xref: /linux/include/linux/fscrypt.h (revision 71e2f4dd5a65bd8dbca0b77661e75eea471168f8)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fscrypt.h: declarations for per-file encryption
4  *
5  * Filesystems that implement per-file encryption must include this header
6  * file.
7  *
8  * Copyright (C) 2015, Google, Inc.
9  *
10  * Written by Michael Halcrow, 2015.
11  * Modified by Jaegeuk Kim, 2015.
12  */
13 #ifndef _LINUX_FSCRYPT_H
14 #define _LINUX_FSCRYPT_H
15 
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <uapi/linux/fscrypt.h>
20 
21 #define FS_CRYPTO_BLOCK_SIZE		16
22 
23 struct fscrypt_ctx;
24 struct fscrypt_info;
25 
26 struct fscrypt_str {
27 	unsigned char *name;
28 	u32 len;
29 };
30 
31 struct fscrypt_name {
32 	const struct qstr *usr_fname;
33 	struct fscrypt_str disk_name;
34 	u32 hash;
35 	u32 minor_hash;
36 	struct fscrypt_str crypto_buf;
37 	bool is_ciphertext_name;
38 };
39 
40 #define FSTR_INIT(n, l)		{ .name = n, .len = l }
41 #define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
42 #define fname_name(p)		((p)->disk_name.name)
43 #define fname_len(p)		((p)->disk_name.len)
44 
45 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
46 #define FSCRYPT_SET_CONTEXT_MAX_SIZE	40
47 
48 #ifdef CONFIG_FS_ENCRYPTION
49 /*
50  * fscrypt superblock flags
51  */
52 #define FS_CFLG_OWN_PAGES (1U << 1)
53 
54 /*
55  * crypto operations for filesystems
56  */
57 struct fscrypt_operations {
58 	unsigned int flags;
59 	const char *key_prefix;
60 	int (*get_context)(struct inode *, void *, size_t);
61 	int (*set_context)(struct inode *, const void *, size_t, void *);
62 	bool (*dummy_context)(struct inode *);
63 	bool (*empty_dir)(struct inode *);
64 	unsigned int max_namelen;
65 };
66 
67 /* Decryption work */
68 struct fscrypt_ctx {
69 	union {
70 		struct {
71 			struct bio *bio;
72 			struct work_struct work;
73 		};
74 		struct list_head free_list;	/* Free list */
75 	};
76 	u8 flags;				/* Flags */
77 };
78 
79 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
80 {
81 	/* pairs with cmpxchg_release() in fscrypt_get_encryption_info() */
82 	return READ_ONCE(inode->i_crypt_info) != NULL;
83 }
84 
85 static inline bool fscrypt_dummy_context_enabled(struct inode *inode)
86 {
87 	return inode->i_sb->s_cop->dummy_context &&
88 		inode->i_sb->s_cop->dummy_context(inode);
89 }
90 
91 /*
92  * When d_splice_alias() moves a directory's encrypted alias to its decrypted
93  * alias as a result of the encryption key being added, DCACHE_ENCRYPTED_NAME
94  * must be cleared.  Note that we don't have to support arbitrary moves of this
95  * flag because fscrypt doesn't allow encrypted aliases to be the source or
96  * target of a rename().
