xref: /linux/include/linux/hugetlb.h (revision 1e0731c05c985deb68a97fa44c1adcd3305dda90)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HUGETLB_H
3 #define _LINUX_HUGETLB_H
4 
5 #include <linux/mm.h>
6 #include <linux/mm_types.h>
7 #include <linux/mmdebug.h>
8 #include <linux/fs.h>
9 #include <linux/hugetlb_inline.h>
10 #include <linux/cgroup.h>
11 #include <linux/page_ref.h>
12 #include <linux/list.h>
13 #include <linux/kref.h>
14 #include <linux/pgtable.h>
15 #include <linux/gfp.h>
16 #include <linux/userfaultfd_k.h>
17 
18 struct ctl_table;
19 struct user_struct;
20 struct mmu_gather;
21 struct node;
22 
23 #ifndef CONFIG_ARCH_HAS_HUGEPD
24 typedef struct { unsigned long pd; } hugepd_t;
25 #define is_hugepd(hugepd) (0)
26 #define __hugepd(x) ((hugepd_t) { (x) })
27 #endif
28 
29 void free_huge_folio(struct folio *folio);
30 
31 #ifdef CONFIG_HUGETLB_PAGE
32 
33 #include <linux/mempolicy.h>
34 #include <linux/shm.h>
35 #include <asm/tlbflush.h>
36 
37 /*
38  * For HugeTLB page, there are more metadata to save in the struct page. But
39  * the head struct page cannot meet our needs, so we have to abuse other tail
40  * struct page to store the metadata.
41  */
42 #define __NR_USED_SUBPAGE 3
43 
44 struct hugepage_subpool {
45 	spinlock_t lock;
46 	long count;
47 	long max_hpages;	/* Maximum huge pages or -1 if no maximum. */
48 	long used_hpages;	/* Used count against maximum, includes */
49 				/* both allocated and reserved pages. */
50 	struct hstate *hstate;
51 	long min_hpages;	/* Minimum huge pages or -1 if no minimum. */
52 	long rsv_hpages;	/* Pages reserved against global pool to */
53 				/* satisfy minimum size. */
54 };
55 
56 struct resv_map {
57 	struct kref refs;
58 	spinlock_t lock;
59 	struct list_head regions;
60 	long adds_in_progress;
61 	struct list_head region_cache;
62 	long region_cache_count;
63 #ifdef CONFIG_CGROUP_HUGETLB
64 	/*
65 	 * On private mappings, the counter to uncharge reservations is stored
66 	 * here. If these fields are 0, then either the mapping is shared, or
67 	 * cgroup accounting is disabled for this resv_map.
68 	 */
69 	struct page_counter *reservation_counter;
70 	unsigned long pages_per_hpage;
71 	struct cgroup_subsys_state *css;
72 #endif
73 };
74 
75 /*
76  * Region tracking -- allows tracking of reservations and instantiated pages
77  *                    across the pages in a mapping.
78  *
79  * The region data structures are embedded into a resv_map and protected
80  * by a resv_map's lock.  The set of regions within the resv_map represent
81  * reservations for huge pages, or huge pages that have already been
82  * instantiated within the map.  The from and to elements are huge page
83  * indices into the associated mapping.  from indicates the starting index
84  * of the region.  to represents the first index past the end of  the region.
85  *
86  * For example, a file region structure with from == 0 and to == 4 represents
87  * four huge pages in a mapping.  It is important to note that the to element
88  * represents the first element past the end of the region. This is used in
89  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
90  *
91  * Interval notation of the form [from, to) will be used to indicate that
92  * the endpoint from is inclusive and to is exclusive.
93  */
94 struct file_region {
95 	struct list_head link;
96 	long from;
97 	long to;
98 #ifdef CONFIG_CGROUP_HUGETLB
99 	/*
100 	 * On shared mappings, each reserved region appears as a struct
101 	 * file_region in resv_map. These fields hold the info needed to
102 	 * uncharge each reservation.
