xref: /linux/include/linux/ptp_clock_kernel.h (revision a7ddedc84c59a645ef970b992f7cda5bffc70cc0)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 
8 #ifndef _PTP_CLOCK_KERNEL_H_
9 #define _PTP_CLOCK_KERNEL_H_
10 
11 #include <linux/device.h>
12 #include <linux/pps_kernel.h>
13 #include <linux/ptp_clock.h>
14 #include <linux/timecounter.h>
15 #include <linux/skbuff.h>
16 
17 #define PTP_CLOCK_NAME_LEN	32
18 /**
19  * struct ptp_clock_request - request PTP clock event
20  *
21  * @type:   The type of the request.
22  *	    EXTTS:  Configure external trigger timestamping
23  *	    PEROUT: Configure periodic output signal (e.g. PPS)
24  *	    PPS:    trigger internal PPS event for input
25  *	            into kernel PPS subsystem
26  * @extts:  describes configuration for external trigger timestamping.
27  *          This is only valid when event == PTP_CLK_REQ_EXTTS.
28  * @perout: describes configuration for periodic output.
29  *	    This is only valid when event == PTP_CLK_REQ_PEROUT.
30  */
31 
32 struct ptp_clock_request {
33 	enum {
34 		PTP_CLK_REQ_EXTTS,
35 		PTP_CLK_REQ_PEROUT,
36 		PTP_CLK_REQ_PPS,
37 	} type;
38 	union {
39 		struct ptp_extts_request extts;
40 		struct ptp_perout_request perout;
41 	};
42 };
43 
44 struct system_device_crosststamp;
45 
46 /**
47  * struct ptp_system_timestamp - system time corresponding to a PHC timestamp
48  * @pre_ts: system timestamp before capturing PHC
49  * @post_ts: system timestamp after capturing PHC
50  * @clockid: clock-base used for capturing the system timestamps
51  */
52 struct ptp_system_timestamp {
53 	struct timespec64 pre_ts;
54 	struct timespec64 post_ts;
55 	clockid_t clockid;
56 };
57 
58 /**
59  * struct ptp_clock_info - describes a PTP hardware clock
60  *
61  * @owner:     The clock driver should set to THIS_MODULE.
62  * @name:      A short "friendly name" to identify the clock and to
63  *             help distinguish PHY based devices from MAC based ones.
64  *             The string is not meant to be a unique id.
65  * @max_adj:   The maximum possible frequency adjustment, in parts per billon.
66  * @n_alarm:   The number of programmable alarms.
67  * @n_ext_ts:  The number of external time stamp channels.
68  * @n_per_out: The number of programmable periodic signals.
69  * @n_pins:    The number of programmable pins.
70  * @pps:       Indicates whether the clock supports a PPS callback.
71  *
72  * @supported_perout_flags:  The set of flags the driver supports for the
73  *                           PTP_PEROUT_REQUEST ioctl. The PTP core will
74  *                           reject a request with any flag not specified
75  *                           here.
76  *
77  * @supported_extts_flags:  The set of flags the driver supports for the
78  *                          PTP_EXTTS_REQUEST ioctl. The PTP core will use
79  *                          this list to reject unsupported requests.
80  *                          PTP_ENABLE_FEATURE is assumed and does not need to
81  *                          be included. If PTP_STRICT_FLAGS is *not* set,
82  *                          then both PTP_RISING_EDGE and PTP_FALLING_EDGE
83  *                          will be assumed. Note that PTP_STRICT_FLAGS must
84  *                          be set if the drivers wants to honor
85  *                          PTP_EXTTS_REQUEST2 and any future flags.
86  *
87  * @pin_config: Array of length 'n_pins'. If the number of
88  *              programmable pins is nonzero, then drivers must
89  *              allocate and initialize this array.
90  *
91  * clock operations
92  *
93  * @adjfine:  Adjusts the frequency of the hardware clock.
94  *            parameter scaled_ppm: Desired frequency offset from
95  *            nominal frequency in parts per million, but with a
96  *            16 bit binary fractional field.
97  *
98  * @adjphase:  Indicates that the PHC should use an internal servo
99  *             algorithm to correct the provided phase offset.
