xref: /linux/include/linux/firewire.h (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_FIREWIRE_H
3 #define _LINUX_FIREWIRE_H
4 
5 #include <linux/completion.h>
6 #include <linux/device.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/kernel.h>
9 #include <linux/kref.h>
10 #include <linux/list.h>
11 #include <linux/mutex.h>
12 #include <linux/spinlock.h>
13 #include <linux/sysfs.h>
14 #include <linux/timer.h>
15 #include <linux/types.h>
16 #include <linux/workqueue.h>
17 
18 #include <linux/atomic.h>
19 #include <asm/byteorder.h>
20 
21 #define CSR_REGISTER_BASE		0xfffff0000000ULL
22 
23 /* register offsets are relative to CSR_REGISTER_BASE */
24 #define CSR_STATE_CLEAR			0x0
25 #define CSR_STATE_SET			0x4
26 #define CSR_NODE_IDS			0x8
27 #define CSR_RESET_START			0xc
28 #define CSR_SPLIT_TIMEOUT_HI		0x18
29 #define CSR_SPLIT_TIMEOUT_LO		0x1c
30 #define CSR_CYCLE_TIME			0x200
31 #define CSR_BUS_TIME			0x204
32 #define CSR_BUSY_TIMEOUT		0x210
33 #define CSR_PRIORITY_BUDGET		0x218
34 #define CSR_BUS_MANAGER_ID		0x21c
35 #define CSR_BANDWIDTH_AVAILABLE		0x220
36 #define CSR_CHANNELS_AVAILABLE		0x224
37 #define CSR_CHANNELS_AVAILABLE_HI	0x224
38 #define CSR_CHANNELS_AVAILABLE_LO	0x228
39 #define CSR_MAINT_UTILITY		0x230
40 #define CSR_BROADCAST_CHANNEL		0x234
41 #define CSR_CONFIG_ROM			0x400
42 #define CSR_CONFIG_ROM_END		0x800
43 #define CSR_OMPR			0x900
44 #define CSR_OPCR(i)			(0x904 + (i) * 4)
45 #define CSR_IMPR			0x980
46 #define CSR_IPCR(i)			(0x984 + (i) * 4)
47 #define CSR_FCP_COMMAND			0xB00
48 #define CSR_FCP_RESPONSE		0xD00
49 #define CSR_FCP_END			0xF00
50 #define CSR_TOPOLOGY_MAP		0x1000
51 #define CSR_TOPOLOGY_MAP_END		0x1400
52 #define CSR_SPEED_MAP			0x2000
53 #define CSR_SPEED_MAP_END		0x3000
54 
55 #define CSR_OFFSET		0x40
56 #define CSR_LEAF		0x80
57 #define CSR_DIRECTORY		0xc0
58 
59 #define CSR_DESCRIPTOR		0x01
60 #define CSR_VENDOR		0x03
61 #define CSR_HARDWARE_VERSION	0x04
62 #define CSR_UNIT		0x11
63 #define CSR_SPECIFIER_ID	0x12
64 #define CSR_VERSION		0x13
65 #define CSR_DEPENDENT_INFO	0x14
66 #define CSR_MODEL		0x17
67 #define CSR_DIRECTORY_ID	0x20
68 
69 struct fw_csr_iterator {
70 	const u32 *p;
71 	const u32 *end;
72 };
73 
74 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p);
75 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value);
76 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size);
77 
78 extern const struct bus_type fw_bus_type;
79 
80 struct fw_card_driver;
81 struct fw_node;
82 
83 struct fw_card {
84 	const struct fw_card_driver *driver;
85 	struct device *device;
86 	struct kref kref;
87 	struct completion done;
88 
89 	int node_id;
90 	int generation;
91 	int current_tlabel;
92 	u64 tlabel_mask;
93 	struct list_head transaction_list;
94 	u64 reset_jiffies;
95 
96 	u32 split_timeout_hi;
97 	u32 split_timeout_lo;
98 	unsigned int split_timeout_cycles;
99 	unsigned int split_timeout_jiffies;
100 
101 	unsigned long long guid;
102 	unsigned max_receive;
103 	int link_speed;
104 	int config_rom_generation;
105 
106 	spinlock_t lock; /* Take this lock when handling the lists in
107 			  * this struct. */
108 	struct fw_node *local_node;
109 	struct fw_node *root_node;
110 	struct fw_node *irm_node;
111 	u8 color; /* must be u8 to match the definition in struct fw_node */