103 	 */
104 	struct page_counter *reservation_counter;
105 	struct cgroup_subsys_state *css;
106 #endif
107 };
108 
109 struct hugetlb_vma_lock {
110 	struct kref refs;
111 	struct rw_semaphore rw_sema;
112 	struct vm_area_struct *vma;
113 };
114 
115 extern struct resv_map *resv_map_alloc(void);
116 void resv_map_release(struct kref *ref);
117 
118 extern spinlock_t hugetlb_lock;
119 extern int hugetlb_max_hstate __read_mostly;
120 #define for_each_hstate(h) \
121 	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
122 
123 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
124 						long min_hpages);
125 void hugepage_put_subpool(struct hugepage_subpool *spool);
126 
127 void hugetlb_dup_vma_private(struct vm_area_struct *vma);
128 void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
129 int move_hugetlb_page_tables(struct vm_area_struct *vma,
130 			     struct vm_area_struct *new_vma,
131 			     unsigned long old_addr, unsigned long new_addr,
132 			     unsigned long len);
133 int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
134 			    struct vm_area_struct *, struct vm_area_struct *);
135 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
136 				      unsigned long address, unsigned int flags,
137 				      unsigned int *page_mask);
138 void unmap_hugepage_range(struct vm_area_struct *,
139 			  unsigned long, unsigned long, struct page *,
140 			  zap_flags_t);
141 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
142 			  struct vm_area_struct *vma,
143 			  unsigned long start, unsigned long end,
144 			  struct page *ref_page, zap_flags_t zap_flags);
145 void hugetlb_report_meminfo(struct seq_file *);
146 int hugetlb_report_node_meminfo(char *buf, int len, int nid);
147 void hugetlb_show_meminfo_node(int nid);
148 unsigned long hugetlb_total_pages(void);
149 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
150 			unsigned long address, unsigned int flags);
151 #ifdef CONFIG_USERFAULTFD
152 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
153 			     struct vm_area_struct *dst_vma,
154 			     unsigned long dst_addr,
155 			     unsigned long src_addr,
156 			     uffd_flags_t flags,
157 			     struct folio **foliop);
158 #endif /* CONFIG_USERFAULTFD */
159 bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
160 						struct vm_area_struct *vma,
161 						vm_flags_t vm_flags);
162 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
163 						long freed);
164 bool isolate_hugetlb(struct folio *folio, struct list_head *list);
165 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
166 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
167 				bool *migratable_cleared);
168 void folio_putback_active_hugetlb(struct folio *folio);
169 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
170 void hugetlb_fix_reserve_counts(struct inode *inode);
171 extern struct mutex *hugetlb_fault_mutex_table;
172 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
173 
174 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
175 		      unsigned long addr, pud_t *pud);
176 
177 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage);
178 
179 extern int sysctl_hugetlb_shm_group;
180 extern struct list_head huge_boot_pages;
181 
182 /* arch callbacks */
183 
184 #ifndef CONFIG_HIGHPTE
185 /*
186  * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
187  * which may go down to the lowest PTE level in their huge_pte_offset() and
188  * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
189  */
190 static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
191 {
192 	return pte_offset_kernel(pmd, address);
193 }
194 static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
195 				    unsigned long address)
196 {
197 	return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
198 }
199 #endif
200 
201 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
202 			unsigned long addr, unsigned long sz);
203 /*
204  * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
205  * Returns the pte_t* if found, or NULL if the address is not mapped.
206  *
207  * IMPORTANT: we should normally not directly call this function, instead
208  * this is only a common interface to implement arch-specific
209  * walker. Please use hugetlb_walk() instead, because that will attempt to
210  * verify the locking for you.
211  *
212  * Since this function will walk all the pgtable pages (including not only
213  * high-level pgtable page, but also PUD entry that can be unshared
214  * concurrently for VM_SHARED), the caller of this function should be
215  * responsible of its thread safety.  One can follow this rule:
216  *
217  *  (1) For private mappings: pmd unsharing is not possible, so holding the
218  *      mmap_lock for either read or write is sufficient. Most callers
219  *      already hold the mmap_lock, so normally, no special action is
220  *      required.
221  *
222  *  (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
223  *      pgtable page can go away from under us!  It can be done by a pmd
224  *      unshare with a follow up munmap() on the other process), then we
225  *      need either:
226  *
227  *     (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
228  *           won't happen upon the range (it also makes sure the pte_t we
229  *           read is the right and stable one), or,
230  *
231  *     (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
232  *           sure even if unshare happened the racy unmap() will wait until
233  *           i_mmap_rwsem is released.
234  *
235  * Option (2.1) is the safest, which guarantees pte stability from pmd
236  * sharing pov, until the vma lock released.  Option (2.2) doesn't protect
237  * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
238  * access.
