xref: /linux/include/linux/fscrypt.h (revision f4fee216df7d28b87d1c9cc60bcebfecb51c1a05)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fscrypt.h: declarations for per-file encryption
4  *
5  * Filesystems that implement per-file encryption must include this header
6  * file.
7  *
8  * Copyright (C) 2015, Google, Inc.
9  *
10  * Written by Michael Halcrow, 2015.
11  * Modified by Jaegeuk Kim, 2015.
12  */
13 #ifndef _LINUX_FSCRYPT_H
14 #define _LINUX_FSCRYPT_H
15 
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <uapi/linux/fscrypt.h>
20 
21 /*
22  * The lengths of all file contents blocks must be divisible by this value.
23  * This is needed to ensure that all contents encryption modes will work, as
24  * some of the supported modes don't support arbitrarily byte-aligned messages.
25  *
26  * Since the needed alignment is 16 bytes, most filesystems will meet this
27  * requirement naturally, as typical block sizes are powers of 2.  However, if a
28  * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via
29  * compression), then it will need to pad to this alignment before encryption.
30  */
31 #define FSCRYPT_CONTENTS_ALIGNMENT 16
32 
33 union fscrypt_policy;
34 struct fscrypt_inode_info;
35 struct fs_parameter;
36 struct seq_file;
37 
38 struct fscrypt_str {
39 	unsigned char *name;
40 	u32 len;
41 };
42 
43 struct fscrypt_name {
44 	const struct qstr *usr_fname;
45 	struct fscrypt_str disk_name;
46 	u32 hash;
47 	u32 minor_hash;
48 	struct fscrypt_str crypto_buf;
49 	bool is_nokey_name;
50 };
51 
52 #define FSTR_INIT(n, l)		{ .name = n, .len = l }
53 #define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
54 #define fname_name(p)		((p)->disk_name.name)
55 #define fname_len(p)		((p)->disk_name.len)
56 
57 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
58 #define FSCRYPT_SET_CONTEXT_MAX_SIZE	40
59 
60 #ifdef CONFIG_FS_ENCRYPTION
61 
62 /* Crypto operations for filesystems */
63 struct fscrypt_operations {
64 
65 	/*
66 	 * If set, then fs/crypto/ will allocate a global bounce page pool the
67 	 * first time an encryption key is set up for a file.  The bounce page
68 	 * pool is required by the following functions:
69 	 *
70 	 * - fscrypt_encrypt_pagecache_blocks()
71 	 * - fscrypt_zeroout_range() for files not using inline crypto
72 	 *
73 	 * If the filesystem doesn't use those, it doesn't need to set this.
74 	 */
75 	unsigned int needs_bounce_pages : 1;
76 
77 	/*
78 	 * If set, then fs/crypto/ will allow the use of encryption settings
79 	 * that assume inode numbers fit in 32 bits (i.e.
80 	 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64}), provided that the other
81 	 * prerequisites for these settings are also met.  This is only useful
82 	 * if the filesystem wants to support inline encryption hardware that is
83 	 * limited to 32-bit or 64-bit data unit numbers and where programming
84 	 * keyslots is very slow.
85 	 */
86 	unsigned int has_32bit_inodes : 1;
87 
88 	/*
89 	 * If set, then fs/crypto/ will allow users to select a crypto data unit
90 	 * size that is less than the filesystem block size.  This is done via
91 	 * the log2_data_unit_size field of the fscrypt policy.  This flag is
92 	 * not compatible with filesystems that encrypt variable-length blocks
93 	 * (i.e. blocks that aren't all equal to filesystem's block size), for
94 	 * example as a result of compression.  It's also not compatible with
95 	 * the fscrypt_encrypt_block_inplace() and
96 	 * fscrypt_decrypt_block_inplace() functions.
97 	 */
98 	unsigned int supports_subblock_data_units : 1;
99 
100 	/*
101 	 * This field exists only for backwards compatibility reasons and should
102 	 * only be set by the filesystems that are setting it already.  It
103 	 * contains the filesystem-specific key description prefix that is
104 	 * accepted for "logon" keys for v1 fscrypt policies.  This
105 	 * functionality is deprecated in favor of the generic prefix
106 	 * "fscrypt:", which itself is deprecated in favor of the filesystem
107 	 * keyring ioctls such as FS_IOC_ADD_ENCRYPTION_KEY.  Filesystems that
108 	 * are newly adding fscrypt support should not set this field.
109 	 */
110 	const char *legacy_key_prefix;
111 
112 	/*
113 	 * Get the fscrypt context of the given inode.