97  */
98 static inline void fscrypt_handle_d_move(struct dentry *dentry)
99 {
100 	dentry->d_flags &= ~DCACHE_ENCRYPTED_NAME;
101 }
102 
103 /* crypto.c */
104 extern void fscrypt_enqueue_decrypt_work(struct work_struct *);
105 extern struct fscrypt_ctx *fscrypt_get_ctx(gfp_t);
106 extern void fscrypt_release_ctx(struct fscrypt_ctx *);
107 
108 extern struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
109 						     unsigned int len,
110 						     unsigned int offs,
111 						     gfp_t gfp_flags);
112 extern int fscrypt_encrypt_block_inplace(const struct inode *inode,
113 					 struct page *page, unsigned int len,
114 					 unsigned int offs, u64 lblk_num,
115 					 gfp_t gfp_flags);
116 
117 extern int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
118 					    unsigned int offs);
119 extern int fscrypt_decrypt_block_inplace(const struct inode *inode,
120 					 struct page *page, unsigned int len,
121 					 unsigned int offs, u64 lblk_num);
122 
123 static inline bool fscrypt_is_bounce_page(struct page *page)
124 {
125 	return page->mapping == NULL;
126 }
127 
128 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
129 {
130 	return (struct page *)page_private(bounce_page);
131 }
132 
133 extern void fscrypt_free_bounce_page(struct page *bounce_page);
134 
135 /* policy.c */
136 extern int fscrypt_ioctl_set_policy(struct file *, const void __user *);
137 extern int fscrypt_ioctl_get_policy(struct file *, void __user *);
138 extern int fscrypt_ioctl_get_policy_ex(struct file *, void __user *);
139 extern int fscrypt_has_permitted_context(struct inode *, struct inode *);
140 extern int fscrypt_inherit_context(struct inode *, struct inode *,
141 					void *, bool);
142 /* keyring.c */
143 extern void fscrypt_sb_free(struct super_block *sb);
144 extern int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
145 extern int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
146 extern int fscrypt_ioctl_remove_key_all_users(struct file *filp,
147 					      void __user *arg);
148 extern int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
149 
150 /* keysetup.c */
151 extern int fscrypt_get_encryption_info(struct inode *);
152 extern void fscrypt_put_encryption_info(struct inode *);
153 extern void fscrypt_free_inode(struct inode *);
154 extern int fscrypt_drop_inode(struct inode *inode);
155 
156 /* fname.c */
157 extern int fscrypt_setup_filename(struct inode *, const struct qstr *,
158 				int lookup, struct fscrypt_name *);
159 
160 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
161 {
162 	kfree(fname->crypto_buf.name);
163 }
164 
165 extern int fscrypt_fname_alloc_buffer(const struct inode *, u32,
166 				struct fscrypt_str *);
167 extern void fscrypt_fname_free_buffer(struct fscrypt_str *);
168 extern int fscrypt_fname_disk_to_usr(struct inode *, u32, u32,
169 			const struct fscrypt_str *, struct fscrypt_str *);
170 
171 #define FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE	32
172 
173 /* Extracts the second-to-last ciphertext block; see explanation below */
174 #define FSCRYPT_FNAME_DIGEST(name, len)	\
175 	((name) + round_down((len) - FS_CRYPTO_BLOCK_SIZE - 1, \
176 			     FS_CRYPTO_BLOCK_SIZE))
177 
178 #define FSCRYPT_FNAME_DIGEST_SIZE	FS_CRYPTO_BLOCK_SIZE
179 
180 /**
181  * fscrypt_digested_name - alternate identifier for an on-disk filename
182  *
183  * When userspace lists an encrypted directory without access to the key,
184  * filenames whose ciphertext is longer than FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE
185  * bytes are shown in this abbreviated form (base64-encoded) rather than as the
186  * full ciphertext (base64-encoded).  This is necessary to allow supporting
187  * filenames up to NAME_MAX bytes, since base64 encoding expands the length.
188  *
189  * To make it possible for filesystems to still find the correct directory entry
190  * despite not knowing the full on-disk name, we encode any filesystem-specific
191  * 'hash' and/or 'minor_hash' which the filesystem may need for its lookups,
192  * followed by the second-to-last ciphertext block of the filename.  Due to the
193  * use of the CBC-CTS encryption mode, the second-to-last ciphertext block
194  * depends on the full plaintext.  (Note that ciphertext stealing causes the
195  * last two blocks to appear "flipped".)  This makes accidental collisions very
196  * unlikely: just a 1 in 2^128 chance for two filenames to collide even if they
197  * share the same filesystem-specific hashes.