239  */
240 pte_t *huge_pte_offset(struct mm_struct *mm,
241 		       unsigned long addr, unsigned long sz);
242 unsigned long hugetlb_mask_last_page(struct hstate *h);
243 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
244 				unsigned long addr, pte_t *ptep);
245 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
246 				unsigned long *start, unsigned long *end);
247 
248 void hugetlb_vma_lock_read(struct vm_area_struct *vma);
249 void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
250 void hugetlb_vma_lock_write(struct vm_area_struct *vma);
251 void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
252 int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
253 void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
254 void hugetlb_vma_lock_release(struct kref *kref);
255 
256 int pmd_huge(pmd_t pmd);
257 int pud_huge(pud_t pud);
258 long hugetlb_change_protection(struct vm_area_struct *vma,
259 		unsigned long address, unsigned long end, pgprot_t newprot,
260 		unsigned long cp_flags);
261 
262 bool is_hugetlb_entry_migration(pte_t pte);
263 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
264 
265 #else /* !CONFIG_HUGETLB_PAGE */
266 
267 static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
268 {
269 }
270 
271 static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
272 {
273 }
274 
275 static inline unsigned long hugetlb_total_pages(void)
276 {
277 	return 0;
278 }
279 
280 static inline struct address_space *hugetlb_page_mapping_lock_write(
281 							struct page *hpage)
282 {
283 	return NULL;
284 }
285 
286 static inline int huge_pmd_unshare(struct mm_struct *mm,
287 					struct vm_area_struct *vma,
288 					unsigned long addr, pte_t *ptep)
289 {
290 	return 0;
291 }
292 
293 static inline void adjust_range_if_pmd_sharing_possible(
294 				struct vm_area_struct *vma,
295 				unsigned long *start, unsigned long *end)
296 {
297 }
298 
299 static inline struct page *hugetlb_follow_page_mask(
300     struct vm_area_struct *vma, unsigned long address, unsigned int flags,
301     unsigned int *page_mask)
302 {
303 	BUILD_BUG(); /* should never be compiled in if !CONFIG_HUGETLB_PAGE*/
304 }
305 
306 static inline int copy_hugetlb_page_range(struct mm_struct *dst,
307 					  struct mm_struct *src,
308 					  struct vm_area_struct *dst_vma,
309 					  struct vm_area_struct *src_vma)
310 {
311 	BUG();
312 	return 0;
313 }
314 
315 static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
316 					   struct vm_area_struct *new_vma,
317 					   unsigned long old_addr,
318 					   unsigned long new_addr,
319 					   unsigned long len)
320 {
321 	BUG();
322 	return 0;
323 }
324 
325 static inline void hugetlb_report_meminfo(struct seq_file *m)
326 {
327 }
328 
329 static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
330 {
331 	return 0;
332 }
333 
334 static inline void hugetlb_show_meminfo_node(int nid)
335 {
336 }
337 
338 static inline int prepare_hugepage_range(struct file *file,
339 				unsigned long addr, unsigned long len)
340 {
341 	return -EINVAL;
342 }
343 
344 static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
345 {
346 }
347 
348 static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
349 {
350 }
351 
352 static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
353 {
354 }
355 
356 static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
357 {
358 }
359 
360 static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
361 {
362 	return 1;
363 }
364 
365 static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
366 {
367 }
368 
369 static inline int pmd_huge(pmd_t pmd)
370 {
371 	return 0;
372 }
373 
374 static inline int pud_huge(pud_t pud)
375 {
376 	return 0;
377 }
378 
379 static inline int is_hugepage_only_range(struct mm_struct *mm,
380 					unsigned long addr, unsigned long len)
381 {
382 	return 0;
383 }
384 
385 static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
386 				unsigned long addr, unsigned long end,
387 				unsigned long floor, unsigned long ceiling)
388 {
389 	BUG();
390 }
391 
392 #ifdef CONFIG_USERFAULTFD
393 static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
394 					   struct vm_area_struct *dst_vma,
395 					   unsigned long dst_addr,
396 					   unsigned long src_addr,
397 					   uffd_flags_t flags,
398 					   struct folio **foliop)
399 {
400 	BUG();
401 	return 0;
402 }
403 #endif /* CONFIG_USERFAULTFD */
404 
405 static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
406 					unsigned long sz)
407 {
408 	return NULL;
409 }
410 
411 static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
412 {
413 	return false;
414 }
415 
416 static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
417 {
418 	return 0;
419 }
420 
421 static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
422 					bool *migratable_cleared)
423 {
424 	return 0;
425 }
426 
427 static inline void folio_putback_active_hugetlb(struct folio *folio)
428 {
429 }
430 
431 static inline void move_hugetlb_state(struct folio *old_folio,
432 					struct folio *new_folio, int reason)
433 {
434 }
435 
436 static inline long hugetlb_change_protection(
437 			struct vm_area_struct *vma, unsigned long address,
438 			unsigned long end, pgprot_t newprot,
439 			unsigned long cp_flags)
440 {
441 	return 0;
442 }
443 
444 static inline void __unmap_hugepage_range_final(struct mmu_gather *tlb,
445 			struct vm_area_struct *vma, unsigned long start,
446 			unsigned long end, struct page *ref_page,
447 			zap_flags_t zap_flags)
448 {
449 	BUG();
450 }
451 
452 static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
453 			struct vm_area_struct *vma, unsigned long address,
454 			unsigned int flags)
455 {
456 	BUG();
457 	return 0;
458 }
459 
460 static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
461 
462 #endif /* !CONFIG_HUGETLB_PAGE */
463 /*
464  * hugepages at page global directory. If arch support
465  * hugepages at pgd level, they need to define this.
