xref: /linux/include/linux/fscrypt.h (revision e53b20598f394e37951d6355f1c88ae01165b53f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fscrypt.h: declarations for per-file encryption
4  *
5  * Filesystems that implement per-file encryption must include this header
6  * file.
7  *
8  * Copyright (C) 2015, Google, Inc.
9  *
10  * Written by Michael Halcrow, 2015.
11  * Modified by Jaegeuk Kim, 2015.
12  */
13 #ifndef _LINUX_FSCRYPT_H
14 #define _LINUX_FSCRYPT_H
15 
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <uapi/linux/fscrypt.h>
20 
21 /*
22  * The lengths of all file contents blocks must be divisible by this value.
23  * This is needed to ensure that all contents encryption modes will work, as
24  * some of the supported modes don't support arbitrarily byte-aligned messages.
25  *
26  * Since the needed alignment is 16 bytes, most filesystems will meet this
27  * requirement naturally, as typical block sizes are powers of 2.  However, if a
28  * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via
29  * compression), then it will need to pad to this alignment before encryption.
30  */
31 #define FSCRYPT_CONTENTS_ALIGNMENT 16
32 
33 union fscrypt_policy;
34 struct fscrypt_info;
35 struct fs_parameter;
36 struct seq_file;
37 
38 struct fscrypt_str {
39 	unsigned char *name;
40 	u32 len;
41 };
42 
43 struct fscrypt_name {
44 	const struct qstr *usr_fname;
45 	struct fscrypt_str disk_name;
46 	u32 hash;
47 	u32 minor_hash;
48 	struct fscrypt_str crypto_buf;
49 	bool is_nokey_name;
50 };
51 
52 #define FSTR_INIT(n, l)		{ .name = n, .len = l }
53 #define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
54 #define fname_name(p)		((p)->disk_name.name)
55 #define fname_len(p)		((p)->disk_name.len)
56 
57 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
58 #define FSCRYPT_SET_CONTEXT_MAX_SIZE	40
59 
60 #ifdef CONFIG_FS_ENCRYPTION
61 
62 /*
63  * If set, the fscrypt bounce page pool won't be allocated (unless another
64  * filesystem needs it).  Set this if the filesystem always uses its own bounce
65  * pages for writes and therefore won't need the fscrypt bounce page pool.
66  */
67 #define FS_CFLG_OWN_PAGES (1U << 1)
68 
69 /* Crypto operations for filesystems */
70 struct fscrypt_operations {
71 
72 	/* Set of optional flags; see above for allowed flags */
73 	unsigned int flags;
74 
75 	/*
76 	 * If set, this is a filesystem-specific key description prefix that
77 	 * will be accepted for "logon" keys for v1 fscrypt policies, in
78 	 * addition to the generic prefix "fscrypt:".  This functionality is
79 	 * deprecated, so new filesystems shouldn't set this field.
80 	 */
81 	const char *key_prefix;
82 
83 	/*
84 	 * Get the fscrypt context of the given inode.
85 	 *
86 	 * @inode: the inode whose context to get
87 	 * @ctx: the buffer into which to get the context
88 	 * @len: length of the @ctx buffer in bytes
89 	 *
90 	 * Return: On success, returns the length of the context in bytes; this
91 	 *	   may be less than @len.  On failure, returns -ENODATA if the
92 	 *	   inode doesn't have a context, -ERANGE if the context is
93 	 *	   longer than @len, or another -errno code.
94 	 */
95 	int (*get_context)(struct inode *inode, void *ctx, size_t len);
96 
97 	/*
98 	 * Set an fscrypt context on the given inode.
99 	 *
100 	 * @inode: the inode whose context to set.  The inode won't already have
101 	 *	   an fscrypt context.
102 	 * @ctx: the context to set
103 	 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
104 	 * @fs_data: If called from fscrypt_set_context(), this will be the
105 	 *	     value the filesystem passed to fscrypt_set_context().
106 	 *	     Otherwise (i.e. when called from
107 	 *	     FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
108 	 *
109 	 * i_rwsem will be held for write.