198  *
199  * However, this scheme isn't immune to intentional collisions, which can be
200  * created by anyone able to create arbitrary plaintext filenames and view them
201  * without the key.  Making the "digest" be a real cryptographic hash like
202  * SHA-256 over the full ciphertext would prevent this, although it would be
203  * less efficient and harder to implement, especially since the filesystem would
204  * need to calculate it for each directory entry examined during a search.
205  */
206 struct fscrypt_digested_name {
207 	u32 hash;
208 	u32 minor_hash;
209 	u8 digest[FSCRYPT_FNAME_DIGEST_SIZE];
210 };
211 
212 /**
213  * fscrypt_match_name() - test whether the given name matches a directory entry
214  * @fname: the name being searched for
215  * @de_name: the name from the directory entry
216  * @de_name_len: the length of @de_name in bytes
217  *
218  * Normally @fname->disk_name will be set, and in that case we simply compare
219  * that to the name stored in the directory entry.  The only exception is that
220  * if we don't have the key for an encrypted directory and a filename in it is
221  * very long, then we won't have the full disk_name and we'll instead need to
222  * match against the fscrypt_digested_name.
223  *
224  * Return: %true if the name matches, otherwise %false.
225  */
226 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
227 				      const u8 *de_name, u32 de_name_len)
228 {
229 	if (unlikely(!fname->disk_name.name)) {
230 		const struct fscrypt_digested_name *n =
231 			(const void *)fname->crypto_buf.name;
232 		if (WARN_ON_ONCE(fname->usr_fname->name[0] != '_'))
233 			return false;
234 		if (de_name_len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE)
235 			return false;
236 		return !memcmp(FSCRYPT_FNAME_DIGEST(de_name, de_name_len),
237 			       n->digest, FSCRYPT_FNAME_DIGEST_SIZE);
238 	}
239 
240 	if (de_name_len != fname->disk_name.len)
241 		return false;
242 	return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
243 }
244 
245 /* bio.c */
246 extern void fscrypt_decrypt_bio(struct bio *);
247 extern void fscrypt_enqueue_decrypt_bio(struct fscrypt_ctx *ctx,
248 					struct bio *bio);
249 extern int fscrypt_zeroout_range(const struct inode *, pgoff_t, sector_t,
250 				 unsigned int);
251 
252 /* hooks.c */
253 extern int fscrypt_file_open(struct inode *inode, struct file *filp);
254 extern int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
255 				  struct dentry *dentry);
256 extern int __fscrypt_prepare_rename(struct inode *old_dir,
257 				    struct dentry *old_dentry,
258 				    struct inode *new_dir,
259 				    struct dentry *new_dentry,
260 				    unsigned int flags);
261 extern int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
262 				    struct fscrypt_name *fname);
263 extern int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
264 				     unsigned int max_len,
265 				     struct fscrypt_str *disk_link);
266 extern int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
267 				     unsigned int len,
268 				     struct fscrypt_str *disk_link);
269 extern const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
270 				       unsigned int max_size,
271 				       struct delayed_call *done);
272 static inline void fscrypt_set_ops(struct super_block *sb,
273 				   const struct fscrypt_operations *s_cop)
274 {
275 	sb->s_cop = s_cop;
276 }
277 #else  /* !CONFIG_FS_ENCRYPTION */
278 
279 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
280 {
281 	return false;
282 }
283 
284 static inline bool fscrypt_dummy_context_enabled(struct inode *inode)
285 {
286 	return false;
287 }
288 
289 static inline void fscrypt_handle_d_move(struct dentry *dentry)
290 {
291 }
292 
293 /* crypto.c */
294 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
295 {
296 }
297 
298 static inline struct fscrypt_ctx *fscrypt_get_ctx(gfp_t gfp_flags)
