xref: /linux/include/linux/fscrypt.h (revision 3f3a1675b731e532d479e65570f2904878fbd9f0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fscrypt.h: declarations for per-file encryption
4  *
5  * Filesystems that implement per-file encryption must include this header
6  * file.
7  *
8  * Copyright (C) 2015, Google, Inc.
9  *
10  * Written by Michael Halcrow, 2015.
11  * Modified by Jaegeuk Kim, 2015.
12  */
13 #ifndef _LINUX_FSCRYPT_H
14 #define _LINUX_FSCRYPT_H
15 
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <uapi/linux/fscrypt.h>
20 
21 /*
22  * The lengths of all file contents blocks must be divisible by this value.
23  * This is needed to ensure that all contents encryption modes will work, as
24  * some of the supported modes don't support arbitrarily byte-aligned messages.
25  *
26  * Since the needed alignment is 16 bytes, most filesystems will meet this
27  * requirement naturally, as typical block sizes are powers of 2.  However, if a
28  * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via
29  * compression), then it will need to pad to this alignment before encryption.
30  */
31 #define FSCRYPT_CONTENTS_ALIGNMENT 16
32 
33 union fscrypt_policy;
34 struct fscrypt_info;
35 struct fs_parameter;
36 struct seq_file;
37 
38 struct fscrypt_str {
39 	unsigned char *name;
40 	u32 len;
41 };
42 
43 struct fscrypt_name {
44 	const struct qstr *usr_fname;
45 	struct fscrypt_str disk_name;
46 	u32 hash;
47 	u32 minor_hash;
48 	struct fscrypt_str crypto_buf;
49 	bool is_nokey_name;
50 };
51 
52 #define FSTR_INIT(n, l)		{ .name = n, .len = l }
53 #define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
54 #define fname_name(p)		((p)->disk_name.name)
55 #define fname_len(p)		((p)->disk_name.len)
56 
57 /* Maximum value for the third parameter of fscrypt_operations.set_context(). */
58 #define FSCRYPT_SET_CONTEXT_MAX_SIZE	40
59 
60 #ifdef CONFIG_FS_ENCRYPTION
61 
62 /*
63  * If set, the fscrypt bounce page pool won't be allocated (unless another
64  * filesystem needs it).  Set this if the filesystem always uses its own bounce
65  * pages for writes and therefore won't need the fscrypt bounce page pool.
66  */
67 #define FS_CFLG_OWN_PAGES (1U << 1)
68 
69 /* Crypto operations for filesystems */
70 struct fscrypt_operations {
71 
72 	/* Set of optional flags; see above for allowed flags */
73 	unsigned int flags;
74 
75 	/*
76 	 * If set, this is a filesystem-specific key description prefix that
77 	 * will be accepted for "logon" keys for v1 fscrypt policies, in
78 	 * addition to the generic prefix "fscrypt:".  This functionality is
79 	 * deprecated, so new filesystems shouldn't set this field.
80 	 */
81 	const char *key_prefix;
82 
83 	/*
84 	 * Get the fscrypt context of the given inode.
85 	 *
86 	 * @inode: the inode whose context to get
87 	 * @ctx: the buffer into which to get the context
88 	 * @len: length of the @ctx buffer in bytes
89 	 *
90 	 * Return: On success, returns the length of the context in bytes; this
91 	 *	   may be less than @len.  On failure, returns -ENODATA if the
92 	 *	   inode doesn't have a context, -ERANGE if the context is
93 	 *	   longer than @len, or another -errno code.
94 	 */
95 	int (*get_context)(struct inode *inode, void *ctx, size_t len);
96 
97 	/*
98 	 * Set an fscrypt context on the given inode.
99 	 *
100 	 * @inode: the inode whose context to set.  The inode won't already have
101 	 *	   an fscrypt context.
102 	 * @ctx: the context to set
103 	 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
104 	 * @fs_data: If called from fscrypt_set_context(), this will be the
105 	 *	     value the filesystem passed to fscrypt_set_context().
