xref: /linux/include/linux/sched.h (revision 02bdf9da9e6cf150a28545ae000aaf620456b449)
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3 
4 /*
5  * Define 'struct task_struct' and provide the main scheduler
6  * APIs (schedule(), wakeup variants, etc.)
7  */
8 
9 #include <uapi/linux/sched.h>
10 
11 #include <asm/current.h>
12 
13 #include <linux/pid.h>
14 #include <linux/sem.h>
15 #include <linux/shm.h>
16 #include <linux/kcov.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/seccomp.h>
21 #include <linux/nodemask.h>
22 #include <linux/rcupdate.h>
23 #include <linux/resource.h>
24 #include <linux/latencytop.h>
25 #include <linux/sched/prio.h>
26 #include <linux/signal_types.h>
27 #include <linux/mm_types_task.h>
28 #include <linux/task_io_accounting.h>
29 
30 /* task_struct member predeclarations (sorted alphabetically): */
31 struct audit_context;
32 struct backing_dev_info;
33 struct bio_list;
34 struct blk_plug;
35 struct cfs_rq;
36 struct fs_struct;
37 struct futex_pi_state;
38 struct io_context;
39 struct mempolicy;
40 struct nameidata;
41 struct nsproxy;
42 struct perf_event_context;
43 struct pid_namespace;
44 struct pipe_inode_info;
45 struct rcu_node;
46 struct reclaim_state;
47 struct robust_list_head;
48 struct sched_attr;
49 struct sched_param;
50 struct seq_file;
51 struct sighand_struct;
52 struct signal_struct;
53 struct task_delay_info;
54 struct task_group;
55 
56 /*
57  * Task state bitmask. NOTE! These bits are also
58  * encoded in fs/proc/array.c: get_task_state().
59  *
60  * We have two separate sets of flags: task->state
61  * is about runnability, while task->exit_state are
62  * about the task exiting. Confusing, but this way
63  * modifying one set can't modify the other one by
64  * mistake.
65  */
66 
67 /* Used in tsk->state: */
68 #define TASK_RUNNING			0
69 #define TASK_INTERRUPTIBLE		1
70 #define TASK_UNINTERRUPTIBLE		2
71 #define __TASK_STOPPED			4
72 #define __TASK_TRACED			8
73 /* Used in tsk->exit_state: */
74 #define EXIT_DEAD			16
75 #define EXIT_ZOMBIE			32
76 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
77 /* Used in tsk->state again: */
78 #define TASK_DEAD			64
79 #define TASK_WAKEKILL			128
80 #define TASK_WAKING			256
81 #define TASK_PARKED			512
82 #define TASK_NOLOAD			1024
83 #define TASK_NEW			2048
84 #define TASK_STATE_MAX			4096
85 
86 #define TASK_STATE_TO_CHAR_STR		"RSDTtXZxKWPNn"
87 
88 /* Convenience macros for the sake of set_current_state: */
89 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
90 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
91 #define TASK_TRACED			(TASK_WAKEKILL | __TASK_TRACED)
92 
93 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
94 
95 /* Convenience macros for the sake of wake_up(): */
96 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
97 #define TASK_ALL			(TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
98 
99 /* get_task_state(): */
100 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
101 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
102 					 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
103 
104 #define task_is_traced(task)		((task->state & __TASK_TRACED) != 0)
105 
106 #define task_is_stopped(task)		((task->state & __TASK_STOPPED) != 0)
107 
108 #define task_is_stopped_or_traced(task)	((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
109 
110 #define task_contributes_to_load(task)	((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
111 					 (task->flags & PF_FROZEN) == 0 && \
112 					 (task->state & TASK_NOLOAD) == 0)
113 
114 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
115 
116 #define __set_current_state(state_value)			\
117 	do {							\
118 		current->task_state_change = _THIS_IP_;		\
119 		current->state = (state_value);			\
120 	} while (0)
121 #define set_current_state(state_value)				\
122 	do {							\
123 		current->task_state_change = _THIS_IP_;		\
124 		smp_store_mb(current->state, (state_value));	\
125 	} while (0)
126 
127 #else
128 /*
129  * set_current_state() includes a barrier so that the write of current->state
130  * is correctly serialised wrt the caller's subsequent test of whether to
131  * actually sleep:
132  *
133  *   for (;;) {
134  *	set_current_state(TASK_UNINTERRUPTIBLE);
135  *	if (!need_sleep)
136  *		break;
137  *
138  *	schedule();
139  *   }
140  *   __set_current_state(TASK_RUNNING);
141  *
142  * If the caller does not need such serialisation (because, for instance, the
143  * condition test and condition change and wakeup are under the same lock) then
144  * use __set_current_state().
145  *
146  * The above is typically ordered against the wakeup, which does:
147  *
148  *	need_sleep = false;
149  *	wake_up_state(p, TASK_UNINTERRUPTIBLE);
150  *
151  * Where wake_up_state() (and all other wakeup primitives) imply enough
152  * barriers to order the store of the variable against wakeup.
153  *
154  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
155  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
156  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
157  *
158  * This is obviously fine, since they both store the exact same value.
159  *
160  * Also see the comments of try_to_wake_up().
161  */
162 #define __set_current_state(state_value) do { current->state = (state_value); } while (0)
163 #define set_current_state(state_value)	 smp_store_mb(current->state, (state_value))
164 #endif
165 
166 /* Task command name length: */
167 #define TASK_COMM_LEN			16
168 
169 extern cpumask_var_t			cpu_isolated_map;
170 
171 extern void scheduler_tick(void);
172 
173 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
174 
175 extern long schedule_timeout(long timeout);
176 extern long schedule_timeout_interruptible(long timeout);
177 extern long schedule_timeout_killable(long timeout);
178 extern long schedule_timeout_uninterruptible(long timeout);
179 extern long schedule_timeout_idle(long timeout);
180 asmlinkage void schedule(void);
181 extern void schedule_preempt_disabled(void);
182 
183 extern int __must_check io_schedule_prepare(void);
184 extern void io_schedule_finish(int token);
185 extern long io_schedule_timeout(long timeout);
186 extern void io_schedule(void);
187 
188 /**
189  * struct prev_cputime - snapshot of system and user cputime
190  * @utime: time spent in user mode
191  * @stime: time spent in system mode
192  * @lock: protects the above two fields
193  *
194  * Stores previous user/system time values such that we can guarantee
195  * monotonicity.