112 	int gap_count;
113 	bool beta_repeaters_present;
114 
115 	int index;
116 	struct list_head link;
117 
118 	struct list_head phy_receiver_list;
119 
120 	struct delayed_work br_work; /* bus reset job */
121 	bool br_short;
122 
123 	struct delayed_work bm_work; /* bus manager job */
124 	int bm_retries;
125 	int bm_generation;
126 	int bm_node_id;
127 	bool bm_abdicate;
128 
129 	bool priority_budget_implemented;	/* controller feature */
130 	bool broadcast_channel_auto_allocated;	/* controller feature */
131 
132 	bool broadcast_channel_allocated;
133 	u32 broadcast_channel;
134 	__be32 topology_map[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4];
135 
136 	__be32 maint_utility_register;
137 
138 	struct workqueue_struct *isoc_wq;
139 };
140 
141 static inline struct fw_card *fw_card_get(struct fw_card *card)
142 {
143 	kref_get(&card->kref);
144 
145 	return card;
146 }
147 
148 void fw_card_release(struct kref *kref);
149 
150 static inline void fw_card_put(struct fw_card *card)
151 {
152 	kref_put(&card->kref, fw_card_release);
153 }
154 
155 int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time);
156 
157 struct fw_attribute_group {
158 	struct attribute_group *groups[2];
159 	struct attribute_group group;
160 	struct attribute *attrs[13];
161 };
162 
163 enum fw_device_state {
164 	FW_DEVICE_INITIALIZING,
165 	FW_DEVICE_RUNNING,
166 	FW_DEVICE_GONE,
167 	FW_DEVICE_SHUTDOWN,
168 };
169 
170 /*
171  * Note, fw_device.generation always has to be read before fw_device.node_id.
172  * Use SMP memory barriers to ensure this.  Otherwise requests will be sent
173  * to an outdated node_id if the generation was updated in the meantime due
174  * to a bus reset.
175  *
176  * Likewise, fw-core will take care to update .node_id before .generation so
177  * that whenever fw_device.generation is current WRT the actual bus generation,
178  * fw_device.node_id is guaranteed to be current too.
179  *
180  * The same applies to fw_device.card->node_id vs. fw_device.generation.
181  *
182  * fw_device.config_rom and fw_device.config_rom_length may be accessed during
183  * the lifetime of any fw_unit belonging to the fw_device, before device_del()
184  * was called on the last fw_unit.  Alternatively, they may be accessed while
185  * holding fw_device_rwsem.
186  */
187 struct fw_device {
188 	atomic_t state;
189 	struct fw_node *node;
190 	int node_id;
191 	int generation;
192 	unsigned max_speed;
193 	struct fw_card *card;
194 	struct device device;
195 
196 	struct mutex client_list_mutex;
197 	struct list_head client_list;
198 
199 	const u32 *config_rom;
200 	size_t config_rom_length;
201 	int config_rom_retries;
202 	unsigned is_local:1;
203 	unsigned max_rec:4;
204 	unsigned cmc:1;
205 	unsigned irmc:1;
206 	unsigned bc_implemented:2;
207 
208 	work_func_t workfn;
209 	struct delayed_work work;
210 	struct fw_attribute_group attribute_group;
211 };
212 
213 #define fw_device(dev)	container_of_const(dev, struct fw_device, device)
214 
215 static inline int fw_device_is_shutdown(struct fw_device *device)
216 {
217 	return atomic_read(&device->state) == FW_DEVICE_SHUTDOWN;
218 }
219 
220 int fw_device_enable_phys_dma(struct fw_device *device);
221 
222 /*
223  * fw_unit.directory must not be accessed after device_del(&fw_unit.device).