106 	 *	     Otherwise (i.e. when called from
107 	 *	     FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
108 	 *
109 	 * i_rwsem will be held for write.
110 	 *
111 	 * Return: 0 on success, -errno on failure.
112 	 */
113 	int (*set_context)(struct inode *inode, const void *ctx, size_t len,
114 			   void *fs_data);
115 
116 	/*
117 	 * Get the dummy fscrypt policy in use on the filesystem (if any).
118 	 *
119 	 * Filesystems only need to implement this function if they support the
120 	 * test_dummy_encryption mount option.
121 	 *
122 	 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
123 	 *	   mounted with test_dummy_encryption; otherwise NULL.
124 	 */
125 	const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
126 
127 	/*
128 	 * Check whether a directory is empty.  i_rwsem will be held for write.
129 	 */
130 	bool (*empty_dir)(struct inode *inode);
131 
132 	/*
133 	 * Check whether the filesystem's inode numbers and UUID are stable,
134 	 * meaning that they will never be changed even by offline operations
135 	 * such as filesystem shrinking and therefore can be used in the
136 	 * encryption without the possibility of files becoming unreadable.
137 	 *
138 	 * Filesystems only need to implement this function if they want to
139 	 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags.  These
140 	 * flags are designed to work around the limitations of UFS and eMMC
141 	 * inline crypto hardware, and they shouldn't be used in scenarios where
142 	 * such hardware isn't being used.
143 	 *
144 	 * Leaving this NULL is equivalent to always returning false.
145 	 */
146 	bool (*has_stable_inodes)(struct super_block *sb);
147 
148 	/*
149 	 * Get the number of bits that the filesystem uses to represent inode
150 	 * numbers and file logical block numbers.
151 	 *
152 	 * By default, both of these are assumed to be 64-bit.  This function
153 	 * can be implemented to declare that either or both of these numbers is
154 	 * shorter, which may allow the use of the
155 	 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags and/or the use of
156 	 * inline crypto hardware whose maximum DUN length is less than 64 bits
157 	 * (e.g., eMMC v5.2 spec compliant hardware).  This function only needs
158 	 * to be implemented if support for one of these features is needed.
159 	 */
160 	void (*get_ino_and_lblk_bits)(struct super_block *sb,
161 				      int *ino_bits_ret, int *lblk_bits_ret);
162 
163 	/*
164 	 * Return an array of pointers to the block devices to which the
165 	 * filesystem may write encrypted file contents, NULL if the filesystem
166 	 * only has a single such block device, or an ERR_PTR() on error.
167 	 *
168 	 * On successful non-NULL return, *num_devs is set to the number of
169 	 * devices in the returned array.  The caller must free the returned
170 	 * array using kfree().
171 	 *
172 	 * If the filesystem can use multiple block devices (other than block
173 	 * devices that aren't used for encrypted file contents, such as
174 	 * external journal devices), and wants to support inline encryption,
175 	 * then it must implement this function.  Otherwise it's not needed.
176 	 */
177 	struct block_device **(*get_devices)(struct super_block *sb,
178 					     unsigned int *num_devs);
179 };
180 
181 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
182 {
183 	/*
184 	 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
185 	 * I.e., another task may publish ->i_crypt_info concurrently, executing
186 	 * a RELEASE barrier.  We need to use smp_load_acquire() here to safely
187 	 * ACQUIRE the memory the other task published.
188 	 */
189 	return smp_load_acquire(&inode->i_crypt_info);
190 }
191 
192 /**
193  * fscrypt_needs_contents_encryption() - check whether an inode needs
194  *					 contents encryption
195  * @inode: the inode to check
196  *
197  * Return: %true iff the inode is an encrypted regular file and the kernel was
198  * built with fscrypt support.
199  *
200  * If you need to know whether the encrypt bit is set even when the kernel was
201  * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
202  */
203 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
204 {
205 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
206 }
207 
208 /*
209  * When d_splice_alias() moves a directory's no-key alias to its plaintext alias
210  * as a result of the encryption key being added, DCACHE_NOKEY_NAME must be
211  * cleared.  Note that we don't have to support arbitrary moves of this flag
212  * because fscrypt doesn't allow no-key names to be the source or target of a
213  * rename().
