1 /* 2 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 * 18 */ 19 20 #ifndef __MTD_MTD_H__ 21 #define __MTD_MTD_H__ 22 23 #include <linux/types.h> 24 #include <linux/uio.h> 25 #include <linux/notifier.h> 26 #include <linux/device.h> 27 28 #include <mtd/mtd-abi.h> 29 30 #include <asm/div64.h> 31 32 #define MTD_CHAR_MAJOR 90 33 #define MTD_BLOCK_MAJOR 31 34 35 #define MTD_ERASE_PENDING 0x01 36 #define MTD_ERASING 0x02 37 #define MTD_ERASE_SUSPEND 0x04 38 #define MTD_ERASE_DONE 0x08 39 #define MTD_ERASE_FAILED 0x10 40 41 #define MTD_FAIL_ADDR_UNKNOWN -1LL 42 43 /* 44 * If the erase fails, fail_addr might indicate exactly which block failed. If 45 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 46 * or was not specific to any particular block. 47 */ 48 struct erase_info { 49 struct mtd_info *mtd; 50 uint64_t addr; 51 uint64_t len; 52 uint64_t fail_addr; 53 u_long time; 54 u_long retries; 55 unsigned dev; 56 unsigned cell; 57 void (*callback) (struct erase_info *self); 58 u_long priv; 59 u_char state; 60 struct erase_info *next; 61 }; 62 63 struct mtd_erase_region_info { 64 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 65 uint32_t erasesize; /* For this region */ 66 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 67 unsigned long *lockmap; /* If keeping bitmap of locks */ 68 }; 69 70 /** 71 * struct mtd_oob_ops - oob operation operands 72 * @mode: operation mode 73 * 74 * @len: number of data bytes to write/read 75 * 76 * @retlen: number of data bytes written/read 77 * 78 * @ooblen: number of oob bytes to write/read 79 * @oobretlen: number of oob bytes written/read 80 * @ooboffs: offset of oob data in the oob area (only relevant when 81 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 82 * @datbuf: data buffer - if NULL only oob data are read/written 83 * @oobbuf: oob data buffer 84 * 85 * Note, it is allowed to read more than one OOB area at one go, but not write. 86 * The interface assumes that the OOB write requests program only one page's 87 * OOB area. 88 */ 89 struct mtd_oob_ops { 90 unsigned int mode; 91 size_t len; 92 size_t retlen; 93 size_t ooblen; 94 size_t oobretlen; 95 uint32_t ooboffs; 96 uint8_t *datbuf; 97 uint8_t *oobbuf; 98 }; 99 100 #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32 101 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 448 102 /* 103 * Internal ECC layout control structure. For historical reasons, there is a 104 * similar, smaller struct nand_ecclayout_user (in mtd-abi.h) that is retained 105 * for export to user-space via the ECCGETLAYOUT ioctl. 106 * nand_ecclayout should be expandable in the future simply by the above macros. 107 */ 108 struct nand_ecclayout { 109 __u32 eccbytes; 110 __u32 eccpos[MTD_MAX_ECCPOS_ENTRIES_LARGE]; 111 __u32 oobavail; 112 struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES_LARGE]; 113 }; 114 115 struct module; /* only needed for owner field in mtd_info */ 116 117 struct mtd_info { 118 u_char type; 119 uint32_t flags; 120 uint64_t size; // Total size of the MTD 121 122 /* "Major" erase size for the device. Naïve users may take this 123 * to be the only erase size available, or may use the more detailed 124 * information below if they desire 125 */ 126 uint32_t erasesize; 127 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 128 * though individual bits can be cleared), in case of NAND flash it is 129 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 130 * it is of ECC block size, etc. It is illegal to have writesize = 0. 131 * Any driver registering a struct mtd_info must ensure a writesize of 132 * 1 or larger. 133 */ 134 uint32_t writesize; 135 136 /* 137 * Size of the write buffer used by the MTD. MTD devices having a write 138 * buffer can write multiple writesize chunks at a time. E.g. while 139 * writing 4 * writesize bytes to a device with 2 * writesize bytes 140 * buffer the MTD driver can (but doesn't have to) do 2 writesize 141 * operations, but not 4. Currently, all NANDs have writebufsize 142 * equivalent to writesize (NAND page size). Some NOR flashes do have 143 * writebufsize greater than writesize. 