110 	 *
111 	 * Return: 0 on success, -errno on failure.
112 	 */
113 	int (*set_context)(struct inode *inode, const void *ctx, size_t len,
114 			   void *fs_data);
115 
116 	/*
117 	 * Get the dummy fscrypt policy in use on the filesystem (if any).
118 	 *
119 	 * Filesystems only need to implement this function if they support the
120 	 * test_dummy_encryption mount option.
121 	 *
122 	 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
123 	 *	   mounted with test_dummy_encryption; otherwise NULL.
124 	 */
125 	const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
126 
127 	/*
128 	 * Check whether a directory is empty.  i_rwsem will be held for write.
129 	 */
130 	bool (*empty_dir)(struct inode *inode);
131 
132 	/*
133 	 * Check whether the filesystem's inode numbers and UUID are stable,
134 	 * meaning that they will never be changed even by offline operations
135 	 * such as filesystem shrinking and therefore can be used in the
136 	 * encryption without the possibility of files becoming unreadable.
137 	 *
138 	 * Filesystems only need to implement this function if they want to
139 	 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags.  These
140 	 * flags are designed to work around the limitations of UFS and eMMC
141 	 * inline crypto hardware, and they shouldn't be used in scenarios where
142 	 * such hardware isn't being used.
143 	 *
144 	 * Leaving this NULL is equivalent to always returning false.
145 	 */
146 	bool (*has_stable_inodes)(struct super_block *sb);
147 
148 	/*
149 	 * Get the number of bits that the filesystem uses to represent inode
150 	 * numbers and file logical block numbers.
151 	 *
152 	 * By default, both of these are assumed to be 64-bit.  This function
153 	 * can be implemented to declare that either or both of these numbers is
154 	 * shorter, which may allow the use of the
155 	 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of
156 	 * inline crypto hardware whose maximum DUN length is less than 64 bits
157 	 * (e.g., eMMC v5.2 spec compliant hardware).  This function only needs
158 	 * to be implemented if support for one of these features is needed.
159 	 */
160 	void (*get_ino_and_lblk_bits)(struct super_block *sb,
161 				      int *ino_bits_ret, int *lblk_bits_ret);
162 
163 	/*
164 	 * Return the number of block devices to which the filesystem may write
165 	 * encrypted file contents.
166 	 *
167 	 * If the filesystem can use multiple block devices (other than block
168 	 * devices that aren't used for encrypted file contents, such as
169 	 * external journal devices), and wants to support inline encryption,
170 	 * then it must implement this function.  Otherwise it's not needed.
171 	 */
172 	int (*get_num_devices)(struct super_block *sb);
173 
174 	/*
175 	 * If ->get_num_devices() returns a value greater than 1, then this
176 	 * function is called to get the array of request_queues that the
177 	 * filesystem is using -- one per block device.  (There may be duplicate
178 	 * entries in this array, as block devices can share a request_queue.)
179 	 */
180 	void (*get_devices)(struct super_block *sb,
181 			    struct request_queue **devs);
182 };
183 
184 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
185 {
186 	/*
187 	 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
188 	 * I.e., another task may publish ->i_crypt_info concurrently, executing
189 	 * a RELEASE barrier.  We need to use smp_load_acquire() here to safely
190 	 * ACQUIRE the memory the other task published.
191 	 */
192 	return smp_load_acquire(&inode->i_crypt_info);
193 }
194 
195 /**
196  * fscrypt_needs_contents_encryption() - check whether an inode needs
197  *					 contents encryption
198  * @inode: the inode to check
199  *
200  * Return: %true iff the inode is an encrypted regular file and the kernel was
201  * built with fscrypt support.
202  *
203  * If you need to know whether the encrypt bit is set even when the kernel was
204  * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
205  */
206 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
207 {
208 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
209 }
210 
211 /*
212  * When d_splice_alias() moves a directory's no-key alias to its plaintext alias
213  * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be
214  * cleared.  Note that we don't have to support arbitrary moves of this flag
215  * because fscrypt doesn't allow no-key names to be the source or target of a
216  * rename().