466  */
467 #ifndef pgd_huge
468 #define pgd_huge(x)	0
469 #endif
470 #ifndef p4d_huge
471 #define p4d_huge(x)	0
472 #endif
473 
474 #ifndef pgd_write
475 static inline int pgd_write(pgd_t pgd)
476 {
477 	BUG();
478 	return 0;
479 }
480 #endif
481 
482 #define HUGETLB_ANON_FILE "anon_hugepage"
483 
484 enum {
485 	/*
486 	 * The file will be used as an shm file so shmfs accounting rules
487 	 * apply
488 	 */
489 	HUGETLB_SHMFS_INODE     = 1,
490 	/*
491 	 * The file is being created on the internal vfs mount and shmfs
492 	 * accounting rules do not apply
493 	 */
494 	HUGETLB_ANONHUGE_INODE  = 2,
495 };
496 
497 #ifdef CONFIG_HUGETLBFS
498 struct hugetlbfs_sb_info {
499 	long	max_inodes;   /* inodes allowed */
500 	long	free_inodes;  /* inodes free */
501 	spinlock_t	stat_lock;
502 	struct hstate *hstate;
503 	struct hugepage_subpool *spool;
504 	kuid_t	uid;
505 	kgid_t	gid;
506 	umode_t mode;
507 };
508 
509 static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
510 {
511 	return sb->s_fs_info;
512 }
513 
514 struct hugetlbfs_inode_info {
515 	struct shared_policy policy;
516 	struct inode vfs_inode;
517 	unsigned int seals;
518 };
519 
520 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
521 {
522 	return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
523 }
524 
525 extern const struct file_operations hugetlbfs_file_operations;
526 extern const struct vm_operations_struct hugetlb_vm_ops;
527 struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
528 				int creat_flags, int page_size_log);
529 
530 static inline bool is_file_hugepages(struct file *file)
531 {
532 	if (file->f_op == &hugetlbfs_file_operations)
533 		return true;
534 
535 	return is_file_shm_hugepages(file);
536 }
537 
538 static inline struct hstate *hstate_inode(struct inode *i)
539 {
540 	return HUGETLBFS_SB(i->i_sb)->hstate;
541 }
542 #else /* !CONFIG_HUGETLBFS */
543 
544 #define is_file_hugepages(file)			false
545 static inline struct file *
546 hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
547 		int creat_flags, int page_size_log)
548 {
549 	return ERR_PTR(-ENOSYS);
550 }
551 
552 static inline struct hstate *hstate_inode(struct inode *i)
553 {
554 	return NULL;
555 }
556 #endif /* !CONFIG_HUGETLBFS */
557 
558 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
559 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
560 					unsigned long len, unsigned long pgoff,
561 					unsigned long flags);
562 #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
563 
564 unsigned long
565 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
566 				  unsigned long len, unsigned long pgoff,
567 				  unsigned long flags);
568 
569 /*
570  * huegtlb page specific state flags.  These flags are located in page.private
571  * of the hugetlb head page.  Functions created via the below macros should be
572  * used to manipulate these flags.
573  *
574  * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
575  *	allocation time.  Cleared when page is fully instantiated.  Free
576  *	routine checks flag to restore a reservation on error paths.
577  *	Synchronization:  Examined or modified by code that knows it has
578  *	the only reference to page.  i.e. After allocation but before use
579  *	or when the page is being freed.
580  * HPG_migratable  - Set after a newly allocated page is added to the page
581  *	cache and/or page tables.  Indicates the page is a candidate for
582  *	migration.
583  *	Synchronization:  Initially set after new page allocation with no
584  *	locking.  When examined and modified during migration processing
585  *	(isolate, migrate, putback) the hugetlb_lock is held.
586  * HPG_temporary - Set on a page that is temporarily allocated from the buddy
587  *	allocator.  Typically used for migration target pages when no pages
588  *	are available in the pool.  The hugetlb free page path will
589  *	immediately free pages with this flag set to the buddy allocator.
590  *	Synchronization: Can be set after huge page allocation from buddy when
591  *	code knows it has only reference.  All other examinations and
592  *	modifications require hugetlb_lock.
593  * HPG_freed - Set when page is on the free lists.
594  *	Synchronization: hugetlb_lock held for examination and modification.
595  * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
596  * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
597  *     that is not tracked by raw_hwp_page list.
598  */
599 enum hugetlb_page_flags {
600 	HPG_restore_reserve = 0,
601 	HPG_migratable,
602 	HPG_temporary,
603 	HPG_freed,
604 	HPG_vmemmap_optimized,
605 	HPG_raw_hwp_unreliable,
606 	__NR_HPAGEFLAGS,
607 };
608 
609 /*
610  * Macros to create test, set and clear function definitions for
611  * hugetlb specific page flags.
