1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_FIREWIRE_H 3 #define _LINUX_FIREWIRE_H 4 5 #include <linux/completion.h> 6 #include <linux/device.h> 7 #include <linux/dma-mapping.h> 8 #include <linux/kernel.h> 9 #include <linux/kref.h> 10 #include <linux/list.h> 11 #include <linux/mutex.h> 12 #include <linux/spinlock.h> 13 #include <linux/sysfs.h> 14 #include <linux/timer.h> 15 #include <linux/types.h> 16 #include <linux/workqueue.h> 17 18 #include <linux/atomic.h> 19 #include <asm/byteorder.h> 20 21 #define CSR_REGISTER_BASE 0xfffff0000000ULL 22 23 /* register offsets are relative to CSR_REGISTER_BASE */ 24 #define CSR_STATE_CLEAR 0x0 25 #define CSR_STATE_SET 0x4 26 #define CSR_NODE_IDS 0x8 27 #define CSR_RESET_START 0xc 28 #define CSR_SPLIT_TIMEOUT_HI 0x18 29 #define CSR_SPLIT_TIMEOUT_LO 0x1c 30 #define CSR_CYCLE_TIME 0x200 31 #define CSR_BUS_TIME 0x204 32 #define CSR_BUSY_TIMEOUT 0x210 33 #define CSR_PRIORITY_BUDGET 0x218 34 #define CSR_BUS_MANAGER_ID 0x21c 35 #define CSR_BANDWIDTH_AVAILABLE 0x220 36 #define CSR_CHANNELS_AVAILABLE 0x224 37 #define CSR_CHANNELS_AVAILABLE_HI 0x224 38 #define CSR_CHANNELS_AVAILABLE_LO 0x228 39 #define CSR_MAINT_UTILITY 0x230 40 #define CSR_BROADCAST_CHANNEL 0x234 41 #define CSR_CONFIG_ROM 0x400 42 #define CSR_CONFIG_ROM_END 0x800 43 #define CSR_OMPR 0x900 44 #define CSR_OPCR(i) (0x904 + (i) * 4) 45 #define CSR_IMPR 0x980 46 #define CSR_IPCR(i) (0x984 + (i) * 4) 47 #define CSR_FCP_COMMAND 0xB00 48 #define CSR_FCP_RESPONSE 0xD00 49 #define CSR_FCP_END 0xF00 50 #define CSR_TOPOLOGY_MAP 0x1000 51 #define CSR_TOPOLOGY_MAP_END 0x1400 52 #define CSR_SPEED_MAP 0x2000 53 #define CSR_SPEED_MAP_END 0x3000 54 55 #define CSR_OFFSET 0x40 56 #define CSR_LEAF 0x80 57 #define CSR_DIRECTORY 0xc0 58 59 #define CSR_DESCRIPTOR 0x01 60 #define CSR_VENDOR 0x03 61 #define CSR_HARDWARE_VERSION 0x04 62 #define CSR_UNIT 0x11 63 #define CSR_SPECIFIER_ID 0x12 64 #define CSR_VERSION 0x13 65 #define CSR_DEPENDENT_INFO 0x14 66 #define CSR_MODEL 0x17 67 #define CSR_DIRECTORY_ID 0x20 68 69 struct fw_csr_iterator { 70 const u32 *p; 71 const u32 *end; 72 }; 73 74 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p); 75 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value); 76 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size); 77 78 extern const struct bus_type fw_bus_type; 79 80 struct fw_card_driver; 81 struct fw_node; 82 83 struct fw_card { 84 const struct fw_card_driver *driver; 85 struct device *device; 86 struct kref kref; 87 struct completion done; 88 89 int node_id; 90 int generation; 91 int current_tlabel; 92 u64 tlabel_mask; 93 struct list_head transaction_list; 94 u64 reset_jiffies; 95 96 u32 split_timeout_hi; 97 u32 split_timeout_lo; 98 unsigned int split_timeout_cycles; 99 unsigned int split_timeout_jiffies; 100 101 unsigned long long guid; 102 unsigned max_receive; 103 int link_speed; 104 int config_rom_generation; 105 106 spinlock_t lock; /* Take this lock when handling the lists in 107 * this struct. */ 108 struct fw_node *local_node; 109 struct fw_node *root_node; 110 struct fw_node *irm_node; 111 u8 color; /* must be u8 to match the definition in struct fw_node */ 112 int gap_count; 113 bool beta_repeaters_present; 114 115 int index; 116 struct list_head link; 117 118 struct list_head phy_receiver_list; 119 120 struct delayed_work br_work; /* bus reset job */ 121 bool br_short; 122 123 struct delayed_work bm_work; /* bus manager job */ 124 int bm_retries; 125 int bm_generation; 126 int bm_node_id; 127 bool bm_abdicate; 128 129 bool priority_budget_implemented; /* controller feature */ 130 bool broadcast_channel_auto_allocated; /* controller feature */ 131 132 bool broadcast_channel_allocated; 133 u32 broadcast_channel; 134 __be32 