1 /* 2 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 * 18 */ 19 20 #ifndef __MTD_MTD_H__ 21 #define __MTD_MTD_H__ 22 23 #include <linux/types.h> 24 #include <linux/uio.h> 25 #include <linux/notifier.h> 26 #include <linux/device.h> 27 #include <linux/of.h> 28 29 #include <mtd/mtd-abi.h> 30 31 #include <asm/div64.h> 32 33 #define MTD_ERASE_PENDING 0x01 34 #define MTD_ERASING 0x02 35 #define MTD_ERASE_SUSPEND 0x04 36 #define MTD_ERASE_DONE 0x08 37 #define MTD_ERASE_FAILED 0x10 38 39 #define MTD_FAIL_ADDR_UNKNOWN -1LL 40 41 /* 42 * If the erase fails, fail_addr might indicate exactly which block failed. If 43 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 44 * or was not specific to any particular block. 45 */ 46 struct erase_info { 47 struct mtd_info *mtd; 48 uint64_t addr; 49 uint64_t len; 50 uint64_t fail_addr; 51 u_long time; 52 u_long retries; 53 unsigned dev; 54 unsigned cell; 55 void (*callback) (struct erase_info *self); 56 u_long priv; 57 u_char state; 58 struct erase_info *next; 59 }; 60 61 struct mtd_erase_region_info { 62 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 63 uint32_t erasesize; /* For this region */ 64 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 65 unsigned long *lockmap; /* If keeping bitmap of locks */ 66 }; 67 68 /** 69 * struct mtd_oob_ops - oob operation operands 70 * @mode: operation mode 71 * 72 * @len: number of data bytes to write/read 73 * 74 * @retlen: number of data bytes written/read 75 * 76 * @ooblen: number of oob bytes to write/read 77 * @oobretlen: number of oob bytes written/read 78 * @ooboffs: offset of oob data in the oob area (only relevant when 79 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 80 * @datbuf: data buffer - if NULL only oob data are read/written 81 * @oobbuf: oob data buffer 82 * 83 * Note, it is allowed to read more than one OOB area at one go, but not write. 84 * The interface assumes that the OOB write requests program only one page's 85 * OOB area. 86 */ 87 struct mtd_oob_ops { 88 unsigned int mode; 89 size_t len; 90 size_t retlen; 91 size_t ooblen; 92 size_t oobretlen; 93 uint32_t ooboffs; 94 uint8_t *datbuf; 95 uint8_t *oobbuf; 96 }; 97 98 #define MTD_MAX_OOBFREE_ENTRIES_LARGE 32 99 #define MTD_MAX_ECCPOS_ENTRIES_LARGE 640 100 /** 101 * struct mtd_oob_region - oob region definition 102 * @offset: region offset 103 * @length: region length 104 * 105 * This structure describes a region of the OOB area, and is used 106 * to retrieve ECC or free bytes sections. 107 * Each section is defined by an offset within the OOB area and a 108 * length. 109 */ 110 struct mtd_oob_region { 111 u32 offset; 112 u32 length; 113 }; 114 115 /* 116 * struct mtd_ooblayout_ops - NAND OOB layout operations 117 * @ecc: function returning an ECC region in the OOB area. 118 * Should return -ERANGE if %section exceeds the total number of 119 * ECC sections. 120 * @free: function returning a free region in the OOB area. 121 * Should return -ERANGE if %section exceeds the total number of 122 * free sections. 123 */ 124 struct mtd_ooblayout_ops { 125 int (*ecc)(struct mtd_info *mtd, int section, 126 struct mtd_oob_region *oobecc); 127 int (*free)(struct mtd_info *mtd, int section, 128 struct mtd_oob_region *oobfree); 129 }; 130 131 /** 132 * struct mtd_pairing_info - page pairing information 133 * 134 * @pair: pair id 135 * @group: group id 136 * 137 * The term "pair" is used here, even though TLC NANDs might group pages by 3 138 * (3 bits in a single cell). A pair should regroup all pages that are sharing 139 * the same cell. Pairs are then indexed in ascending order. 140 * 141 * @group is defining the position of a page in a given pair. It can also be 142 * seen as the bit position in the cell: page attached to bit 0 belongs to 143 * group 0, page attached to bit 1 belongs to group 1, etc. 144 * 145 * Example: 146 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme: 147 * 148 * group-0 group-1 149 * 150 * pair-0 page-0 page-4 151 * pair-1 page-1 page-5 152 * pair-2 page-2 page-8 153 * ... 154 * pair-127 page-251 page-255 155 * 156 * 157 * Note that the "group" and "pair" terms were extracted from Samsung and 158 * Hynix datasheets, and might be referenced under other names in other 159 * datasheets (Micron is describing this concept as "shared pages"). 160 */ 161 struct mtd_pairing_info { 162 int pair; 163 int group; 164 }; 165 166 /** 167 * struct mtd_pairing_scheme - page pairing scheme description 168 * 169 * @ngroups: number of groups. Should be related to the number of bits 170 * per cell. 171 * @get_info: converts a write-unit (page number within an erase block) into 172 * mtd_pairing information (pair + group). This function should 173 * fill the info parameter based on the wunit index or return 174 * -EINVAL if the wunit parameter is invalid. 