217  */
218 static inline void fscrypt_handle_d_move(struct dentry *dentry)
219 {
220 	dentry->d_flags &= ~DCACHE_NOKEY_NAME;
221 }
222 
223 /**
224  * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
225  * @dentry: the dentry to check
226  *
227  * This returns true if the dentry is a no-key dentry.  A no-key dentry is a
228  * dentry that was created in an encrypted directory that hasn't had its
229  * encryption key added yet.  Such dentries may be either positive or negative.
230  *
231  * When a filesystem is asked to create a new filename in an encrypted directory
232  * and the new filename's dentry is a no-key dentry, it must fail the operation
233  * with ENOKEY.  This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
234  * ->rename(), and ->link().  (However, ->rename() and ->link() are already
235  * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
236  *
237  * This is necessary because creating a filename requires the directory's
238  * encryption key, but just checking for the key on the directory inode during
239  * the final filesystem operation doesn't guarantee that the key was available
240  * during the preceding dentry lookup.  And the key must have already been
241  * available during the dentry lookup in order for it to have been checked
242  * whether the filename already exists in the directory and for the new file's
243  * dentry not to be invalidated due to it incorrectly having the no-key flag.
244  *
245  * Return: %true if the dentry is a no-key name
246  */
247 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
248 {
249 	return dentry->d_flags & DCACHE_NOKEY_NAME;
250 }
251 
252 /* crypto.c */
253 void fscrypt_enqueue_decrypt_work(struct work_struct *);
254 
255 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
256 					      unsigned int len,
257 					      unsigned int offs,
258 					      gfp_t gfp_flags);
259 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
260 				  unsigned int len, unsigned int offs,
261 				  u64 lblk_num, gfp_t gfp_flags);
262 
263 int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
264 				     unsigned int offs);
265 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
266 				  unsigned int len, unsigned int offs,
267 				  u64 lblk_num);
268 
269 static inline bool fscrypt_is_bounce_page(struct page *page)
270 {
271 	return page->mapping == NULL;
272 }
273 
274 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
275 {
276 	return (struct page *)page_private(bounce_page);
277 }
278 
279 void fscrypt_free_bounce_page(struct page *bounce_page);
280 
281 /* policy.c */
282 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
283 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
284 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
285 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
286 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
287 int fscrypt_set_context(struct inode *inode, void *fs_data);
288 
289 struct fscrypt_dummy_policy {
290 	const union fscrypt_policy *policy;
291 };
292 
293 int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
294 				    struct fscrypt_dummy_policy *dummy_policy);
295 bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
296 				  const struct fscrypt_dummy_policy *p2);
297 int fscrypt_set_test_dummy_encryption(struct super_block *sb, const char *arg,
298 				struct fscrypt_dummy_policy *dummy_policy);
299 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
300 					struct super_block *sb);
301 static inline bool
302 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
303 {
304 	return dummy_policy->policy != NULL;
305 }
306 static inline void
307 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
308 {
309 	kfree(dummy_policy->policy);
310 	dummy_policy->policy = NULL;
311 }
312 
313 /* keyring.c */
314 void fscrypt_sb_free(struct super_block *sb);
315 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
316 int fscrypt_add_test_dummy_key(struct super_block *sb,
317 			       const struct fscrypt_dummy_policy *dummy_policy);
318 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
319 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
320 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
321 
322 /* keysetup.c */
323 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
324 			      bool *encrypt_ret);