196  */
197 struct prev_cputime {
198 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
199 	u64				utime;
200 	u64				stime;
201 	raw_spinlock_t			lock;
202 #endif
203 };
204 
205 /**
206  * struct task_cputime - collected CPU time counts
207  * @utime:		time spent in user mode, in nanoseconds
208  * @stime:		time spent in kernel mode, in nanoseconds
209  * @sum_exec_runtime:	total time spent on the CPU, in nanoseconds
210  *
211  * This structure groups together three kinds of CPU time that are tracked for
212  * threads and thread groups.  Most things considering CPU time want to group
213  * these counts together and treat all three of them in parallel.
214  */
215 struct task_cputime {
216 	u64				utime;
217 	u64				stime;
218 	unsigned long long		sum_exec_runtime;
219 };
220 
221 /* Alternate field names when used on cache expirations: */
222 #define virt_exp			utime
223 #define prof_exp			stime
224 #define sched_exp			sum_exec_runtime
225 
226 enum vtime_state {
227 	/* Task is sleeping or running in a CPU with VTIME inactive: */
228 	VTIME_INACTIVE = 0,
229 	/* Task runs in userspace in a CPU with VTIME active: */
230 	VTIME_USER,
231 	/* Task runs in kernelspace in a CPU with VTIME active: */
232 	VTIME_SYS,
233 };
234 
235 struct vtime {
236 	seqcount_t		seqcount;
237 	unsigned long long	starttime;
238 	enum vtime_state	state;
239 	u64			utime;
240 	u64			stime;
241 	u64			gtime;
242 };
243 
244 struct sched_info {
245 #ifdef CONFIG_SCHED_INFO
246 	/* Cumulative counters: */
247 
248 	/* # of times we have run on this CPU: */
249 	unsigned long			pcount;
250 
251 	/* Time spent waiting on a runqueue: */
252 	unsigned long long		run_delay;
253 
254 	/* Timestamps: */
255 
256 	/* When did we last run on a CPU? */
257 	unsigned long long		last_arrival;
258 
259 	/* When were we last queued to run? */
260 	unsigned long long		last_queued;
261 
262 #endif /* CONFIG_SCHED_INFO */
263 };
264 
265 /*
266  * Integer metrics need fixed point arithmetic, e.g., sched/fair
267  * has a few: load, load_avg, util_avg, freq, and capacity.
268  *
269  * We define a basic fixed point arithmetic range, and then formalize
270  * all these metrics based on that basic range.
271  */
272 # define SCHED_FIXEDPOINT_SHIFT		10
273 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
274 
275 struct load_weight {
276 	unsigned long			weight;
277 	u32				inv_weight;
278 };
279 
280 /*
281  * The load_avg/util_avg accumulates an infinite geometric series
282  * (see __update_load_avg() in kernel/sched/fair.c).
283  *
284  * [load_avg definition]
285  *
286  *   load_avg = runnable% * scale_load_down(load)
287  *
288  * where runnable% is the time ratio that a sched_entity is runnable.
289  * For cfs_rq, it is the aggregated load_avg of all runnable and
290  * blocked sched_entities.
291  *
292  * load_avg may also take frequency scaling into account:
293  *
294  *   load_avg = runnable% * scale_load_down(load) * freq%
295  *
296  * where freq% is the CPU frequency normalized to the highest frequency.
297  *
298  * [util_avg definition]
299  *
300  *   util_avg = running% * SCHED_CAPACITY_SCALE
301  *
302  * where running% is the time ratio that a sched_entity is running on
303  * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
304  * and blocked sched_entities.
305  *
306  * util_avg may also factor frequency scaling and CPU capacity scaling:
307  *
308  *   util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity%
309  *
310  * where freq% is the same as above, and capacity% is the CPU capacity
311  * normalized to the greatest capacity (due to uarch differences, etc).
312  *
313  * N.B., the above ratios (runnable%, running%, freq%, and capacity%)
314  * themselves are in the range of [0, 1]. To do fixed point arithmetics,
315  * we therefore scale them to as large a range as necessary. This is for
316  * example reflected by util_avg's SCHED_CAPACITY_SCALE.
317  *
318  * [Overflow issue]
319  *
320  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
321  * with the highest load (=88761), always runnable on a single cfs_rq,
322  * and should not overflow as the number already hits PID_MAX_LIMIT.
323  *
324  * For all other cases (including 32-bit kernels), struct load_weight's
325  * weight will overflow first before we do, because:
326  *
327  *    Max(load_avg) <= Max(load.weight)
328  *
329  * Then it is the load_weight's responsibility to consider overflow
330  * issues.
331  */
332 struct sched_avg {
333 	u64				last_update_time;
334 	u64				load_sum;
335 	u32				util_sum;
336 	u32				period_contrib;
337 	unsigned long			load_avg;
338 	unsigned long			util_avg;
339 };
340 
341 struct sched_statistics {
342 #ifdef CONFIG_SCHEDSTATS
343 	u64				wait_start;
344 	u64				wait_max;
345 	u64				wait_count;
346 	u64				wait_sum;
347 	u64				iowait_count;
348 	u64				iowait_sum;
349 
350 	u64				sleep_start;
351 	u64				sleep_max;
352 	s64				sum_sleep_runtime;
353 
354 	u64				block_start;
355 	u64				block_max;
356 	u64				exec_max;
357 	u64				slice_max;
358 
359 	u64				nr_migrations_cold;
360 	u64				nr_failed_migrations_affine;
361 	u64				nr_failed_migrations_running;
362 	u64				nr_failed_migrations_hot;
363 	u64				nr_forced_migrations;
364 
365 	u64				nr_wakeups;
366 	u64				nr_wakeups_sync;
367 	u64				nr_wakeups_migrate;
368 	u64				nr_wakeups_local;
369 	u64				nr_wakeups_remote;
370 	u64				nr_wakeups_affine;
371 	u64				nr_wakeups_affine_attempts;
372 	u64				nr_wakeups_passive;
373 	u64				nr_wakeups_idle;
374 #endif
375 };
376 
377 struct sched_entity {
378 	/* For load-balancing: */
379 	struct load_weight		load;
380 	struct rb_node			run_node;
381 	struct list_head		group_node;
382 	unsigned int			on_rq;
383 
384 	u64				exec_start;
385 	u64				sum_exec_runtime;
386 	u64				vruntime;
387 	u64				prev_sum_exec_runtime;
388 
389 	u64				nr_migrations;
390 
391 	struct sched_statistics		statistics;
392 
393 #ifdef CONFIG_FAIR_GROUP_SCHED
394 	int				depth;
395 	struct sched_entity		*parent;
396 	/* rq on which this entity is (to be) queued: */
397 	struct cfs_rq			*cfs_rq;
398 	/* rq "owned" by this entity/group: */
399 	struct cfs_rq			*my_q;
400 #endif
401 
402 #ifdef CONFIG_SMP
403 	/*
404 	 * Per entity load average tracking.
