
558 	struct list_head		group_node;
559 	unsigned int			on_rq;
560 
561 	u64				exec_start;
562 	u64				sum_exec_runtime;
563 	u64				prev_sum_exec_runtime;
564 	u64				vruntime;
565 	s64				vlag;
566 	u64				slice;
567 
568 	u64				nr_migrations;
569 
570 #ifdef CONFIG_FAIR_GROUP_SCHED
571 	int				depth;
572 	struct sched_entity		*parent;
573 	/* rq on which this entity is (to be) queued: */
574 	struct cfs_rq			*cfs_rq;
575 	/* rq "owned" by this entity/group: */
576 	struct cfs_rq			*my_q;
577 	/* cached value of my_q->h_nr_running */
578 	unsigned long			runnable_weight;
579 #endif
580 
581 #ifdef CONFIG_SMP
582 	/*
583 	 * Per entity load average tracking.
584 	 *
585 	 * Put into separate cache line so it does not
586 	 * collide with read-mostly values above.
587 	 */
588 	struct sched_avg		avg;
589 #endif
590 };
591 
592 struct sched_rt_entity {
593 	struct list_head		run_list;
594 	unsigned long			timeout;
595 	unsigned long			watchdog_stamp;
596 	unsigned int			time_slice;
597 	unsigned short			on_rq;
598 	unsigned short			on_list;
599 
600 	struct sched_rt_entity		*back;
601 #ifdef CONFIG_RT_GROUP_SCHED
602 	struct sched_rt_entity		*parent;
603 	/* rq on which this entity is (to be) queued: */
604 	struct rt_rq			*rt_rq;
605 	/* rq "owned" by this entity/group: */
606 	struct rt_rq			*my_q;
607 #endif
608 } __randomize_layout;
609 
610 struct sched_dl_entity {
611 	struct rb_node			rb_node;
612 
613 	/*
614 	 * Original scheduling parameters. Copied here from sched_attr
615 	 * during sched_setattr(), they will remain the same until
616 	 * the next sched_setattr().
617 	 */
618 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
619 	u64				dl_deadline;	/* Relative deadline of each instance	*/
620 	u64				dl_period;	/* Separation of two instances (period) */
621 	u64				dl_bw;		/* dl_runtime / dl_period		*/
622 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
623 
624 	/*
625 	 * Actual scheduling parameters. Initialized with the values above,
626 	 * they are continuously updated during task execution. Note that
627 	 * the remaining runtime could be < 0 in case we are in overrun.
628 	 */
629 	s64				runtime;	/* Remaining runtime for this instance	*/
630 	u64				deadline;	/* Absolute deadline for this instance	*/
631 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
632 
633 	/*
634 	 * Some bool flags:
635 	 *
636 	 * @dl_throttled tells if we exhausted the runtime. If so, the
637 	 * task has to wait for a replenishment to be performed at the
638 	 * next firing of dl_timer.
639 	 *
640 	 * @dl_yielded tells if task gave up the CPU before consuming
641 	 * all its available runtime during the last job.
642 	 *
643 	 * @dl_non_contending tells if the task is inactive while still
644 	 * contributing to the active utilization. In other words, it
645 	 * indicates if the inactive timer has been armed and its handler
646 	 * has not been executed yet. This flag is useful to avoid race
647 	 * conditions between the inactive timer handler and the wakeup
648 	 * code.
649 	 *
650 	 * @dl_overrun tells if the task asked to be informed about runtime
651 	 * overruns.
652 	 */
653 	unsigned int			dl_throttled      : 1;
654 	unsigned int			dl_yielded        : 1;
655 	unsigned int			dl_non_contending : 1;
656 	unsigned int			dl_overrun	  : 1;
657 
658 	/*
659 	 * Bandwidth enforcement timer. Each -deadline task has its
660 	 * own bandwidth to be enforced, thus we need one timer per task.
661 	 */
662 	struct hrtimer			dl_timer;
663 
664 	/*
665 	 * Inactive timer, responsible for decreasing the active utilization
666 	 * at the "0-lag time". When a -deadline task blocks, it contributes
667 	 * to GRUB's active utilization until the "0-lag time", hence a
668 	 * timer is needed to decrease the active utilization at the correct
669 	 * time.
670 	 */
671 	struct hrtimer inactive_timer;
672 
673 #ifdef CONFIG_RT_MUTEXES
674 	/*
675 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
676 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
677 	 * to (the original one/itself).
678 	 */
679 	struct sched_dl_entity *pi_se;
680 #endif
681 };
682 
683 #ifdef CONFIG_UCLAMP_TASK
684 /* Number of utilization clamp buckets (shorter alias) */
685 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
686 
687 /*
688  * Utilization clamp for a scheduling entity
689  * @value:		clamp value "assigned" to a se
690  * @bucket_id:		bucket index corresponding to the "assigned" value
691  * @active:		the se is currently refcounted in a rq's bucket
692  * @user_defined:	the requested clamp value comes from user-space
693  *
694  * The bucket_id is the index of the clamp bucket matching the clamp value
695  * which is pre-computed and stored to avoid expensive integer divisions from
696  * the fast path.
697  *
698  * The active bit is set whenever a task has got an "effective" value assigned,
699  * which can be different from the clamp value "requested" from user-space.
700  * This allows to know a task is refcounted in the rq's bucket corresponding
701  * to the "effective" bucket_id.
702  *
703  * The user_defined bit is set whenever a task has got a task-specific clamp
704  * value requested from userspace, i.e. the system defaults apply to this task
705  * just as a restriction. This allows to relax default clamps when a less
706  * restrictive task-specific value has been requested, thus allowing to
707  * implement a "nice" semantic. For example, a task running with a 20%
708  * default boost can still drop its own boosting to 0%.
709  */
710 struct uclamp_se {
711 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
712 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
713 	unsigned int active		: 1;
714 	unsigned int user_defined	: 1;
715 };
716 #endif /* CONFIG_UCLAMP_TASK */
717 
718 union rcu_special {
719 	struct {
720 		u8			blocked;
721 		u8			need_qs;
722 		u8			exp_hint; /* Hint for performance. */
723 		u8			need_mb; /* Readers need smp_mb(). */
724 	} b; /* Bits. */
725 	u32 s; /* Set of bits. */
726 };
727 
728 enum perf_event_task_context {
729 	perf_invalid_context = -1,
730 	perf_hw_context = 0,
731 	perf_sw_context,
732 	perf_nr_task_contexts,
733 };
734 
735 struct wake_q_node {
736 	struct wake_q_node *next;
737 };
738 
739 struct kmap_ctrl {
740 #ifdef CONFIG_KMAP_LOCAL
741 	int				idx;
742 	pte_t				pteval[KM_MAX_IDX];
743 #endif
744 };
745 
746 struct task_struct {
747 #ifdef CONFIG_THREAD_INFO_IN_TASK
748 	/*
749 	 * For reasons of header soup (see current_thread_info()), this
750 	 * must be the first element of task_struct.
751 	 */
752 	struct thread_info		thread_info;
753 #endif
754 	unsigned int			__state;
755 
756 	/* saved state for "spinlock sleepers" */
757 	unsigned int			saved_state;
758 
759 	/*
760 	 * This begins the randomizable portion of task_struct. Only
761 	 * scheduling-critical items should be added above here.