100  *             parameter delta: PHC servo phase adjustment target
101  *                              in nanoseconds.
102  *
103  * @getmaxphase:  Advertises maximum offset that can be provided
104  *                to the hardware clock's phase control functionality
105  *                through adjphase.
106  *
107  * @adjtime:  Shifts the time of the hardware clock.
108  *            parameter delta: Desired change in nanoseconds.
109  *
110  * @gettime64:  Reads the current time from the hardware clock.
111  *              This method is deprecated.  New drivers should implement
112  *              the @gettimex64 method instead.
113  *              parameter ts: Holds the result.
114  *
115  * @gettimex64:  Reads the current time from the hardware clock and optionally
116  *               also the system clock.
117  *               parameter ts: Holds the PHC timestamp.
118  *               parameter sts: If not NULL, it holds a pair of timestamps from
119  *               the system clock. The first reading is made right before
120  *               reading the lowest bits of the PHC timestamp and the second
121  *               reading immediately follows that.
122  *
123  * @getcrosststamp:  Reads the current time from the hardware clock and
124  *                   system clock simultaneously.
125  *                   parameter cts: Contains timestamp (device,system) pair,
126  *                   where system time is realtime and monotonic.
127  *
128  * @settime64:  Set the current time on the hardware clock.
129  *              parameter ts: Time value to set.
130  *
131  * @getcycles64:  Reads the current free running cycle counter from the hardware
132  *                clock.
133  *                If @getcycles64 and @getcyclesx64 are not supported, then
134  *                @gettime64 or @gettimex64 will be used as default
135  *                implementation.
136  *                parameter ts: Holds the result.
137  *
138  * @getcyclesx64:  Reads the current free running cycle counter from the
139  *                 hardware clock and optionally also the system clock.
140  *                 If @getcycles64 and @getcyclesx64 are not supported, then
141  *                 @gettimex64 will be used as default implementation if
142  *                 available.
143  *                 parameter ts: Holds the PHC timestamp.
144  *                 parameter sts: If not NULL, it holds a pair of timestamps
145  *                 from the system clock. The first reading is made right before
146  *                 reading the lowest bits of the PHC timestamp and the second
147  *                 reading immediately follows that.
148  *
149  * @getcrosscycles:  Reads the current free running cycle counter from the
150  *                   hardware clock and system clock simultaneously.
151  *                   If @getcycles64 and @getcyclesx64 are not supported, then
152  *                   @getcrosststamp will be used as default implementation if
153  *                   available.
154  *                   parameter cts: Contains timestamp (device,system) pair,
155  *                   where system time is realtime and monotonic.
156  *
157  * @enable:   Request driver to enable or disable an ancillary feature.
158  *            parameter request: Desired resource to enable or disable.
159  *            parameter on: Caller passes one to enable or zero to disable.
160  *
161  * @verify:   Confirm that a pin can perform a given function. The PTP
162  *            Hardware Clock subsystem maintains the 'pin_config'
163  *            array on behalf of the drivers, but the PHC subsystem
164  *            assumes that every pin can perform every function. This
165  *            hook gives drivers a way of telling the core about
166  *            limitations on specific pins. This function must return
167  *            zero if the function can be assigned to this pin, and
168  *            nonzero otherwise.
169  *            parameter pin: index of the pin in question.
170  *            parameter func: the desired function to use.
171  *            parameter chan: the function channel index to use.
172  *
173  * @do_aux_work:  Request driver to perform auxiliary (periodic) operations
174  *                Driver should return delay of the next auxiliary work
175  *                scheduling time (>=0) or negative value in case further
176  *                scheduling is not required.
177  *
178  * Drivers should embed their ptp_clock_info within a private
179  * structure, obtaining a reference to it using container_of().
180  *
181  * The callbacks must all return zero on success, non-zero otherwise.