175 * @get_wunit: converts pairing information into a write-unit (page) number. 176 * This function should return the wunit index pointed by the 177 * pairing information described in the info argument. It should 178 * return -EINVAL, if there's no wunit corresponding to the 179 * passed pairing information. 180 * 181 * See mtd_pairing_info documentation for a detailed explanation of the 182 * pair and group concepts. 183 * 184 * The mtd_pairing_scheme structure provides a generic solution to represent 185 * NAND page pairing scheme. Instead of exposing two big tables to do the 186 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to 187 * implement the ->get_info() and ->get_wunit() functions. 188 * 189 * MTD users will then be able to query these information by using the 190 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers. 191 * 192 * @ngroups is here to help MTD users iterating over all the pages in a 193 * given pair. This value can be retrieved by MTD users using the 194 * mtd_pairing_groups() helper. 195 * 196 * Examples are given in the mtd_pairing_info_to_wunit() and 197 * mtd_wunit_to_pairing_info() documentation. 198 */ 199 struct mtd_pairing_scheme { 200 int ngroups; 201 int (*get_info)(struct mtd_info *mtd, int wunit, 202 struct mtd_pairing_info *info); 203 int (*get_wunit)(struct mtd_info *mtd, 204 const struct mtd_pairing_info *info); 205 }; 206 207 struct module; /* only needed for owner field in mtd_info */ 208 209 struct mtd_info { 210 u_char type; 211 uint32_t flags; 212 uint64_t size; // Total size of the MTD 213 214 /* "Major" erase size for the device. Naïve users may take this 215 * to be the only erase size available, or may use the more detailed 216 * information below if they desire 217 */ 218 uint32_t erasesize; 219 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 220 * though individual bits can be cleared), in case of NAND flash it is 221 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 222 * it is of ECC block size, etc. It is illegal to have writesize = 0. 223 * Any driver registering a struct mtd_info must ensure a writesize of 224 * 1 or larger. 225 */ 226 uint32_t writesize; 227 228 /* 229 * Size of the write buffer used by the MTD. MTD devices having a write 230 * buffer can write multiple writesize chunks at a time. E.g. while 231 * writing 4 * writesize bytes to a device with 2 * writesize bytes 232 * buffer the MTD driver can (but doesn't have to) do 2 writesize 233 * operations, but not 4. Currently, all NANDs have writebufsize 234 * equivalent to writesize (NAND page size). Some NOR flashes do have 235 * writebufsize greater than writesize. 236 */ 237 uint32_t writebufsize; 238 239 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 240 uint32_t oobavail; // Available OOB bytes per block 241 242 /* 243 * If erasesize is a power of 2 then the shift is stored in 244 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 245 */ 246 unsigned int erasesize_shift; 247 unsigned int writesize_shift; 248 /* Masks based on erasesize_shift and writesize_shift */ 249 unsigned int erasesize_mask; 250 unsigned int writesize_mask; 251 252 /* 253 * read ops return -EUCLEAN if max number of bitflips corrected on any 254 * one region comprising an ecc step equals or exceeds this value. 255 * Settable by driver, else defaults to ecc_strength. User can override 256 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; 257 * see Documentation/ABI/testing/sysfs-class-mtd for more detail. 258 */ 259 unsigned int bitflip_threshold; 260 261 // Kernel-only stuff starts here. 262 const char *name; 263 int index; 264 265 /* OOB layout description */ 266 const struct mtd_ooblayout_ops *ooblayout; 267 268 /* NAND pairing scheme, only provided for MLC/TLC NANDs */ 269 const struct mtd_pairing_scheme *pairing; 270 271 /* the ecc step size. */ 272 unsigned int ecc_step_size; 273 274 /* max number of correctible bit errors per ecc step */ 275 unsigned int ecc_strength; 276 277 /* Data for variable erase regions. If numeraseregions is zero, 278 * it means that the whole device has erasesize as given above. 279 */ 280 int numeraseregions; 281 struct mtd_erase_region_info *eraseregions; 282 283 /* 284 * Do not call via these pointers, use corresponding mtd_*() 285 * wrappers instead. 