299 {
300 	return ERR_PTR(-EOPNOTSUPP);
301 }
302 
303 static inline void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
304 {
305 	return;
306 }
307 
308 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
309 							    unsigned int len,
310 							    unsigned int offs,
311 							    gfp_t gfp_flags)
312 {
313 	return ERR_PTR(-EOPNOTSUPP);
314 }
315 
316 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
317 						struct page *page,
318 						unsigned int len,
319 						unsigned int offs, u64 lblk_num,
320 						gfp_t gfp_flags)
321 {
322 	return -EOPNOTSUPP;
323 }
324 
325 static inline int fscrypt_decrypt_pagecache_blocks(struct page *page,
326 						   unsigned int len,
327 						   unsigned int offs)
328 {
329 	return -EOPNOTSUPP;
330 }
331 
332 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
333 						struct page *page,
334 						unsigned int len,
335 						unsigned int offs, u64 lblk_num)
336 {
337 	return -EOPNOTSUPP;
338 }
339 
340 static inline bool fscrypt_is_bounce_page(struct page *page)
341 {
342 	return false;
343 }
344 
345 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
346 {
347 	WARN_ON_ONCE(1);
348 	return ERR_PTR(-EINVAL);
349 }
350 
351 static inline void fscrypt_free_bounce_page(struct page *bounce_page)
352 {
353 }
354 
355 /* policy.c */
356 static inline int fscrypt_ioctl_set_policy(struct file *filp,
357 					   const void __user *arg)
358 {
359 	return -EOPNOTSUPP;
360 }
361 
362 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
363 {
364 	return -EOPNOTSUPP;
365 }
366 
367 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
368 					      void __user *arg)
369 {
370 	return -EOPNOTSUPP;
371 }
372 
373 static inline int fscrypt_has_permitted_context(struct inode *parent,
374 						struct inode *child)
375 {
376 	return 0;
377 }
378 
379 static inline int fscrypt_inherit_context(struct inode *parent,
380 					  struct inode *child,
381 					  void *fs_data, bool preload)
382 {
383 	return -EOPNOTSUPP;
384 }
385 
386 /* keyring.c */
387 static inline void fscrypt_sb_free(struct super_block *sb)
388 {
389 }
390 
391 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
392 {
393 	return -EOPNOTSUPP;
394 }
395 
396 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
397 {
398 	return -EOPNOTSUPP;
399 }
400 
401 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
402 						     void __user *arg)
403 {
404 	return -EOPNOTSUPP;
405 }
406 
407 static inline int fscrypt_ioctl_get_key_status(struct file *filp,
408 					       void __user *arg)
409 {
410 	return -EOPNOTSUPP;
411 }
412 
413 /* keysetup.c */
414 static inline int fscrypt_get_encryption_info(struct inode *inode)
415 {
416 	return -EOPNOTSUPP;
417 }
418 
419 static inline void fscrypt_put_encryption_info(struct inode *inode)
420 {
421 	return;
422 }
423 
424 static inline void fscrypt_free_inode(struct inode *inode)
425 {
426 }
427 
428 static inline int fscrypt_drop_inode(struct inode *inode)
429 {
430 	return 0;
431 }
432 
433  /* fname.c */
434 static inline int fscrypt_setup_filename(struct inode *dir,
435 					 const struct qstr *iname,
436 					 int lookup, struct fscrypt_name *fname)
437 {
438 	if (IS_ENCRYPTED(dir))
439 		return -EOPNOTSUPP;
440 
441 	memset(fname, 0, sizeof(*fname));
442 	fname->usr_fname = iname;
443 	fname->disk_name.name = (unsigned char *)iname->name;
444 	fname->disk_name.len = iname->len;
445 	return 0;
446 }
447 
448 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
449 {
450 	return;
451 }
452 
453 static inline int fscrypt_fname_alloc_buffer(const struct inode *inode,
454 					     u32 max_encrypted_len,
455 					     struct fscrypt_str *crypto_str)
456 {
457 	return -EOPNOTSUPP;
458 }
459 
460 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
461 {
462 	return;
463 }
464 
465 static inline int fscrypt_fname_disk_to_usr(struct inode *inode,