topology_map[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4]; 135 136 __be32 maint_utility_register; 137 138 struct workqueue_struct *isoc_wq; 139 struct workqueue_struct *async_wq; 140 }; 141 142 static inline struct fw_card *fw_card_get(struct fw_card *card) 143 { 144 kref_get(&card->kref); 145 146 return card; 147 } 148 149 void fw_card_release(struct kref *kref); 150 151 static inline void fw_card_put(struct fw_card *card) 152 { 153 kref_put(&card->kref, fw_card_release); 154 } 155 156 int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time); 157 158 struct fw_attribute_group { 159 struct attribute_group *groups[2]; 160 struct attribute_group group; 161 struct attribute *attrs[13]; 162 }; 163 164 enum fw_device_state { 165 FW_DEVICE_INITIALIZING, 166 FW_DEVICE_RUNNING, 167 FW_DEVICE_GONE, 168 FW_DEVICE_SHUTDOWN, 169 }; 170 171 /* 172 * Note, fw_device.generation always has to be read before fw_device.node_id. 173 * Use SMP memory barriers to ensure this. Otherwise requests will be sent 174 * to an outdated node_id if the generation was updated in the meantime due 175 * to a bus reset. 176 * 177 * Likewise, fw-core will take care to update .node_id before .generation so 178 * that whenever fw_device.generation is current WRT the actual bus generation, 179 * fw_device.node_id is guaranteed to be current too. 180 * 181 * The same applies to fw_device.card->node_id vs. fw_device.generation. 182 * 183 * fw_device.config_rom and fw_device.config_rom_length may be accessed during 184 * the lifetime of any fw_unit belonging to the fw_device, before device_del() 185 * was called on the last fw_unit. Alternatively, they may be accessed while 186 * holding fw_device_rwsem. 187 */ 188 struct fw_device { 189 atomic_t state; 190 struct fw_node *node; 191 int node_id; 192 int generation; 193 unsigned max_speed; 194 struct fw_card *card; 195 struct device device; 196 197 struct mutex client_list_mutex; 198 struct list_head client_list; 199 200 const u32 *config_rom; 201 size_t config_rom_length; 202 int config_rom_retries; 203 unsigned is_local:1; 204 unsigned max_rec:4; 205 unsigned cmc:1; 206 unsigned irmc:1; 207 unsigned bc_implemented:2; 208 209 work_func_t workfn; 210 struct delayed_work work; 211 struct fw_attribute_group attribute_group; 212 }; 213 214 #define fw_device(dev) container_of_const(dev, struct fw_device, device) 215 216 static inline int fw_device_is_shutdown(struct fw_device *device) 217 { 218 return atomic_read(&device->state) == FW_DEVICE_SHUTDOWN; 219 } 220 221 int fw_device_enable_phys_dma(struct fw_device *device); 222 223 /* 224 * fw_unit.directory must not be accessed after device_del(&fw_unit.device). 225 */ 226 struct fw_unit { 227 struct device device; 228 const u32 *directory; 229 struct fw_attribute_group attribute_group; 230 }; 231 232 #define fw_unit(dev) container_of_const(dev, struct fw_unit, device) 233 234 static inline struct fw_unit *fw_unit_get(struct fw_unit *unit) 235 { 236 get_device(&unit->device); 237 238 return unit; 239 } 240 241 static inline void fw_unit_put(struct fw_unit *unit) 242 { 243 put_device(&unit->device); 244 } 245 246 #define fw_parent_device(unit) fw_device(unit->device.parent) 247 248 struct ieee1394_device_id; 249 250 struct fw_driver { 251 struct device_driver driver; 252 int (*probe)(struct fw_unit *unit, const struct ieee1394_device_id *id); 253 /* Called when the parent device sits through a bus reset. */ 254 void (*update)(struct fw_unit *unit); 255 void (*remove)(struct fw_unit *unit); 256 const struct ieee1394_device_id *id_table; 257 }; 258 259 struct fw_packet; 260 struct fw_request; 261 262 typedef void (*fw_packet_callback_t)(struct fw_packet *packet, 263 struct fw_card *card, int status); 264 typedef void (*fw_transaction_callback_t)(struct