762 	 */
763 	randomized_struct_fields_start
764 
765 	void				*stack;
766 	refcount_t			usage;
767 	/* Per task flags (PF_*), defined further below: */
768 	unsigned int			flags;
769 	unsigned int			ptrace;
770 
771 #ifdef CONFIG_SMP
772 	int				on_cpu;
773 	struct __call_single_node	wake_entry;
774 	unsigned int			wakee_flips;
775 	unsigned long			wakee_flip_decay_ts;
776 	struct task_struct		*last_wakee;
777 
778 	/*
779 	 * recent_used_cpu is initially set as the last CPU used by a task
780 	 * that wakes affine another task. Waker/wakee relationships can
781 	 * push tasks around a CPU where each wakeup moves to the next one.
782 	 * Tracking a recently used CPU allows a quick search for a recently
783 	 * used CPU that may be idle.
784 	 */
785 	int				recent_used_cpu;
786 	int				wake_cpu;
787 #endif
788 	int				on_rq;
789 
790 	int				prio;
791 	int				static_prio;
792 	int				normal_prio;
793 	unsigned int			rt_priority;
794 
795 	struct sched_entity		se;
796 	struct sched_rt_entity		rt;
797 	struct sched_dl_entity		dl;
798 	const struct sched_class	*sched_class;
799 
800 #ifdef CONFIG_SCHED_CORE
801 	struct rb_node			core_node;
802 	unsigned long			core_cookie;
803 	unsigned int			core_occupation;
804 #endif
805 
806 #ifdef CONFIG_CGROUP_SCHED
807 	struct task_group		*sched_task_group;
808 #endif
809 
810 #ifdef CONFIG_UCLAMP_TASK
811 	/*
812 	 * Clamp values requested for a scheduling entity.
813 	 * Must be updated with task_rq_lock() held.
814 	 */
815 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
816 	/*
817 	 * Effective clamp values used for a scheduling entity.
818 	 * Must be updated with task_rq_lock() held.
819 	 */
820 	struct uclamp_se		uclamp[UCLAMP_CNT];
821 #endif
822 
823 	struct sched_statistics         stats;
824 
825 #ifdef CONFIG_PREEMPT_NOTIFIERS
826 	/* List of struct preempt_notifier: */
827 	struct hlist_head		preempt_notifiers;
828 #endif
829 
830 #ifdef CONFIG_BLK_DEV_IO_TRACE
831 	unsigned int			btrace_seq;
832 #endif
833 
834 	unsigned int			policy;
835 	int				nr_cpus_allowed;
836 	const cpumask_t			*cpus_ptr;
837 	cpumask_t			*user_cpus_ptr;
838 	cpumask_t			cpus_mask;
839 	void				*migration_pending;
840 #ifdef CONFIG_SMP
841 	unsigned short			migration_disabled;
842 #endif
843 	unsigned short			migration_flags;
844 
845 #ifdef CONFIG_PREEMPT_RCU
846 	int				rcu_read_lock_nesting;
847 	union rcu_special		rcu_read_unlock_special;
848 	struct list_head		rcu_node_entry;
849 	struct rcu_node			*rcu_blocked_node;
850 #endif /* #ifdef CONFIG_PREEMPT_RCU */
851 
852 #ifdef CONFIG_TASKS_RCU
853 	unsigned long			rcu_tasks_nvcsw;
854 	u8				rcu_tasks_holdout;
855 	u8				rcu_tasks_idx;
856 	int				rcu_tasks_idle_cpu;
857 	struct list_head		rcu_tasks_holdout_list;
858 #endif /* #ifdef CONFIG_TASKS_RCU */
859 
860 #ifdef CONFIG_TASKS_TRACE_RCU
861 	int				trc_reader_nesting;
862 	int				trc_ipi_to_cpu;
863 	union rcu_special		trc_reader_special;
864 	struct list_head		trc_holdout_list;
865 	struct list_head		trc_blkd_node;
866 	int				trc_blkd_cpu;
867 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
868 
869 	struct sched_info		sched_info;
870 
871 	struct list_head		tasks;
872 #ifdef CONFIG_SMP
873 	struct plist_node		pushable_tasks;
874 	struct rb_node			pushable_dl_tasks;
875 #endif
876 
877 	struct mm_struct		*mm;
878 	struct mm_struct		*active_mm;
879 	struct address_space		*faults_disabled_mapping;
880 
881 	int				exit_state;
882 	int				exit_code;
883 	int				exit_signal;
884 	/* The signal sent when the parent dies: */
885 	int				pdeath_signal;
886 	/* JOBCTL_*, siglock protected: */
887 	unsigned long			jobctl;
888 
889 	/* Used for emulating ABI behavior of previous Linux versions: */
890 	unsigned int			personality;
891 
892 	/* Scheduler bits, serialized by scheduler locks: */
893 	unsigned			sched_reset_on_fork:1;
894 	unsigned			sched_contributes_to_load:1;
895 	unsigned			sched_migrated:1;
896 
897 	/* Force alignment to the next boundary: */
898 	unsigned			:0;
899 
900 	/* Unserialized, strictly 'current' */
901 
902 	/*
903 	 * This field must not be in the scheduler word above due to wakelist
904 	 * queueing no longer being serialized by p->on_cpu. However:
905 	 *
906 	 * p->XXX = X;			ttwu()
907 	 * schedule()			  if (p->on_rq && ..) // false
908 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
909 	 *   deactivate_task()		      ttwu_queue_wakelist())
910 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
911 	 *
912 	 * guarantees all stores of 'current' are visible before
913 	 * ->sched_remote_wakeup gets used, so it can be in this word.
914 	 */
915 	unsigned			sched_remote_wakeup:1;
916 #ifdef CONFIG_RT_MUTEXES
917 	unsigned			sched_rt_mutex:1;
918 #endif
919 
920 	/* Bit to tell LSMs we're in execve(): */
921 	unsigned			in_execve:1;
922 	unsigned			in_iowait:1;
923 #ifndef TIF_RESTORE_SIGMASK
924 	unsigned			restore_sigmask:1;
925 #endif
926 #ifdef CONFIG_MEMCG
927 	unsigned			in_user_fault:1;
928 #endif
929 #ifdef CONFIG_LRU_GEN
930 	/* whether the LRU algorithm may apply to this access */
931 	unsigned			in_lru_fault:1;
932 #endif
933 #ifdef CONFIG_COMPAT_BRK
934 	unsigned			brk_randomized:1;
935 #endif
936 #ifdef CONFIG_CGROUPS
937 	/* disallow userland-initiated cgroup migration */
938 	unsigned			no_cgroup_migration:1;
939 	/* task is frozen/stopped (used by the cgroup freezer) */
940 	unsigned			frozen:1;
941 #endif
942 #ifdef CONFIG_BLK_CGROUP
943 	unsigned			use_memdelay:1;
944 #endif
945 #ifdef CONFIG_PSI
946 	/* Stalled due to lack of memory */
947 	unsigned			in_memstall:1;
948 #endif
949 #ifdef CONFIG_PAGE_OWNER
950 	/* Used by page_owner=on to detect recursion in page tracking. */
951 	unsigned			in_page_owner:1;
952 #endif
953 #ifdef CONFIG_EVENTFD
954 	/* Recursion prevention for eventfd_signal() */
955 	unsigned			in_eventfd:1;
956 #endif
957 #ifdef CONFIG_IOMMU_SVA
958 	unsigned			pasid_activated:1;
959 #endif
960 #ifdef	CONFIG_CPU_SUP_INTEL
961 	unsigned			reported_split_lock:1;
962 #endif
963 #ifdef CONFIG_TASK_DELAY_ACCT
964 	/* delay due to memory thrashing */
965 	unsigned                        in_thrashing:1;
966 #endif
967 
968 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
969 
970 	struct restart_block		restart_block;
971 
972 	pid_t				pid;
973 	pid_t				tgid;
974 
975 #ifdef CONFIG_STACKPROTECTOR
976 	/* Canary value for the -fstack-protector GCC feature: */
977 	unsigned long			stack_canary;
978 #endif
979 	/*
980 	 * Pointers to the (original) parent process, youngest child, younger sibling,
981 	 * older sibling, respectively.  (p->father can be replaced with
982 	 * p->real_parent->pid)
983 	 */
984 
985 	/* Real parent process: */
986 	struct task_struct __rcu	*real_parent;
987 
988 	/* Recipient of SIGCHLD, wait4() reports: */
989 	struct task_struct __rcu	*parent;
990 
991 	/*
992 	 * Children/sibling form the list of natural children:
993 	 */
994 	struct list_head		children;
995 	struct list_head		sibling;
996 	struct task_struct		*group_leader;
997 
998 	/*
999 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1000 	 *
1001 	 * This includes both natural children and PTRACE_ATTACH targets.