466 					    u32 hash, u32 minor_hash,
467 					    const struct fscrypt_str *iname,
468 					    struct fscrypt_str *oname)
469 {
470 	return -EOPNOTSUPP;
471 }
472 
473 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
474 				      const u8 *de_name, u32 de_name_len)
475 {
476 	/* Encryption support disabled; use standard comparison */
477 	if (de_name_len != fname->disk_name.len)
478 		return false;
479 	return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
480 }
481 
482 /* bio.c */
483 static inline void fscrypt_decrypt_bio(struct bio *bio)
484 {
485 }
486 
487 static inline void fscrypt_enqueue_decrypt_bio(struct fscrypt_ctx *ctx,
488 					       struct bio *bio)
489 {
490 }
491 
492 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
493 					sector_t pblk, unsigned int len)
494 {
495 	return -EOPNOTSUPP;
496 }
497 
498 /* hooks.c */
499 
500 static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
501 {
502 	if (IS_ENCRYPTED(inode))
503 		return -EOPNOTSUPP;
504 	return 0;
505 }
506 
507 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
508 					 struct dentry *dentry)
509 {
510 	return -EOPNOTSUPP;
511 }
512 
513 static inline int __fscrypt_prepare_rename(struct inode *old_dir,
514 					   struct dentry *old_dentry,
515 					   struct inode *new_dir,
516 					   struct dentry *new_dentry,
517 					   unsigned int flags)
518 {
519 	return -EOPNOTSUPP;
520 }
521 
522 static inline int __fscrypt_prepare_lookup(struct inode *dir,
523 					   struct dentry *dentry,
524 					   struct fscrypt_name *fname)
525 {
526 	return -EOPNOTSUPP;
527 }
528 
529 static inline int __fscrypt_prepare_symlink(struct inode *dir,
530 					    unsigned int len,
531 					    unsigned int max_len,
532 					    struct fscrypt_str *disk_link)
533 {
534 	return -EOPNOTSUPP;
535 }
536 
537 
538 static inline int __fscrypt_encrypt_symlink(struct inode *inode,
539 					    const char *target,
540 					    unsigned int len,
541 					    struct fscrypt_str *disk_link)
542 {
543 	return -EOPNOTSUPP;
544 }
545 
546 static inline const char *fscrypt_get_symlink(struct inode *inode,
547 					      const void *caddr,
548 					      unsigned int max_size,
549 					      struct delayed_call *done)
550 {
551 	return ERR_PTR(-EOPNOTSUPP);
552 }
553 
554 static inline void fscrypt_set_ops(struct super_block *sb,
555 				   const struct fscrypt_operations *s_cop)
556 {
557 }
558 
559 #endif	/* !CONFIG_FS_ENCRYPTION */
560 
561 /**
562  * fscrypt_require_key - require an inode's encryption key
563  * @inode: the inode we need the key for
564  *
565  * If the inode is encrypted, set up its encryption key if not already done.
566  * Then require that the key be present and return -ENOKEY otherwise.
567  *
568  * No locks are needed, and the key will live as long as the struct inode --- so
569  * it won't go away from under you.
570  *
571  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
572  * if a problem occurred while setting up the encryption key.
573  */
574 static inline int fscrypt_require_key(struct inode *inode)
575 {
576 	if (IS_ENCRYPTED(inode)) {
577 		int err = fscrypt_get_encryption_info(inode);
578 
579 		if (err)
580 			return err;
581 		if (!fscrypt_has_encryption_key(inode))
582 			return -ENOKEY;
583 	}
584 	return 0;
585 }
586 
587 /**
588  * fscrypt_prepare_link - prepare to link an inode into a possibly-encrypted directory
589  * @old_dentry: an existing dentry for the inode being linked
590  * @dir: the target directory
591  * @dentry: negative dentry for the target filename
592  *
593  * A new link can only be added to an encrypted directory if the directory's
594  * encryption key is available --- since otherwise we'd have no way to encrypt
595  * the filename.  Therefore, we first set up the directory's encryption key (if
596  * not already done) and return an error if it's unavailable.