224  */
225 struct fw_unit {
226 	struct device device;
227 	const u32 *directory;
228 	struct fw_attribute_group attribute_group;
229 };
230 
231 #define fw_unit(dev)	container_of_const(dev, struct fw_unit, device)
232 
233 static inline struct fw_unit *fw_unit_get(struct fw_unit *unit)
234 {
235 	get_device(&unit->device);
236 
237 	return unit;
238 }
239 
240 static inline void fw_unit_put(struct fw_unit *unit)
241 {
242 	put_device(&unit->device);
243 }
244 
245 #define fw_parent_device(unit)	fw_device(unit->device.parent)
246 
247 struct ieee1394_device_id;
248 
249 struct fw_driver {
250 	struct device_driver driver;
251 	int (*probe)(struct fw_unit *unit, const struct ieee1394_device_id *id);
252 	/* Called when the parent device sits through a bus reset. */
253 	void (*update)(struct fw_unit *unit);
254 	void (*remove)(struct fw_unit *unit);
255 	const struct ieee1394_device_id *id_table;
256 };
257 
258 struct fw_packet;
259 struct fw_request;
260 
261 typedef void (*fw_packet_callback_t)(struct fw_packet *packet,
262 				     struct fw_card *card, int status);
263 typedef void (*fw_transaction_callback_t)(struct fw_card *card, int rcode,
264 					  void *data, size_t length,
265 					  void *callback_data);
266 typedef void (*fw_transaction_callback_with_tstamp_t)(struct fw_card *card, int rcode,
267 					u32 request_tstamp, u32 response_tstamp, void *data,
268 					size_t length, void *callback_data);
269 
270 union fw_transaction_callback {
271 	fw_transaction_callback_t without_tstamp;
272 	fw_transaction_callback_with_tstamp_t with_tstamp;
273 };
274 
275 /*
276  * This callback handles an inbound request subaction.  It is called in
277  * RCU read-side context, therefore must not sleep.
278  *
279  * The callback should not initiate outbound request subactions directly.
280  * Otherwise there is a danger of recursion of inbound and outbound
281  * transactions from and to the local node.
282  *
283  * The callback is responsible that fw_send_response() is called on the @request, except for FCP
284  * registers for which the core takes care of that.
285  */
286 typedef void (*fw_address_callback_t)(struct fw_card *card,
287 				      struct fw_request *request,
288 				      int tcode, int destination, int source,
289 				      int generation,
290 				      unsigned long long offset,
291 				      void *data, size_t length,
292 				      void *callback_data);
293 
294 struct fw_packet {
295 	int speed;
296 	int generation;
297 	u32 header[4];
298 	size_t header_length;
299 	void *payload;
300 	size_t payload_length;
301 	dma_addr_t payload_bus;
302 	bool payload_mapped;
303 	u32 timestamp;
304 
305 	/*
306 	 * This callback is called when the packet transmission has completed.
307 	 * For successful transmission, the status code is the ack received
308 	 * from the destination.  Otherwise it is one of the juju-specific
309 	 * rcodes:  RCODE_SEND_ERROR, _CANCELLED, _BUSY, _GENERATION, _NO_ACK.
310 	 * The callback can be called from tasklet context and thus
311 	 * must never block.
312 	 */
313 	fw_packet_callback_t callback;
314 	int ack;
315 	struct list_head link;
316 	void *driver_data;
317 };
318 
319 struct fw_transaction {
320 	int node_id; /* The generation is implied; it is always the current. */
321 	int tlabel;
322 	struct list_head link;
323 	struct fw_card *card;
324 	bool is_split_transaction;
325 	struct timer_list split_timeout_timer;
326 	u32 split_timeout_cycle;
327 
328 	struct fw_packet packet;
329 
330 	/*
331 	 * The data passed to the callback is valid only during the
332 	 * callback.
333 	 */
334 	union fw_transaction_callback callback;
335 	bool with_tstamp;
336 	void *callback_data;
337 };
338 
339 struct fw_address_handler {
340 	u64 offset;
341 	u64 length;
342 	fw_address_callback_t address_callback;
343 	void *callback_data;
344 	struct list_head link;
345 };
346 
347 struct fw_address_region {
348 	u64 start;
349 	u64 end;
350 };
351 
352 extern const struct fw_address_region fw_high_memory_region;
353 
354 int fw_core_add_address_handler(struct fw_address_handler *handler,
355 				const struct fw_address_region *region);
356 void fw_core_remove_address_handler(struct fw_address_handler *handler);
357 void fw_send_response(struct fw_card *card,
358 		      struct fw_request *request, int rcode);
359 int fw_get_request_speed(struct fw_request *request);
360 u32 fw_request_get_timestamp(const struct fw_request *request);
361 
362 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
363 		int destination_id, int generation, int speed, unsigned long long offset,
364 		void *payload, size_t length, union fw_transaction_callback callback,
365 		bool with_tstamp, void *callback_data);
366 
367 /**
368  * fw_send_request() - submit a request packet for transmission to generate callback for response
369  *		       subaction without time stamp.