1002 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1003 	 */
1004 	struct list_head		ptraced;
1005 	struct list_head		ptrace_entry;
1006 
1007 	/* PID/PID hash table linkage. */
1008 	struct pid			*thread_pid;
1009 	struct hlist_node		pid_links[PIDTYPE_MAX];
1010 	struct list_head		thread_group;
1011 	struct list_head		thread_node;
1012 
1013 	struct completion		*vfork_done;
1014 
1015 	/* CLONE_CHILD_SETTID: */
1016 	int __user			*set_child_tid;
1017 
1018 	/* CLONE_CHILD_CLEARTID: */
1019 	int __user			*clear_child_tid;
1020 
1021 	/* PF_KTHREAD | PF_IO_WORKER */
1022 	void				*worker_private;
1023 
1024 	u64				utime;
1025 	u64				stime;
1026 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1027 	u64				utimescaled;
1028 	u64				stimescaled;
1029 #endif
1030 	u64				gtime;
1031 	struct prev_cputime		prev_cputime;
1032 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1033 	struct vtime			vtime;
1034 #endif
1035 
1036 #ifdef CONFIG_NO_HZ_FULL
1037 	atomic_t			tick_dep_mask;
1038 #endif
1039 	/* Context switch counts: */
1040 	unsigned long			nvcsw;
1041 	unsigned long			nivcsw;
1042 
1043 	/* Monotonic time in nsecs: */
1044 	u64				start_time;
1045 
1046 	/* Boot based time in nsecs: */
1047 	u64				start_boottime;
1048 
1049 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1050 	unsigned long			min_flt;
1051 	unsigned long			maj_flt;
1052 
1053 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1054 	struct posix_cputimers		posix_cputimers;
1055 
1056 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1057 	struct posix_cputimers_work	posix_cputimers_work;
1058 #endif
1059 
1060 	/* Process credentials: */
1061 
1062 	/* Tracer's credentials at attach: */
1063 	const struct cred __rcu		*ptracer_cred;
1064 
1065 	/* Objective and real subjective task credentials (COW): */
1066 	const struct cred __rcu		*real_cred;
1067 
1068 	/* Effective (overridable) subjective task credentials (COW): */
1069 	const struct cred __rcu		*cred;
1070 
1071 #ifdef CONFIG_KEYS
1072 	/* Cached requested key. */
1073 	struct key			*cached_requested_key;
1074 #endif
1075 
1076 	/*
1077 	 * executable name, excluding path.
1078 	 *
1079 	 * - normally initialized setup_new_exec()
1080 	 * - access it with [gs]et_task_comm()
1081 	 * - lock it with task_lock()
1082 	 */
1083 	char				comm[TASK_COMM_LEN];
1084 
1085 	struct nameidata		*nameidata;
1086 
1087 #ifdef CONFIG_SYSVIPC
1088 	struct sysv_sem			sysvsem;
1089 	struct sysv_shm			sysvshm;
1090 #endif
1091 #ifdef CONFIG_DETECT_HUNG_TASK
1092 	unsigned long			last_switch_count;
1093 	unsigned long			last_switch_time;
1094 #endif
1095 	/* Filesystem information: */
1096 	struct fs_struct		*fs;
1097 
1098 	/* Open file information: */
1099 	struct files_struct		*files;
1100 
1101 #ifdef CONFIG_IO_URING
1102 	struct io_uring_task		*io_uring;
1103 #endif
1104 
1105 	/* Namespaces: */
1106 	struct nsproxy			*nsproxy;
1107 
1108 	/* Signal handlers: */
1109 	struct signal_struct		*signal;
1110 	struct sighand_struct __rcu		*sighand;
1111 	sigset_t			blocked;
1112 	sigset_t			real_blocked;
1113 	/* Restored if set_restore_sigmask() was used: */
1114 	sigset_t			saved_sigmask;
1115 	struct sigpending		pending;
1116 	unsigned long			sas_ss_sp;
1117 	size_t				sas_ss_size;
1118 	unsigned int			sas_ss_flags;
1119 
1120 	struct callback_head		*task_works;
1121 
1122 #ifdef CONFIG_AUDIT
1123 #ifdef CONFIG_AUDITSYSCALL
1124 	struct audit_context		*audit_context;
1125 #endif
1126 	kuid_t				loginuid;
1127 	unsigned int			sessionid;
1128 #endif
1129 	struct seccomp			seccomp;
1130 	struct syscall_user_dispatch	syscall_dispatch;
1131 
1132 	/* Thread group tracking: */
1133 	u64				parent_exec_id;
1134 	u64				self_exec_id;
1135 
1136 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1137 	spinlock_t			alloc_lock;
1138 
1139 	/* Protection of the PI data structures: */
1140 	raw_spinlock_t			pi_lock;
1141 
1142 	struct wake_q_node		wake_q;
1143 
1144 #ifdef CONFIG_RT_MUTEXES
1145 	/* PI waiters blocked on a rt_mutex held by this task: */
1146 	struct rb_root_cached		pi_waiters;
1147 	/* Updated under owner's pi_lock and rq lock */
1148 	struct task_struct		*pi_top_task;
1149 	/* Deadlock detection and priority inheritance handling: */
1150 	struct rt_mutex_waiter		*pi_blocked_on;
1151 #endif
1152 
1153 #ifdef CONFIG_DEBUG_MUTEXES
1154 	/* Mutex deadlock detection: */
1155 	struct mutex_waiter		*blocked_on;
1156 #endif
1157 
1158 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1159 	int				non_block_count;
1160 #endif
1161 
1162 #ifdef CONFIG_TRACE_IRQFLAGS
1163 	struct irqtrace_events		irqtrace;
1164 	unsigned int			hardirq_threaded;
1165 	u64				hardirq_chain_key;
1166 	int				softirqs_enabled;
1167 	int				softirq_context;
1168 	int				irq_config;
1169 #endif
1170 #ifdef CONFIG_PREEMPT_RT
1171 	int				softirq_disable_cnt;
1172 #endif
1173 
1174 #ifdef CONFIG_LOCKDEP
1175 # define MAX_LOCK_DEPTH			48UL
1176 	u64				curr_chain_key;
1177 	int				lockdep_depth;
1178 	unsigned int			lockdep_recursion;
1179 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1180 #endif
1181 
1182 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1183 	unsigned int			in_ubsan;
1184 #endif
1185 
1186 	/* Journalling filesystem info: */
1187 	void				*journal_info;
1188 
1189 	/* Stacked block device info: */
1190 	struct bio_list			*bio_list;
1191 
1192 	/* Stack plugging: */
1193 	struct blk_plug			*plug;
1194 
1195 	/* VM state: */
1196 	struct reclaim_state		*reclaim_state;
1197 
