1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_FIREWIRE_H 3 #define _LINUX_FIREWIRE_H 4 5 #include <linux/completion.h> 6 #include <linux/device.h> 7 #include <linux/dma-mapping.h> 8 #include <linux/kernel.h> 9 #include <linux/kref.h> 10 #include <linux/list.h> 11 #include <linux/mutex.h> 12 #include <linux/spinlock.h> 13 #include <linux/sysfs.h> 14 #include <linux/timer.h> 15 #include <linux/types.h> 16 #include <linux/workqueue.h> 17 18 #include <linux/atomic.h> 19 #include <asm/byteorder.h> 20 21 #define CSR_REGISTER_BASE 0xfffff0000000ULL 22 23 /* register offsets are relative to CSR_REGISTER_BASE */ 24 #define CSR_STATE_CLEAR 0x0 25 #define CSR_STATE_SET 0x4 26 #define CSR_NODE_IDS 0x8 27 #define CSR_RESET_START 0xc 28 #define CSR_SPLIT_TIMEOUT_HI 0x18 29 #define CSR_SPLIT_TIMEOUT_LO 0x1c 30 #define CSR_CYCLE_TIME 0x200 31 #define CSR_BUS_TIME 0x204 32 #define CSR_BUSY_TIMEOUT 0x210 33 #define CSR_PRIORITY_BUDGET 0x218 34 #define CSR_BUS_MANAGER_ID 0x21c 35 #define CSR_BANDWIDTH_AVAILABLE 0x220 36 #define CSR_CHANNELS_AVAILABLE 0x224 37 #define CSR_CHANNELS_AVAILABLE_HI 0x224 38 #define CSR_CHANNELS_AVAILABLE_LO 0x228 39 #define CSR_MAINT_UTILITY 0x230 40 #define CSR_BROADCAST_CHANNEL 0x234 41 #define CSR_CONFIG_ROM 0x400 42 #define CSR_CONFIG_ROM_END 0x800 43 #define CSR_OMPR 0x900 44 #define CSR_OPCR(i) (0x904 + (i) * 4) 45 #define CSR_IMPR 0x980 46 #define CSR_IPCR(i) (0x984 + (i) * 4) 47 #define CSR_FCP_COMMAND 0xB00 48 #define CSR_FCP_RESPONSE 0xD00 49 #define CSR_FCP_END 0xF00 50 #define CSR_TOPOLOGY_MAP 0x1000 51 #define CSR_TOPOLOGY_MAP_END 0x1400 52 #define CSR_SPEED_MAP 0x2000 53 #define CSR_SPEED_MAP_END 0x3000 54 55 #define CSR_OFFSET 0x40 56 #define CSR_LEAF 0x80 57 #define CSR_DIRECTORY 0xc0 58 59 #define CSR_DESCRIPTOR 0x01 60 #define CSR_VENDOR 0x03 61 #define CSR_HARDWARE_VERSION 0x04 62 #define CSR_UNIT 0x11 63 #define CSR_SPECIFIER_ID 0x12 64 #define CSR_VERSION 0x13 65 #define CSR_DEPENDENT_INFO 0x14 66 #define CSR_MODEL 0x17 67 #define CSR_DIRECTORY_ID 0x20 68 69 struct fw_csr_iterator { 70 const u32 *p; 71 const u32 *end; 72 }; 73 74 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p); 75 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value); 76 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size); 77 78 extern struct bus_type fw_bus_type; 79 80 struct fw_card_driver; 81 struct fw_node; 82 83 struct fw_card { 84 const struct fw_card_driver *driver; 85 struct device *device; 86 struct kref kref; 87 struct completion done; 88 89 int node_id; 90 int generation; 91 int current_tlabel; 92 u64 tlabel_mask; 93 struct list_head transaction_list; 94 u64 reset_jiffies; 95 96 u32 split_timeout_hi; 97 u32 split_timeout_lo; 98 unsigned int split_timeout_cycles; 99 unsigned int split_timeout_jiffies; 100 101 unsigned long long guid; 102 unsigned max_receive; 103 int link_speed; 104 int config_rom_generation; 105 106 spinlock_t lock; /* Take this lock when handling the lists in 107 * this struct. */ 108 struct fw_node *local_node; 109 struct fw_node *root_node; 110 struct fw_node *irm_node; 111 u8 color; /* must be u8 to match the definition in struct fw_node */ 112 int gap_count; 113 bool beta_repeaters_present; 114 115 int index; 116 struct list_head link; 117 118 struct list_head phy_receiver_list; 119 120 struct delayed_work br_work; /* bus reset job */ 121 bool br_short; 122 123 struct delayed_work bm_work; /* bus manager job */ 124 int bm_retries; 125 int bm_generation; 126 int bm_node_id; 127 bool bm_abdicate; 128 129 bool priority_budget_implemented; /* controller feature */ 130 bool broadcast_channel_auto_allocated; /* controller feature */ 131 132 bool broadcast_channel_allocated; 133 u32 broadcast_channel; 134 __be32 