214  */
215 static inline void fscrypt_handle_d_move(struct dentry *dentry)
216 {
217 	dentry->d_flags &= ~DCACHE_NOKEY_NAME;
218 }
219 
220 /**
221  * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
222  * @dentry: the dentry to check
223  *
224  * This returns true if the dentry is a no-key dentry.  A no-key dentry is a
225  * dentry that was created in an encrypted directory that hasn't had its
226  * encryption key added yet.  Such dentries may be either positive or negative.
227  *
228  * When a filesystem is asked to create a new filename in an encrypted directory
229  * and the new filename's dentry is a no-key dentry, it must fail the operation
230  * with ENOKEY.  This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
231  * ->rename(), and ->link().  (However, ->rename() and ->link() are already
232  * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
233  *
234  * This is necessary because creating a filename requires the directory's
235  * encryption key, but just checking for the key on the directory inode during
236  * the final filesystem operation doesn't guarantee that the key was available
237  * during the preceding dentry lookup.  And the key must have already been
238  * available during the dentry lookup in order for it to have been checked
239  * whether the filename already exists in the directory and for the new file's
240  * dentry not to be invalidated due to it incorrectly having the no-key flag.
241  *
242  * Return: %true if the dentry is a no-key name
243  */
244 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
245 {
246 	return dentry->d_flags & DCACHE_NOKEY_NAME;
247 }
248 
249 /* crypto.c */
250 void fscrypt_enqueue_decrypt_work(struct work_struct *);
251 
252 struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
253 					      unsigned int len,
254 					      unsigned int offs,
255 					      gfp_t gfp_flags);
256 int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
257 				  unsigned int len, unsigned int offs,
258 				  u64 lblk_num, gfp_t gfp_flags);
259 
260 int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
261 				     size_t offs);
262 int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
263 				  unsigned int len, unsigned int offs,
264 				  u64 lblk_num);
265 
266 static inline bool fscrypt_is_bounce_page(struct page *page)
267 {
268 	return page->mapping == NULL;
269 }
270 
271 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
272 {
273 	return (struct page *)page_private(bounce_page);
274 }
275 
276 void fscrypt_free_bounce_page(struct page *bounce_page);
277 
278 /* policy.c */
279 int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
280 int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
281 int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
282 int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
283 int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
284 int fscrypt_context_for_new_inode(void *ctx, struct inode *inode);
285 int fscrypt_set_context(struct inode *inode, void *fs_data);
286 
287 struct fscrypt_dummy_policy {
288 	const union fscrypt_policy *policy;
289 };
290 
291 int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
292 				    struct fscrypt_dummy_policy *dummy_policy);
293 bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
294 				  const struct fscrypt_dummy_policy *p2);
295 void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
296 					struct super_block *sb);
297 static inline bool
298 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
299 {
300 	return dummy_policy->policy != NULL;
301 }
302 static inline void
303 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
304 {
305 	kfree(dummy_policy->policy);
306 	dummy_policy->policy = NULL;
307 }
308 
309 /* keyring.c */
310 void fscrypt_destroy_keyring(struct super_block *sb);
311 int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
312 int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
313 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
314 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
315 
316 /* keysetup.c */
317 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
318 			      bool *encrypt_ret);
319 void fscrypt_put_encryption_info(struct inode *inode);
320 void fscrypt_free_inode(struct inode *inode);
321 int fscrypt_drop_inode(struct inode *inode);