114 	 *
115 	 * @inode: the inode whose context to get
116 	 * @ctx: the buffer into which to get the context
117 	 * @len: length of the @ctx buffer in bytes
118 	 *
119 	 * Return: On success, returns the length of the context in bytes; this
120 	 *	   may be less than @len.  On failure, returns -ENODATA if the
121 	 *	   inode doesn't have a context, -ERANGE if the context is
122 	 *	   longer than @len, or another -errno code.
123 	 */
124 	int (*get_context)(struct inode *inode, void *ctx, size_t len);
125 
126 	/*
127 	 * Set an fscrypt context on the given inode.
128 	 *
129 	 * @inode: the inode whose context to set.  The inode won't already have
130 	 *	   an fscrypt context.
131 	 * @ctx: the context to set
132 	 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
133 	 * @fs_data: If called from fscrypt_set_context(), this will be the
134 	 *	     value the filesystem passed to fscrypt_set_context().
135 	 *	     Otherwise (i.e. when called from
136 	 *	     FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
137 	 *
138 	 * i_rwsem will be held for write.
139 	 *
140 	 * Return: 0 on success, -errno on failure.
141 	 */
142 	int (*set_context)(struct inode *inode, const void *ctx, size_t len,
143 			   void *fs_data);
144 
145 	/*
146 	 * Get the dummy fscrypt policy in use on the filesystem (if any).
147 	 *
148 	 * Filesystems only need to implement this function if they support the
149 	 * test_dummy_encryption mount option.
150 	 *
151 	 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
152 	 *	   mounted with test_dummy_encryption; otherwise NULL.
153 	 */
154 	const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
155 
156 	/*
157 	 * Check whether a directory is empty.  i_rwsem will be held for write.
158 	 */
159 	bool (*empty_dir)(struct inode *inode);
160 
161 	/*
162 	 * Check whether the filesystem's inode numbers and UUID are stable,
163 	 * meaning that they will never be changed even by offline operations
164 	 * such as filesystem shrinking and therefore can be used in the
165 	 * encryption without the possibility of files becoming unreadable.
166 	 *
167 	 * Filesystems only need to implement this function if they want to
168 	 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags.  These
169 	 * flags are designed to work around the limitations of UFS and eMMC
170 	 * inline crypto hardware, and they shouldn't be used in scenarios where
171 	 * such hardware isn't being used.
172 	 *
173 	 * Leaving this NULL is equivalent to always returning false.
174 	 */
175 	bool (*has_stable_inodes)(struct super_block *sb);
176 
177 	/*
178 	 * Return an array of pointers to the block devices to which the
179 	 * filesystem may write encrypted file contents, NULL if the filesystem
180 	 * only has a single such block device, or an ERR_PTR() on error.
181 	 *
182 	 * On successful non-NULL return, *num_devs is set to the number of
183 	 * devices in the returned array.  The caller must free the returned
184 	 * array using kfree().
185 	 *
186 	 * If the filesystem can use multiple block devices (other than block
187 	 * devices that aren't used for encrypted file contents, such as
188 	 * external journal devices), and wants to support inline encryption,
189 	 * then it must implement this function.  Otherwise it's not needed.
190 	 */
191 	struct block_device **(*get_devices)(struct super_block *sb,
192 					     unsigned int *num_devs);
193 };
194 
195 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
196 
197 static inline struct fscrypt_inode_info *
198 fscrypt_get_inode_info(const struct inode *inode)
199 {
200 	/*
201 	 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
202 	 * I.e., another task may publish ->i_crypt_info concurrently, executing
203 	 * a RELEASE barrier.  We need to use smp_load_acquire() here to safely
204 	 * ACQUIRE the memory the other task published.
205 	 */
206 	return smp_load_acquire(&inode->i_crypt_info);
207 }
208 
209 /**
210  * fscrypt_needs_contents_encryption() - check whether an inode needs
211  *					 contents encryption
212  * @inode: the inode to check
213  *
214  * Return: %true iff the inode is an encrypted regular file and the kernel was
215  * built with fscrypt support.
216  *
217  * If you need to know whether the encrypt bit is set even when the kernel was
218  * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
219  */
220 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
221 {
222 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
223 }
224 
225 /*
226  * When d_splice_alias() moves a directory's no-key alias to its
227  * plaintext alias as a result of the encryption key being added,
228  * DCACHE_NOKEY_NAME must be cleared and there might be an opportunity
229  * to disable d_revalidate.  Note that we don't have to support the
230  * inverse operation because fscrypt doesn't allow no-key names to be
231  * the source or target of a rename().