topology_map[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4]; 135 136 __be32 maint_utility_register; 137 }; 138 139 static inline struct fw_card *fw_card_get(struct fw_card *card) 140 { 141 kref_get(&card->kref); 142 143 return card; 144 } 145 146 void fw_card_release(struct kref *kref); 147 148 static inline void fw_card_put(struct fw_card *card) 149 { 150 kref_put(&card->kref, fw_card_release); 151 } 152 153 int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time); 154 155 struct fw_attribute_group { 156 struct attribute_group *groups[2]; 157 struct attribute_group group; 158 struct attribute *attrs[13]; 159 }; 160 161 enum fw_device_state { 162 FW_DEVICE_INITIALIZING, 163 FW_DEVICE_RUNNING, 164 FW_DEVICE_GONE, 165 FW_DEVICE_SHUTDOWN, 166 }; 167 168 /* 169 * Note, fw_device.generation always has to be read before fw_device.node_id. 170 * Use SMP memory barriers to ensure this. Otherwise requests will be sent 171 * to an outdated node_id if the generation was updated in the meantime due 172 * to a bus reset. 173 * 174 * Likewise, fw-core will take care to update .node_id before .generation so 175 * that whenever fw_device.generation is current WRT the actual bus generation, 176 * fw_device.node_id is guaranteed to be current too. 177 * 178 * The same applies to fw_device.card->node_id vs. fw_device.generation. 179 * 180 * fw_device.config_rom and fw_device.config_rom_length may be accessed during 181 * the lifetime of any fw_unit belonging to the fw_device, before device_del() 182 * was called on the last fw_unit. Alternatively, they may be accessed while 183 * holding fw_device_rwsem. 184 */ 185 struct fw_device { 186 atomic_t state; 187 struct fw_node *node; 188 int node_id; 189 int generation; 190 unsigned max_speed; 191 struct fw_card *card; 192 struct device device; 193 194 struct mutex client_list_mutex; 195 struct list_head client_list; 196 197 const u32 *config_rom; 198 size_t config_rom_length; 199 int config_rom_retries; 200 unsigned is_local:1; 201 unsigned max_rec:4; 202 unsigned cmc:1; 203 unsigned irmc:1; 204 unsigned bc_implemented:2; 205 206 work_func_t workfn; 207 struct delayed_work work; 208 struct fw_attribute_group attribute_group; 209 }; 210 211 static inline struct fw_device *fw_device(struct device *dev) 212 { 213 return container_of(dev, struct fw_device, device); 214 } 215 216 static inline int fw_device_is_shutdown(struct fw_device *device) 217 { 218 return atomic_read(&device->state) == FW_DEVICE_SHUTDOWN; 219 } 220 221 int fw_device_enable_phys_dma(struct fw_device *device); 222 223 /* 224 * fw_unit.directory must not be accessed after device_del(&fw_unit.device). 225 */ 226 struct fw_unit { 227 struct device device; 228 const u32 *directory; 229 struct fw_attribute_group attribute_group; 230 }; 231 232 static inline struct fw_unit *fw_unit(struct device *dev) 233 { 234 return container_of(dev, struct fw_unit, device); 235 } 236 237 static inline struct fw_unit *fw_unit_get(struct fw_unit *unit) 238 { 239 get_device(&unit->device); 240 241 return unit; 242 } 243 244 static inline void fw_unit_put(struct fw_unit *unit) 245 { 246 put_device(&unit->device); 247 } 248 249 static inline struct fw_device *fw_parent_device(struct fw_unit *unit) 250 { 251 return fw_device(unit->device.parent); 252 } 253 254 struct ieee1394_device_id; 255 256 struct fw_driver { 257 struct device_driver driver; 258 int (*probe)(struct fw_unit *unit, const struct ieee1394_device_id *id); 259 /* Called when the parent device sits through a bus reset. */ 260 void (*update)(struct fw_unit *unit); 261 void (*remove)(struct fw_unit *unit); 262 const struct ieee1394_device_id *id_table; 263 }; 264 265 struct fw_packet; 266 struct fw_request; 267 268 typedef void (*fw_packet_callback_t)(struct fw_packet *packet, 269 struct fw_card *card, int status); 270 typedef void (*fw_transaction_callback_t)(struct fw_card *card, int rcode, 271 void *data, size_t length, 272 void *callback_data); 273 /* 274 * This callback handles an inbound request subaction. It is called in 275 * RCU read-side context, therefore must not sleep. 