325 void fscrypt_put_encryption_info(struct inode *inode);
326 void fscrypt_free_inode(struct inode *inode);
327 int fscrypt_drop_inode(struct inode *inode);
328 
329 /* fname.c */
330 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
331 			   int lookup, struct fscrypt_name *fname);
332 
333 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
334 {
335 	kfree(fname->crypto_buf.name);
336 }
337 
338 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
339 			       struct fscrypt_str *crypto_str);
340 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
341 int fscrypt_fname_disk_to_usr(const struct inode *inode,
342 			      u32 hash, u32 minor_hash,
343 			      const struct fscrypt_str *iname,
344 			      struct fscrypt_str *oname);
345 bool fscrypt_match_name(const struct fscrypt_name *fname,
346 			const u8 *de_name, u32 de_name_len);
347 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
348 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
349 
350 /* bio.c */
351 void fscrypt_decrypt_bio(struct bio *bio);
352 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
353 			  sector_t pblk, unsigned int len);
354 
355 /* hooks.c */
356 int fscrypt_file_open(struct inode *inode, struct file *filp);
357 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
358 			   struct dentry *dentry);
359 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
360 			     struct inode *new_dir, struct dentry *new_dentry,
361 			     unsigned int flags);
362 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
363 			     struct fscrypt_name *fname);
364 int __fscrypt_prepare_readdir(struct inode *dir);
365 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
366 int fscrypt_prepare_setflags(struct inode *inode,
367 			     unsigned int oldflags, unsigned int flags);
368 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
369 			    unsigned int len, unsigned int max_len,
370 			    struct fscrypt_str *disk_link);
371 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
372 			      unsigned int len, struct fscrypt_str *disk_link);
373 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
374 				unsigned int max_size,
375 				struct delayed_call *done);
376 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
377 static inline void fscrypt_set_ops(struct super_block *sb,
378 				   const struct fscrypt_operations *s_cop)
379 {
380 	sb->s_cop = s_cop;
381 }
382 #else  /* !CONFIG_FS_ENCRYPTION */
383 
384 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
385 {
386 	return NULL;
387 }
388 
389 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
390 {
391 	return false;
392 }
393 
394 static inline void fscrypt_handle_d_move(struct dentry *dentry)
395 {
396 }
397 
398 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
399 {
400 	return false;
401 }
402 
403 /* crypto.c */
404 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
405 {
406 }
407 
408 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
409 							    unsigned int len,
410 							    unsigned int offs,
411 							    gfp_t gfp_flags)
412 {
413 	return ERR_PTR(-EOPNOTSUPP);
414 }
415 
416 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
417 						struct page *page,
418 						unsigned int len,
419 						unsigned int offs, u64 lblk_num,
420 						gfp_t gfp_flags)
421 {
422 	return -EOPNOTSUPP;
423 }
424 
425 static inline int fscrypt_decrypt_pagecache_blocks(struct page *page,
426 						   unsigned int len,
427 						   unsigned int offs)
428 {
429 	return -EOPNOTSUPP;
430 }
431 
432 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
433 						struct page *page,
434 						unsigned int len,
435 						unsigned int offs, u64 lblk_num)
436 {
437 	return -EOPNOTSUPP;
438 }
439 
440 static inline bool fscrypt_is_bounce_page(struct page *page)
441 {
442 	return false;
443 }
444 
445 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
446 {
447 	WARN_ON_ONCE(1);
448 	return ERR_PTR(-EINVAL);
449 }
450 
451 static inline void fscrypt_free_bounce_page(struct page *bounce_page)
452 {
453 }
454 
455 /* policy.c */
456 static inline int fscrypt_ioctl_set_policy(struct file *filp,
457 					   const void __user *arg)
458 {
459 	return -EOPNOTSUPP;
460 }
461 
462 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
463 {
464 	return -EOPNOTSUPP;
465 }
466 
467 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