1198 	struct io_context		*io_context;
1199 
1200 #ifdef CONFIG_COMPACTION
1201 	struct capture_control		*capture_control;
1202 #endif
1203 	/* Ptrace state: */
1204 	unsigned long			ptrace_message;
1205 	kernel_siginfo_t		*last_siginfo;
1206 
1207 	struct task_io_accounting	ioac;
1208 #ifdef CONFIG_PSI
1209 	/* Pressure stall state */
1210 	unsigned int			psi_flags;
1211 #endif
1212 #ifdef CONFIG_TASK_XACCT
1213 	/* Accumulated RSS usage: */
1214 	u64				acct_rss_mem1;
1215 	/* Accumulated virtual memory usage: */
1216 	u64				acct_vm_mem1;
1217 	/* stime + utime since last update: */
1218 	u64				acct_timexpd;
1219 #endif
1220 #ifdef CONFIG_CPUSETS
1221 	/* Protected by ->alloc_lock: */
1222 	nodemask_t			mems_allowed;
1223 	/* Sequence number to catch updates: */
1224 	seqcount_spinlock_t		mems_allowed_seq;
1225 	int				cpuset_mem_spread_rotor;
1226 	int				cpuset_slab_spread_rotor;
1227 #endif
1228 #ifdef CONFIG_CGROUPS
1229 	/* Control Group info protected by css_set_lock: */
1230 	struct css_set __rcu		*cgroups;
1231 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1232 	struct list_head		cg_list;
1233 #endif
1234 #ifdef CONFIG_X86_CPU_RESCTRL
1235 	u32				closid;
1236 	u32				rmid;
1237 #endif
1238 #ifdef CONFIG_FUTEX
1239 	struct robust_list_head __user	*robust_list;
1240 #ifdef CONFIG_COMPAT
1241 	struct compat_robust_list_head __user *compat_robust_list;
1242 #endif
1243 	struct list_head		pi_state_list;
1244 	struct futex_pi_state		*pi_state_cache;
1245 	struct mutex			futex_exit_mutex;
1246 	unsigned int			futex_state;
1247 #endif
1248 #ifdef CONFIG_PERF_EVENTS
1249 	struct perf_event_context	*perf_event_ctxp;
1250 	struct mutex			perf_event_mutex;
1251 	struct list_head		perf_event_list;
1252 #endif
1253 #ifdef CONFIG_DEBUG_PREEMPT
1254 	unsigned long			preempt_disable_ip;
1255 #endif
1256 #ifdef CONFIG_NUMA
1257 	/* Protected by alloc_lock: */
1258 	struct mempolicy		*mempolicy;
1259 	short				il_prev;
1260 	short				pref_node_fork;
1261 #endif
1262 #ifdef CONFIG_NUMA_BALANCING
1263 	int				numa_scan_seq;
1264 	unsigned int			numa_scan_period;
1265 	unsigned int			numa_scan_period_max;
1266 	int				numa_preferred_nid;
1267 	unsigned long			numa_migrate_retry;
1268 	/* Migration stamp: */
1269 	u64				node_stamp;
1270 	u64				last_task_numa_placement;
1271 	u64				last_sum_exec_runtime;
1272 	struct callback_head		numa_work;
1273 
1274 	/*
1275 	 * This pointer is only modified for current in syscall and
1276 	 * pagefault context (and for tasks being destroyed), so it can be read
1277 	 * from any of the following contexts:
1278 	 *  - RCU read-side critical section
1279 	 *  - current->numa_group from everywhere
1280 	 *  - task's runqueue locked, task not running
1281 	 */
1282 	struct numa_group __rcu		*numa_group;
1283 
1284 	/*
1285 	 * numa_faults is an array split into four regions:
1286 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1287 	 * in this precise order.
1288 	 *
1289 	 * faults_memory: Exponential decaying average of faults on a per-node
1290 	 * basis. Scheduling placement decisions are made based on these
1291 	 * counts. The values remain static for the duration of a PTE scan.
1292 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1293 	 * hinting fault was incurred.
1294 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1295 	 * during the current scan window. When the scan completes, the counts
1296 	 * in faults_memory and faults_cpu decay and these values are copied.
1297 	 */
1298 	unsigned long			*numa_faults;
1299 	unsigned long			total_numa_faults;
1300 
1301 	/*
1302 	 * numa_faults_locality tracks if faults recorded during the last
1303 	 * scan window were remote/local or failed to migrate. The task scan
1304 	 * period is adapted based on the locality of the faults with different
1305 	 * weights depending on whether they were shared or private faults
1306 	 */
1307 	unsigned long			numa_faults_locality[3];
1308 
1309 	unsigned long			numa_pages_migrated;
1310 #endif /* CONFIG_NUMA_BALANCING */
1311 
1312 #ifdef CONFIG_RSEQ
1313 	struct rseq __user *rseq;
1314 	u32 rseq_len;
1315 	u32 rseq_sig;
1316 	/*
1317 	 * RmW on rseq_event_mask must be performed atomically
1318 	 * with respect to preemption.
1319 	 */
1320 	unsigned long rseq_event_mask;
1321 #endif
1322 
1323 #ifdef CONFIG_SCHED_MM_CID
1324 	int				mm_cid;		/* Current cid in mm */
1325 	int				last_mm_cid;	/* Most recent cid in mm */
1326 	int				migrate_from_cpu;
1327 	int				mm_cid_active;	/* Whether cid bitmap is active */
1328 	struct callback_head		cid_work;
1329 #endif
1330 
1331 	struct tlbflush_unmap_batch	tlb_ubc;
1332 
1333 	/* Cache last used pipe for splice(): */
1334 	struct pipe_inode_info		*splice_pipe;
1335 
1336 	struct page_frag		task_frag;
1337 
1338 #ifdef CONFIG_TASK_DELAY_ACCT
1339 	struct task_delay_info		*delays;
1340 #endif
1341 
1342 #ifdef CONFIG_FAULT_INJECTION
1343 	int				make_it_fail;
1344 	unsigned int			fail_nth;
1345 #endif
1346 	/*
1347 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1348 	 * balance_dirty_pages() for a dirty throttling pause:
1349 	 */
1350 	int				nr_dirtied;
1351 	int				nr_dirtied_pause;
1352 	/* Start of a write-and-pause period: */
1353 	unsigned long			dirty_paused_when;
1354 
1355 #ifdef CONFIG_LATENCYTOP
1356 	int				latency_record_count;
1357 	struct latency_record		latency_record[LT_SAVECOUNT];
1358 #endif
1359 	/*
1360 	 * Time slack values; these are used to round up poll() and
1361 	 * select() etc timeout values. These are in nanoseconds.