612  */
613 #ifdef CONFIG_HUGETLB_PAGE
614 #define TESTHPAGEFLAG(uname, flname)				\
615 static __always_inline						\
616 bool folio_test_hugetlb_##flname(struct folio *folio)		\
617 	{	void *private = &folio->private;		\
618 		return test_bit(HPG_##flname, private);		\
619 	}							\
620 static inline int HPage##uname(struct page *page)		\
621 	{ return test_bit(HPG_##flname, &(page->private)); }
622 
623 #define SETHPAGEFLAG(uname, flname)				\
624 static __always_inline						\
625 void folio_set_hugetlb_##flname(struct folio *folio)		\
626 	{	void *private = &folio->private;		\
627 		set_bit(HPG_##flname, private);			\
628 	}							\
629 static inline void SetHPage##uname(struct page *page)		\
630 	{ set_bit(HPG_##flname, &(page->private)); }
631 
632 #define CLEARHPAGEFLAG(uname, flname)				\
633 static __always_inline						\
634 void folio_clear_hugetlb_##flname(struct folio *folio)		\
635 	{	void *private = &folio->private;		\
636 		clear_bit(HPG_##flname, private);		\
637 	}							\
638 static inline void ClearHPage##uname(struct page *page)		\
639 	{ clear_bit(HPG_##flname, &(page->private)); }
640 #else
641 #define TESTHPAGEFLAG(uname, flname)				\
642 static inline bool						\
643 folio_test_hugetlb_##flname(struct folio *folio)		\
644 	{ return 0; }						\
645 static inline int HPage##uname(struct page *page)		\
646 	{ return 0; }
647 
648 #define SETHPAGEFLAG(uname, flname)				\
649 static inline void						\
650 folio_set_hugetlb_##flname(struct folio *folio) 		\
651 	{ }							\
652 static inline void SetHPage##uname(struct page *page)		\
653 	{ }
654 
655 #define CLEARHPAGEFLAG(uname, flname)				\
656 static inline void						\
657 folio_clear_hugetlb_##flname(struct folio *folio)		\
658 	{ }							\
659 static inline void ClearHPage##uname(struct page *page)		\
660 	{ }
661 #endif
662 
663 #define HPAGEFLAG(uname, flname)				\
664 	TESTHPAGEFLAG(uname, flname)				\
665 	SETHPAGEFLAG(uname, flname)				\
666 	CLEARHPAGEFLAG(uname, flname)				\
667 
668 /*
669  * Create functions associated with hugetlb page flags
670  */
671 HPAGEFLAG(RestoreReserve, restore_reserve)
672 HPAGEFLAG(Migratable, migratable)
673 HPAGEFLAG(Temporary, temporary)
674 HPAGEFLAG(Freed, freed)
675 HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
676 HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
677 
678 #ifdef CONFIG_HUGETLB_PAGE
679 
680 #define HSTATE_NAME_LEN 32
681 /* Defines one hugetlb page size */
682 struct hstate {
683 	struct mutex resize_lock;
684 	int next_nid_to_alloc;
685 	int next_nid_to_free;
686 	unsigned int order;
687 	unsigned int demote_order;
688 	unsigned long mask;
689 	unsigned long max_huge_pages;
690 	unsigned long nr_huge_pages;
691 	unsigned long free_huge_pages;
692 	unsigned long resv_huge_pages;
693 	unsigned long surplus_huge_pages;
694 	unsigned long nr_overcommit_huge_pages;
695 	struct list_head hugepage_activelist;
696 	struct list_head hugepage_freelists[MAX_NUMNODES];
697 	unsigned int max_huge_pages_node[MAX_NUMNODES];
698 	unsigned int nr_huge_pages_node[MAX_NUMNODES];
699 	unsigned int free_huge_pages_node[MAX_NUMNODES];
700 	unsigned int surplus_huge_pages_node[MAX_NUMNODES];
701 #ifdef CONFIG_CGROUP_HUGETLB
702 	/* cgroup control files */
703 	struct cftype cgroup_files_dfl[8];
704 	struct cftype cgroup_files_legacy[10];
705 #endif
706 	char name[HSTATE_NAME_LEN];
707 };
708 
709 struct huge_bootmem_page {
710 	struct list_head list;
711 	struct hstate *hstate;
712 };
713 
714 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
715 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
716 				unsigned long addr, int avoid_reserve);
717 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
718 				nodemask_t *nmask, gfp_t gfp_mask);
719 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
720 				unsigned long address);
721 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
722 			pgoff_t idx);
723 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
724 				unsigned long address, struct folio *folio);
725 
726 /* arch callback */
727 int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
728 int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
729 bool __init hugetlb_node_alloc_supported(void);
730 
731 void __init hugetlb_add_hstate(unsigned order);
732 bool __init arch_hugetlb_valid_size(unsigned long size);
733 struct hstate *size_to_hstate(unsigned long size);
734 
735 #ifndef HUGE_MAX_HSTATE
736 #define HUGE_MAX_HSTATE 1
737 #endif
738 
739 extern struct hstate hstates[HUGE_MAX_HSTATE];