286 */ 287 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); 288 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, 289 size_t *retlen, void **virt, resource_size_t *phys); 290 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 291 unsigned long (*_get_unmapped_area) (struct mtd_info *mtd, 292 unsigned long len, 293 unsigned long offset, 294 unsigned long flags); 295 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, 296 size_t *retlen, u_char *buf); 297 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, 298 size_t *retlen, const u_char *buf); 299 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 300 size_t *retlen, const u_char *buf); 301 int (*_read_oob) (struct mtd_info *mtd, loff_t from, 302 struct mtd_oob_ops *ops); 303 int (*_write_oob) (struct mtd_info *mtd, loff_t to, 304 struct mtd_oob_ops *ops); 305 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, 306 size_t *retlen, struct otp_info *buf); 307 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 308 size_t len, size_t *retlen, u_char *buf); 309 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, 310 size_t *retlen, struct otp_info *buf); 311 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 312 size_t len, size_t *retlen, u_char *buf); 313 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, 314 size_t len, size_t *retlen, u_char *buf); 315 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 316 size_t len); 317 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, 318 unsigned long count, loff_t to, size_t *retlen); 319 void (*_sync) (struct mtd_info *mtd); 320 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 321 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 322 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 323 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); 324 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); 325 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); 326 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len); 327 int (*_suspend) (struct mtd_info *mtd); 328 void (*_resume) (struct mtd_info *mtd); 329 void (*_reboot) (struct mtd_info *mtd); 330 /* 331 * If the driver is something smart, like UBI, it may need to maintain 332 * its own reference counting. The below functions are only for driver. 333 */ 334 int (*_get_device) (struct mtd_info *mtd); 335 void (*_put_device) (struct mtd_info *mtd); 336 337 struct notifier_block reboot_notifier; /* default mode before reboot */ 338 339 /* ECC status information */ 340 struct mtd_ecc_stats ecc_stats; 341 /* Subpage shift (NAND) */ 342 int subpage_sft; 343 344 void *priv; 345 346 struct module *owner; 347 struct device dev; 348 int usecount; 349 }; 350 351 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 352 struct mtd_oob_region *oobecc); 353 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 354 int *section, 355 struct mtd_oob_region *oobregion); 356 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 357 const u8 *oobbuf, int start, int nbytes); 358 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 359 u8 *oobbuf, int start, int nbytes); 360 int mtd_ooblayout_free(struct mtd_info *mtd, int section, 361 struct mtd_oob_region *oobfree); 362 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 363 const u8 *oobbuf, int start, int nbytes); 364 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 365 u8 *oobbuf, int start, int nbytes); 366 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); 367 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); 368 369 static inline void mtd_set_ooblayout(struct mtd_info *mtd, 370 const struct mtd_ooblayout_ops *ooblayout) 371 { 372 mtd->ooblayout = ooblayout; 373 } 374 375 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd, 376 const struct mtd_pairing_scheme *pairing) 377 { 378 mtd->pairing = pairing; 379 } 380 381 static inline void mtd_set_of_node(struct mtd_info *mtd, 382 struct device_node *np) 383 { 384 mtd->dev.of_node = np; 385 if (!mtd->name) 386 of_property_read_string(np, "label", &mtd->name); 387 } 388 389 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) 390 { 391 return dev_of_node(&mtd->dev); 392 } 393 394 static inline int mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) 395 { 396 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; 397 } 398 399 static inline int mtd_max_bad_blocks(struct mtd_info *mtd, 400 loff_t ofs, size_t len) 401 { 402 if (!mtd->_max_bad_blocks) 403 return -ENOTSUPP; 404 405 if (mtd->size < (len + ofs) || ofs < 0) 406 return -EINVAL; 407 408 return mtd->_max_bad_blocks(mtd, ofs, len); 409 } 410 411 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 412 struct mtd_pairing_info *info); 413 int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 414 const struct mtd_pairing_info *info); 415 int mtd_pairing_groups(struct mtd_info *mtd); 416 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); 417 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 418 void **virt, resource_size_t *phys); 419 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 420 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 421 unsigned long offset, unsigned long flags); 422 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 