144 */ 145 uint32_t writebufsize; 146 147 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 148 uint32_t oobavail; // Available OOB bytes per block 149 150 /* 151 * If erasesize is a power of 2 then the shift is stored in 152 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 153 */ 154 unsigned int erasesize_shift; 155 unsigned int writesize_shift; 156 /* Masks based on erasesize_shift and writesize_shift */ 157 unsigned int erasesize_mask; 158 unsigned int writesize_mask; 159 160 // Kernel-only stuff starts here. 161 const char *name; 162 int index; 163 164 /* ECC layout structure pointer - read only! */ 165 struct nand_ecclayout *ecclayout; 166 167 /* Data for variable erase regions. If numeraseregions is zero, 168 * it means that the whole device has erasesize as given above. 169 */ 170 int numeraseregions; 171 struct mtd_erase_region_info *eraseregions; 172 173 /* 174 * Do not call via these pointers, use corresponding mtd_*() 175 * wrappers instead. 176 */ 177 int (*erase) (struct mtd_info *mtd, struct erase_info *instr); 178 int (*point) (struct mtd_info *mtd, loff_t from, size_t len, 179 size_t *retlen, void **virt, resource_size_t *phys); 180 void (*unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 181 unsigned long (*get_unmapped_area) (struct mtd_info *mtd, 182 unsigned long len, 183 unsigned long offset, 184 unsigned long flags); 185 int (*read) (struct mtd_info *mtd, loff_t from, size_t len, 186 size_t *retlen, u_char *buf); 187 int (*write) (struct mtd_info *mtd, loff_t to, size_t len, 188 size_t *retlen, const u_char *buf); 189 int (*panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 190 size_t *retlen, const u_char *buf); 191 int (*read_oob) (struct mtd_info *mtd, loff_t from, 192 struct mtd_oob_ops *ops); 193 int (*write_oob) (struct mtd_info *mtd, loff_t to, 194 struct mtd_oob_ops *ops); 195 int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf, 196 size_t len); 197 int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 198 size_t len, size_t *retlen, u_char *buf); 199 int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf, 200 size_t len); 201 int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 202 size_t len, size_t *retlen, u_char *buf); 203 int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t to, size_t len, 204 size_t *retlen, u_char *buf); 205 int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 206 size_t len); 207 int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, 208 unsigned long count, loff_t to, size_t *retlen); 209 void (*sync) (struct mtd_info *mtd); 210 int (*lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 211 int (*unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 212 int (*is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 213 int (*block_isbad) (struct mtd_info *mtd, loff_t ofs); 214 int (*block_markbad) (struct mtd_info *mtd, loff_t ofs); 215 int (*suspend) (struct mtd_info *mtd); 216 void (*resume) (struct mtd_info *mtd); 217 /* 218 * If the driver is something smart, like UBI, it may need to maintain 219 * its own reference counting. The below functions are only for driver. 220 */ 221 int (*get_device) (struct mtd_info *mtd); 222 void (*put_device) (struct mtd_info *mtd); 223 224 /* Backing device capabilities for this device 225 * - provides mmap capabilities 226 */ 227 struct backing_dev_info *backing_dev_info; 228 229 struct notifier_block reboot_notifier; /* default mode before reboot */ 230 231 /* ECC status information */ 232 struct mtd_ecc_stats ecc_stats; 233 /* Subpage shift (NAND) */ 234 int subpage_sft; 235 236 void *priv; 237 238 struct module *owner; 239 struct device dev; 240 int usecount; 241 }; 242 243 /* 244 * Erase is an asynchronous operation. Device drivers are supposed 245 * to call instr->callback() whenever the operation completes, even 246 * if it completes with a failure. 247 * Callers are supposed to pass a callback function and wait for it 248 * to be called before writing to the block. 