232  */
233 static inline void fscrypt_handle_d_move(struct dentry *dentry)
234 {
235 	/*
236 	 * VFS calls fscrypt_handle_d_move even for non-fscrypt
237 	 * filesystems.
238 	 */
239 	if (dentry->d_flags & DCACHE_NOKEY_NAME) {
240 		dentry->d_flags &= ~DCACHE_NOKEY_NAME;
241 
242 		/*
243 		 * Other filesystem features might be handling dentry
244 		 * revalidation, in which case it cannot be disabled.
245 		 */
246 		if (dentry->d_op->d_revalidate == fscrypt_d_revalidate)
247 			dentry->d_flags &= ~DCACHE_OP_REVALIDATE;
248 	}
249 }
250 
251 /**
252  * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
253  * @dentry: the dentry to check
254  *
255  * This returns true if the dentry is a no-key dentry.  A no-key dentry is a
256  * dentry that was created in an encrypted directory that hasn't had its
257  * encryption key added yet.  Such dentries may be either positive or negative.
258  *
259  * When a filesystem is asked to create a new filename in an encrypted directory
260  * and the new filename's dentry is a no-key dentry, it must fail the operation
261  * with ENOKEY.  This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
262  * ->rename(), and ->link().  (However, ->rename() and ->link() are already
263  * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
264  *
265  * This is necessary because creating a filename requires the directory's
266  * encryption key, but just checking for the key on the directory inode during
267  * the final filesystem operation doesn't guarantee that the key was available
268  * during the preceding dentry lookup.  And the key must have already been
269  * available during the dentry lookup in order for it to have been checked
270  * whether the filename already exists in the directory and for the new file's
271  * dentry not to be invalidated due to it incorrectly having the no-key flag.
272  *
273  * Return: %true if the dentry is a no-key name
274  */
275 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
276 {
277 	return dentry->d_flags & DCACHE_NOKEY_NAME;
278 }
279 
280 static inline void fscrypt_prepare_dentry(struct dentry *dentry,
281 					  bool is_nokey_name)
282 {
283 	/*
284 	 * This code tries to only take ->d_lock when necessary to write
285 	 * to ->d_flags.  We shouldn't be peeking on d_flags for
286 	 * DCACHE_OP_REVALIDATE unlocked, but in the unlikely case
287 	 * there is a race, the worst it can happen is that we fail to
288 	 * unset DCACHE_OP_REVALIDATE and pay the cost of an extra
289 	 * d_revalidate.
290 	 */
291 	if (is_nokey_name) {
292 		spin_lock(&dentry->d_lock);
293 		dentry->d_flags |= DCACHE_NOKEY_NAME;
294 		spin_unlock(&dentry->d_lock);
295 	} else if (dentry->d_flags & DCACHE_OP_REVALIDATE &&
296 		   dentry->d_op->d_revalidate == fscrypt_d_revalidate) {
297 		/*
298 		 * Unencrypted dentries and encrypted dentries where the
299 		 * key is available are always valid from fscrypt
300 		 * perspective. Avoid the cost of calling
301 		 * fscrypt_d_revalidate unnecessarily.