322 
323 /* fname.c */
324 int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
325 			  u8 *out, unsigned int olen);
326 bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
327 				  u32 max_len, u32 *encrypted_len_ret);
328 int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
329 			   int lookup, struct fscrypt_name *fname);
330 
331 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
332 {
333 	kfree(fname->crypto_buf.name);
334 }
335 
336 int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
337 			       struct fscrypt_str *crypto_str);
338 void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
339 int fscrypt_fname_disk_to_usr(const struct inode *inode,
340 			      u32 hash, u32 minor_hash,
341 			      const struct fscrypt_str *iname,
342 			      struct fscrypt_str *oname);
343 bool fscrypt_match_name(const struct fscrypt_name *fname,
344 			const u8 *de_name, u32 de_name_len);
345 u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
346 int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
347 
348 /* bio.c */
349 bool fscrypt_decrypt_bio(struct bio *bio);
350 int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
351 			  sector_t pblk, unsigned int len);
352 
353 /* hooks.c */
354 int fscrypt_file_open(struct inode *inode, struct file *filp);
355 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
356 			   struct dentry *dentry);
357 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
358 			     struct inode *new_dir, struct dentry *new_dentry,
359 			     unsigned int flags);
360 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
361 			     struct fscrypt_name *fname);
362 int __fscrypt_prepare_readdir(struct inode *dir);
363 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
364 int fscrypt_prepare_setflags(struct inode *inode,
365 			     unsigned int oldflags, unsigned int flags);
366 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
367 			    unsigned int len, unsigned int max_len,
368 			    struct fscrypt_str *disk_link);
369 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
370 			      unsigned int len, struct fscrypt_str *disk_link);
371 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
372 				unsigned int max_size,
373 				struct delayed_call *done);
374 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
375 static inline void fscrypt_set_ops(struct super_block *sb,
376 				   const struct fscrypt_operations *s_cop)
377 {
378 	sb->s_cop = s_cop;
379 }
380 #else  /* !CONFIG_FS_ENCRYPTION */
381 
382 static inline struct fscrypt_info *fscrypt_get_info(const struct inode *inode)
383 {
384 	return NULL;
385 }
386 
387 static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
388 {
389 	return false;
390 }
391 
392 static inline void fscrypt_handle_d_move(struct dentry *dentry)
393 {
394 }
395 
396 static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
397 {
398 	return false;
399 }
400 
401 /* crypto.c */
402 static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
403 {
404 }
405 
406 static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
407 							    unsigned int len,
408 							    unsigned int offs,
409 							    gfp_t gfp_flags)
410 {
411 	return ERR_PTR(-EOPNOTSUPP);
412 }
413 
414 static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
415 						struct page *page,
416 						unsigned int len,
417 						unsigned int offs, u64 lblk_num,
418 						gfp_t gfp_flags)
419 {
420 	return -EOPNOTSUPP;
421 }
422 
423 static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio,
424 						   size_t len, size_t offs)
425 {
426 	return -EOPNOTSUPP;
427 }
428 
429 static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
430 						struct page *page,
431 						unsigned int len,
432 						unsigned int offs, u64 lblk_num)
433 {
434 	return -EOPNOTSUPP;
435 }
436 
437 static inline bool fscrypt_is_bounce_page(struct page *page)
438 {
439 	return false;
440 }
441 
442 static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
443 {
444 	WARN_ON_ONCE(1);
445 	return ERR_PTR(-EINVAL);
446 }
447 
448 static inline void fscrypt_free_bounce_page(struct page *bounce_page)
449 {
450 }
451 
452 /* policy.c */
453 static inline int fscrypt_ioctl_set_policy(struct file *filp,
454 					   const void __user *arg)
455 {
456 	return -EOPNOTSUPP;
457 }
458 
459 static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