249 */ 250 static inline int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 251 { 252 return mtd->erase(mtd, instr); 253 } 254 255 /* 256 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 257 */ 258 static inline int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, 259 size_t *retlen, void **virt, resource_size_t *phys) 260 { 261 *retlen = 0; 262 if (!mtd->point) 263 return -EOPNOTSUPP; 264 return mtd->point(mtd, from, len, retlen, virt, phys); 265 } 266 267 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 268 static inline void mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 269 { 270 return mtd->unpoint(mtd, from, len); 271 } 272 273 /* 274 * Allow NOMMU mmap() to directly map the device (if not NULL) 275 * - return the address to which the offset maps 276 * - return -ENOSYS to indicate refusal to do the mapping 277 */ 278 static inline unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, 279 unsigned long len, 280 unsigned long offset, 281 unsigned long flags) 282 { 283 if (!mtd->get_unmapped_area) 284 return -EOPNOTSUPP; 285 return mtd->get_unmapped_area(mtd, len, offset, flags); 286 } 287 288 static inline int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, 289 size_t *retlen, u_char *buf) 290 { 291 return mtd->read(mtd, from, len, retlen, buf); 292 } 293 294 static inline int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, 295 size_t *retlen, const u_char *buf) 296 { 297 *retlen = 0; 298 if (!mtd->write) 299 return -EROFS; 300 return mtd->write(mtd, to, len, retlen, buf); 301 } 302 303 /* 304 * In blackbox flight recorder like scenarios we want to make successful writes 305 * in interrupt context. panic_write() is only intended to be called when its 306 * known the kernel is about to panic and we need the write to succeed. Since 307 * the kernel is not going to be running for much longer, this function can 308 * break locks and delay to ensure the write succeeds (but not sleep). 309 */ 310 static inline int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, 311 size_t *retlen, const u_char *buf) 312 { 313 *retlen = 0; 314 if (!mtd->panic_write) 315 return -EOPNOTSUPP; 316 return mtd->panic_write(mtd, to, len, retlen, buf); 317 } 318 319 static inline int mtd_read_oob(struct mtd_info *mtd, loff_t from, 320 struct mtd_oob_ops *ops) 321 { 322 ops->retlen = ops->oobretlen = 0; 323 if (!mtd->read_oob) 324 return -EOPNOTSUPP; 325 return mtd->read_oob(mtd, from, ops); 326 } 327 328 static inline int mtd_write_oob(struct mtd_info *mtd, loff_t to, 329 struct mtd_oob_ops *ops) 330 { 331 ops->retlen = ops->oobretlen = 0; 332 if (!mtd->write_oob) 333 return -EOPNOTSUPP; 334 return mtd->write_oob(mtd, to, ops); 335 } 336 337 /* 338 * Method to access the protection register area, present in some flash 339 * devices. The user data is one time programmable but the factory data is read 340 * only. 341 */ 342 static inline int mtd_get_fact_prot_info(struct mtd_info *mtd, 343 struct otp_info *buf, size_t len) 344 { 345 if (!mtd->get_fact_prot_info) 346 return -EOPNOTSUPP; 347 return mtd->get_fact_prot_info(mtd, buf, len); 348 } 349 350 static inline int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, 351 size_t len, size_t *retlen, 352 u_char *buf) 353 { 354 *retlen = 0; 355 if (!mtd->read_fact_prot_reg) 356 return -EOPNOTSUPP; 357 return mtd->read_fact_prot_reg(mtd, from, len, retlen, buf); 358 } 359 360 static inline int mtd_get_user_prot_info(struct mtd_info *mtd, 361 struct otp_info *buf, 362 size_t len) 363 { 364 if (!mtd->get_user_prot_info) 365 return -EOPNOTSUPP; 366 return mtd->get_user_prot_info(mtd, buf, len); 367 } 368 369 static inline int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, 370 size_t len, size_t *retlen, 371 u_char *buf) 372 { 373 *retlen = 0; 374 if (!mtd->read_user_prot_reg) 375 return -EOPNOTSUPP; 376 return mtd->read_user_prot_reg(mtd, from, len, retlen, buf); 377 } 378 379 static inline int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, 380 size_t len, size_t *retlen, 381 u_char *buf) 382 { 383 *retlen = 0; 384 if (!mtd->write_user_prot_reg) 385 return -EOPNOTSUPP; 386 return mtd->write_user_prot_reg(mtd, to, len, retlen, buf); 387 } 388 389 static inline