302 		 */
303 		spin_lock(&dentry->d_lock);
304 		dentry->d_flags &= ~DCACHE_OP_REVALIDATE;
305 		spin_unlock(&dentry->d_lock);
306 	}
307 }
308 
309 /* crypto.c */
310 void fscrypt_enqueue_decrypt_work(struct work_struct *);
311 
312 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
313 					      unsigned int len,
314 					      unsigned int offs,
315 					      gfp_t gfp_flags);
316 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
317 				  unsigned int len, unsigned int offs,
318 				  u64 lblk_num, gfp_t gfp_flags);
319 
320 int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
321 				     size_t offs);
322 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
323 				  unsigned int len, unsigned int offs,
324 				  u64 lblk_num);
325 
326 static inline bool fscrypt_is_bounce_page(struct page *page)
327 {
328 	return page->mapping == NULL;
329 }
330 
331 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
332 {
333 	return (struct page *)page_private(bounce_page);
334 }
335 
336 static inline bool fscrypt_is_bounce_folio(struct folio *folio)
337 {
338 	return folio->mapping == NULL;
339 }
340 
341 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
342 {
343 	return bounce_folio->private;
344 }
345 
346 void fscrypt_free_bounce_page(struct page *bounce_page);
347 
348 /* policy.c */
349 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
350 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
351 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
352 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
353 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
354 int fscrypt_context_for_new_inode(void *ctx, struct inode *inode);
355 int fscrypt_set_context(struct inode *inode, void *fs_data);
356 
357 struct fscrypt_dummy_policy {
358 	const union fscrypt_policy *policy;
359 };
360 
361 int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
362 				    struct fscrypt_dummy_policy *dummy_policy);
363 bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
364 				  const struct fscrypt_dummy_policy *p2);
365 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
366 					struct super_block *sb);
367 static inline bool
368 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
369 {
370 	return dummy_policy->policy != NULL;
371 }
372 static inline void
373 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
374 {
375 	kfree(dummy_policy->policy);
376 	dummy_policy->policy = NULL;
377 }
378 
379 /* keyring.c */
380 void fscrypt_destroy_keyring(struct super_block *sb);
381 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
382 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
383 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
384 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
385 
386 /* keysetup.c */
387 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
388 			      bool *encrypt_ret);
389 void fscrypt_put_encryption_info(struct inode *inode);
390 void fscrypt_free_inode(struct inode *inode);
391 int fscrypt_drop_inode(struct inode *inode);
392 
393 /* fname.c */
394 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
395 			  u8 *out, unsigned int olen);
396 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
397 				  u32 max_len, u32 *encrypted_len_ret);
398 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
399 			   int lookup, struct fscrypt_name *fname);
400 
401 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
402 {
403 	kfree(fname->crypto_buf.name);
404 }
405 
406 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
407 			       struct fscrypt_str *crypto_str);
408 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
409 int fscrypt_fname_disk_to_usr(const struct inode *inode,
410 			      u32 hash, u32 minor_hash,
411 			      const struct fscrypt_str *iname,
412 			      struct fscrypt_str *oname);
413 bool fscrypt_match_name(const struct fscrypt_name *fname,
414 			const u8 *de_name, u32 de_name_len);
415 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
416 
417 /* bio.c */
418 bool fscrypt_decrypt_bio(struct bio *bio);
419 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
420 			  sector_t pblk, unsigned int len);
421 
422 /* hooks.c */
423 int fscrypt_file_open(struct inode *inode, struct file *filp);
424 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
425 			   struct dentry *dentry);
426 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
427 			     struct inode *new_dir, struct dentry *new_dentry,
428 			     unsigned int flags);
429 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
430 			     struct fscrypt_name *fname);
431 int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry);
432 int __fscrypt_prepare_readdir(struct inode *dir);
433 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
434 int fscrypt_prepare_setflags(struct inode *inode,
435 			     unsigned int oldflags, unsigned int flags);
436 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
437 			    unsigned int len, unsigned int max_len,
438 			    struct fscrypt_str *disk_link);
439 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
440 			      unsigned int len, struct fscrypt_str *disk_link);
441 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
442 				unsigned int max_size,
443 				struct delayed_call *done);
444 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
445 static inline void fscrypt_set_ops(struct super_block *sb,
446 				   const struct fscrypt_operations *s_cop)
447 {