597  *
598  * We also verify that the link will not violate the constraint that all files
599  * in an encrypted directory tree use the same encryption policy.
600  *
601  * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
602  * -EXDEV if the link would result in an inconsistent encryption policy, or
603  * another -errno code.
604  */
605 static inline int fscrypt_prepare_link(struct dentry *old_dentry,
606 				       struct inode *dir,
607 				       struct dentry *dentry)
608 {
609 	if (IS_ENCRYPTED(dir))
610 		return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
611 	return 0;
612 }
613 
614 /**
615  * fscrypt_prepare_rename - prepare for a rename between possibly-encrypted directories
616  * @old_dir: source directory
617  * @old_dentry: dentry for source file
618  * @new_dir: target directory
619  * @new_dentry: dentry for target location (may be negative unless exchanging)
620  * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
621  *
622  * Prepare for ->rename() where the source and/or target directories may be
623  * encrypted.  A new link can only be added to an encrypted directory if the
624  * directory's encryption key is available --- since otherwise we'd have no way
625  * to encrypt the filename.  A rename to an existing name, on the other hand,
626  * *is* cryptographically possible without the key.  However, we take the more
627  * conservative approach and just forbid all no-key renames.
628  *
629  * We also verify that the rename will not violate the constraint that all files
630  * in an encrypted directory tree use the same encryption policy.
631  *
632  * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
633  * rename would cause inconsistent encryption policies, or another -errno code.
634  */
635 static inline int fscrypt_prepare_rename(struct inode *old_dir,
636 					 struct dentry *old_dentry,
637 					 struct inode *new_dir,
638 					 struct dentry *new_dentry,
639 					 unsigned int flags)
640 {
641 	if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
642 		return __fscrypt_prepare_rename(old_dir, old_dentry,
643 						new_dir, new_dentry, flags);
644 	return 0;
645 }
646 
647 /**
648  * fscrypt_prepare_lookup - prepare to lookup a name in a possibly-encrypted directory
649  * @dir: directory being searched
650  * @dentry: filename being looked up
651  * @fname: (output) the name to use to search the on-disk directory
652  *
653  * Prepare for ->lookup() in a directory which may be encrypted by determining
654  * the name that will actually be used to search the directory on-disk.  Lookups
655  * can be done with or without the directory's encryption key; without the key,
656  * filenames are presented in encrypted form.  Therefore, we'll try to set up
657  * the directory's encryption key, but even without it the lookup can continue.
658  *
659  * This also installs a custom ->d_revalidate() method which will invalidate the
660  * dentry if it was created without the key and the key is later added.
661  *
662  * Return: 0 on success; -ENOENT if key is unavailable but the filename isn't a
663  * correctly formed encoded ciphertext name, so a negative dentry should be
664  * created; or another -errno code.
665  */
666 static inline int fscrypt_prepare_lookup(struct inode *dir,
667 					 struct dentry *dentry,
668 					 struct fscrypt_name *fname)
669 {
670 	if (IS_ENCRYPTED(dir))
671 		return __fscrypt_prepare_lookup(dir, dentry, fname);
672 
673 	memset(fname, 0, sizeof(*fname));
674 	fname->usr_fname = &dentry->d_name;
675 	fname->disk_name.name = (unsigned char *)dentry->d_name.name;
676 	fname->disk_name.len = dentry->d_name.len;
677 	return 0;
678 }
679 
680 /**
681  * fscrypt_prepare_setattr - prepare to change a possibly-encrypted inode's attributes
682  * @dentry: dentry through which the inode is being changed
683  * @attr: attributes to change
684  *
685  * Prepare for ->setattr() on a possibly-encrypted inode.  On an encrypted file,
686  * most attribute changes are allowed even without the encryption key.  However,
687  * without the encryption key we do have to forbid truncates.  This is needed
688  * because the size being truncated to may not be a multiple of the filesystem
689  * block size, and in that case we'd have to decrypt the final block, zero the
690  * portion past i_size, and re-encrypt it.  (We *could* allow truncating to a
691  * filesystem block boundary, but it's simpler to just forbid all truncates ---
692  * and we already forbid all other contents modifications without the key.)