276 * 277 * The callback should not initiate outbound request subactions directly. 278 * Otherwise there is a danger of recursion of inbound and outbound 279 * transactions from and to the local node. 280 * 281 * The callback is responsible that either fw_send_response() or kfree() 282 * is called on the @request, except for FCP registers for which the core 283 * takes care of that. 284 */ 285 typedef void (*fw_address_callback_t)(struct fw_card *card, 286 struct fw_request *request, 287 int tcode, int destination, int source, 288 int generation, 289 unsigned long long offset, 290 void *data, size_t length, 291 void *callback_data); 292 293 struct fw_packet { 294 int speed; 295 int generation; 296 u32 header[4]; 297 size_t header_length; 298 void *payload; 299 size_t payload_length; 300 dma_addr_t payload_bus; 301 bool payload_mapped; 302 u32 timestamp; 303 304 /* 305 * This callback is called when the packet transmission has completed. 306 * For successful transmission, the status code is the ack received 307 * from the destination. Otherwise it is one of the juju-specific 308 * rcodes: RCODE_SEND_ERROR, _CANCELLED, _BUSY, _GENERATION, _NO_ACK. 309 * The callback can be called from tasklet context and thus 310 * must never block. 311 */ 312 fw_packet_callback_t callback; 313 int ack; 314 struct list_head link; 315 void *driver_data; 316 }; 317 318 struct fw_transaction { 319 int node_id; /* The generation is implied; it is always the current. */ 320 int tlabel; 321 struct list_head link; 322 struct fw_card *card; 323 bool is_split_transaction; 324 struct timer_list split_timeout_timer; 325 326 struct fw_packet packet; 327 328 /* 329 * The data passed to the callback is valid only during the 330 * callback. 331 */ 332 fw_transaction_callback_t callback; 333 void *callback_data; 334 }; 335 336 struct fw_address_handler { 337 u64 offset; 338 u64 length; 339 fw_address_callback_t address_callback; 340 void *callback_data; 341 struct list_head link; 342 }; 343 344 struct fw_address_region { 345 u64 start; 346 u64 end; 347 }; 348 349 extern const struct fw_address_region fw_high_memory_region; 350 351 int fw_core_add_address_handler(struct fw_address_handler *handler, 352 const struct fw_address_region *region); 353 void fw_core_remove_address_handler(struct fw_address_handler *handler); 354 void fw_send_response(struct fw_card *card, 355 struct fw_request *request, int rcode); 356 int fw_get_request_speed(struct fw_request *request); 357 u32 fw_request_get_timestamp(const struct fw_request *request); 358 void fw_send_request(struct fw_card *card, struct fw_transaction *t, 359 int tcode, int destination_id, int generation, int speed, 360 unsigned long long offset, void *payload, size_t length, 361 fw_transaction_callback_t callback, void *callback_data); 362 int fw_cancel_transaction(struct fw_card *card, 363 struct fw_transaction *transaction); 364 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 365 int generation, int speed, unsigned long long offset, 366 void *payload, size_t length); 367 const char *fw_rcode_string(int rcode); 368 369 static inline int fw_stream_packet_destination_id(int tag, int channel, int sy) 370 { 371 return tag << 14 | channel << 8 | sy; 372 } 373 374 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, 375 bool short_reset); 376 377 struct fw_descriptor { 378 struct list_head link; 379 size_t length; 380 u32 immediate; 381 u32 key; 382 const u32 *data; 383 }; 384 385 int fw_core_add_descriptor(struct fw_descriptor *desc); 386 void fw_core_remove_descriptor(struct fw_descriptor *desc); 387 388 /* 389 * The iso packet format allows for an immediate header/payload part 390 * stored in 'header' immediately after the packet info plus an 391 * indirect payload part that is pointer to by the 'payload' field. 