468 					      void __user *arg)
469 {
470 	return -EOPNOTSUPP;
471 }
472 
473 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
474 {
475 	return -EOPNOTSUPP;
476 }
477 
478 static inline int fscrypt_has_permitted_context(struct inode *parent,
479 						struct inode *child)
480 {
481 	return 0;
482 }
483 
484 static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
485 {
486 	return -EOPNOTSUPP;
487 }
488 
489 struct fscrypt_dummy_policy {
490 };
491 
492 static inline int
493 fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
494 				    struct fscrypt_dummy_policy *dummy_policy)
495 {
496 	return -EINVAL;
497 }
498 
499 static inline bool
500 fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
501 			     const struct fscrypt_dummy_policy *p2)
502 {
503 	return true;
504 }
505 
506 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
507 						      char sep,
508 						      struct super_block *sb)
509 {
510 }
511 
512 static inline bool
513 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
514 {
515 	return false;
516 }
517 
518 static inline void
519 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
520 {
521 }
522 
523 /* keyring.c */
524 static inline void fscrypt_sb_free(struct super_block *sb)
525 {
526 }
527 
528 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
529 {
530 	return -EOPNOTSUPP;
531 }
532 
533 static inline int
534 fscrypt_add_test_dummy_key(struct super_block *sb,
535 			   const struct fscrypt_dummy_policy *dummy_policy)
536 {
537 	return 0;
538 }
539 
540 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
541 {
542 	return -EOPNOTSUPP;
543 }
544 
545 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
546 						     void __user *arg)
547 {
548 	return -EOPNOTSUPP;
549 }
550 
551 static inline int fscrypt_ioctl_get_key_status(struct file *filp,
552 					       void __user *arg)
553 {
554 	return -EOPNOTSUPP;
555 }
556 
557 /* keysetup.c */
558 
559 static inline int fscrypt_prepare_new_inode(struct inode *dir,
560 					    struct inode *inode,
561 					    bool *encrypt_ret)
562 {
563 	if (IS_ENCRYPTED(dir))
564 		return -EOPNOTSUPP;
565 	return 0;
566 }
567 
568 static inline void fscrypt_put_encryption_info(struct inode *inode)
569 {
570 	return;
571 }
572 
573 static inline void fscrypt_free_inode(struct inode *inode)
574 {
575 }
576 
577 static inline int fscrypt_drop_inode(struct inode *inode)
578 {
579 	return 0;
580 }
581 
582  /* fname.c */
583 static inline int fscrypt_setup_filename(struct inode *dir,
584 					 const struct qstr *iname,
585 					 int lookup, struct fscrypt_name *fname)
586 {
587 	if (IS_ENCRYPTED(dir))
588 		return -EOPNOTSUPP;
589 
590 	memset(fname, 0, sizeof(*fname));
591 	fname->usr_fname = iname;
592 	fname->disk_name.name = (unsigned char *)iname->name;
593 	fname->disk_name.len = iname->len;
594 	return 0;
595 }
596 
597 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
598 {
599 	return;
600 }
601 
602 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
603 					     struct fscrypt_str *crypto_str)
604 {
605 	return -EOPNOTSUPP;
606 }
607 
608 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
609 {
610 	return;
611 }
612 
613 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
614 					    u32 hash, u32 minor_hash,
615 					    const struct fscrypt_str *iname,
616 					    struct fscrypt_str *oname)
617 {
618 	return -EOPNOTSUPP;
619 }
620 
621 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
622 				      const u8 *de_name, u32 de_name_len)
623 {
624 	/* Encryption support disabled; use standard comparison */
625 	if (de_name_len != fname->disk_name.len)
626 		return false;
627 	return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
628 }
629 
630 static inline u64 fscrypt_fname_siphash(const struct inode *dir,
631 					const struct qstr *name)
632 {
633 	WARN_ON_ONCE(1);
634 	return 0;
635 }
636 
637 static inline int fscrypt_d_revalidate(struct dentry *dentry,
638 				       unsigned int flags)
639 {
640 	return 1;
641 }
642 
643 /* bio.c */
644 static inline void fscrypt_decrypt_bio(struct bio *bio)
645 {
646 }
647 
648 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
649 					sector_t pblk, unsigned int len)
650 {
651 	return -EOPNOTSUPP;
652 }
653 
654 /* hooks.c */
655 
656 static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
657 {
658 	if (IS_ENCRYPTED(inode))