740 extern unsigned int default_hstate_idx;
741 
742 #define default_hstate (hstates[default_hstate_idx])
743 
744 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
745 {
746 	return folio->_hugetlb_subpool;
747 }
748 
749 static inline void hugetlb_set_folio_subpool(struct folio *folio,
750 					struct hugepage_subpool *subpool)
751 {
752 	folio->_hugetlb_subpool = subpool;
753 }
754 
755 static inline struct hstate *hstate_file(struct file *f)
756 {
757 	return hstate_inode(file_inode(f));
758 }
759 
760 static inline struct hstate *hstate_sizelog(int page_size_log)
761 {
762 	if (!page_size_log)
763 		return &default_hstate;
764 
765 	if (page_size_log < BITS_PER_LONG)
766 		return size_to_hstate(1UL << page_size_log);
767 
768 	return NULL;
769 }
770 
771 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
772 {
773 	return hstate_file(vma->vm_file);
774 }
775 
776 static inline unsigned long huge_page_size(const struct hstate *h)
777 {
778 	return (unsigned long)PAGE_SIZE << h->order;
779 }
780 
781 extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
782 
783 extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
784 
785 static inline unsigned long huge_page_mask(struct hstate *h)
786 {
787 	return h->mask;
788 }
789 
790 static inline unsigned int huge_page_order(struct hstate *h)
791 {
792 	return h->order;
793 }
794 
795 static inline unsigned huge_page_shift(struct hstate *h)
796 {
797 	return h->order + PAGE_SHIFT;
798 }
799 
800 static inline bool hstate_is_gigantic(struct hstate *h)
801 {
802 	return huge_page_order(h) > MAX_ORDER;
803 }
804 
805 static inline unsigned int pages_per_huge_page(const struct hstate *h)
806 {
807 	return 1 << h->order;
808 }
809 
810 static inline unsigned int blocks_per_huge_page(struct hstate *h)
811 {
812 	return huge_page_size(h) / 512;
813 }
814 
815 #include <asm/hugetlb.h>
816 
817 #ifndef is_hugepage_only_range
818 static inline int is_hugepage_only_range(struct mm_struct *mm,
819 					unsigned long addr, unsigned long len)
820 {
821 	return 0;
822 }
823 #define is_hugepage_only_range is_hugepage_only_range
824 #endif
825 
826 #ifndef arch_clear_hugepage_flags
827 static inline void arch_clear_hugepage_flags(struct page *page) { }
828 #define arch_clear_hugepage_flags arch_clear_hugepage_flags
829 #endif
830 
831 #ifndef arch_make_huge_pte
832 static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
833 				       vm_flags_t flags)
834 {
835 	return pte_mkhuge(entry);
836 }
837 #endif
838 
839 static inline struct hstate *folio_hstate(struct folio *folio)
840 {
841 	VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
842 	return size_to_hstate(folio_size(folio));
843 }
844 
845 static inline unsigned hstate_index_to_shift(unsigned index)
846 {
847 	return hstates[index].order + PAGE_SHIFT;
848 }
849 
850 static inline int hstate_index(struct hstate *h)
851 {
852 	return h - hstates;
853 }
854 
855 extern int dissolve_free_huge_page(struct page *page);
856 extern int dissolve_free_huge_pages(unsigned long start_pfn,
857 				    unsigned long end_pfn);
858 
859 #ifdef CONFIG_MEMORY_FAILURE
860 extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
861 #else
862 static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
863 {
864 }
865 #endif
866 
867 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
868 #ifndef arch_hugetlb_migration_supported
869 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
870 {
871 	if ((huge_page_shift(h) == PMD_SHIFT) ||
872 		(huge_page_shift(h) == PUD_SHIFT) ||
873 			(huge_page_shift(h) == PGDIR_SHIFT))
874 		return true;
875 	else
876 		return false;
877 }
878 #endif
879 #else
880 static inline bool arch_hugetlb_migration_supported(struct hstate *h)
881 {
882 	return false;
883 }
884 #endif
885 
886 static inline bool hugepage_migration_supported(struct hstate *h)
887 {
888 	return arch_hugetlb_migration_supported(h);
889 }
890 
891 /*
892  * Movability check is different as compared to migration check.
893  * It determines whether or not a huge page should be placed on
894  * movable zone or not. Movability of any huge page should be
895  * required only if huge page size is supported for migration.
896  * There won't be any reason for the huge page to be movable if
897  * it is not migratable to start with. Also the size of the huge
898  * page should be large enough to be placed under a movable zone
899  * and still feasible enough to be migratable. Just the presence
900  * in movable zone does not make the migration feasible.