405 	 *
406 	 * Put into separate cache line so it does not
407 	 * collide with read-mostly values above.
408 	 */
409 	struct sched_avg		avg ____cacheline_aligned_in_smp;
410 #endif
411 };
412 
413 struct sched_rt_entity {
414 	struct list_head		run_list;
415 	unsigned long			timeout;
416 	unsigned long			watchdog_stamp;
417 	unsigned int			time_slice;
418 	unsigned short			on_rq;
419 	unsigned short			on_list;
420 
421 	struct sched_rt_entity		*back;
422 #ifdef CONFIG_RT_GROUP_SCHED
423 	struct sched_rt_entity		*parent;
424 	/* rq on which this entity is (to be) queued: */
425 	struct rt_rq			*rt_rq;
426 	/* rq "owned" by this entity/group: */
427 	struct rt_rq			*my_q;
428 #endif
429 };
430 
431 struct sched_dl_entity {
432 	struct rb_node			rb_node;
433 
434 	/*
435 	 * Original scheduling parameters. Copied here from sched_attr
436 	 * during sched_setattr(), they will remain the same until
437 	 * the next sched_setattr().
438 	 */
439 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
440 	u64				dl_deadline;	/* Relative deadline of each instance	*/
441 	u64				dl_period;	/* Separation of two instances (period) */
442 	u64				dl_bw;		/* dl_runtime / dl_period		*/
443 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
444 
445 	/*
446 	 * Actual scheduling parameters. Initialized with the values above,
447 	 * they are continously updated during task execution. Note that
448 	 * the remaining runtime could be < 0 in case we are in overrun.
449 	 */
450 	s64				runtime;	/* Remaining runtime for this instance	*/
451 	u64				deadline;	/* Absolute deadline for this instance	*/
452 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
453 
454 	/*
455 	 * Some bool flags:
456 	 *
457 	 * @dl_throttled tells if we exhausted the runtime. If so, the
458 	 * task has to wait for a replenishment to be performed at the
459 	 * next firing of dl_timer.
460 	 *
461 	 * @dl_boosted tells if we are boosted due to DI. If so we are
462 	 * outside bandwidth enforcement mechanism (but only until we
463 	 * exit the critical section);
464 	 *
465 	 * @dl_yielded tells if task gave up the CPU before consuming
466 	 * all its available runtime during the last job.
467 	 *
468 	 * @dl_non_contending tells if the task is inactive while still
469 	 * contributing to the active utilization. In other words, it
470 	 * indicates if the inactive timer has been armed and its handler
471 	 * has not been executed yet. This flag is useful to avoid race
472 	 * conditions between the inactive timer handler and the wakeup
473 	 * code.
474 	 */
475 	int				dl_throttled;
476 	int				dl_boosted;
477 	int				dl_yielded;
478 	int				dl_non_contending;
479 
480 	/*
481 	 * Bandwidth enforcement timer. Each -deadline task has its
482 	 * own bandwidth to be enforced, thus we need one timer per task.
483 	 */
484 	struct hrtimer			dl_timer;
485 
486 	/*
487 	 * Inactive timer, responsible for decreasing the active utilization
488 	 * at the "0-lag time". When a -deadline task blocks, it contributes
489 	 * to GRUB's active utilization until the "0-lag time", hence a
490 	 * timer is needed to decrease the active utilization at the correct
491 	 * time.
492 	 */
493 	struct hrtimer inactive_timer;
494 };
495 
496 union rcu_special {
497 	struct {
498 		u8			blocked;
499 		u8			need_qs;
500 		u8			exp_need_qs;
501 
502 		/* Otherwise the compiler can store garbage here: */
503 		u8			pad;
504 	} b; /* Bits. */
505 	u32 s; /* Set of bits. */
506 };
507 
508 enum perf_event_task_context {
509 	perf_invalid_context = -1,
510 	perf_hw_context = 0,
511 	perf_sw_context,
512 	perf_nr_task_contexts,
513 };
514 
515 struct wake_q_node {
516 	struct wake_q_node *next;
517 };
518 
519 struct task_struct {
520 #ifdef CONFIG_THREAD_INFO_IN_TASK
521 	/*
522 	 * For reasons of header soup (see current_thread_info()), this
523 	 * must be the first element of task_struct.