370  * @card:		interface to send the request at
371  * @t:			transaction instance to which the request belongs
372  * @tcode:		transaction code
373  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
374  * @generation:		bus generation in which request and response are valid
375  * @speed:		transmission speed
376  * @offset:		48bit wide offset into destination's address space
377  * @payload:		data payload for the request subaction
378  * @length:		length of the payload, in bytes
379  * @callback:		function to be called when the transaction is completed
380  * @callback_data:	data to be passed to the transaction completion callback
381  *
382  * A variation of __fw_send_request() to generate callback for response subaction without time
383  * stamp.
384  */
385 static inline void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
386 				   int destination_id, int generation, int speed,
387 				   unsigned long long offset, void *payload, size_t length,
388 				   fw_transaction_callback_t callback, void *callback_data)
389 {
390 	union fw_transaction_callback cb = {
391 		.without_tstamp = callback,
392 	};
393 	__fw_send_request(card, t, tcode, destination_id, generation, speed, offset, payload,
394 			  length, cb, false, callback_data);
395 }
396 
397 /**
398  * fw_send_request_with_tstamp() - submit a request packet for transmission to generate callback for
399  *				   response with time stamp.
400  * @card:		interface to send the request at
401  * @t:			transaction instance to which the request belongs
402  * @tcode:		transaction code
403  * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
404  * @generation:		bus generation in which request and response are valid
405  * @speed:		transmission speed
406  * @offset:		48bit wide offset into destination's address space
407  * @payload:		data payload for the request subaction
408  * @length:		length of the payload, in bytes
409  * @callback:		function to be called when the transaction is completed
410  * @callback_data:	data to be passed to the transaction completion callback
411  *
412  * A variation of __fw_send_request() to generate callback for response subaction with time stamp.
413  */
414 static inline void fw_send_request_with_tstamp(struct fw_card *card, struct fw_transaction *t,
415 	int tcode, int destination_id, int generation, int speed, unsigned long long offset,
416 	void *payload, size_t length, fw_transaction_callback_with_tstamp_t callback,
417 	void *callback_data)
418 {
419 	union fw_transaction_callback cb = {
420 		.with_tstamp = callback,
421 	};
422 	__fw_send_request(card, t, tcode, destination_id, generation, speed, offset, payload,
423 			  length, cb, true, callback_data);
424 }
425 
426 int fw_cancel_transaction(struct fw_card *card,
427 			  struct fw_transaction *transaction);
428 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
429 		       int generation, int speed, unsigned long long offset,
430 		       void *payload, size_t length);
431 const char *fw_rcode_string(int rcode);
432 
433 static inline int fw_stream_packet_destination_id(int tag, int channel, int sy)
434 {
435 	return tag << 14 | channel << 8 | sy;
436 }
437 
438 void fw_schedule_bus_reset(struct fw_card *card, bool delayed,
439 			   bool short_reset);
440 
441 struct fw_descriptor {
442 	struct list_head link;
443 	size_t length;
444 	u32 immediate;
445 	u32 key;
446 	const u32 *data;
447 };
448 
449 int fw_core_add_descriptor(struct fw_descriptor *desc);
450 void fw_core_remove_descriptor(struct fw_descriptor *desc);
451 
452 /*
453  * The iso packet format allows for an immediate header/payload part
454  * stored in 'header' immediately after the packet info plus an
455  * indirect payload part that is pointer to by the 'payload' field.
456  * Applications can use one or the other or both to implement simple
457  * low-bandwidth streaming (e.g. audio) or more advanced
458  * scatter-gather streaming (e.g. assembling video frame automatically).