448 	sb->s_cop = s_cop;
449 }
450 #else  /* !CONFIG_FS_ENCRYPTION */
451 
452 static inline struct fscrypt_inode_info *
453 fscrypt_get_inode_info(const struct inode *inode)
454 {
455 	return NULL;
456 }
457 
458 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
459 {
460 	return false;
461 }
462 
463 static inline void fscrypt_handle_d_move(struct dentry *dentry)
464 {
465 }
466 
467 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
468 {
469 	return false;
470 }
471 
472 static inline void fscrypt_prepare_dentry(struct dentry *dentry,
473 					  bool is_nokey_name)
474 {
475 }
476 
477 /* crypto.c */
478 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
479 {
480 }
481 
482 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
483 							    unsigned int len,
484 							    unsigned int offs,
485 							    gfp_t gfp_flags)
486 {
487 	return ERR_PTR(-EOPNOTSUPP);
488 }
489 
490 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
491 						struct page *page,
492 						unsigned int len,
493 						unsigned int offs, u64 lblk_num,
494 						gfp_t gfp_flags)
495 {
496 	return -EOPNOTSUPP;
497 }
498 
499 static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio,
500 						   size_t len, size_t offs)
501 {
502 	return -EOPNOTSUPP;
503 }
504 
505 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
506 						struct page *page,
507 						unsigned int len,
508 						unsigned int offs, u64 lblk_num)
509 {
510 	return -EOPNOTSUPP;
511 }
512 
513 static inline bool fscrypt_is_bounce_page(struct page *page)
514 {
515 	return false;
516 }
517 
518 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
519 {
520 	WARN_ON_ONCE(1);
521 	return ERR_PTR(-EINVAL);
522 }
523 
524 static inline bool fscrypt_is_bounce_folio(struct folio *folio)
525 {
526 	return false;
527 }
528 
529 static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
530 {
531 	WARN_ON_ONCE(1);
532 	return ERR_PTR(-EINVAL);
533 }
534 
535 static inline void fscrypt_free_bounce_page(struct page *bounce_page)
536 {
537 }
538 
539 /* policy.c */
540 static inline int fscrypt_ioctl_set_policy(struct file *filp,
541 					   const void __user *arg)
542 {
543 	return -EOPNOTSUPP;
544 }
545 
546 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
547 {
548 	return -EOPNOTSUPP;
549 }
550 
551 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
552 					      void __user *arg)
553 {
554 	return -EOPNOTSUPP;
555 }
556 
557 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
558 {
559 	return -EOPNOTSUPP;
560 }
561 
562 static inline int fscrypt_has_permitted_context(struct inode *parent,
563 						struct inode *child)
564 {
565 	return 0;
566 }
567 
568 static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
569 {
570 	return -EOPNOTSUPP;
571 }
572 
573 struct fscrypt_dummy_policy {
574 };
575 
576 static inline int
577 fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
578 				    struct fscrypt_dummy_policy *dummy_policy)
579 {
580 	return -EINVAL;
581 }
582 
583 static inline bool
584 fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
585 			     const struct fscrypt_dummy_policy *p2)
586 {
587 	return true;
588 }
589 
590 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
591 						      char sep,
592 						      struct super_block *sb)
593 {
594 }
595 
596 static inline bool
597 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
598 {
599 	return false;
600 }
601 
602 static inline void
603 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
604 {
605 }
606 
607 /* keyring.c */
608 static inline void fscrypt_destroy_keyring(struct super_block *sb)
609 {
610 }
611 
612 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
613 {
614 	return -EOPNOTSUPP;
615 }
616 
617 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
618 {
619 	return -EOPNOTSUPP;
620 }
621 
622 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
623 						     void __user *arg)
624 {
625 	return -EOPNOTSUPP;
626 }
627 
628 static inline int fscrypt_ioctl_get_key_status(struct file *filp,
629 					       void __user *arg)
630 {
631 	return -EOPNOTSUPP;
632 }
633 
634 /* keysetup.c */
635 
636 static inline int fscrypt_prepare_new_inode(struct inode *dir,
637 					    struct inode *inode,
638 					    bool *encrypt_ret)
639 {
640 	if (IS_ENCRYPTED(dir))
641 		return -EOPNOTSUPP;
642 	return 0;
643 }
644 
645 static inline void fscrypt_put_encryption_info(struct inode *inode)
646 {
647 	return;
648 }
649 
650 static inline void fscrypt_free_inode(struct inode *inode)
651 {
652 }
653 
654 static inline int fscrypt_drop_inode(struct inode *inode)
655 {
656 	return 0;
657 }
658 
659  /* fname.c */
660 static inline int fscrypt_setup_filename(struct inode *dir,
661 					 const struct qstr *iname,
662 					 int lookup, struct fscrypt_name *fname)
663 {
664 	if (IS_ENCRYPTED(dir))
665 		return -EOPNOTSUPP;
666 
667 	memset(fname, 0, sizeof(*fname));
668 	fname->usr_fname = iname;
669 	fname->disk_name.name = (unsigned char *)iname->name;
670 	fname->disk_name.len = iname->len;
671 	return 0;
672 }
673 
674 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
675 {
676 	return;
677 }
678 
679 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
680 					     struct fscrypt_str *crypto_str)
681 {
682 	return -EOPNOTSUPP;
683 }
684 
685 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
686 {
687 	return;
688 }
689 
690 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
691 					    u32 hash, u32 minor_hash,