524 	 */
525 	struct thread_info		thread_info;
526 #endif
527 	/* -1 unrunnable, 0 runnable, >0 stopped: */
528 	volatile long			state;
529 	void				*stack;
530 	atomic_t			usage;
531 	/* Per task flags (PF_*), defined further below: */
532 	unsigned int			flags;
533 	unsigned int			ptrace;
534 
535 #ifdef CONFIG_SMP
536 	struct llist_node		wake_entry;
537 	int				on_cpu;
538 #ifdef CONFIG_THREAD_INFO_IN_TASK
539 	/* Current CPU: */
540 	unsigned int			cpu;
541 #endif
542 	unsigned int			wakee_flips;
543 	unsigned long			wakee_flip_decay_ts;
544 	struct task_struct		*last_wakee;
545 
546 	int				wake_cpu;
547 #endif
548 	int				on_rq;
549 
550 	int				prio;
551 	int				static_prio;
552 	int				normal_prio;
553 	unsigned int			rt_priority;
554 
555 	const struct sched_class	*sched_class;
556 	struct sched_entity		se;
557 	struct sched_rt_entity		rt;
558 #ifdef CONFIG_CGROUP_SCHED
559 	struct task_group		*sched_task_group;
560 #endif
561 	struct sched_dl_entity		dl;
562 
563 #ifdef CONFIG_PREEMPT_NOTIFIERS
564 	/* List of struct preempt_notifier: */
565 	struct hlist_head		preempt_notifiers;
566 #endif
567 
568 #ifdef CONFIG_BLK_DEV_IO_TRACE
569 	unsigned int			btrace_seq;
570 #endif
571 
572 	unsigned int			policy;
573 	int				nr_cpus_allowed;
574 	cpumask_t			cpus_allowed;
575 
576 #ifdef CONFIG_PREEMPT_RCU
577 	int				rcu_read_lock_nesting;
578 	union rcu_special		rcu_read_unlock_special;
579 	struct list_head		rcu_node_entry;
580 	struct rcu_node			*rcu_blocked_node;
581 #endif /* #ifdef CONFIG_PREEMPT_RCU */
582 
583 #ifdef CONFIG_TASKS_RCU
584 	unsigned long			rcu_tasks_nvcsw;
585 	bool				rcu_tasks_holdout;
586 	struct list_head		rcu_tasks_holdout_list;
587 	int				rcu_tasks_idle_cpu;
588 #endif /* #ifdef CONFIG_TASKS_RCU */
589 
590 	struct sched_info		sched_info;
591 
592 	struct list_head		tasks;
593 #ifdef CONFIG_SMP
594 	struct plist_node		pushable_tasks;
595 	struct rb_node			pushable_dl_tasks;
596 #endif
597 
598 	struct mm_struct		*mm;
599 	struct mm_struct		*active_mm;
600 
601 	/* Per-thread vma caching: */
602 	struct vmacache			vmacache;
603 
604 #ifdef SPLIT_RSS_COUNTING
605 	struct task_rss_stat		rss_stat;
606 #endif
607 	int				exit_state;
608 	int				exit_code;
609 	int				exit_signal;
610 	/* The signal sent when the parent dies: */
611 	int				pdeath_signal;
612 	/* JOBCTL_*, siglock protected: */
613 	unsigned long			jobctl;
614 
615 	/* Used for emulating ABI behavior of previous Linux versions: */
616 	unsigned int			personality;
617 
618 	/* Scheduler bits, serialized by scheduler locks: */
619 	unsigned			sched_reset_on_fork:1;
620 	unsigned			sched_contributes_to_load:1;
621 	unsigned			sched_migrated:1;
622 	unsigned			sched_remote_wakeup:1;
623 	/* Force alignment to the next boundary: */
624 	unsigned			:0;
625 
626 	/* Unserialized, strictly 'current' */
627 
628 	/* Bit to tell LSMs we're in execve(): */
629 	unsigned			in_execve:1;
630 	unsigned			in_iowait:1;
631 #ifndef TIF_RESTORE_SIGMASK
632 	unsigned			restore_sigmask:1;
633 #endif
634 #ifdef CONFIG_MEMCG
635 	unsigned			memcg_may_oom:1;
636 #ifndef CONFIG_SLOB
637 	unsigned			memcg_kmem_skip_account:1;
638 #endif
639 #endif
640 #ifdef CONFIG_COMPAT_BRK
641 	unsigned			brk_randomized:1;
642 #endif
643 #ifdef CONFIG_CGROUPS
644 	/* disallow userland-initiated cgroup migration */
645 	unsigned			no_cgroup_migration:1;
646 #endif
647 
648 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
649 
650 	struct restart_block		restart_block;
651 
652 	pid_t				pid;
653 	pid_t				tgid;
654 
655 #ifdef CONFIG_CC_STACKPROTECTOR
656 	/* Canary value for the -fstack-protector GCC feature: */
657 	unsigned long			stack_canary;
658 #endif
659 	/*
660 	 * Pointers to the (original) parent process, youngest child, younger sibling,
661 	 * older sibling, respectively.  (p->father can be replaced with
662 	 * p->real_parent->pid)
663 	 */
664 
665 	/* Real parent process: */
666 	struct task_struct __rcu	*real_parent;
667 
668 	/* Recipient of SIGCHLD, wait4() reports: */
669 	struct task_struct __rcu	*parent;
670 
671 	/*
672 	 * Children/sibling form the list of natural children:
673 	 */
674 	struct list_head		children;
675 	struct list_head		sibling;
676 	struct task_struct		*group_leader;
677 
678 	/*
679 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
680 	 *
681 	 * This includes both natural children and PTRACE_ATTACH targets.
682 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
683 	 */
684 	struct list_head		ptraced;
685 	struct list_head		ptrace_entry;
686 
687 	/* PID/PID hash table linkage. */
688 	struct pid_link			pids[PIDTYPE_MAX];
689 	struct list_head		thread_group;
690 	struct list_head		thread_node;
691 
692 	struct completion		*vfork_done;
693 
694 	/* CLONE_CHILD_SETTID: */
695 	int __user			*set_child_tid;
696 
697 	/* CLONE_CHILD_CLEARTID: */
698 	int __user			*clear_child_tid;
699 
700 	u64				utime;
701 	u64				stime;
702 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
703 	u64				utimescaled;
704 	u64				stimescaled;
705 #endif
706 	u64				gtime;
707 	struct prev_cputime		prev_cputime;
708 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
709 	struct vtime			vtime;
710 #endif
711 
712 #ifdef CONFIG_NO_HZ_FULL
713 	atomic_t			tick_dep_mask;
714 #endif
715 	/* Context switch counts: */
716 	unsigned long			nvcsw;
717 	unsigned long			nivcsw;
718 
719 	/* Monotonic time in nsecs: */
720 	u64				start_time;
721 
722 	/* Boot based time in nsecs: */
723 	u64				real_start_time;
724 
725 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
726 	unsigned long			min_flt;
727 	unsigned long			maj_flt;
728 
729 #ifdef CONFIG_POSIX_TIMERS
730 	struct task_cputime		cputime_expires;
731 	struct list_head		cpu_timers[3];
732 #endif
733 
734 	/* Process credentials: */
735 
736 	/* Tracer's credentials at attach: */
737 	const struct cred __rcu		*ptracer_cred;
738 
739 	/* Objective and real subjective task credentials (COW): */
740 	const struct cred __rcu		*real_cred;
741 
742 	/* Effective (overridable) subjective task credentials (COW): */
743 	const struct cred __rcu		*cred;
744 
745 	/*
746 	 * executable name, excluding path.