1362 	 */
1363 	u64				timer_slack_ns;
1364 	u64				default_timer_slack_ns;
1365 
1366 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1367 	unsigned int			kasan_depth;
1368 #endif
1369 
1370 #ifdef CONFIG_KCSAN
1371 	struct kcsan_ctx		kcsan_ctx;
1372 #ifdef CONFIG_TRACE_IRQFLAGS
1373 	struct irqtrace_events		kcsan_save_irqtrace;
1374 #endif
1375 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1376 	int				kcsan_stack_depth;
1377 #endif
1378 #endif
1379 
1380 #ifdef CONFIG_KMSAN
1381 	struct kmsan_ctx		kmsan_ctx;
1382 #endif
1383 
1384 #if IS_ENABLED(CONFIG_KUNIT)
1385 	struct kunit			*kunit_test;
1386 #endif
1387 
1388 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1389 	/* Index of current stored address in ret_stack: */
1390 	int				curr_ret_stack;
1391 	int				curr_ret_depth;
1392 
1393 	/* Stack of return addresses for return function tracing: */
1394 	struct ftrace_ret_stack		*ret_stack;
1395 
1396 	/* Timestamp for last schedule: */
1397 	unsigned long long		ftrace_timestamp;
1398 
1399 	/*
1400 	 * Number of functions that haven't been traced
1401 	 * because of depth overrun:
1402 	 */
1403 	atomic_t			trace_overrun;
1404 
1405 	/* Pause tracing: */
1406 	atomic_t			tracing_graph_pause;
1407 #endif
1408 
1409 #ifdef CONFIG_TRACING
1410 	/* Bitmask and counter of trace recursion: */
1411 	unsigned long			trace_recursion;
1412 #endif /* CONFIG_TRACING */
1413 
1414 #ifdef CONFIG_KCOV
1415 	/* See kernel/kcov.c for more details. */
1416 
1417 	/* Coverage collection mode enabled for this task (0 if disabled): */
1418 	unsigned int			kcov_mode;
1419 
1420 	/* Size of the kcov_area: */
1421 	unsigned int			kcov_size;
1422 
1423 	/* Buffer for coverage collection: */
1424 	void				*kcov_area;
1425 
1426 	/* KCOV descriptor wired with this task or NULL: */
1427 	struct kcov			*kcov;
1428 
1429 	/* KCOV common handle for remote coverage collection: */
1430 	u64				kcov_handle;
1431 
1432 	/* KCOV sequence number: */
1433 	int				kcov_sequence;
1434 
1435 	/* Collect coverage from softirq context: */
1436 	unsigned int			kcov_softirq;
1437 #endif
1438 
1439 #ifdef CONFIG_MEMCG
1440 	struct mem_cgroup		*memcg_in_oom;
1441 	gfp_t				memcg_oom_gfp_mask;
1442 	int				memcg_oom_order;
1443 
1444 	/* Number of pages to reclaim on returning to userland: */
1445 	unsigned int			memcg_nr_pages_over_high;
1446 
1447 	/* Used by memcontrol for targeted memcg charge: */
1448 	struct mem_cgroup		*active_memcg;
1449 #endif
1450 
1451 #ifdef CONFIG_BLK_CGROUP
1452 	struct gendisk			*throttle_disk;
1453 #endif
1454 
1455 #ifdef CONFIG_UPROBES
1456 	struct uprobe_task		*utask;
1457 #endif
1458 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1459 	unsigned int			sequential_io;
1460 	unsigned int			sequential_io_avg;
1461 #endif
1462 	struct kmap_ctrl		kmap_ctrl;
1463 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1464 	unsigned long			task_state_change;
1465 # ifdef CONFIG_PREEMPT_RT
1466 	unsigned long			saved_state_change;
1467 # endif
1468 #endif
1469 	struct rcu_head			rcu;
1470 	refcount_t			rcu_users;
1471 	int				pagefault_disabled;
1472 #ifdef CONFIG_MMU
1473 	struct task_struct		*oom_reaper_list;
1474 	struct timer_list		oom_reaper_timer;
1475 #endif
1476 #ifdef CONFIG_VMAP_STACK
1477 	struct vm_struct		*stack_vm_area;
1478 #endif
1479 #ifdef CONFIG_THREAD_INFO_IN_TASK
1480 	/* A live task holds one reference: */
1481 	refcount_t			stack_refcount;
1482 #endif
1483 #ifdef CONFIG_LIVEPATCH
1484 	int patch_state;
1485 #endif
1486 #ifdef CONFIG_SECURITY
1487 	/* Used by LSM modules for access restriction: */
1488 	void				*security;
1489 #endif
1490 #ifdef CONFIG_BPF_SYSCALL
1491 	/* Used by BPF task local storage */
1492 	struct bpf_local_storage __rcu	*bpf_storage;
1493 	/* Used for BPF run context */
1494 	struct bpf_run_ctx		*bpf_ctx;
1495 #endif
1496 
1497 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1498 	unsigned long			lowest_stack;
1499 	unsigned long			prev_lowest_stack;
1500 #endif
1501 
1502 #ifdef CONFIG_X86_MCE
1503 	void __user			*mce_vaddr;
1504 	__u64				mce_kflags;
1505 	u64				mce_addr;
1506 	__u64				mce_ripv : 1,
1507 					mce_whole_page : 1,
1508 					__mce_reserved : 62;
1509 	struct callback_head		mce_kill_me;
1510 	int				mce_count;
1511 #endif
1512 
1513 #ifdef CONFIG_KRETPROBES
1514 	struct llist_head               kretprobe_instances;
1515 #endif
1516 #ifdef CONFIG_RETHOOK
1517 	struct llist_head               rethooks;
1518 #endif
1519 
1520 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1521 	/*
1522 	 * If L1D flush is supported on mm context switch
1523 	 * then we use this callback head to queue kill work
1524 	 * to kill tasks that are not running on SMT disabled
1525 	 * cores
1526 	 */
1527 	struct callback_head		l1d_flush_kill;
1528 #endif
1529 
1530 #ifdef CONFIG_RV
1531 	/*
1532 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1533 	 * If we find justification for more monitors, we can think
1534 	 * about adding more or developing a dynamic method. So far,
1535 	 * none of these are justified.
1536 	 */
1537 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1538 #endif
1539 
1540 #ifdef CONFIG_USER_EVENTS
1541 	struct user_event_mm		*user_event_mm;
1542 #endif
1543 
1544 	/*
1545 	 * New fields for task_struct should be added above here, so that
1546 	 * they are included in the randomized portion of task_struct.
1547 	 */
1548 	randomized_struct_fields_end
1549 
1550 	/* CPU-specific state of this task: */
1551 	struct thread_struct		thread;
1552 
1553 	/*
1554 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1555 	 * structure.  It *MUST* be at the end of 'task_struct'.
1556 	 *
1557 	 * Do not put anything below here!
1558 	 */
1559 };
1560 
1561 static inline struct pid *task_pid(struct task_struct *task)
1562 {
1563 	return task->thread_pid;
1564 }
1565 
1566 /*
1567  * the helpers to get the task's different pids as they are seen
1568  * from various namespaces
1569  *
1570  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1571  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1572  *                     current.
1573  * task_xid_nr_ns()  : id seen from the ns specified;
1574  *
1575  * see also pid_nr() etc in include/linux/pid.h
1576  */
1577 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1578 
1579 static inline pid_t task_pid_nr(struct task_struct *tsk)
1580 {
1581 	return tsk->pid;
1582 }
1583 
1584 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1585 {
1586 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1587 }
1588 
1589 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1590 {
1591 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1592 }
1593 
1594 
1595 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1596 {
1597 	return tsk->tgid;
1598 }
1599 
1600 /**
1601  * pid_alive - check that a task structure is not stale
1602  * @p: Task structure to be checked.