692 					    const struct fscrypt_str *iname,
693 					    struct fscrypt_str *oname)
694 {
695 	return -EOPNOTSUPP;
696 }
697 
698 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
699 				      const u8 *de_name, u32 de_name_len)
700 {
701 	/* Encryption support disabled; use standard comparison */
702 	if (de_name_len != fname->disk_name.len)
703 		return false;
704 	return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
705 }
706 
707 static inline u64 fscrypt_fname_siphash(const struct inode *dir,
708 					const struct qstr *name)
709 {
710 	WARN_ON_ONCE(1);
711 	return 0;
712 }
713 
714 static inline int fscrypt_d_revalidate(struct dentry *dentry,
715 				       unsigned int flags)
716 {
717 	return 1;
718 }
719 
720 /* bio.c */
721 static inline bool fscrypt_decrypt_bio(struct bio *bio)
722 {
723 	return true;
724 }
725 
726 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
727 					sector_t pblk, unsigned int len)
728 {
729 	return -EOPNOTSUPP;
730 }
731 
732 /* hooks.c */
733 
734 static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
735 {
736 	if (IS_ENCRYPTED(inode))
737 		return -EOPNOTSUPP;
738 	return 0;
739 }
740 
741 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
742 					 struct dentry *dentry)
743 {
744 	return -EOPNOTSUPP;
745 }
746 
747 static inline int __fscrypt_prepare_rename(struct inode *old_dir,
748 					   struct dentry *old_dentry,
749 					   struct inode *new_dir,
750 					   struct dentry *new_dentry,
751 					   unsigned int flags)
752 {
753 	return -EOPNOTSUPP;
754 }
755 
756 static inline int __fscrypt_prepare_lookup(struct inode *dir,
757 					   struct dentry *dentry,
758 					   struct fscrypt_name *fname)
759 {
760 	return -EOPNOTSUPP;
761 }
762 
763 static inline int fscrypt_prepare_lookup_partial(struct inode *dir,
764 						 struct dentry *dentry)
765 {
766 	return -EOPNOTSUPP;
767 }
768 
769 static inline int __fscrypt_prepare_readdir(struct inode *dir)
770 {
771 	return -EOPNOTSUPP;
772 }
773 
774 static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
775 					    struct iattr *attr)
776 {
777 	return -EOPNOTSUPP;
778 }
779 
780 static inline int fscrypt_prepare_setflags(struct inode *inode,
781 					   unsigned int oldflags,
782 					   unsigned int flags)
783 {
784 	return 0;
785 }
786 
787 static inline int fscrypt_prepare_symlink(struct inode *dir,
788 					  const char *target,
789 					  unsigned int len,
790 					  unsigned int max_len,
791 					  struct fscrypt_str *disk_link)
792 {
793 	if (IS_ENCRYPTED(dir))
794 		return -EOPNOTSUPP;
795 	disk_link->name = (unsigned char *)target;
796 	disk_link->len = len + 1;
797 	if (disk_link->len > max_len)
798 		return -ENAMETOOLONG;
799 	return 0;
800 }
801 
802 static inline int __fscrypt_encrypt_symlink(struct inode *inode,
803 					    const char *target,
804 					    unsigned int len,
805 					    struct fscrypt_str *disk_link)
806 {
807 	return -EOPNOTSUPP;
808 }
809 
810 static inline const char *fscrypt_get_symlink(struct inode *inode,
811 					      const void *caddr,
812 					      unsigned int max_size,
813 					      struct delayed_call *done)
814 {
815 	return ERR_PTR(-EOPNOTSUPP);
816 }
817 
818 static inline int fscrypt_symlink_getattr(const struct path *path,
819 					  struct kstat *stat)
820 {
821 	return -EOPNOTSUPP;
822 }
823 
824 static inline void fscrypt_set_ops(struct super_block *sb,
825 				   const struct fscrypt_operations *s_cop)
826 {
827 }
828 
829 #endif	/* !CONFIG_FS_ENCRYPTION */
830 
831 /* inline_crypt.c */
832 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
833 
834 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
835 
836 void fscrypt_set_bio_crypt_ctx(struct bio *bio,
837 			       const struct inode *inode, u64 first_lblk,
838 			       gfp_t gfp_mask);
839 
840 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
841 				  const struct buffer_head *first_bh,
842 				  gfp_t gfp_mask);
843 
844 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
845 			   u64 next_lblk);
846 
847 bool fscrypt_mergeable_bio_bh(struct bio *bio,
848 			      const struct buffer_head *next_bh);
849 
850 bool fscrypt_dio_supported(struct inode *inode);
851 
852 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks);
853 
854 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
855 
856 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
857 {
858 	return false;
859 }
860 
861 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
862 					     const struct inode *inode,
863 					     u64 first_lblk, gfp_t gfp_mask) { }
864 
865 static inline void fscrypt_set_bio_crypt_ctx_bh(
866 					 struct bio *bio,
867 					 const struct buffer_head *first_bh,
868 					 gfp_t gfp_mask) { }
869 
870 static inline bool fscrypt_mergeable_bio(struct bio *bio,
871 					 const struct inode *inode,
872 					 u64 next_lblk)
873 {
874 	return true;
875 }
876 
877 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
878 					    const struct buffer_head *next_bh)
879 {
880 	return true;
881 }
882 
883 static inline bool fscrypt_dio_supported(struct inode *inode)
884 {
885 	return !fscrypt_needs_contents_encryption(inode);
886 }
887 
888 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk,
889 					  u64 nr_blocks)
890 {
891 	return nr_blocks;
892 }
893 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
894 
895 /**
896  * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
897  *					encryption
898  * @inode: an inode. If encrypted, its key must be set up.