747 	 *
748 	 * - normally initialized setup_new_exec()
749 	 * - access it with [gs]et_task_comm()
750 	 * - lock it with task_lock()
751 	 */
752 	char				comm[TASK_COMM_LEN];
753 
754 	struct nameidata		*nameidata;
755 
756 #ifdef CONFIG_SYSVIPC
757 	struct sysv_sem			sysvsem;
758 	struct sysv_shm			sysvshm;
759 #endif
760 #ifdef CONFIG_DETECT_HUNG_TASK
761 	unsigned long			last_switch_count;
762 #endif
763 	/* Filesystem information: */
764 	struct fs_struct		*fs;
765 
766 	/* Open file information: */
767 	struct files_struct		*files;
768 
769 	/* Namespaces: */
770 	struct nsproxy			*nsproxy;
771 
772 	/* Signal handlers: */
773 	struct signal_struct		*signal;
774 	struct sighand_struct		*sighand;
775 	sigset_t			blocked;
776 	sigset_t			real_blocked;
777 	/* Restored if set_restore_sigmask() was used: */
778 	sigset_t			saved_sigmask;
779 	struct sigpending		pending;
780 	unsigned long			sas_ss_sp;
781 	size_t				sas_ss_size;
782 	unsigned int			sas_ss_flags;
783 
784 	struct callback_head		*task_works;
785 
786 	struct audit_context		*audit_context;
787 #ifdef CONFIG_AUDITSYSCALL
788 	kuid_t				loginuid;
789 	unsigned int			sessionid;
790 #endif
791 	struct seccomp			seccomp;
792 
793 	/* Thread group tracking: */
794 	u32				parent_exec_id;
795 	u32				self_exec_id;
796 
797 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
798 	spinlock_t			alloc_lock;
799 
800 	/* Protection of the PI data structures: */
801 	raw_spinlock_t			pi_lock;
802 
803 	struct wake_q_node		wake_q;
804 
805 #ifdef CONFIG_RT_MUTEXES
806 	/* PI waiters blocked on a rt_mutex held by this task: */
807 	struct rb_root			pi_waiters;
808 	struct rb_node			*pi_waiters_leftmost;
809 	/* Updated under owner's pi_lock and rq lock */
810 	struct task_struct		*pi_top_task;
811 	/* Deadlock detection and priority inheritance handling: */
812 	struct rt_mutex_waiter		*pi_blocked_on;
813 #endif
814 
815 #ifdef CONFIG_DEBUG_MUTEXES
816 	/* Mutex deadlock detection: */
817 	struct mutex_waiter		*blocked_on;
818 #endif
819 
820 #ifdef CONFIG_TRACE_IRQFLAGS
821 	unsigned int			irq_events;
822 	unsigned long			hardirq_enable_ip;
823 	unsigned long			hardirq_disable_ip;
824 	unsigned int			hardirq_enable_event;
825 	unsigned int			hardirq_disable_event;
826 	int				hardirqs_enabled;
827 	int				hardirq_context;
828 	unsigned long			softirq_disable_ip;
829 	unsigned long			softirq_enable_ip;
830 	unsigned int			softirq_disable_event;
831 	unsigned int			softirq_enable_event;
832 	int				softirqs_enabled;
833 	int				softirq_context;
834 #endif
835 
836 #ifdef CONFIG_LOCKDEP
837 # define MAX_LOCK_DEPTH			48UL
838 	u64				curr_chain_key;
839 	int				lockdep_depth;
840 	unsigned int			lockdep_recursion;
841 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
842 	gfp_t				lockdep_reclaim_gfp;
843 #endif
844 
845 #ifdef CONFIG_UBSAN
846 	unsigned int			in_ubsan;
847 #endif
848 
849 	/* Journalling filesystem info: */
850 	void				*journal_info;
851 
852 	/* Stacked block device info: */
853 	struct bio_list			*bio_list;
854 
855 #ifdef CONFIG_BLOCK
856 	/* Stack plugging: */
857 	struct blk_plug			*plug;
858 #endif
859 
860 	/* VM state: */
861 	struct reclaim_state		*reclaim_state;
862 
863 	struct backing_dev_info		*backing_dev_info;
864 
865 	struct io_context		*io_context;
866 
867 	/* Ptrace state: */
868 	unsigned long			ptrace_message;
869 	siginfo_t			*last_siginfo;
870 
871 	struct task_io_accounting	ioac;
872 #ifdef CONFIG_TASK_XACCT
873 	/* Accumulated RSS usage: */
874 	u64				acct_rss_mem1;
875 	/* Accumulated virtual memory usage: */
876 	u64				acct_vm_mem1;
877 	/* stime + utime since last update: */
878 	u64				acct_timexpd;
879 #endif
880 #ifdef CONFIG_CPUSETS
881 	/* Protected by ->alloc_lock: */
882 	nodemask_t			mems_allowed;
883 	/* Seqence number to catch updates: */
884 	seqcount_t			mems_allowed_seq;
885 	int				cpuset_mem_spread_rotor;
886 	int				cpuset_slab_spread_rotor;
887 #endif
888 #ifdef CONFIG_CGROUPS
889 	/* Control Group info protected by css_set_lock: */
890 	struct css_set __rcu		*cgroups;
891 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
892 	struct list_head		cg_list;
893 #endif
894 #ifdef CONFIG_INTEL_RDT_A
895 	int				closid;
896 #endif
897 #ifdef CONFIG_FUTEX
898 	struct robust_list_head __user	*robust_list;
899 #ifdef CONFIG_COMPAT
900 	struct compat_robust_list_head __user *compat_robust_list;
901 #endif
902 	struct list_head		pi_state_list;
903 	struct futex_pi_state		*pi_state_cache;
904 #endif
905 #ifdef CONFIG_PERF_EVENTS
906 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
907 	struct mutex			perf_event_mutex;
908 	struct list_head		perf_event_list;
909 #endif
910 #ifdef CONFIG_DEBUG_PREEMPT
911 	unsigned long			preempt_disable_ip;
912 #endif
913 #ifdef CONFIG_NUMA
914 	/* Protected by alloc_lock: */
915 	struct mempolicy		*mempolicy;
916 	short				il_prev;
917 	short				pref_node_fork;
918 #endif
919 #ifdef CONFIG_NUMA_BALANCING
920 	int				numa_scan_seq;
921 	unsigned int			numa_scan_period;
922 	unsigned int			numa_scan_period_max;
923 	int				numa_preferred_nid;
924 	unsigned long			numa_migrate_retry;
925 	/* Migration stamp: */
926 	u64				node_stamp;
927 	u64				last_task_numa_placement;
928 	u64				last_sum_exec_runtime;
929 	struct callback_head		numa_work;
930 
931 	struct list_head		numa_entry;
932 	struct numa_group		*numa_group;
933 
934 	/*
935 	 * numa_faults is an array split into four regions:
936 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
937 	 * in this precise order.
938 	 *
939 	 * faults_memory: Exponential decaying average of faults on a per-node
940 	 * basis. Scheduling placement decisions are made based on these
941 	 * counts. The values remain static for the duration of a PTE scan.
942 	 * faults_cpu: Track the nodes the process was running on when a NUMA
943 	 * hinting fault was incurred.