1603  *
1604  * Test if a process is not yet dead (at most zombie state)
1605  * If pid_alive fails, then pointers within the task structure
1606  * can be stale and must not be dereferenced.
1607  *
1608  * Return: 1 if the process is alive. 0 otherwise.
1609  */
1610 static inline int pid_alive(const struct task_struct *p)
1611 {
1612 	return p->thread_pid != NULL;
1613 }
1614 
1615 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1616 {
1617 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1618 }
1619 
1620 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1621 {
1622 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1623 }
1624 
1625 
1626 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1627 {
1628 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1629 }
1630 
1631 static inline pid_t task_session_vnr(struct task_struct *tsk)
1632 {
1633 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1634 }
1635 
1636 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1637 {
1638 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1639 }
1640 
1641 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1642 {
1643 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1644 }
1645 
1646 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1647 {
1648 	pid_t pid = 0;
1649 
1650 	rcu_read_lock();
1651 	if (pid_alive(tsk))
1652 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1653 	rcu_read_unlock();
1654 
1655 	return pid;
1656 }
1657 
1658 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1659 {
1660 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1661 }
1662 
1663 /* Obsolete, do not use: */
1664 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1665 {
1666 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1667 }
1668 
1669 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1670 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1671 
1672 static inline unsigned int __task_state_index(unsigned int tsk_state,
1673 					      unsigned int tsk_exit_state)
1674 {
1675 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1676 
1677 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1678 
1679 	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1680 		state = TASK_REPORT_IDLE;
1681 
1682 	/*
1683 	 * We're lying here, but rather than expose a completely new task state
1684 	 * to userspace, we can make this appear as if the task has gone through
1685 	 * a regular rt_mutex_lock() call.
1686 	 */
1687 	if (tsk_state & TASK_RTLOCK_WAIT)
1688 		state = TASK_UNINTERRUPTIBLE;
1689 
1690 	return fls(state);
1691 }
1692 
1693 static inline unsigned int task_state_index(struct task_struct *tsk)
1694 {
1695 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1696 }
1697 
1698 static inline char task_index_to_char(unsigned int state)
1699 {
1700 	static const char state_char[] = "RSDTtXZPI";
1701 
1702 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1703 
1704 	return state_char[state];
1705 }
1706 
1707 static inline char task_state_to_char(struct task_struct *tsk)
1708 {
1709 	return task_index_to_char(task_state_index(tsk));
1710 }
1711 
1712 /**
1713  * is_global_init - check if a task structure is init. Since init
1714  * is free to have sub-threads we need to check tgid.
1715  * @tsk: Task structure to be checked.
1716  *
1717  * Check if a task structure is the first user space task the kernel created.
1718  *
1719  * Return: 1 if the task structure is init. 0 otherwise.
1720  */
1721 static inline int is_global_init(struct task_struct *tsk)
1722 {
1723 	return task_tgid_nr(tsk) == 1;
1724 }
1725 
1726 extern struct pid *cad_pid;
1727 
1728 /*
1729  * Per process flags
1730  */
1731 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1732 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1733 #define PF_EXITING		0x00000004	/* Getting shut down */
1734 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1735 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1736 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1737 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1738 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1739 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1740 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1741 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1742 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1743 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1744 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1745 #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1746 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1747 #define PF__HOLE__00010000	0x00010000
1748 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1749 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1750 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1751 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1752 						 * I am cleaning dirty pages from some other bdi. */
1753 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1754 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1755 #define PF__HOLE__00800000	0x00800000
1756 #define PF__HOLE__01000000	0x01000000
1757 #define PF__HOLE__02000000	0x02000000
1758 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1759 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1760 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1761 #define PF__HOLE__20000000	0x20000000
1762 #define PF__HOLE__40000000	0x40000000
1763 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1764 
1765 /*
1766  * Only the _current_ task can read/write to tsk->flags, but other
1767  * tasks can access tsk->flags in readonly mode for example
1768  * with tsk_used_math (like during threaded core dumping).
1769  * There is however an exception to this rule during ptrace
1770  * or during fork: the ptracer task is allowed to write to the
1771  * child->flags of its traced child (same goes for fork, the parent
1772  * can write to the child->flags), because we're guaranteed the
1773  * child is not running and in turn not changing child->flags
1774  * at the same time the parent does it.
1775  */
1776 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1777 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1778 #define clear_used_math()			clear_stopped_child_used_math(current)
1779 #define set_used_math()				set_stopped_child_used_math(current)
1780 
1781 #define conditional_stopped_child_used_math(condition, child) \
1782 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1783 
1784 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1785 
1786 #define copy_to_stopped_child_used_math(child) \
1787 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1788 
1789 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1790 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1791 #define used_math()				tsk_used_math(current)
1792 
1793 static __always_inline bool is_percpu_thread(void)
1794 {
1795 #ifdef CONFIG_SMP
1796 	return (current->flags & PF_NO_SETAFFINITY) &&
1797 		(current->nr_cpus_allowed  == 1);
1798 #else
1799 	return true;
1800 #endif
1801 }
1802 
1803 /* Per-process atomic flags. */
1804 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1805 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1806 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1807 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1808 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1809 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1810 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1811 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1812 
1813 #define TASK_PFA_TEST(name, func)					\
1814 	static inline bool task_##func(struct task_struct *p)		\
1815 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1816 
1817 #define TASK_PFA_SET(name, func)					\
1818 	static inline void task_set_##func(struct task_struct *p)	\
1819 	{ set_bit(PFA_##name, &p->atomic_flags); }
1820 
1821 #define TASK_PFA_CLEAR(name, func)					\
1822 	static inline void task_clear_##func(struct task_struct *p)	\
1823 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1824 
1825 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1826 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1827 
1828 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1829 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1830 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1831 
1832 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1833 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1834 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1835 
1836 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1837 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1838 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1839 
1840 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1841 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1842 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1843 
1844 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1845 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1846 
1847 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1848 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1849 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1850 
1851 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1852 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1853 
1854 static inline void
1855 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1856 {
1857 	current->flags &= ~flags;
1858 	current->flags |= orig_flags & flags;
1859 }
1860 
1861 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1862 extern int task_can_attach(struct task_struct *p);
1863 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1864 extern void dl_bw_free(int cpu, u64 dl_bw);
1865 #ifdef CONFIG_SMP
1866 
1867 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1868 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1869 
1870 /**
1871  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1872  * @p: the task
1873  * @new_mask: CPU affinity mask
1874  *
1875  * Return: zero if successful, or a negative error code
1876  */
1877 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1878 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1879 extern void release_user_cpus_ptr(struct task_struct *p);
1880 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1881 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1882 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1883 #else
1884 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1885 {
1886 }
1887 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1888 {
1889 	if (!cpumask_test_cpu(0, new_mask))
1890 		return -EINVAL;
1891 	return 0;
1892 }
1893 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1894 {
1895 	if (src->user_cpus_ptr)
1896 		return -EINVAL;
1897 	return 0;
1898 }
1899 static inline void release_user_cpus_ptr(struct task_struct *p)
1900 {
1901 	WARN_ON(p->user_cpus_ptr);
1902 }
1903 
1904 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1905 {
1906 	return 0;
1907 }
1908 #endif
1909 
1910 extern int yield_to(struct task_struct *p, bool preempt);
1911 extern void set_user_nice(struct task_struct *p, long nice);
1912 extern int task_prio(const struct task_struct *p);
1913 
1914 /**
1915  * task_nice - return the nice value of a given task.
1916  * @p: the task in question.