899  *
900  * Return: true if the inode requires file contents encryption and if the
901  *	   encryption should be done in the block layer via blk-crypto rather
902  *	   than in the filesystem layer.
903  */
904 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
905 {
906 	return fscrypt_needs_contents_encryption(inode) &&
907 	       __fscrypt_inode_uses_inline_crypto(inode);
908 }
909 
910 /**
911  * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
912  *					  encryption
913  * @inode: an inode. If encrypted, its key must be set up.
914  *
915  * Return: true if the inode requires file contents encryption and if the
916  *	   encryption should be done in the filesystem layer rather than in the
917  *	   block layer via blk-crypto.
918  */
919 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
920 {
921 	return fscrypt_needs_contents_encryption(inode) &&
922 	       !__fscrypt_inode_uses_inline_crypto(inode);
923 }
924 
925 /**
926  * fscrypt_has_encryption_key() - check whether an inode has had its key set up
927  * @inode: the inode to check
928  *
929  * Return: %true if the inode has had its encryption key set up, else %false.
930  *
931  * Usually this should be preceded by fscrypt_get_encryption_info() to try to
932  * set up the key first.
933  */
934 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
935 {
936 	return fscrypt_get_inode_info(inode) != NULL;
937 }
938 
939 /**
940  * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
941  *			    directory
942  * @old_dentry: an existing dentry for the inode being linked
943  * @dir: the target directory
944  * @dentry: negative dentry for the target filename
945  *
946  * A new link can only be added to an encrypted directory if the directory's
947  * encryption key is available --- since otherwise we'd have no way to encrypt
948  * the filename.
949  *
950  * We also verify that the link will not violate the constraint that all files
951  * in an encrypted directory tree use the same encryption policy.
952  *
953  * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
954  * -EXDEV if the link would result in an inconsistent encryption policy, or
955  * another -errno code.
956  */
957 static inline int fscrypt_prepare_link(struct dentry *old_dentry,
958 				       struct inode *dir,
959 				       struct dentry *dentry)
960 {
961 	if (IS_ENCRYPTED(dir))
962 		return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
963 	return 0;
964 }
965 
966 /**
967  * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
968  *			      directories
969  * @old_dir: source directory
970  * @old_dentry: dentry for source file
971  * @new_dir: target directory
972  * @new_dentry: dentry for target location (may be negative unless exchanging)
973  * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
974  *
975  * Prepare for ->rename() where the source and/or target directories may be
976  * encrypted.  A new link can only be added to an encrypted directory if the
977  * directory's encryption key is available --- since otherwise we'd have no way
978  * to encrypt the filename.  A rename to an existing name, on the other hand,
979  * *is* cryptographically possible without the key.  However, we take the more
980  * conservative approach and just forbid all no-key renames.
981  *
982  * We also verify that the rename will not violate the constraint that all files
983  * in an encrypted directory tree use the same encryption policy.
984  *
985  * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
986  * rename would cause inconsistent encryption policies, or another -errno code.
987  */
988 static inline int fscrypt_prepare_rename(struct inode *old_dir,
989 					 struct dentry *old_dentry,
990 					 struct inode *new_dir,
991 					 struct dentry *new_dentry,
992 					 unsigned int flags)
993 {
994 	if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
995 		return __fscrypt_prepare_rename(old_dir, old_dentry,
996 						new_dir, new_dentry, flags);
997 	return 0;
998 }
999 
1000 /**
1001  * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
1002  *			      directory
1003  * @dir: directory being searched
1004  * @dentry: filename being looked up
1005  * @fname: (output) the name to use to search the on-disk directory
1006  *
1007  * Prepare for ->lookup() in a directory which may be encrypted by determining
1008  * the name that will actually be used to search the directory on-disk.  If the
1009  * directory's encryption policy is supported by this kernel and its encryption
1010  * key is available, then the lookup is assumed to be by plaintext name;
1011  * otherwise, it is assumed to be by no-key name.