182  */
183 
184 struct ptp_clock_info {
185 	struct module *owner;
186 	char name[PTP_CLOCK_NAME_LEN];
187 	s32 max_adj;
188 	int n_alarm;
189 	int n_ext_ts;
190 	int n_per_out;
191 	int n_pins;
192 	int pps;
193 	unsigned int supported_perout_flags;
194 	unsigned int supported_extts_flags;
195 	struct ptp_pin_desc *pin_config;
196 	int (*adjfine)(struct ptp_clock_info *ptp, long scaled_ppm);
197 	int (*adjphase)(struct ptp_clock_info *ptp, s32 phase);
198 	s32 (*getmaxphase)(struct ptp_clock_info *ptp);
199 	int (*adjtime)(struct ptp_clock_info *ptp, s64 delta);
200 	int (*gettime64)(struct ptp_clock_info *ptp, struct timespec64 *ts);
201 	int (*gettimex64)(struct ptp_clock_info *ptp, struct timespec64 *ts,
202 			  struct ptp_system_timestamp *sts);
203 	int (*getcrosststamp)(struct ptp_clock_info *ptp,
204 			      struct system_device_crosststamp *cts);
205 	int (*settime64)(struct ptp_clock_info *p, const struct timespec64 *ts);
206 	int (*getcycles64)(struct ptp_clock_info *ptp, struct timespec64 *ts);
207 	int (*getcyclesx64)(struct ptp_clock_info *ptp, struct timespec64 *ts,
208 			    struct ptp_system_timestamp *sts);
209 	int (*getcrosscycles)(struct ptp_clock_info *ptp,
210 			      struct system_device_crosststamp *cts);
211 	int (*enable)(struct ptp_clock_info *ptp,
212 		      struct ptp_clock_request *request, int on);
213 	int (*verify)(struct ptp_clock_info *ptp, unsigned int pin,
214 		      enum ptp_pin_function func, unsigned int chan);
215 	long (*do_aux_work)(struct ptp_clock_info *ptp);
216 };
217 
218 struct ptp_clock;
219 
220 enum ptp_clock_events {
221 	PTP_CLOCK_ALARM,
222 	PTP_CLOCK_EXTTS,
223 	PTP_CLOCK_EXTOFF,
224 	PTP_CLOCK_PPS,
225 	PTP_CLOCK_PPSUSR,
226 };
227 
228 /**
229  * struct ptp_clock_event - decribes a PTP hardware clock event
230  *
231  * @type:  One of the ptp_clock_events enumeration values.
232  * @index: Identifies the source of the event.
233  * @timestamp: When the event occurred (%PTP_CLOCK_EXTTS only).
234  * @offset:    When the event occurred (%PTP_CLOCK_EXTOFF only).
235  * @pps_times: When the event occurred (%PTP_CLOCK_PPSUSR only).
236  */
237 
238 struct ptp_clock_event {
239 	int type;
240 	int index;
241 	union {
242 		u64 timestamp;
243 		s64 offset;
244 		struct pps_event_time pps_times;
245 	};
246 };
247 
248 /**
249  * scaled_ppm_to_ppb() - convert scaled ppm to ppb
250  *
251  * @ppm:    Parts per million, but with a 16 bit binary fractional field
252  */
253 static inline long scaled_ppm_to_ppb(long ppm)
254 {
255 	/*
256 	 * The 'freq' field in the 'struct timex' is in parts per
257 	 * million, but with a 16 bit binary fractional field.
258 	 *
259 	 * We want to calculate
260 	 *
261 	 *    ppb = scaled_ppm * 1000 / 2^16
262 	 *
263 	 * which simplifies to
264 	 *
265 	 *    ppb = scaled_ppm * 125 / 2^13
266 	 */
267 	s64 ppb = 1 + ppm;
268 
269 	ppb *= 125;
270 	ppb >>= 13;
271 	return (long)ppb;
272 }
273 
274 /**
275  * diff_by_scaled_ppm - Calculate difference using scaled ppm
276  * @base: the base increment value to adjust
277  * @scaled_ppm: scaled parts per million to adjust by
278  * @diff: on return, the absolute value of calculated diff
279  *
280  * Calculate the difference to adjust the base increment using scaled parts
281  * per million.
282  *
283  * Use mul_u64_u64_div_u64 to perform the difference calculation in avoid
284  * possible overflow.