int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, 390 size_t len) 391 { 392 if (!mtd->lock_user_prot_reg) 393 return -EOPNOTSUPP; 394 return mtd->lock_user_prot_reg(mtd, from, len); 395 } 396 397 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 398 unsigned long count, loff_t to, size_t *retlen); 399 400 static inline void mtd_sync(struct mtd_info *mtd) 401 { 402 if (mtd->sync) 403 mtd->sync(mtd); 404 } 405 406 /* Chip-supported device locking */ 407 static inline int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 408 { 409 if (!mtd->lock) 410 return -EOPNOTSUPP; 411 return mtd->lock(mtd, ofs, len); 412 } 413 414 static inline int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 415 { 416 if (!mtd->unlock) 417 return -EOPNOTSUPP; 418 return mtd->unlock(mtd, ofs, len); 419 } 420 421 static inline int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 422 { 423 if (!mtd->is_locked) 424 return -EOPNOTSUPP; 425 return mtd->is_locked(mtd, ofs, len); 426 } 427 428 static inline int mtd_suspend(struct mtd_info *mtd) 429 { 430 if (!mtd->suspend) 431 return -EOPNOTSUPP; 432 return mtd->suspend(mtd); 433 } 434 435 static inline void mtd_resume(struct mtd_info *mtd) 436 { 437 if (mtd->resume) 438 mtd->resume(mtd); 439 } 440 441 static inline int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 442 { 443 if (!mtd->block_isbad) 444 return -EOPNOTSUPP; 445 return mtd->block_isbad(mtd, ofs); 446 } 447 448 static inline int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 449 { 450 if (!mtd->block_markbad) 451 return -EOPNOTSUPP; 452 return mtd->block_markbad(mtd, ofs); 453 } 454 455 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 456 { 457 if (mtd->erasesize_shift) 458 return sz >> mtd->erasesize_shift; 459 do_div(sz, mtd->erasesize); 460 return sz; 461 } 462 463 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 464 { 465 if (mtd->erasesize_shift) 466 return sz & mtd->erasesize_mask; 467 return do_div(sz, mtd->erasesize); 468 } 469 470 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 471 { 472 if (mtd->writesize_shift) 473 return sz >> mtd->writesize_shift; 474 do_div(sz, mtd->writesize); 475 return sz; 476 } 477 478 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 479 { 480 if (mtd->writesize_shift) 481 return sz & mtd->writesize_mask; 482 return do_div(sz, mtd->writesize); 483 } 484 485 static inline int mtd_has_oob(const struct mtd_info *mtd) 486 { 487 return mtd->read_oob && mtd->write_oob; 488 } 489 490 static inline int mtd_can_have_bb(const struct mtd_info *mtd) 491 { 492 return !!mtd->block_isbad; 493 } 494 495 /* Kernel-side ioctl definitions */ 496 497 struct mtd_partition; 498 struct mtd_part_parser_data; 499 500 extern int mtd_device_parse_register(struct mtd_info *mtd, 501 const char **part_probe_types, 502 struct mtd_part_parser_data *parser_data, 503 const struct mtd_partition *defparts, 504 int defnr_parts); 505 #define mtd_device_register(master, parts, nr_parts) \ 506 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 507 extern int mtd_device_unregister(struct mtd_info *master); 508 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 509 extern int __get_mtd_device(struct mtd_info *mtd); 510 extern void __put_mtd_device(struct mtd_info *mtd); 511 extern struct mtd_info *get_mtd_device_nm(const char *name); 512 extern void put_mtd_device(struct mtd_info *mtd); 513 514 515 struct mtd_notifier { 516 void (*add)(struct mtd_info *mtd); 517 void (*remove)(struct mtd_info *mtd); 518 struct list_head list; 519 }; 520 521 522 extern void register_mtd_user (struct mtd_notifier *new); 523 extern int unregister_mtd_user (struct mtd_notifier *old); 524 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 525 526 void mtd_erase_callback(struct erase_info *instr); 527 528 static inline int mtd_is_bitflip(int err) { 529 return err == -EUCLEAN; 530 } 531 532 static inline int mtd_is_eccerr(int err) { 533 return err == -EBADMSG; 534 } 535 536 static inline int mtd_is_bitflip_or_eccerr(int err) { 537 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 538 } 539 540 #endif /* __MTD_MTD_H__ */ 541