659 		return -EOPNOTSUPP;
660 	return 0;
661 }
662 
663 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
664 					 struct dentry *dentry)
665 {
666 	return -EOPNOTSUPP;
667 }
668 
669 static inline int __fscrypt_prepare_rename(struct inode *old_dir,
670 					   struct dentry *old_dentry,
671 					   struct inode *new_dir,
672 					   struct dentry *new_dentry,
673 					   unsigned int flags)
674 {
675 	return -EOPNOTSUPP;
676 }
677 
678 static inline int __fscrypt_prepare_lookup(struct inode *dir,
679 					   struct dentry *dentry,
680 					   struct fscrypt_name *fname)
681 {
682 	return -EOPNOTSUPP;
683 }
684 
685 static inline int __fscrypt_prepare_readdir(struct inode *dir)
686 {
687 	return -EOPNOTSUPP;
688 }
689 
690 static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
691 					    struct iattr *attr)
692 {
693 	return -EOPNOTSUPP;
694 }
695 
696 static inline int fscrypt_prepare_setflags(struct inode *inode,
697 					   unsigned int oldflags,
698 					   unsigned int flags)
699 {
700 	return 0;
701 }
702 
703 static inline int fscrypt_prepare_symlink(struct inode *dir,
704 					  const char *target,
705 					  unsigned int len,
706 					  unsigned int max_len,
707 					  struct fscrypt_str *disk_link)
708 {
709 	if (IS_ENCRYPTED(dir))
710 		return -EOPNOTSUPP;
711 	disk_link->name = (unsigned char *)target;
712 	disk_link->len = len + 1;
713 	if (disk_link->len > max_len)
714 		return -ENAMETOOLONG;
715 	return 0;
716 }
717 
718 static inline int __fscrypt_encrypt_symlink(struct inode *inode,
719 					    const char *target,
720 					    unsigned int len,
721 					    struct fscrypt_str *disk_link)
722 {
723 	return -EOPNOTSUPP;
724 }
725 
726 static inline const char *fscrypt_get_symlink(struct inode *inode,
727 					      const void *caddr,
728 					      unsigned int max_size,
729 					      struct delayed_call *done)
730 {
731 	return ERR_PTR(-EOPNOTSUPP);
732 }
733 
734 static inline int fscrypt_symlink_getattr(const struct path *path,
735 					  struct kstat *stat)
736 {
737 	return -EOPNOTSUPP;
738 }
739 
740 static inline void fscrypt_set_ops(struct super_block *sb,
741 				   const struct fscrypt_operations *s_cop)
742 {
743 }
744 
745 #endif	/* !CONFIG_FS_ENCRYPTION */
746 
747 /* inline_crypt.c */
748 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
749 
750 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
751 
752 void fscrypt_set_bio_crypt_ctx(struct bio *bio,
753 			       const struct inode *inode, u64 first_lblk,
754 			       gfp_t gfp_mask);
755 
756 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
757 				  const struct buffer_head *first_bh,
758 				  gfp_t gfp_mask);
759 
760 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
761 			   u64 next_lblk);
762 
763 bool fscrypt_mergeable_bio_bh(struct bio *bio,
764 			      const struct buffer_head *next_bh);
765 
766 bool fscrypt_dio_supported(struct kiocb *iocb, struct iov_iter *iter);
767 
768 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks);
769 
770 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
771 
772 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
773 {
774 	return false;
775 }
776 
777 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
778 					     const struct inode *inode,
779 					     u64 first_lblk, gfp_t gfp_mask) { }
780 
781 static inline void fscrypt_set_bio_crypt_ctx_bh(
782 					 struct bio *bio,
783 					 const struct buffer_head *first_bh,
784 					 gfp_t gfp_mask) { }
785 
786 static inline bool fscrypt_mergeable_bio(struct bio *bio,
787 					 const struct inode *inode,
788 					 u64 next_lblk)
789 {
790 	return true;
791 }
792 
793 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
794 					    const struct buffer_head *next_bh)
795 {
796 	return true;
797 }
798 
799 static inline bool fscrypt_dio_supported(struct kiocb *iocb,
800 					 struct iov_iter *iter)
801 {
802 	const struct inode *inode = file_inode(iocb->ki_filp);
803 
804 	return !fscrypt_needs_contents_encryption(inode);
805 }
806 
807 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk,
808 					  u64 nr_blocks)
809 {
810 	return nr_blocks;
811 }
812 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
813 
814 /**
815  * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
816  *					encryption
817  * @inode: an inode. If encrypted, its key must be set up.