285  *
286  * Returns: true if scaled_ppm is negative, false otherwise
287  */
288 static inline bool diff_by_scaled_ppm(u64 base, long scaled_ppm, u64 *diff)
289 {
290 	bool negative = false;
291 
292 	if (scaled_ppm < 0) {
293 		negative = true;
294 		scaled_ppm = -scaled_ppm;
295 	}
296 
297 	*diff = mul_u64_u64_div_u64(base, (u64)scaled_ppm, 1000000ULL << 16);
298 
299 	return negative;
300 }
301 
302 /**
303  * adjust_by_scaled_ppm - Adjust a base increment by scaled parts per million
304  * @base: the base increment value to adjust
305  * @scaled_ppm: scaled parts per million frequency adjustment
306  *
307  * Helper function which calculates a new increment value based on the
308  * requested scaled parts per million adjustment.
309  */
310 static inline u64 adjust_by_scaled_ppm(u64 base, long scaled_ppm)
311 {
312 	u64 diff;
313 
314 	if (diff_by_scaled_ppm(base, scaled_ppm, &diff))
315 		return base - diff;
316 
317 	return base + diff;
318 }
319 
320 #if IS_ENABLED(CONFIG_PTP_1588_CLOCK)
321 
322 /**
323  * ptp_clock_register() - register a PTP hardware clock driver
324  *
325  * @info:   Structure describing the new clock.
326  * @parent: Pointer to the parent device of the new clock.
327  *
328  * Returns: a valid pointer on success or PTR_ERR on failure.  If PHC
329  * support is missing at the configuration level, this function
330  * returns NULL, and drivers are expected to gracefully handle that
331  * case separately.
332  */
333 
334 extern struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
335 					    struct device *parent);
336 
337 /**
338  * ptp_clock_unregister() - unregister a PTP hardware clock driver
339  *
340  * @ptp:  The clock to remove from service.
341  */
342 
343 extern int ptp_clock_unregister(struct ptp_clock *ptp);
344 
345 /**
346  * ptp_clock_event() - notify the PTP layer about an event
347  *
348  * @ptp:    The clock obtained from ptp_clock_register().
349  * @event:  Message structure describing the event.
350  */
351 
352 extern void ptp_clock_event(struct ptp_clock *ptp,
353 			    struct ptp_clock_event *event);
354 
355 /**
356  * ptp_clock_index() - obtain the device index of a PTP clock
357  *
358  * @ptp:    The clock obtained from ptp_clock_register().
359  */
360 
361 extern int ptp_clock_index(struct ptp_clock *ptp);
362 
363 /**
364  * ptp_clock_index_by_of_node() - obtain the device index of
365  * a PTP clock based on the PTP device of_node
366  *
367  * @np:    The device of_node pointer of the PTP device.
368  * Return: The PHC index on success or -1 on failure.
369  */
370 int ptp_clock_index_by_of_node(struct device_node *np);
371 
372 /**
373  * ptp_clock_index_by_dev() - obtain the device index of
374  * a PTP clock based on the PTP device.
375  *
376  * @parent:    The parent device (PTP device) pointer of the PTP clock.
377  * Return: The PHC index on success or -1 on failure.
378  */
379 int ptp_clock_index_by_dev(struct device *parent);
380 
381 /**
382  * ptp_find_pin() - obtain the pin index of a given auxiliary function
383  *
384  * The caller must hold ptp_clock::pincfg_mux.  Drivers do not have
385  * access to that mutex as ptp_clock is an opaque type.  However, the
386  * core code acquires the mutex before invoking the driver's
387  * ptp_clock_info::enable() callback, and so drivers may call this
388  * function from that context.
389  *
390  * @ptp:    The clock obtained from ptp_clock_register().
391  * @func:   One of the ptp_pin_function enumerated values.
392  * @chan:   The particular functional channel to find.
393  * Return:  Pin index in the range of zero to ptp_clock_caps.n_pins - 1,
394  *          or -1 if the auxiliary function cannot be found.
395  */
396 
397 int ptp_find_pin(struct ptp_clock *ptp,
398 		 enum ptp_pin_function func, unsigned int chan);
399 
400 /**
401  * ptp_find_pin_unlocked() - wrapper for ptp_find_pin()
402  *
403  * This function acquires the ptp_clock::pincfg_mux mutex before
404  * invoking ptp_find_pin().  Instead of using this function, drivers
405  * should most likely call ptp_find_pin() directly from their
406  * ptp_clock_info::enable() method.