460 {
461 	return -EOPNOTSUPP;
462 }
463 
464 static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
465 					      void __user *arg)
466 {
467 	return -EOPNOTSUPP;
468 }
469 
470 static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
471 {
472 	return -EOPNOTSUPP;
473 }
474 
475 static inline int fscrypt_has_permitted_context(struct inode *parent,
476 						struct inode *child)
477 {
478 	return 0;
479 }
480 
481 static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
482 {
483 	return -EOPNOTSUPP;
484 }
485 
486 struct fscrypt_dummy_policy {
487 };
488 
489 static inline int
490 fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
491 				    struct fscrypt_dummy_policy *dummy_policy)
492 {
493 	return -EINVAL;
494 }
495 
496 static inline bool
497 fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
498 			     const struct fscrypt_dummy_policy *p2)
499 {
500 	return true;
501 }
502 
503 static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
504 						      char sep,
505 						      struct super_block *sb)
506 {
507 }
508 
509 static inline bool
510 fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
511 {
512 	return false;
513 }
514 
515 static inline void
516 fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
517 {
518 }
519 
520 /* keyring.c */
521 static inline void fscrypt_destroy_keyring(struct super_block *sb)
522 {
523 }
524 
525 static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
526 {
527 	return -EOPNOTSUPP;
528 }
529 
530 static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
531 {
532 	return -EOPNOTSUPP;
533 }
534 
535 static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
536 						     void __user *arg)
537 {
538 	return -EOPNOTSUPP;
539 }
540 
541 static inline int fscrypt_ioctl_get_key_status(struct file *filp,
542 					       void __user *arg)
543 {
544 	return -EOPNOTSUPP;
545 }
546 
547 /* keysetup.c */
548 
549 static inline int fscrypt_prepare_new_inode(struct inode *dir,
550 					    struct inode *inode,
551 					    bool *encrypt_ret)
552 {
553 	if (IS_ENCRYPTED(dir))
554 		return -EOPNOTSUPP;
555 	return 0;
556 }
557 
558 static inline void fscrypt_put_encryption_info(struct inode *inode)
559 {
560 	return;
561 }
562 
563 static inline void fscrypt_free_inode(struct inode *inode)
564 {
565 }
566 
567 static inline int fscrypt_drop_inode(struct inode *inode)
568 {
569 	return 0;
570 }
571 
572  /* fname.c */
573 static inline int fscrypt_setup_filename(struct inode *dir,
574 					 const struct qstr *iname,
575 					 int lookup, struct fscrypt_name *fname)
576 {
577 	if (IS_ENCRYPTED(dir))
578 		return -EOPNOTSUPP;
579 
580 	memset(fname, 0, sizeof(*fname));
581 	fname->usr_fname = iname;
582 	fname->disk_name.name = (unsigned char *)iname->name;
583 	fname->disk_name.len = iname->len;
584 	return 0;
585 }
586 
587 static inline void fscrypt_free_filename(struct fscrypt_name *fname)
588 {
589 	return;
590 }
591 
592 static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
593 					     struct fscrypt_str *crypto_str)
594 {
595 	return -EOPNOTSUPP;
596 }
597 
598 static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
599 {
600 	return;
601 }
602 
603 static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
604 					    u32 hash, u32 minor_hash,
605 					    const struct fscrypt_str *iname,
606 					    struct fscrypt_str *oname)
607 {
608 	return -EOPNOTSUPP;
609 }
610 
611 static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
612 				      const u8 *de_name, u32 de_name_len)
613 {
614 	/* Encryption support disabled; use standard comparison */
615 	if (de_name_len != fname->disk_name.len)
616 		return false;
617 	return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
618 }
619 
620 static inline u64 fscrypt_fname_siphash(const struct inode *dir,
621 					const struct qstr *name)
622 {
623 	WARN_ON_ONCE(1);
624 	return 0;
625 }
626 
627 static inline int fscrypt_d_revalidate(struct dentry *dentry,
628 				       unsigned int flags)
629 {
630 	return 1;
631 }
632 
633 /* bio.c */
634 static inline bool fscrypt_decrypt_bio(struct bio *bio)
635 {
636 	return true;
637 }
638 
639 static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
640 					sector_t pblk, unsigned int len)
641 {
642 	return -EOPNOTSUPP;
643 }
644 
645 /* hooks.c */
646 