818  *
819  * Return: true if the inode requires file contents encryption and if the
820  *	   encryption should be done in the block layer via blk-crypto rather
821  *	   than in the filesystem layer.
822  */
823 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
824 {
825 	return fscrypt_needs_contents_encryption(inode) &&
826 	       __fscrypt_inode_uses_inline_crypto(inode);
827 }
828 
829 /**
830  * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
831  *					  encryption
832  * @inode: an inode. If encrypted, its key must be set up.
833  *
834  * Return: true if the inode requires file contents encryption and if the
835  *	   encryption should be done in the filesystem layer rather than in the
836  *	   block layer via blk-crypto.
837  */
838 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
839 {
840 	return fscrypt_needs_contents_encryption(inode) &&
841 	       !__fscrypt_inode_uses_inline_crypto(inode);
842 }
843 
844 /**
845  * fscrypt_has_encryption_key() - check whether an inode has had its key set up
846  * @inode: the inode to check
847  *
848  * Return: %true if the inode has had its encryption key set up, else %false.
849  *
850  * Usually this should be preceded by fscrypt_get_encryption_info() to try to
851  * set up the key first.
852  */
853 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
854 {
855 	return fscrypt_get_info(inode) != NULL;
856 }
857 
858 /**
859  * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
860  *			    directory
861  * @old_dentry: an existing dentry for the inode being linked
862  * @dir: the target directory
863  * @dentry: negative dentry for the target filename
864  *
865  * A new link can only be added to an encrypted directory if the directory's
866  * encryption key is available --- since otherwise we'd have no way to encrypt
867  * the filename.
868  *
869  * We also verify that the link will not violate the constraint that all files
870  * in an encrypted directory tree use the same encryption policy.
871  *
872  * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
873  * -EXDEV if the link would result in an inconsistent encryption policy, or
874  * another -errno code.
875  */
876 static inline int fscrypt_prepare_link(struct dentry *old_dentry,
877 				       struct inode *dir,
878 				       struct dentry *dentry)
879 {
880 	if (IS_ENCRYPTED(dir))
881 		return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
882 	return 0;
883 }
884 
885 /**
886  * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
887  *			      directories
888  * @old_dir: source directory
889  * @old_dentry: dentry for source file
890  * @new_dir: target directory
891  * @new_dentry: dentry for target location (may be negative unless exchanging)
892  * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
893  *
894  * Prepare for ->rename() where the source and/or target directories may be
895  * encrypted.  A new link can only be added to an encrypted directory if the
896  * directory's encryption key is available --- since otherwise we'd have no way
897  * to encrypt the filename.  A rename to an existing name, on the other hand,
898  * *is* cryptographically possible without the key.  However, we take the more
899  * conservative approach and just forbid all no-key renames.
900  *
901  * We also verify that the rename will not violate the constraint that all files
902  * in an encrypted directory tree use the same encryption policy.
903  *
904  * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
905  * rename would cause inconsistent encryption policies, or another -errno code.
906  */
907 static inline int fscrypt_prepare_rename(struct inode *old_dir,
908 					 struct dentry *old_dentry,
909 					 struct inode *new_dir,
910 					 struct dentry *new_dentry,
911 					 unsigned int flags)
912 {
913 	if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
914 		return __fscrypt_prepare_rename(old_dir, old_dentry,
915 						new_dir, new_dentry, flags);
916 	return 0;
917 }
918 
919 /**
920  * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
921  *			      directory
922  * @dir: directory being searched
923  * @dentry: filename being looked up
924  * @fname: (output) the name to use to search the on-disk directory
925  *
926  * Prepare for ->lookup() in a directory which may be encrypted by determining
927  * the name that will actually be used to search the directory on-disk.  If the
928  * directory's encryption policy is supported by this kernel and its encryption
929  * key is available, then the lookup is assumed to be by plaintext name;
930  * otherwise, it is assumed to be by no-key name.