944 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
945 	 * during the current scan window. When the scan completes, the counts
946 	 * in faults_memory and faults_cpu decay and these values are copied.
947 	 */
948 	unsigned long			*numa_faults;
949 	unsigned long			total_numa_faults;
950 
951 	/*
952 	 * numa_faults_locality tracks if faults recorded during the last
953 	 * scan window were remote/local or failed to migrate. The task scan
954 	 * period is adapted based on the locality of the faults with different
955 	 * weights depending on whether they were shared or private faults
956 	 */
957 	unsigned long			numa_faults_locality[3];
958 
959 	unsigned long			numa_pages_migrated;
960 #endif /* CONFIG_NUMA_BALANCING */
961 
962 	struct tlbflush_unmap_batch	tlb_ubc;
963 
964 	struct rcu_head			rcu;
965 
966 	/* Cache last used pipe for splice(): */
967 	struct pipe_inode_info		*splice_pipe;
968 
969 	struct page_frag		task_frag;
970 
971 #ifdef CONFIG_TASK_DELAY_ACCT
972 	struct task_delay_info		*delays;
973 #endif
974 
975 #ifdef CONFIG_FAULT_INJECTION
976 	int				make_it_fail;
977 	unsigned int			fail_nth;
978 #endif
979 	/*
980 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
981 	 * balance_dirty_pages() for a dirty throttling pause:
982 	 */
983 	int				nr_dirtied;
984 	int				nr_dirtied_pause;
985 	/* Start of a write-and-pause period: */
986 	unsigned long			dirty_paused_when;
987 
988 #ifdef CONFIG_LATENCYTOP
989 	int				latency_record_count;
990 	struct latency_record		latency_record[LT_SAVECOUNT];
991 #endif
992 	/*
993 	 * Time slack values; these are used to round up poll() and
994 	 * select() etc timeout values. These are in nanoseconds.
995 	 */
996 	u64				timer_slack_ns;
997 	u64				default_timer_slack_ns;
998 
999 #ifdef CONFIG_KASAN
1000 	unsigned int			kasan_depth;
1001 #endif
1002 
1003 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1004 	/* Index of current stored address in ret_stack: */
1005 	int				curr_ret_stack;
1006 
1007 	/* Stack of return addresses for return function tracing: */
1008 	struct ftrace_ret_stack		*ret_stack;
1009 
1010 	/* Timestamp for last schedule: */
1011 	unsigned long long		ftrace_timestamp;
1012 
1013 	/*
1014 	 * Number of functions that haven't been traced
1015 	 * because of depth overrun:
1016 	 */
1017 	atomic_t			trace_overrun;
1018 
1019 	/* Pause tracing: */
1020 	atomic_t			tracing_graph_pause;
1021 #endif
1022 
1023 #ifdef CONFIG_TRACING
1024 	/* State flags for use by tracers: */
1025 	unsigned long			trace;
1026 
1027 	/* Bitmask and counter of trace recursion: */
1028 	unsigned long			trace_recursion;
1029 #endif /* CONFIG_TRACING */
1030 
1031 #ifdef CONFIG_KCOV
1032 	/* Coverage collection mode enabled for this task (0 if disabled): */
1033 	enum kcov_mode			kcov_mode;
1034 
1035 	/* Size of the kcov_area: */
1036 	unsigned int			kcov_size;
1037 
1038 	/* Buffer for coverage collection: */
1039 	void				*kcov_area;
1040 
1041 	/* KCOV descriptor wired with this task or NULL: */
1042 	struct kcov			*kcov;
1043 #endif
1044 
1045 #ifdef CONFIG_MEMCG
1046 	struct mem_cgroup		*memcg_in_oom;
1047 	gfp_t				memcg_oom_gfp_mask;
1048 	int				memcg_oom_order;
1049 
1050 	/* Number of pages to reclaim on returning to userland: */
1051 	unsigned int			memcg_nr_pages_over_high;
1052 #endif
1053 
1054 #ifdef CONFIG_UPROBES
1055 	struct uprobe_task		*utask;
1056 #endif
1057 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1058 	unsigned int			sequential_io;
1059 	unsigned int			sequential_io_avg;
1060 #endif
1061 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1062 	unsigned long			task_state_change;
1063 #endif
1064 	int				pagefault_disabled;
1065 #ifdef CONFIG_MMU
1066 	struct task_struct		*oom_reaper_list;
1067 #endif
1068 #ifdef CONFIG_VMAP_STACK
1069 	struct vm_struct		*stack_vm_area;
1070 #endif
1071 #ifdef CONFIG_THREAD_INFO_IN_TASK
1072 	/* A live task holds one reference: */
1073 	atomic_t			stack_refcount;
1074 #endif
1075 #ifdef CONFIG_LIVEPATCH
1076 	int patch_state;
1077 #endif
1078 #ifdef CONFIG_SECURITY
1079 	/* Used by LSM modules for access restriction: */
1080 	void				*security;
1081 #endif
1082 	/* CPU-specific state of this task: */
1083 	struct thread_struct		thread;
1084 
1085 	/*
1086 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1087 	 * structure.  It *MUST* be at the end of 'task_struct'.
1088 	 *
1089 	 * Do not put anything below here!
1090 	 */
1091 };
1092 
1093 static inline struct pid *task_pid(struct task_struct *task)
1094 {
1095 	return task->pids[PIDTYPE_PID].pid;
1096 }
1097 
1098 static inline struct pid *task_tgid(struct task_struct *task)
1099 {
1100 	return task->group_leader->pids[PIDTYPE_PID].pid;
1101 }
1102 
1103 /*
1104  * Without tasklist or RCU lock it is not safe to dereference
1105  * the result of task_pgrp/task_session even if task == current,
1106  * we can race with another thread doing sys_setsid/sys_setpgid.
1107  */
1108 static inline struct pid *task_pgrp(struct task_struct *task)
1109 {
1110 	return task->group_leader->pids[PIDTYPE_PGID].pid;
1111 }
1112 
1113 static inline struct pid *task_session(struct task_struct *task)
1114 {
1115 	return task->group_leader->pids[PIDTYPE_SID].pid;
1116 }
1117 
1118 /*
1119  * the helpers to get the task's different pids as they are seen
1120  * from various namespaces
1121  *
1122  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1123  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1124  *                     current.