647 static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
648 {
649 	if (IS_ENCRYPTED(inode))
650 		return -EOPNOTSUPP;
651 	return 0;
652 }
653 
654 static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
655 					 struct dentry *dentry)
656 {
657 	return -EOPNOTSUPP;
658 }
659 
660 static inline int __fscrypt_prepare_rename(struct inode *old_dir,
661 					   struct dentry *old_dentry,
662 					   struct inode *new_dir,
663 					   struct dentry *new_dentry,
664 					   unsigned int flags)
665 {
666 	return -EOPNOTSUPP;
667 }
668 
669 static inline int __fscrypt_prepare_lookup(struct inode *dir,
670 					   struct dentry *dentry,
671 					   struct fscrypt_name *fname)
672 {
673 	return -EOPNOTSUPP;
674 }
675 
676 static inline int __fscrypt_prepare_readdir(struct inode *dir)
677 {
678 	return -EOPNOTSUPP;
679 }
680 
681 static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
682 					    struct iattr *attr)
683 {
684 	return -EOPNOTSUPP;
685 }
686 
687 static inline int fscrypt_prepare_setflags(struct inode *inode,
688 					   unsigned int oldflags,
689 					   unsigned int flags)
690 {
691 	return 0;
692 }
693 
694 static inline int fscrypt_prepare_symlink(struct inode *dir,
695 					  const char *target,
696 					  unsigned int len,
697 					  unsigned int max_len,
698 					  struct fscrypt_str *disk_link)
699 {
700 	if (IS_ENCRYPTED(dir))
701 		return -EOPNOTSUPP;
702 	disk_link->name = (unsigned char *)target;
703 	disk_link->len = len + 1;
704 	if (disk_link->len > max_len)
705 		return -ENAMETOOLONG;
706 	return 0;
707 }
708 
709 static inline int __fscrypt_encrypt_symlink(struct inode *inode,
710 					    const char *target,
711 					    unsigned int len,
712 					    struct fscrypt_str *disk_link)
713 {
714 	return -EOPNOTSUPP;
715 }
716 
717 static inline const char *fscrypt_get_symlink(struct inode *inode,
718 					      const void *caddr,
719 					      unsigned int max_size,
720 					      struct delayed_call *done)
721 {
722 	return ERR_PTR(-EOPNOTSUPP);
723 }
724 
725 static inline int fscrypt_symlink_getattr(const struct path *path,
726 					  struct kstat *stat)
727 {
728 	return -EOPNOTSUPP;
729 }
730 
731 static inline void fscrypt_set_ops(struct super_block *sb,
732 				   const struct fscrypt_operations *s_cop)
733 {
734 }
735 
736 #endif	/* !CONFIG_FS_ENCRYPTION */
737 
738 /* inline_crypt.c */
739 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
740 
741 bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
742 
743 void fscrypt_set_bio_crypt_ctx(struct bio *bio,
744 			       const struct inode *inode, u64 first_lblk,
745 			       gfp_t gfp_mask);
746 
747 void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
748 				  const struct buffer_head *first_bh,
749 				  gfp_t gfp_mask);
750 
751 bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
752 			   u64 next_lblk);
753 
754 bool fscrypt_mergeable_bio_bh(struct bio *bio,
755 			      const struct buffer_head *next_bh);
756 
757 bool fscrypt_dio_supported(struct inode *inode);
758 
759 u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks);
760 
761 #else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
762 
763 static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
764 {
765 	return false;
766 }
767 
768 static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
769 					     const struct inode *inode,
770 					     u64 first_lblk, gfp_t gfp_mask) { }
771 
772 static inline void fscrypt_set_bio_crypt_ctx_bh(
773 					 struct bio *bio,
774 					 const struct buffer_head *first_bh,
775 					 gfp_t gfp_mask) { }
776 
777 static inline bool fscrypt_mergeable_bio(struct bio *bio,
778 					 const struct inode *inode,
779 					 u64 next_lblk)
780 {
781 	return true;
782 }
783 
784 static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
785 					    const struct buffer_head *next_bh)
786 {
787 	return true;
788 }
789 
790 static inline bool fscrypt_dio_supported(struct inode *inode)
791 {
792 	return !fscrypt_needs_contents_encryption(inode);
793 }
794 
795 static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk,
796 					  u64 nr_blocks)
797 {
798 	return nr_blocks;
799 }
800 #endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
801 
802 /**
803  * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
804  *					encryption
805  * @inode: an inode. If encrypted, its key must be set up.