901  *
902  * So even though large huge page sizes like the gigantic ones
903  * are migratable they should not be movable because its not
904  * feasible to migrate them from movable zone.
905  */
906 static inline bool hugepage_movable_supported(struct hstate *h)
907 {
908 	if (!hugepage_migration_supported(h))
909 		return false;
910 
911 	if (hstate_is_gigantic(h))
912 		return false;
913 	return true;
914 }
915 
916 /* Movability of hugepages depends on migration support. */
917 static inline gfp_t htlb_alloc_mask(struct hstate *h)
918 {
919 	if (hugepage_movable_supported(h))
920 		return GFP_HIGHUSER_MOVABLE;
921 	else
922 		return GFP_HIGHUSER;
923 }
924 
925 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
926 {
927 	gfp_t modified_mask = htlb_alloc_mask(h);
928 
929 	/* Some callers might want to enforce node */
930 	modified_mask |= (gfp_mask & __GFP_THISNODE);
931 
932 	modified_mask |= (gfp_mask & __GFP_NOWARN);
933 
934 	return modified_mask;
935 }
936 
937 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
938 					   struct mm_struct *mm, pte_t *pte)
939 {
940 	if (huge_page_size(h) == PMD_SIZE)
941 		return pmd_lockptr(mm, (pmd_t *) pte);
942 	VM_BUG_ON(huge_page_size(h) == PAGE_SIZE);
943 	return &mm->page_table_lock;
944 }
945 
946 #ifndef hugepages_supported
947 /*
948  * Some platform decide whether they support huge pages at boot
949  * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
950  * when there is no such support
951  */
952 #define hugepages_supported() (HPAGE_SHIFT != 0)
953 #endif
954 
955 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
956 
957 static inline void hugetlb_count_init(struct mm_struct *mm)
958 {
959 	atomic_long_set(&mm->hugetlb_usage, 0);
960 }
961 
962 static inline void hugetlb_count_add(long l, struct mm_struct *mm)
963 {
964 	atomic_long_add(l, &mm->hugetlb_usage);
965 }
966 
967 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
968 {
969 	atomic_long_sub(l, &mm->hugetlb_usage);
970 }
971 
972 #ifndef huge_ptep_modify_prot_start
973 #define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
974 static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
975 						unsigned long addr, pte_t *ptep)
976 {
977 	return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
978 }
979 #endif
980 
981 #ifndef huge_ptep_modify_prot_commit
982 #define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
983 static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
984 						unsigned long addr, pte_t *ptep,
985 						pte_t old_pte, pte_t pte)
986 {
987 	unsigned long psize = huge_page_size(hstate_vma(vma));
988 
989 	set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
990 }
991 #endif
992 
993 #ifdef CONFIG_NUMA
994 void hugetlb_register_node(struct node *node);
995 void hugetlb_unregister_node(struct node *node);
996 #endif
997 
998 /*
999  * Check if a given raw @page in a hugepage is HWPOISON.
1000  */
1001 bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1002 
1003 #else	/* CONFIG_HUGETLB_PAGE */
1004 struct hstate {};
1005 
1006 static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1007 {
1008 	return NULL;
1009 }
1010 
1011 static inline int isolate_or_dissolve_huge_page(struct page *page,
1012 						struct list_head *list)
1013 {
1014 	return -ENOMEM;
1015 }
1016 
1017 static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1018 					   unsigned long addr,
1019 					   int avoid_reserve)
1020 {
1021 	return NULL;
1022 }
1023 
1024 static inline struct folio *
1025 alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1026 			nodemask_t *nmask, gfp_t gfp_mask)
1027 {
1028 	return NULL;
1029 }
1030 
1031 static inline struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
1032 					       struct vm_area_struct *vma,
1033 					       unsigned long address)
1034 {
1035 	return NULL;
1036 }
1037 
1038 static inline int __alloc_bootmem_huge_page(struct hstate *h)
1039 {
1040 	return 0;
1041 }
1042 
1043 static inline struct hstate *hstate_file(struct file *f)
1044 {
1045 	return NULL;
1046 }
1047 
1048 static inline struct hstate *hstate_sizelog(int page_size_log)
1049 {
1050 	return NULL;
1051 }
1052 
1053 static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1054 {
1055 	return NULL;
1056 }
1057 
1058 static inline struct hstate *folio_hstate(struct folio *folio)
1059 {
1060 	return NULL;
1061 }
1062 
1063 static inline struct hstate *size_to_hstate(unsigned long size)
1064 {
1065 	return NULL;
1066 }
1067 
1068 static inline unsigned long huge_page_size(struct hstate *h)
1069 {
1070 	return PAGE_SIZE;
1071 }
1072 
1073 static inline unsigned long huge_page_mask(struct hstate *h)
1074 {
1075 	return PAGE_MASK;