459  */
460 struct fw_iso_packet {
461 	u16 payload_length;	/* Length of indirect payload		*/
462 	u32 interrupt:1;	/* Generate interrupt on this packet	*/
463 	u32 skip:1;		/* tx: Set to not send packet at all	*/
464 				/* rx: Sync bit, wait for matching sy	*/
465 	u32 tag:2;		/* tx: Tag in packet header		*/
466 	u32 sy:4;		/* tx: Sy in packet header		*/
467 	u32 header_length:8;	/* Size of immediate header		*/
468 	u32 header[];		/* tx: Top of 1394 isoch. data_block	*/
469 };
470 
471 #define FW_ISO_CONTEXT_TRANSMIT			0
472 #define FW_ISO_CONTEXT_RECEIVE			1
473 #define FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL	2
474 
475 #define FW_ISO_CONTEXT_MATCH_TAG0	 1
476 #define FW_ISO_CONTEXT_MATCH_TAG1	 2
477 #define FW_ISO_CONTEXT_MATCH_TAG2	 4
478 #define FW_ISO_CONTEXT_MATCH_TAG3	 8
479 #define FW_ISO_CONTEXT_MATCH_ALL_TAGS	15
480 
481 /*
482  * An iso buffer is just a set of pages mapped for DMA in the
483  * specified direction.  Since the pages are to be used for DMA, they
484  * are not mapped into the kernel virtual address space.  We store the
485  * DMA address in the page private. The helper function
486  * fw_iso_buffer_map() will map the pages into a given vma.
487  */
488 struct fw_iso_buffer {
489 	enum dma_data_direction direction;
490 	struct page **pages;
491 	int page_count;
492 	int page_count_mapped;
493 };
494 
495 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
496 		       int page_count, enum dma_data_direction direction);
497 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card);
498 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed);
499 
500 struct fw_iso_context;
501 typedef void (*fw_iso_callback_t)(struct fw_iso_context *context,
502 				  u32 cycle, size_t header_length,
503 				  void *header, void *data);
504 typedef void (*fw_iso_mc_callback_t)(struct fw_iso_context *context,
505 				     dma_addr_t completed, void *data);
506 
507 union fw_iso_callback {
508 	fw_iso_callback_t sc;
509 	fw_iso_mc_callback_t mc;
510 };
511 
512 struct fw_iso_context {
513 	struct fw_card *card;
514 	struct work_struct work;
515 	int type;
516 	int channel;
517 	int speed;
518 	bool drop_overflow_headers;
519 	size_t header_size;
520 	union fw_iso_callback callback;
521 	void *callback_data;
522 };
523 
524 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
525 		int type, int channel, int speed, size_t header_size,
526 		fw_iso_callback_t callback, void *callback_data);
527 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels);
528 int fw_iso_context_queue(struct fw_iso_context *ctx,
529 			 struct fw_iso_packet *packet,
530 			 struct fw_iso_buffer *buffer,
531 			 unsigned long payload);
532 void fw_iso_context_queue_flush(struct fw_iso_context *ctx);
533 int fw_iso_context_flush_completions(struct fw_iso_context *ctx);
534 
535 /**
536  * fw_iso_context_schedule_flush_completions() - schedule work item to process isochronous context.
537  * @ctx: the isochronous context
538  *
539  * Schedule a work item on workqueue to process the isochronous context. The registered callback
540  * function is called by the worker when a queued packet buffer with the interrupt flag is
541  * completed, either after transmission in the IT context or after being filled in the IR context.
542  * The callback function is also called when the header buffer in the context becomes full, If it
543  * is required to process the context in the current context, fw_iso_context_flush_completions() is
544  * available instead.
545  *
546  * Context: Any context.
547  */
548 static inline void fw_iso_context_schedule_flush_completions(struct fw_iso_context *ctx)
549 {
550 	queue_work(ctx->card->isoc_wq, &ctx->work);
551 }
552 
553 int fw_iso_context_start(struct fw_iso_context *ctx,
554 			 int cycle, int sync, int tags);
555 int fw_iso_context_stop(struct fw_iso_context *ctx);
556 void fw_iso_context_destroy(struct fw_iso_context *ctx);
557 void fw_iso_resource_manage(struct fw_card *card, int generation,
558 			    u64 channels_mask, int *channel, int *bandwidth,
559 			    bool allocate);
560 
561 extern struct workqueue_struct *fw_workqueue;
562 
563 #endif /* _LINUX_FIREWIRE_H */
564