806  *
807  * Return: true if the inode requires file contents encryption and if the
808  *	   encryption should be done in the block layer via blk-crypto rather
809  *	   than in the filesystem layer.
810  */
811 static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
812 {
813 	return fscrypt_needs_contents_encryption(inode) &&
814 	       __fscrypt_inode_uses_inline_crypto(inode);
815 }
816 
817 /**
818  * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
819  *					  encryption
820  * @inode: an inode. If encrypted, its key must be set up.
821  *
822  * Return: true if the inode requires file contents encryption and if the
823  *	   encryption should be done in the filesystem layer rather than in the
824  *	   block layer via blk-crypto.
825  */
826 static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
827 {
828 	return fscrypt_needs_contents_encryption(inode) &&
829 	       !__fscrypt_inode_uses_inline_crypto(inode);
830 }
831 
832 /**
833  * fscrypt_has_encryption_key() - check whether an inode has had its key set up
834  * @inode: the inode to check
835  *
836  * Return: %true if the inode has had its encryption key set up, else %false.
837  *
838  * Usually this should be preceded by fscrypt_get_encryption_info() to try to
839  * set up the key first.
840  */
841 static inline bool fscrypt_has_encryption_key(const struct inode *inode)
842 {
843 	return fscrypt_get_info(inode) != NULL;
844 }
845 
846 /**
847  * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
848  *			    directory
849  * @old_dentry: an existing dentry for the inode being linked
850  * @dir: the target directory
851  * @dentry: negative dentry for the target filename
852  *
853  * A new link can only be added to an encrypted directory if the directory's
854  * encryption key is available --- since otherwise we'd have no way to encrypt
855  * the filename.
856  *
857  * We also verify that the link will not violate the constraint that all files
858  * in an encrypted directory tree use the same encryption policy.
859  *
860  * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
861  * -EXDEV if the link would result in an inconsistent encryption policy, or
862  * another -errno code.
863  */
864 static inline int fscrypt_prepare_link(struct dentry *old_dentry,
865 				       struct inode *dir,
866 				       struct dentry *dentry)
867 {
868 	if (IS_ENCRYPTED(dir))
869 		return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
870 	return 0;
871 }
872 
873 /**
874  * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
875  *			      directories
876  * @old_dir: source directory
877  * @old_dentry: dentry for source file
878  * @new_dir: target directory
879  * @new_dentry: dentry for target location (may be negative unless exchanging)
880  * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
881  *
882  * Prepare for ->rename() where the source and/or target directories may be
883  * encrypted.  A new link can only be added to an encrypted directory if the
884  * directory's encryption key is available --- since otherwise we'd have no way
885  * to encrypt the filename.  A rename to an existing name, on the other hand,
886  * *is* cryptographically possible without the key.  However, we take the more
887  * conservative approach and just forbid all no-key renames.
888  *
889  * We also verify that the rename will not violate the constraint that all files
890  * in an encrypted directory tree use the same encryption policy.
891  *
892  * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
893  * rename would cause inconsistent encryption policies, or another -errno code.
894  */
895 static inline int fscrypt_prepare_rename(struct inode *old_dir,
896 					 struct dentry *old_dentry,
897 					 struct inode *new_dir,
898 					 struct dentry *new_dentry,
899 					 unsigned int flags)
900 {
901 	if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
902 		return __fscrypt_prepare_rename(old_dir, old_dentry,
903 						new_dir, new_dentry, flags);
904 	return 0;
905 }
906 
907 /**
908  * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
909  *			      directory
910  * @dir: directory being searched
911  * @dentry: filename being looked up
912  * @fname: (output) the name to use to search the on-disk directory
913  *
914  * Prepare for ->lookup() in a directory which may be encrypted by determining
915  * the name that will actually be used to search the directory on-disk.  If the
916  * directory's encryption policy is supported by this kernel and its encryption
917  * key is available, then the lookup is assumed to be by plaintext name;
918  * otherwise, it is assumed to be by no-key name.