1076 }
1077 
1078 static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1079 {
1080 	return PAGE_SIZE;
1081 }
1082 
1083 static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1084 {
1085 	return PAGE_SIZE;
1086 }
1087 
1088 static inline unsigned int huge_page_order(struct hstate *h)
1089 {
1090 	return 0;
1091 }
1092 
1093 static inline unsigned int huge_page_shift(struct hstate *h)
1094 {
1095 	return PAGE_SHIFT;
1096 }
1097 
1098 static inline bool hstate_is_gigantic(struct hstate *h)
1099 {
1100 	return false;
1101 }
1102 
1103 static inline unsigned int pages_per_huge_page(struct hstate *h)
1104 {
1105 	return 1;
1106 }
1107 
1108 static inline unsigned hstate_index_to_shift(unsigned index)
1109 {
1110 	return 0;
1111 }
1112 
1113 static inline int hstate_index(struct hstate *h)
1114 {
1115 	return 0;
1116 }
1117 
1118 static inline int dissolve_free_huge_page(struct page *page)
1119 {
1120 	return 0;
1121 }
1122 
1123 static inline int dissolve_free_huge_pages(unsigned long start_pfn,
1124 					   unsigned long end_pfn)
1125 {
1126 	return 0;
1127 }
1128 
1129 static inline bool hugepage_migration_supported(struct hstate *h)
1130 {
1131 	return false;
1132 }
1133 
1134 static inline bool hugepage_movable_supported(struct hstate *h)
1135 {
1136 	return false;
1137 }
1138 
1139 static inline gfp_t htlb_alloc_mask(struct hstate *h)
1140 {
1141 	return 0;
1142 }
1143 
1144 static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1145 {
1146 	return 0;
1147 }
1148 
1149 static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1150 					   struct mm_struct *mm, pte_t *pte)
1151 {
1152 	return &mm->page_table_lock;
1153 }
1154 
1155 static inline void hugetlb_count_init(struct mm_struct *mm)
1156 {
1157 }
1158 
1159 static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1160 {
1161 }
1162 
1163 static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1164 {
1165 }
1166 
1167 static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1168 					  unsigned long addr, pte_t *ptep)
1169 {
1170 #ifdef CONFIG_MMU
1171 	return ptep_get(ptep);
1172 #else
1173 	return *ptep;
1174 #endif
1175 }
1176 
1177 static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1178 				   pte_t *ptep, pte_t pte, unsigned long sz)
1179 {
1180 }
1181 
1182 static inline void hugetlb_register_node(struct node *node)
1183 {
1184 }
1185 
1186 static inline void hugetlb_unregister_node(struct node *node)
1187 {
1188 }
1189 #endif	/* CONFIG_HUGETLB_PAGE */
1190 
1191 static inline spinlock_t *huge_pte_lock(struct hstate *h,
1192 					struct mm_struct *mm, pte_t *pte)
1193 {
1194 	spinlock_t *ptl;
1195 
1196 	ptl = huge_pte_lockptr(h, mm, pte);
1197 	spin_lock(ptl);
1198 	return ptl;
1199 }
1200 
1201 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1202 extern void __init hugetlb_cma_reserve(int order);
1203 #else
1204 static inline __init void hugetlb_cma_reserve(int order)
1205 {
1206 }
1207 #endif
1208 
1209 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
1210 static inline bool hugetlb_pmd_shared(pte_t *pte)
1211 {
1212 	return page_count(virt_to_page(pte)) > 1;
1213 }
1214 #else
1215 static inline bool hugetlb_pmd_shared(pte_t *pte)
1216 {
1217 	return false;
1218 }
1219 #endif
1220 
1221 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1222 
1223 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1224 /*
1225  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1226  * implement this.
1227  */
1228 #define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1229 #endif
1230 
1231 static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1232 {
1233 	return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1234 }
1235 
1236 /*
1237  * Safe version of huge_pte_offset() to check the locks.  See comments
1238  * above huge_pte_offset().
1239  */
1240 static inline pte_t *
1241 hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1242 {
1243 #if defined(CONFIG_HUGETLB_PAGE) && \
1244 	defined(CONFIG_ARCH_WANT_HUGE_PMD_SHARE) && defined(CONFIG_LOCKDEP)
1245 	struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1246 
1247 	/*
1248 	 * If pmd sharing possible, locking needed to safely walk the
1249 	 * hugetlb pgtables.  More information can be found at the comment
1250 	 * above huge_pte_offset() in the same file.
1251 	 *
1252 	 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1253 	 */
1254 	if (__vma_shareable_lock(vma))
1255 		WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1256 			     !lockdep_is_held(
1257 				 &vma->vm_file->f_mapping->i_mmap_rwsem));
1258 #endif
1259 	return huge_pte_offset(vma->vm_mm, addr, sz);
1260 }
1261 
1262 #endif /* _LINUX_HUGETLB_H */
1263