392 * Applications can use one or the other or both to implement simple 393 * low-bandwidth streaming (e.g. audio) or more advanced 394 * scatter-gather streaming (e.g. assembling video frame automatically). 395 */ 396 struct fw_iso_packet { 397 u16 payload_length; /* Length of indirect payload */ 398 u32 interrupt:1; /* Generate interrupt on this packet */ 399 u32 skip:1; /* tx: Set to not send packet at all */ 400 /* rx: Sync bit, wait for matching sy */ 401 u32 tag:2; /* tx: Tag in packet header */ 402 u32 sy:4; /* tx: Sy in packet header */ 403 u32 header_length:8; /* Length of immediate header */ 404 u32 header[0]; /* tx: Top of 1394 isoch. data_block */ 405 }; 406 407 #define FW_ISO_CONTEXT_TRANSMIT 0 408 #define FW_ISO_CONTEXT_RECEIVE 1 409 #define FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL 2 410 411 #define FW_ISO_CONTEXT_MATCH_TAG0 1 412 #define FW_ISO_CONTEXT_MATCH_TAG1 2 413 #define FW_ISO_CONTEXT_MATCH_TAG2 4 414 #define FW_ISO_CONTEXT_MATCH_TAG3 8 415 #define FW_ISO_CONTEXT_MATCH_ALL_TAGS 15 416 417 /* 418 * An iso buffer is just a set of pages mapped for DMA in the 419 * specified direction. Since the pages are to be used for DMA, they 420 * are not mapped into the kernel virtual address space. We store the 421 * DMA address in the page private. The helper function 422 * fw_iso_buffer_map() will map the pages into a given vma. 423 */ 424 struct fw_iso_buffer { 425 enum dma_data_direction direction; 426 struct page **pages; 427 int page_count; 428 int page_count_mapped; 429 }; 430 431 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card, 432 int page_count, enum dma_data_direction direction); 433 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card); 434 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed); 435 436 struct fw_iso_context; 437 typedef void (*fw_iso_callback_t)(struct fw_iso_context *context, 438 u32 cycle, size_t header_length, 439 void *header, void *data); 440 typedef void (*fw_iso_mc_callback_t)(struct fw_iso_context *context, 441 dma_addr_t completed, void *data); 442 443 union fw_iso_callback { 444 fw_iso_callback_t sc; 445 fw_iso_mc_callback_t mc; 446 }; 447 448 struct fw_iso_context { 449 struct fw_card *card; 450 int type; 451 int channel; 452 int speed; 453 bool drop_overflow_headers; 454 size_t header_size; 455 union fw_iso_callback callback; 456 void *callback_data; 457 }; 458 459 struct fw_iso_context *fw_iso_context_create(struct fw_card *card, 460 int type, int channel, int speed, size_t header_size, 461 fw_iso_callback_t callback, void *callback_data); 462 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels); 463 int fw_iso_context_queue(struct fw_iso_context *ctx, 464 struct fw_iso_packet *packet, 465 struct fw_iso_buffer *buffer, 466 unsigned long payload); 467 void fw_iso_context_queue_flush(struct fw_iso_context *ctx); 468 int fw_iso_context_flush_completions(struct fw_iso_context *ctx); 469 int fw_iso_context_start(struct fw_iso_context *ctx, 470 int cycle, int sync, int tags); 471 int fw_iso_context_stop(struct fw_iso_context *ctx); 472 void fw_iso_context_destroy(struct fw_iso_context *ctx); 473 void fw_iso_resource_manage(struct fw_card *card, int generation, 474 u64 channels_mask, int *channel, int *bandwidth, 475 bool allocate); 476 477 extern struct workqueue_struct *fw_workqueue; 478 479 #endif /* _LINUX_FIREWIRE_H */ 480