919  *
920  * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
921  * name.  In this case the filesystem must assign the dentry a dentry_operations
922  * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
923  * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
924  * directory's encryption key is later added.
925  *
926  * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
927  * filename isn't a valid no-key name, so a negative dentry should be created;
928  * or another -errno code.
929  */
930 static inline int fscrypt_prepare_lookup(struct inode *dir,
931 					 struct dentry *dentry,
932 					 struct fscrypt_name *fname)
933 {
934 	if (IS_ENCRYPTED(dir))
935 		return __fscrypt_prepare_lookup(dir, dentry, fname);
936 
937 	memset(fname, 0, sizeof(*fname));
938 	fname->usr_fname = &dentry->d_name;
939 	fname->disk_name.name = (unsigned char *)dentry->d_name.name;
940 	fname->disk_name.len = dentry->d_name.len;
941 	return 0;
942 }
943 
944 /**
945  * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
946  * @dir: the directory inode
947  *
948  * If the directory is encrypted and it doesn't already have its encryption key
949  * set up, try to set it up so that the filenames will be listed in plaintext
950  * form rather than in no-key form.
951  *
952  * Return: 0 on success; -errno on error.  Note that the encryption key being
953  *	   unavailable is not considered an error.  It is also not an error if
954  *	   the encryption policy is unsupported by this kernel; that is treated
955  *	   like the key being unavailable, so that files can still be deleted.
956  */
957 static inline int fscrypt_prepare_readdir(struct inode *dir)
958 {
959 	if (IS_ENCRYPTED(dir))
960 		return __fscrypt_prepare_readdir(dir);
961 	return 0;
962 }
963 
964 /**
965  * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
966  *			       attributes
967  * @dentry: dentry through which the inode is being changed
968  * @attr: attributes to change
969  *
970  * Prepare for ->setattr() on a possibly-encrypted inode.  On an encrypted file,
971  * most attribute changes are allowed even without the encryption key.  However,
972  * without the encryption key we do have to forbid truncates.  This is needed
973  * because the size being truncated to may not be a multiple of the filesystem
974  * block size, and in that case we'd have to decrypt the final block, zero the
975  * portion past i_size, and re-encrypt it.  (We *could* allow truncating to a
976  * filesystem block boundary, but it's simpler to just forbid all truncates ---
977  * and we already forbid all other contents modifications without the key.)
978  *
979  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
980  * if a problem occurred while setting up the encryption key.
981  */
982 static inline int fscrypt_prepare_setattr(struct dentry *dentry,
983 					  struct iattr *attr)
984 {
985 	if (IS_ENCRYPTED(d_inode(dentry)))
986 		return __fscrypt_prepare_setattr(dentry, attr);
987 	return 0;
988 }
989 
990 /**
991  * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
992  * @inode: symlink inode
993  * @target: plaintext symlink target
994  * @len: length of @target excluding null terminator
995  * @disk_link: (in/out) the on-disk symlink target being prepared
996  *
997  * If the symlink target needs to be encrypted, then this function encrypts it
998  * into @disk_link->name.  fscrypt_prepare_symlink() must have been called
999  * previously to compute @disk_link->len.  If the filesystem did not allocate a
1000  * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
1001  * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
1002  *
1003  * Return: 0 on success, -errno on failure
1004  */
1005 static inline int fscrypt_encrypt_symlink(struct inode *inode,
1006 					  const char *target,
1007 					  unsigned int len,
1008 					  struct fscrypt_str *disk_link)
1009 {
1010 	if (IS_ENCRYPTED(inode))
1011 		return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
1012 	return 0;
1013 }
1014 
1015 /* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
1016 static inline void fscrypt_finalize_bounce_page(struct page **pagep)
1017 {
1018 	struct page *page = *pagep;
1019 
1020 	if (fscrypt_is_bounce_page(page)) {
1021 		*pagep = fscrypt_pagecache_page(page);
1022 		fscrypt_free_bounce_page(page);
1023 	}
1024 }
1025 
1026 #endif	/* _LINUX_FSCRYPT_H */
1027