407  *
408 * @ptp:    The clock obtained from ptp_clock_register().
409 * @func:   One of the ptp_pin_function enumerated values.
410 * @chan:   The particular functional channel to find.
411 * Return:  Pin index in the range of zero to ptp_clock_caps.n_pins - 1,
412 *          or -1 if the auxiliary function cannot be found.
413  */
414 
415 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
416 			  enum ptp_pin_function func, unsigned int chan);
417 
418 /**
419  * ptp_schedule_worker() - schedule ptp auxiliary work
420  *
421  * @ptp:    The clock obtained from ptp_clock_register().
422  * @delay:  number of jiffies to wait before queuing
423  *          See kthread_queue_delayed_work() for more info.
424  */
425 
426 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay);
427 
428 /**
429  * ptp_cancel_worker_sync() - cancel ptp auxiliary clock
430  *
431  * @ptp:     The clock obtained from ptp_clock_register().
432  */
433 void ptp_cancel_worker_sync(struct ptp_clock *ptp);
434 
435 #else
436 static inline struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
437 						   struct device *parent)
438 { return NULL; }
439 static inline int ptp_clock_unregister(struct ptp_clock *ptp)
440 { return 0; }
441 static inline void ptp_clock_event(struct ptp_clock *ptp,
442 				   struct ptp_clock_event *event)
443 { }
444 static inline int ptp_clock_index(struct ptp_clock *ptp)
445 { return -1; }
446 static inline int ptp_clock_index_by_of_node(struct device_node *np)
447 { return -1; }
448 static inline int ptp_clock_index_by_dev(struct device *parent)
449 { return -1; }
450 static inline int ptp_find_pin(struct ptp_clock *ptp,
451 			       enum ptp_pin_function func, unsigned int chan)
452 { return -1; }
453 static inline int ptp_find_pin_unlocked(struct ptp_clock *ptp,
454 					enum ptp_pin_function func,
455 					unsigned int chan)
456 { return -1; }
457 static inline int ptp_schedule_worker(struct ptp_clock *ptp,
458 				      unsigned long delay)
459 { return -EOPNOTSUPP; }
460 static inline void ptp_cancel_worker_sync(struct ptp_clock *ptp)
461 { }
462 #endif
463 
464 #if IS_BUILTIN(CONFIG_PTP_1588_CLOCK)
465 /*
466  * These are called by the network core, and don't work if PTP is in
467  * a loadable module.
468  */
469 
470 /**
471  * ptp_get_vclocks_index() - get all vclocks index on pclock, and
472  *                           caller is responsible to free memory
473  *                           of vclock_index
474  *
475  * @pclock_index: phc index of ptp pclock.
476  * @vclock_index: pointer to pointer of vclock index.
477  *
478  * return number of vclocks.
479  */
480 int ptp_get_vclocks_index(int pclock_index, int **vclock_index);
481 
482 /**
483  * ptp_convert_timestamp() - convert timestamp to a ptp vclock time
484  *
485  * @hwtstamp:     timestamp
486  * @vclock_index: phc index of ptp vclock.
487  *
488  * Returns: converted timestamp, or 0 on error.
489  */
490 ktime_t ptp_convert_timestamp(const ktime_t *hwtstamp, int vclock_index);
491 #else
492 static inline int ptp_get_vclocks_index(int pclock_index, int **vclock_index)
493 { return 0; }
494 static inline ktime_t ptp_convert_timestamp(const ktime_t *hwtstamp,
495 					    int vclock_index)
496 { return 0; }
497 
498 #endif
499 
500 static inline void ptp_read_system_prets(struct ptp_system_timestamp *sts)
501 {
502 	if (sts)
503 		ktime_get_clock_ts64(sts->clockid, &sts->pre_ts);
504 }
505 
506 static inline void ptp_read_system_postts(struct ptp_system_timestamp *sts)
507 {
508 	if (sts)
509 		ktime_get_clock_ts64(sts->clockid, &sts->post_ts);
510 }
511 
512 #endif
513