423 u_char *buf); 424 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 425 const u_char *buf); 426 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 427 const u_char *buf); 428 429 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); 430 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); 431 432 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 433 struct otp_info *buf); 434 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 435 size_t *retlen, u_char *buf); 436 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 437 struct otp_info *buf); 438 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 439 size_t *retlen, u_char *buf); 440 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 441 size_t *retlen, u_char *buf); 442 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 443 444 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 445 unsigned long count, loff_t to, size_t *retlen); 446 447 static inline void mtd_sync(struct mtd_info *mtd) 448 { 449 if (mtd->_sync) 450 mtd->_sync(mtd); 451 } 452 453 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 454 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 455 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); 456 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); 457 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); 458 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); 459 460 static inline int mtd_suspend(struct mtd_info *mtd) 461 { 462 return mtd->_suspend ? mtd->_suspend(mtd) : 0; 463 } 464 465 static inline void mtd_resume(struct mtd_info *mtd) 466 { 467 if (mtd->_resume) 468 mtd->_resume(mtd); 469 } 470 471 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 472 { 473 if (mtd->erasesize_shift) 474 return sz >> mtd->erasesize_shift; 475 do_div(sz, mtd->erasesize); 476 return sz; 477 } 478 479 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 480 { 481 if (mtd->erasesize_shift) 482 return sz & mtd->erasesize_mask; 483 return do_div(sz, mtd->erasesize); 484 } 485 486 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 487 { 488 if (mtd->writesize_shift) 489 return sz >> mtd->writesize_shift; 490 do_div(sz, mtd->writesize); 491 return sz; 492 } 493 494 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 495 { 496 if (mtd->writesize_shift) 497 return sz & mtd->writesize_mask; 498 return do_div(sz, mtd->writesize); 499 } 500 501 static inline int mtd_wunit_per_eb(struct mtd_info *mtd) 502 { 503 return mtd->erasesize / mtd->writesize; 504 } 505 506 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs) 507 { 508 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd); 509 } 510 511 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base, 512 int wunit) 513 { 514 return base + (wunit * mtd->writesize); 515 } 516 517 518 static inline int mtd_has_oob(const struct mtd_info *mtd) 519 { 520 return mtd->_read_oob && mtd->_write_oob; 521 } 522 523 static inline int mtd_type_is_nand(const struct mtd_info *mtd) 524 { 525 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; 526 } 527 528 static inline int mtd_can_have_bb(const struct mtd_info *mtd) 529 { 530 return !!mtd->_block_isbad; 531 } 532 533 /* Kernel-side ioctl definitions */ 534 535 struct mtd_partition; 536 struct mtd_part_parser_data; 537 538 extern int mtd_device_parse_register(struct mtd_info *mtd, 539 const char * const *part_probe_types, 540 struct mtd_part_parser_data *parser_data, 541 const struct mtd_partition *defparts, 542 int defnr_parts); 543 #define mtd_device_register(master, parts, nr_parts) \ 544 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 545 extern int mtd_device_unregister(struct mtd_info *master); 546 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 547 extern int __get_mtd_device(struct mtd_info *mtd); 548 extern void __put_mtd_device(struct mtd_info *mtd); 549 extern struct mtd_info *get_mtd_device_nm(const char *name); 550 extern void put_mtd_device(struct mtd_info *mtd); 551 552 553 struct mtd_notifier { 554 void (*add)(struct mtd_info *mtd); 555 void (*remove)(struct mtd_info *mtd); 556 struct list_head list; 557 }; 558 559 560 extern void register_mtd_user (struct mtd_notifier *new); 561 extern int unregister_mtd_user (struct mtd_notifier *old); 562 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 563 564 void mtd_erase_callback(struct erase_info *instr); 565 566 static inline int mtd_is_bitflip(int err) { 567 return err == -EUCLEAN; 568 } 569 570 static inline int mtd_is_eccerr(int err) { 571 return err == -EBADMSG; 572 } 573 574 static inline int mtd_is_bitflip_or_eccerr(int err) { 575 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 576 } 577 578 unsigned mtd_mmap_capabilities(struct mtd_info *mtd); 579 580 #endif /* __MTD_MTD_H__ */ 581