1125  * task_xid_nr_ns()  : id seen from the ns specified;
1126  *
1127  * see also pid_nr() etc in include/linux/pid.h
1128  */
1129 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1130 
1131 static inline pid_t task_pid_nr(struct task_struct *tsk)
1132 {
1133 	return tsk->pid;
1134 }
1135 
1136 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1137 {
1138 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1139 }
1140 
1141 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1142 {
1143 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1144 }
1145 
1146 
1147 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1148 {
1149 	return tsk->tgid;
1150 }
1151 
1152 extern pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1153 
1154 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1155 {
1156 	return pid_vnr(task_tgid(tsk));
1157 }
1158 
1159 /**
1160  * pid_alive - check that a task structure is not stale
1161  * @p: Task structure to be checked.
1162  *
1163  * Test if a process is not yet dead (at most zombie state)
1164  * If pid_alive fails, then pointers within the task structure
1165  * can be stale and must not be dereferenced.
1166  *
1167  * Return: 1 if the process is alive. 0 otherwise.
1168  */
1169 static inline int pid_alive(const struct task_struct *p)
1170 {
1171 	return p->pids[PIDTYPE_PID].pid != NULL;
1172 }
1173 
1174 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1175 {
1176 	pid_t pid = 0;
1177 
1178 	rcu_read_lock();
1179 	if (pid_alive(tsk))
1180 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1181 	rcu_read_unlock();
1182 
1183 	return pid;
1184 }
1185 
1186 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1187 {
1188 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1189 }
1190 
1191 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1192 {
1193 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1194 }
1195 
1196 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1197 {
1198 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1199 }
1200 
1201 
1202 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1203 {
1204 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1205 }
1206 
1207 static inline pid_t task_session_vnr(struct task_struct *tsk)
1208 {
1209 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1210 }
1211 
1212 /* Obsolete, do not use: */
1213 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1214 {
1215 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1216 }
1217 
1218 /**
1219  * is_global_init - check if a task structure is init. Since init
1220  * is free to have sub-threads we need to check tgid.
1221  * @tsk: Task structure to be checked.
1222  *
1223  * Check if a task structure is the first user space task the kernel created.
1224  *
1225  * Return: 1 if the task structure is init. 0 otherwise.
1226  */
1227 static inline int is_global_init(struct task_struct *tsk)
1228 {
1229 	return task_tgid_nr(tsk) == 1;
1230 }
1231 
1232 extern struct pid *cad_pid;
1233 
1234 /*
1235  * Per process flags
1236  */
1237 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1238 #define PF_EXITING		0x00000004	/* Getting shut down */
1239 #define PF_EXITPIDONE		0x00000008	/* PI exit done on shut down */
1240 #define PF_VCPU			0x00000010	/* I'm a virtual CPU */
1241 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1242 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1243 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1244 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1245 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1246 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1247 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1248 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1249 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1250 #define PF_USED_ASYNC		0x00004000	/* Used async_schedule*(), used by module init */
1251 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1252 #define PF_FROZEN		0x00010000	/* Frozen for system suspend */
1253 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1254 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1255 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1256 #define PF_LESS_THROTTLE	0x00100000	/* Throttle me less: I clean memory */
1257 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1258 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1259 #define PF_SWAPWRITE		0x00800000	/* Allowed to write to swap */
1260 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_allowed */
1261 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1262 #define PF_MUTEX_TESTER		0x20000000	/* Thread belongs to the rt mutex tester */
1263 #define PF_FREEZER_SKIP		0x40000000	/* Freezer should not count it as freezable */
1264 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1265 
1266 /*
1267  * Only the _current_ task can read/write to tsk->flags, but other
1268  * tasks can access tsk->flags in readonly mode for example
1269  * with tsk_used_math (like during threaded core dumping).
1270  * There is however an exception to this rule during ptrace
1271  * or during fork: the ptracer task is allowed to write to the
1272  * child->flags of its traced child (same goes for fork, the parent
1273  * can write to the child->flags), because we're guaranteed the
1274  * child is not running and in turn not changing child->flags
1275  * at the same time the parent does it.
1276  */
1277 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1278 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1279 #define clear_used_math()			clear_stopped_child_used_math(current)
1280 #define set_used_math()				set_stopped_child_used_math(current)
1281 
1282 #define conditional_stopped_child_used_math(condition, child) \
1283 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1284 
1285 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1286 
1287 #define copy_to_stopped_child_used_math(child) \
1288 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1289 
1290 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1291 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1292 #define used_math()				tsk_used_math(current)
1293 
1294 static inline bool is_percpu_thread(void)
1295 {
1296 #ifdef CONFIG_SMP
1297 	return (current->flags & PF_NO_SETAFFINITY) &&
1298 		(current->nr_cpus_allowed  == 1);
1299 #else
1300 	return true;
1301 #endif
1302 }
1303 
1304 /* Per-process atomic flags. */
1305 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1306 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1307 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1308 
1309 
1310 #define TASK_PFA_TEST(name, func)					\
1311 	static inline bool task_##func(struct task_struct *p)		\
1312 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1313 
1314 #define TASK_PFA_SET(name, func)					\
1315 	static inline void task_set_##func(struct task_struct *p)	\
1316 	{ set_bit(PFA_##name, &p->atomic_flags); }
1317 
1318 #define TASK_PFA_CLEAR(name, func)					\
1319 	static inline void task_clear_##func(struct task_struct *p)	\
1320 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1321 
1322 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1323 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1324 
1325 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1326 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1327 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1328 
1329 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1330 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1331 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1332 
1333 static inline void
1334 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1335 {
1336 	current->flags &= ~flags;
1337 	current->flags |= orig_flags & flags;
1338 }
1339 
1340 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1341 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1342 #ifdef CONFIG_SMP
1343 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1344 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1345 #else
1346 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1347 {
1348 }
1349 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1350 {
1351 	if (!cpumask_test_cpu(0, new_mask))
1352 		return -EINVAL;
1353 	return 0;
1354 }
1355 #endif
1356 
1357 #ifndef cpu_relax_yield
1358 #define cpu_relax_yield() cpu_relax()
1359 #endif
1360 
1361 extern int yield_to(struct task_struct *p, bool preempt);
1362 extern void set_user_nice(struct task_struct *p, long nice);
1363 extern int task_prio(const struct task_struct *p);
1364 
1365 /**
1366  * task_nice - return the nice value of a given task.
1367  * @p: the task in question.
1368  *
1369  * Return: The nice value [ -20 ... 0 ... 19 ].