693  *
694  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
695  * if a problem occurred while setting up the encryption key.
696  */
697 static inline int fscrypt_prepare_setattr(struct dentry *dentry,
698 					  struct iattr *attr)
699 {
700 	if (attr->ia_valid & ATTR_SIZE)
701 		return fscrypt_require_key(d_inode(dentry));
702 	return 0;
703 }
704 
705 /**
706  * fscrypt_prepare_symlink - prepare to create a possibly-encrypted symlink
707  * @dir: directory in which the symlink is being created
708  * @target: plaintext symlink target
709  * @len: length of @target excluding null terminator
710  * @max_len: space the filesystem has available to store the symlink target
711  * @disk_link: (out) the on-disk symlink target being prepared
712  *
713  * This function computes the size the symlink target will require on-disk,
714  * stores it in @disk_link->len, and validates it against @max_len.  An
715  * encrypted symlink may be longer than the original.
716  *
717  * Additionally, @disk_link->name is set to @target if the symlink will be
718  * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
719  * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
720  * on-disk target later.  (The reason for the two-step process is that some
721  * filesystems need to know the size of the symlink target before creating the
722  * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
723  *
724  * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
725  * -ENOKEY if the encryption key is missing, or another -errno code if a problem
726  * occurred while setting up the encryption key.
727  */
728 static inline int fscrypt_prepare_symlink(struct inode *dir,
729 					  const char *target,
730 					  unsigned int len,
731 					  unsigned int max_len,
732 					  struct fscrypt_str *disk_link)
733 {
734 	if (IS_ENCRYPTED(dir) || fscrypt_dummy_context_enabled(dir))
735 		return __fscrypt_prepare_symlink(dir, len, max_len, disk_link);
736 
737 	disk_link->name = (unsigned char *)target;
738 	disk_link->len = len + 1;
739 	if (disk_link->len > max_len)
740 		return -ENAMETOOLONG;
741 	return 0;
742 }
743 
744 /**
745  * fscrypt_encrypt_symlink - encrypt the symlink target if needed
746  * @inode: symlink inode
747  * @target: plaintext symlink target
748  * @len: length of @target excluding null terminator
749  * @disk_link: (in/out) the on-disk symlink target being prepared
750  *
751  * If the symlink target needs to be encrypted, then this function encrypts it
752  * into @disk_link->name.  fscrypt_prepare_symlink() must have been called
753  * previously to compute @disk_link->len.  If the filesystem did not allocate a
754  * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
755  * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
756  *
757  * Return: 0 on success, -errno on failure
758  */
759 static inline int fscrypt_encrypt_symlink(struct inode *inode,
760 					  const char *target,
761 					  unsigned int len,
762 					  struct fscrypt_str *disk_link)
763 {
764 	if (IS_ENCRYPTED(inode))
765 		return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
766 	return 0;
767 }
768 
769 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
770 static inline void fscrypt_finalize_bounce_page(struct page **pagep)
771 {
772 	struct page *page = *pagep;
773 
774 	if (fscrypt_is_bounce_page(page)) {
775 		*pagep = fscrypt_pagecache_page(page);
776 		fscrypt_free_bounce_page(page);
777 	}
778 }
779 
780 #endif	/* _LINUX_FSCRYPT_H */
781