1012  *
1013  * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
1014  * name.  In this case the filesystem must assign the dentry a dentry_operations
1015  * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
1016  * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
1017  * directory's encryption key is later added.
1018  *
1019  * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
1020  * filename isn't a valid no-key name, so a negative dentry should be created;
1021  * or another -errno code.
1022  */
1023 static inline int fscrypt_prepare_lookup(struct inode *dir,
1024 					 struct dentry *dentry,
1025 					 struct fscrypt_name *fname)
1026 {
1027 	if (IS_ENCRYPTED(dir))
1028 		return __fscrypt_prepare_lookup(dir, dentry, fname);
1029 
1030 	memset(fname, 0, sizeof(*fname));
1031 	fname->usr_fname = &dentry->d_name;
1032 	fname->disk_name.name = (unsigned char *)dentry->d_name.name;
1033 	fname->disk_name.len = dentry->d_name.len;
1034 
1035 	fscrypt_prepare_dentry(dentry, false);
1036 
1037 	return 0;
1038 }
1039 
1040 /**
1041  * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
1042  * @dir: the directory inode
1043  *
1044  * If the directory is encrypted and it doesn't already have its encryption key
1045  * set up, try to set it up so that the filenames will be listed in plaintext
1046  * form rather than in no-key form.
1047  *
1048  * Return: 0 on success; -errno on error.  Note that the encryption key being
1049  *	   unavailable is not considered an error.  It is also not an error if
1050  *	   the encryption policy is unsupported by this kernel; that is treated
1051  *	   like the key being unavailable, so that files can still be deleted.
1052  */
1053 static inline int fscrypt_prepare_readdir(struct inode *dir)
1054 {
1055 	if (IS_ENCRYPTED(dir))
1056 		return __fscrypt_prepare_readdir(dir);
1057 	return 0;
1058 }
1059 
1060 /**
1061  * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
1062  *			       attributes
1063  * @dentry: dentry through which the inode is being changed
1064  * @attr: attributes to change
1065  *
1066  * Prepare for ->setattr() on a possibly-encrypted inode.  On an encrypted file,
1067  * most attribute changes are allowed even without the encryption key.  However,
1068  * without the encryption key we do have to forbid truncates.  This is needed
1069  * because the size being truncated to may not be a multiple of the filesystem
1070  * block size, and in that case we'd have to decrypt the final block, zero the
1071  * portion past i_size, and re-encrypt it.  (We *could* allow truncating to a
1072  * filesystem block boundary, but it's simpler to just forbid all truncates ---
1073  * and we already forbid all other contents modifications without the key.)
1074  *
1075  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
1076  * if a problem occurred while setting up the encryption key.
1077  */
1078 static inline int fscrypt_prepare_setattr(struct dentry *dentry,
1079 					  struct iattr *attr)
1080 {
1081 	if (IS_ENCRYPTED(d_inode(dentry)))
1082 		return __fscrypt_prepare_setattr(dentry, attr);
1083 	return 0;
1084 }
1085 
1086 /**
1087  * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
1088  * @inode: symlink inode
1089  * @target: plaintext symlink target
1090  * @len: length of @target excluding null terminator
1091  * @disk_link: (in/out) the on-disk symlink target being prepared
1092  *
1093  * If the symlink target needs to be encrypted, then this function encrypts it
1094  * into @disk_link->name.  fscrypt_prepare_symlink() must have been called
1095  * previously to compute @disk_link->len.  If the filesystem did not allocate a
1096  * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
1097  * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
1098  *
1099  * Return: 0 on success, -errno on failure
1100  */
1101 static inline int fscrypt_encrypt_symlink(struct inode *inode,
1102 					  const char *target,
1103 					  unsigned int len,
1104 					  struct fscrypt_str *disk_link)
1105 {
1106 	if (IS_ENCRYPTED(inode))
1107 		return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
1108 	return 0;
1109 }
1110 
1111 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
1112 static inline void fscrypt_finalize_bounce_page(struct page **pagep)
1113 {
1114 	struct page *page = *pagep;
1115 
1116 	if (fscrypt_is_bounce_page(page)) {
1117 		*pagep = fscrypt_pagecache_page(page);
1118 		fscrypt_free_bounce_page(page);
1119 	}
1120 }
1121 
1122 #endif	/* _LINUX_FSCRYPT_H */
1123