1917  *
1918  * Return: The nice value [ -20 ... 0 ... 19 ].
1919  */
1920 static inline int task_nice(const struct task_struct *p)
1921 {
1922 	return PRIO_TO_NICE((p)->static_prio);
1923 }
1924 
1925 extern int can_nice(const struct task_struct *p, const int nice);
1926 extern int task_curr(const struct task_struct *p);
1927 extern int idle_cpu(int cpu);
1928 extern int available_idle_cpu(int cpu);
1929 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1930 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1931 extern void sched_set_fifo(struct task_struct *p);
1932 extern void sched_set_fifo_low(struct task_struct *p);
1933 extern void sched_set_normal(struct task_struct *p, int nice);
1934 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1935 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1936 extern struct task_struct *idle_task(int cpu);
1937 
1938 /**
1939  * is_idle_task - is the specified task an idle task?
1940  * @p: the task in question.
1941  *
1942  * Return: 1 if @p is an idle task. 0 otherwise.
1943  */
1944 static __always_inline bool is_idle_task(const struct task_struct *p)
1945 {
1946 	return !!(p->flags & PF_IDLE);
1947 }
1948 
1949 extern struct task_struct *curr_task(int cpu);
1950 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1951 
1952 void yield(void);
1953 
1954 union thread_union {
1955 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1956 	struct task_struct task;
1957 #endif
1958 #ifndef CONFIG_THREAD_INFO_IN_TASK
1959 	struct thread_info thread_info;
1960 #endif
1961 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1962 };
1963 
1964 #ifndef CONFIG_THREAD_INFO_IN_TASK
1965 extern struct thread_info init_thread_info;
1966 #endif
1967 
1968 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1969 
1970 #ifdef CONFIG_THREAD_INFO_IN_TASK
1971 # define task_thread_info(task)	(&(task)->thread_info)
1972 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1973 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1974 #endif
1975 
1976 /*
1977  * find a task by one of its numerical ids
1978  *
1979  * find_task_by_pid_ns():
1980  *      finds a task by its pid in the specified namespace
1981  * find_task_by_vpid():
1982  *      finds a task by its virtual pid
1983  *
1984  * see also find_vpid() etc in include/linux/pid.h
1985  */
1986 
1987 extern struct task_struct *find_task_by_vpid(pid_t nr);
1988 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1989 
1990 /*
1991  * find a task by its virtual pid and get the task struct
1992  */
1993 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1994 
1995 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1996 extern int wake_up_process(struct task_struct *tsk);
1997 extern void wake_up_new_task(struct task_struct *tsk);
1998 
1999 #ifdef CONFIG_SMP
2000 extern void kick_process(struct task_struct *tsk);
2001 #else
2002 static inline void kick_process(struct task_struct *tsk) { }
2003 #endif
2004 
2005 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2006 
2007 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2008 {
2009 	__set_task_comm(tsk, from, false);
2010 }
2011 
2012 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
2013 #define get_task_comm(buf, tsk) ({			\
2014 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
2015 	__get_task_comm(buf, sizeof(buf), tsk);		\
2016 })
2017 
2018 #ifdef CONFIG_SMP
2019 static __always_inline void scheduler_ipi(void)
2020 {
2021 	/*
2022 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2023 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2024 	 * this IPI.
2025 	 */
2026 	preempt_fold_need_resched();
2027 }
2028 #else
2029 static inline void scheduler_ipi(void) { }
2030 #endif
2031 
2032 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2033 
2034 /*
2035  * Set thread flags in other task's structures.
2036  * See asm/thread_info.h for TIF_xxxx flags available:
2037  */
2038 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2039 {
2040 	set_ti_thread_flag(task_thread_info(tsk), flag);
2041 }
2042 
2043 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2044 {
2045 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2046 }
2047 
2048 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2049 					  bool value)
2050 {
2051 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2052 }
2053 
2054 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2055 {
2056 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2057 }
2058 
2059 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2060 {
2061 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2062 }
2063 
2064 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2065 {
2066 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2067 }
2068 
2069 static inline void set_tsk_need_resched(struct task_struct *tsk)
2070 {
2071 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2072 }
2073 
2074 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2075 {
2076 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2077 }
2078 
2079 static inline int test_tsk_need_resched(struct task_struct *tsk)
2080 {
2081 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2082 }
2083 
2084 /*
2085  * cond_resched() and cond_resched_lock(): latency reduction via
2086  * explicit rescheduling in places that are safe. The return
2087  * value indicates whether a reschedule was done in fact.
2088  * cond_resched_lock() will drop the spinlock before scheduling,
2089  */
2090 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2091 extern int __cond_resched(void);
2092 
2093 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2094 
2095 void sched_dynamic_klp_enable(void);
2096 void sched_dynamic_klp_disable(void);
2097 
2098 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2099 
2100 static __always_inline int _cond_resched(void)
2101 {
2102 	return static_call_mod(cond_resched)();
2103 }
2104 
2105 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2106 
2107 extern int dynamic_cond_resched(void);
2108 
2109 static __always_inline int _cond_resched(void)
2110 {
2111 	return dynamic_cond_resched();
2112 }
2113 
2114 #else /* !CONFIG_PREEMPTION */
2115 
2116 static inline int _cond_resched(void)
2117 {
2118 	klp_sched_try_switch();
2119 	return __cond_resched();
2120 }
2121 
2122 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2123 
2124 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2125 
2126 static inline int _cond_resched(void)
2127 {
2128 	klp_sched_try_switch();
2129 	return 0;
2130 }
2131 
2132 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2133 
2134 #define cond_resched() ({			\
2135 	__might_resched(__FILE__, __LINE__, 0);	\
2136 	_cond_resched();			\
2137 })
2138 
2139 extern int __cond_resched_lock(spinlock_t *lock);
2140 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2141 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2142 
2143 #define MIGHT_RESCHED_RCU_SHIFT		8
2144 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2145 
2146 #ifndef CONFIG_PREEMPT_RT
2147 /*
2148  * Non RT kernels have an elevated preempt count due to the held lock,
2149  * but are not allowed to be inside a RCU read side critical section
2150  */
2151 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2152 #else
2153 /*
2154  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2155  * cond_resched*lock() has to take that into account because it checks for
2156  * preempt_count() and rcu_preempt_depth().
2157  */
2158 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2159 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2160 #endif
2161 
2162 #define cond_resched_lock(lock) ({						\
2163 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2164 	__cond_resched_lock(lock);						\
2165 })
2166 
2167 #define cond_resched_rwlock_read(lock) ({					\
2168 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2169 	__cond_resched_rwlock_read(lock);					\
2170 })
2171 
2172 #define cond_resched_rwlock_write(lock) ({					\
2173 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2174 	__cond_resched_rwlock_write(lock);					\
2175 })
2176 
2177 static inline void cond_resched_rcu(void)
2178 {
2179 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2180 	rcu_read_unlock();
2181 	cond_resched();
2182 	rcu_read_lock();
2183 #endif
2184 }
2185 
2186 #ifdef CONFIG_PREEMPT_DYNAMIC
2187 
2188 extern bool preempt_model_none(void);
2189 extern bool preempt_model_voluntary(void);
2190 extern bool preempt_model_full(void);
2191 
2192 #else
2193 
2194 static inline bool preempt_model_none(void)
2195 {
2196 	return IS_ENABLED(CONFIG_PREEMPT_NONE);
2197 }
2198 static inline bool preempt_model_voluntary(void)
2199 {
2200 	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2201 }
2202 static inline bool preempt_model_full(void)
2203 {
2204 	return IS_ENABLED(CONFIG_PREEMPT);
2205 }
2206 
2207 #endif
2208 
2209 static inline bool preempt_model_rt(void)
2210 {
2211 	return IS_ENABLED(CONFIG_PREEMPT_RT);
2212 }
2213 
2214 /*
2215  * Does the preemption model allow non-cooperative preemption?