931  *
932  * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
933  * name.  In this case the filesystem must assign the dentry a dentry_operations
934  * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
935  * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
936  * directory's encryption key is later added.
937  *
938  * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
939  * filename isn't a valid no-key name, so a negative dentry should be created;
940  * or another -errno code.
941  */
942 static inline int fscrypt_prepare_lookup(struct inode *dir,
943 					 struct dentry *dentry,
944 					 struct fscrypt_name *fname)
945 {
946 	if (IS_ENCRYPTED(dir))
947 		return __fscrypt_prepare_lookup(dir, dentry, fname);
948 
949 	memset(fname, 0, sizeof(*fname));
950 	fname->usr_fname = &dentry->d_name;
951 	fname->disk_name.name = (unsigned char *)dentry->d_name.name;
952 	fname->disk_name.len = dentry->d_name.len;
953 	return 0;
954 }
955 
956 /**
957  * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
958  * @dir: the directory inode
959  *
960  * If the directory is encrypted and it doesn't already have its encryption key
961  * set up, try to set it up so that the filenames will be listed in plaintext
962  * form rather than in no-key form.
963  *
964  * Return: 0 on success; -errno on error.  Note that the encryption key being
965  *	   unavailable is not considered an error.  It is also not an error if
966  *	   the encryption policy is unsupported by this kernel; that is treated
967  *	   like the key being unavailable, so that files can still be deleted.
968  */
969 static inline int fscrypt_prepare_readdir(struct inode *dir)
970 {
971 	if (IS_ENCRYPTED(dir))
972 		return __fscrypt_prepare_readdir(dir);
973 	return 0;
974 }
975 
976 /**
977  * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
978  *			       attributes
979  * @dentry: dentry through which the inode is being changed
980  * @attr: attributes to change
981  *
982  * Prepare for ->setattr() on a possibly-encrypted inode.  On an encrypted file,
983  * most attribute changes are allowed even without the encryption key.  However,
984  * without the encryption key we do have to forbid truncates.  This is needed
985  * because the size being truncated to may not be a multiple of the filesystem
986  * block size, and in that case we'd have to decrypt the final block, zero the
987  * portion past i_size, and re-encrypt it.  (We *could* allow truncating to a
988  * filesystem block boundary, but it's simpler to just forbid all truncates ---
989  * and we already forbid all other contents modifications without the key.)
990  *
991  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
992  * if a problem occurred while setting up the encryption key.
993  */
994 static inline int fscrypt_prepare_setattr(struct dentry *dentry,
995 					  struct iattr *attr)
996 {
997 	if (IS_ENCRYPTED(d_inode(dentry)))
998 		return __fscrypt_prepare_setattr(dentry, attr);
999 	return 0;
1000 }
1001 
1002 /**
1003  * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
1004  * @inode: symlink inode
1005  * @target: plaintext symlink target
1006  * @len: length of @target excluding null terminator
1007  * @disk_link: (in/out) the on-disk symlink target being prepared
1008  *
1009  * If the symlink target needs to be encrypted, then this function encrypts it
1010  * into @disk_link->name.  fscrypt_prepare_symlink() must have been called
1011  * previously to compute @disk_link->len.  If the filesystem did not allocate a
1012  * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
1013  * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
1014  *
1015  * Return: 0 on success, -errno on failure
1016  */
1017 static inline int fscrypt_encrypt_symlink(struct inode *inode,
1018 					  const char *target,
1019 					  unsigned int len,
1020 					  struct fscrypt_str *disk_link)
1021 {
1022 	if (IS_ENCRYPTED(inode))
1023 		return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
1024 	return 0;
1025 }
1026 
1027 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
1028 static inline void fscrypt_finalize_bounce_page(struct page **pagep)
1029 {
1030 	struct page *page = *pagep;
1031 
1032 	if (fscrypt_is_bounce_page(page)) {
1033 		*pagep = fscrypt_pagecache_page(page);
1034 		fscrypt_free_bounce_page(page);
1035 	}
1036 }
1037 
1038 #endif	/* _LINUX_FSCRYPT_H */
1039