1370  */
1371 static inline int task_nice(const struct task_struct *p)
1372 {
1373 	return PRIO_TO_NICE((p)->static_prio);
1374 }
1375 
1376 extern int can_nice(const struct task_struct *p, const int nice);
1377 extern int task_curr(const struct task_struct *p);
1378 extern int idle_cpu(int cpu);
1379 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1380 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1381 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1382 extern struct task_struct *idle_task(int cpu);
1383 
1384 /**
1385  * is_idle_task - is the specified task an idle task?
1386  * @p: the task in question.
1387  *
1388  * Return: 1 if @p is an idle task. 0 otherwise.
1389  */
1390 static inline bool is_idle_task(const struct task_struct *p)
1391 {
1392 	return !!(p->flags & PF_IDLE);
1393 }
1394 
1395 extern struct task_struct *curr_task(int cpu);
1396 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1397 
1398 void yield(void);
1399 
1400 union thread_union {
1401 #ifndef CONFIG_THREAD_INFO_IN_TASK
1402 	struct thread_info thread_info;
1403 #endif
1404 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1405 };
1406 
1407 #ifdef CONFIG_THREAD_INFO_IN_TASK
1408 static inline struct thread_info *task_thread_info(struct task_struct *task)
1409 {
1410 	return &task->thread_info;
1411 }
1412 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1413 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1414 #endif
1415 
1416 /*
1417  * find a task by one of its numerical ids
1418  *
1419  * find_task_by_pid_ns():
1420  *      finds a task by its pid in the specified namespace
1421  * find_task_by_vpid():
1422  *      finds a task by its virtual pid
1423  *
1424  * see also find_vpid() etc in include/linux/pid.h
1425  */
1426 
1427 extern struct task_struct *find_task_by_vpid(pid_t nr);
1428 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1429 
1430 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1431 extern int wake_up_process(struct task_struct *tsk);
1432 extern void wake_up_new_task(struct task_struct *tsk);
1433 
1434 #ifdef CONFIG_SMP
1435 extern void kick_process(struct task_struct *tsk);
1436 #else
1437 static inline void kick_process(struct task_struct *tsk) { }
1438 #endif
1439 
1440 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1441 
1442 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1443 {
1444 	__set_task_comm(tsk, from, false);
1445 }
1446 
1447 extern char *get_task_comm(char *to, struct task_struct *tsk);
1448 
1449 #ifdef CONFIG_SMP
1450 void scheduler_ipi(void);
1451 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1452 #else
1453 static inline void scheduler_ipi(void) { }
1454 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1455 {
1456 	return 1;
1457 }
1458 #endif
1459 
1460 /*
1461  * Set thread flags in other task's structures.
1462  * See asm/thread_info.h for TIF_xxxx flags available:
1463  */
1464 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1465 {
1466 	set_ti_thread_flag(task_thread_info(tsk), flag);
1467 }
1468 
1469 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1470 {
1471 	clear_ti_thread_flag(task_thread_info(tsk), flag);
1472 }
1473 
1474 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1475 {
1476 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1477 }
1478 
1479 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1480 {
1481 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1482 }
1483 
1484 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1485 {
1486 	return test_ti_thread_flag(task_thread_info(tsk), flag);
1487 }
1488 
1489 static inline void set_tsk_need_resched(struct task_struct *tsk)
1490 {
1491 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1492 }
1493 
1494 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1495 {
1496 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1497 }
1498 
1499 static inline int test_tsk_need_resched(struct task_struct *tsk)
1500 {
1501 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1502 }
1503 
1504 /*
1505  * cond_resched() and cond_resched_lock(): latency reduction via
1506  * explicit rescheduling in places that are safe. The return
1507  * value indicates whether a reschedule was done in fact.
1508  * cond_resched_lock() will drop the spinlock before scheduling,
1509  * cond_resched_softirq() will enable bhs before scheduling.
1510  */
1511 #ifndef CONFIG_PREEMPT
1512 extern int _cond_resched(void);
1513 #else
1514 static inline int _cond_resched(void) { return 0; }
1515 #endif
1516 
1517 #define cond_resched() ({			\
1518 	___might_sleep(__FILE__, __LINE__, 0);	\
1519 	_cond_resched();			\
1520 })
1521 
1522 extern int __cond_resched_lock(spinlock_t *lock);
1523 
1524 #define cond_resched_lock(lock) ({				\
1525 	___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1526 	__cond_resched_lock(lock);				\
1527 })
1528 
1529 extern int __cond_resched_softirq(void);
1530 
1531 #define cond_resched_softirq() ({					\
1532 	___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);	\
1533 	__cond_resched_softirq();					\
1534 })
1535 
1536 static inline void cond_resched_rcu(void)
1537 {
1538 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1539 	rcu_read_unlock();
1540 	cond_resched();
1541 	rcu_read_lock();
1542 #endif
1543 }
1544 
1545 /*
1546  * Does a critical section need to be broken due to another
1547  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
1548  * but a general need for low latency)
1549  */
1550 static inline int spin_needbreak(spinlock_t *lock)
1551 {
1552 #ifdef CONFIG_PREEMPT
1553 	return spin_is_contended(lock);
1554 #else
1555 	return 0;
1556 #endif
1557 }
1558 
1559 static __always_inline bool need_resched(void)
1560 {
1561 	return unlikely(tif_need_resched());
1562 }
1563 
1564 /*
1565  * Wrappers for p->thread_info->cpu access. No-op on UP.
1566  */
1567 #ifdef CONFIG_SMP
1568 
1569 static inline unsigned int task_cpu(const struct task_struct *p)
1570 {
1571 #ifdef CONFIG_THREAD_INFO_IN_TASK
1572 	return p->cpu;
1573 #else
1574 	return task_thread_info(p)->cpu;
1575 #endif
1576 }
1577 
1578 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1579 
1580 #else
1581 
1582 static inline unsigned int task_cpu(const struct task_struct *p)
1583 {
1584 	return 0;
1585 }
1586 
1587 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1588 {
1589 }
1590 
1591 #endif /* CONFIG_SMP */
1592 
1593 /*
1594  * In order to reduce various lock holder preemption latencies provide an
1595  * interface to see if a vCPU is currently running or not.
1596  *
1597  * This allows us to terminate optimistic spin loops and block, analogous to
1598  * the native optimistic spin heuristic of testing if the lock owner task is
1599  * running or not.
1600  */
1601 #ifndef vcpu_is_preempted
1602 # define vcpu_is_preempted(cpu)	false
1603 #endif
1604 
1605 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1606 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1607 
1608 #ifndef TASK_SIZE_OF
1609 #define TASK_SIZE_OF(tsk)	TASK_SIZE
1610 #endif
1611 
1612 #endif
1613