2216  *
2217  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2218  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2219  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2220  * PREEMPT_NONE model.
2221  */
2222 static inline bool preempt_model_preemptible(void)
2223 {
2224 	return preempt_model_full() || preempt_model_rt();
2225 }
2226 
2227 /*
2228  * Does a critical section need to be broken due to another
2229  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2230  * but a general need for low latency)
2231  */
2232 static inline int spin_needbreak(spinlock_t *lock)
2233 {
2234 #ifdef CONFIG_PREEMPTION
2235 	return spin_is_contended(lock);
2236 #else
2237 	return 0;
2238 #endif
2239 }
2240 
2241 /*
2242  * Check if a rwlock is contended.
2243  * Returns non-zero if there is another task waiting on the rwlock.
2244  * Returns zero if the lock is not contended or the system / underlying
2245  * rwlock implementation does not support contention detection.
2246  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2247  * for low latency.
2248  */
2249 static inline int rwlock_needbreak(rwlock_t *lock)
2250 {
2251 #ifdef CONFIG_PREEMPTION
2252 	return rwlock_is_contended(lock);
2253 #else
2254 	return 0;
2255 #endif
2256 }
2257 
2258 static __always_inline bool need_resched(void)
2259 {
2260 	return unlikely(tif_need_resched());
2261 }
2262 
2263 /*
2264  * Wrappers for p->thread_info->cpu access. No-op on UP.
2265  */
2266 #ifdef CONFIG_SMP
2267 
2268 static inline unsigned int task_cpu(const struct task_struct *p)
2269 {
2270 	return READ_ONCE(task_thread_info(p)->cpu);
2271 }
2272 
2273 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2274 
2275 #else
2276 
2277 static inline unsigned int task_cpu(const struct task_struct *p)
2278 {
2279 	return 0;
2280 }
2281 
2282 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2283 {
2284 }
2285 
2286 #endif /* CONFIG_SMP */
2287 
2288 extern bool sched_task_on_rq(struct task_struct *p);
2289 extern unsigned long get_wchan(struct task_struct *p);
2290 extern struct task_struct *cpu_curr_snapshot(int cpu);
2291 
2292 /*
2293  * In order to reduce various lock holder preemption latencies provide an
2294  * interface to see if a vCPU is currently running or not.
2295  *
2296  * This allows us to terminate optimistic spin loops and block, analogous to
2297  * the native optimistic spin heuristic of testing if the lock owner task is
2298  * running or not.
2299  */
2300 #ifndef vcpu_is_preempted
2301 static inline bool vcpu_is_preempted(int cpu)
2302 {
2303 	return false;
2304 }
2305 #endif
2306 
2307 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2308 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2309 
2310 #ifndef TASK_SIZE_OF
2311 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2312 #endif
2313 
2314 #ifdef CONFIG_SMP
2315 static inline bool owner_on_cpu(struct task_struct *owner)
2316 {
2317 	/*
2318 	 * As lock holder preemption issue, we both skip spinning if
2319 	 * task is not on cpu or its cpu is preempted
2320 	 */
2321 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2322 }
2323 
2324 /* Returns effective CPU energy utilization, as seen by the scheduler */
2325 unsigned long sched_cpu_util(int cpu);
2326 #endif /* CONFIG_SMP */
2327 
2328 #ifdef CONFIG_RSEQ
2329 
2330 /*
2331  * Map the event mask on the user-space ABI enum rseq_cs_flags
2332  * for direct mask checks.
2333  */
2334 enum rseq_event_mask_bits {
2335 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2336 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2337 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2338 };
2339 
2340 enum rseq_event_mask {
2341 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2342 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2343 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2344 };
2345 
2346 static inline void rseq_set_notify_resume(struct task_struct *t)
2347 {
2348 	if (t->rseq)
2349 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2350 }
2351 
2352 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2353 
2354 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2355 					     struct pt_regs *regs)
2356 {
2357 	if (current->rseq)
2358 		__rseq_handle_notify_resume(ksig, regs);
2359 }
2360 
2361 static inline void rseq_signal_deliver(struct ksignal *ksig,
2362 				       struct pt_regs *regs)
2363 {
2364 	preempt_disable();
2365 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2366 	preempt_enable();
2367 	rseq_handle_notify_resume(ksig, regs);
2368 }
2369 
2370 /* rseq_preempt() requires preemption to be disabled. */
2371 static inline void rseq_preempt(struct task_struct *t)
2372 {
2373 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2374 	rseq_set_notify_resume(t);
2375 }
2376 
2377 /* rseq_migrate() requires preemption to be disabled. */
2378 static inline void rseq_migrate(struct task_struct *t)
2379 {
2380 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2381 	rseq_set_notify_resume(t);
2382 }
2383 
2384 /*
2385  * If parent process has a registered restartable sequences area, the
2386  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2387  */
2388 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2389 {
2390 	if (clone_flags & CLONE_VM) {
2391 		t->rseq = NULL;
2392 		t->rseq_len = 0;
2393 		t->rseq_sig = 0;
2394 		t->rseq_event_mask = 0;
2395 	} else {
2396 		t->rseq = current->rseq;
2397 		t->rseq_len = current->rseq_len;
2398 		t->rseq_sig = current->rseq_sig;
2399 		t->rseq_event_mask = current->rseq_event_mask;
2400 	}
2401 }
2402 
2403 static inline void rseq_execve(struct task_struct *t)
2404 {
2405 	t->rseq = NULL;
2406 	t->rseq_len = 0;
2407 	t->rseq_sig = 0;
2408 	t->rseq_event_mask = 0;
2409 }
2410 
2411 #else
2412 
2413 static inline void rseq_set_notify_resume(struct task_struct *t)
2414 {
2415 }
2416 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2417 					     struct pt_regs *regs)
2418 {
2419 }
2420 static inline void rseq_signal_deliver(struct ksignal *ksig,
2421 				       struct pt_regs *regs)
2422 {
2423 }
2424 static inline void rseq_preempt(struct task_struct *t)
2425 {
2426 }
2427 static inline void rseq_migrate(struct task_struct *t)
2428 {
2429 }
2430 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2431 {
2432 }
2433 static inline void rseq_execve(struct task_struct *t)
2434 {
2435 }
2436 
2437 #endif
2438 
2439 #ifdef CONFIG_DEBUG_RSEQ
2440 
2441 void rseq_syscall(struct pt_regs *regs);
2442 
2443 #else
2444 
2445 static inline void rseq_syscall(struct pt_regs *regs)
2446 {
2447 }
2448 
2449 #endif
2450 
2451 #ifdef CONFIG_SCHED_CORE
2452 extern void sched_core_free(struct task_struct *tsk);
2453 extern void sched_core_fork(struct task_struct *p);
2454 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2455 				unsigned long uaddr);
2456 extern int sched_core_idle_cpu(int cpu);
2457 #else
2458 static inline void sched_core_free(struct task_struct *tsk) { }
2459 static inline void sched_core_fork(struct task_struct *p) { }
2460 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2461 #endif
2462 
2463 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2464 
2465 #endif
2466