fw_card *card, int rcode, 265 void *data, size_t length, 266 void *callback_data); 267 typedef void (*fw_transaction_callback_with_tstamp_t)(struct fw_card *card, int rcode, 268 u32 request_tstamp, u32 response_tstamp, void *data, 269 size_t length, void *callback_data); 270 271 union fw_transaction_callback { 272 fw_transaction_callback_t without_tstamp; 273 fw_transaction_callback_with_tstamp_t with_tstamp; 274 }; 275 276 /* 277 * This callback handles an inbound request subaction. It is called in 278 * RCU read-side context, therefore must not sleep. 279 * 280 * The callback should not initiate outbound request subactions directly. 281 * Otherwise there is a danger of recursion of inbound and outbound 282 * transactions from and to the local node. 283 * 284 * The callback is responsible that fw_send_response() is called on the @request, except for FCP 285 * registers for which the core takes care of that. 286 */ 287 typedef void (*fw_address_callback_t)(struct fw_card *card, 288 struct fw_request *request, 289 int tcode, int destination, int source, 290 int generation, 291 unsigned long long offset, 292 void *data, size_t length, 293 void *callback_data); 294 295 struct fw_packet { 296 int speed; 297 int generation; 298 u32 header[4]; 299 size_t header_length; 300 void *payload; 301 size_t payload_length; 302 dma_addr_t payload_bus; 303 bool payload_mapped; 304 u32 timestamp; 305 306 /* 307 * This callback is called when the packet transmission has completed. 308 * For successful transmission, the status code is the ack received 309 * from the destination. Otherwise it is one of the juju-specific 310 * rcodes: RCODE_SEND_ERROR, _CANCELLED, _BUSY, _GENERATION, _NO_ACK. 311 * The callback can be called from workqueue and thus must never block. 312 */ 313 fw_packet_callback_t callback; 314 int ack; 315 struct list_head link; 316 void *driver_data; 317 }; 318 319 struct fw_transaction { 320 int node_id; /* The generation is implied; it is always the current. */ 321 int tlabel; 322 struct list_head link; 323 struct fw_card *card; 324 bool is_split_transaction; 325 struct timer_list split_timeout_timer; 326 u32 split_timeout_cycle; 327 328 struct fw_packet packet; 329 330 /* 331 * The data passed to the callback is valid only during the 332 * callback. 333 */ 334 union fw_transaction_callback callback; 335 bool with_tstamp; 336 void *callback_data; 337 }; 338 339 struct fw_address_handler { 340 u64 offset; 341 u64 length; 342 fw_address_callback_t address_callback; 343 void *callback_data; 344 345 // Only for core functions. 346 struct list_head link; 347 struct kref kref; 348 struct completion done; 349 }; 350 351 struct fw_address_region { 352 u64 start; 353 u64 end; 354 }; 355 356 extern const struct fw_address_region fw_high_memory_region; 357 358 int fw_core_add_address_handler(struct fw_address_handler *handler, 359 const struct fw_address_region *region); 360 void fw_core_remove_address_handler(struct fw_address_handler *handler); 361 void fw_send_response(struct fw_card *card, 362 struct fw_request *request, int rcode); 363 int fw_get_request_speed(struct fw_request *request); 364 u32 fw_request_get_timestamp(const struct fw_request *request); 365 366 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 367 int destination_id, int generation, int speed, unsigned long long offset, 368 void *payload, size_t length, union fw_transaction_callback callback, 369 bool with_tstamp, void *callback_data); 370 371 /** 372 * fw_send_request() - submit a request packet for transmission to generate callback for response 373 * subaction without time stamp. 374 * @card: interface to send the request at 375 * @t: transaction instance to which the request belongs 376 * @tcode: transaction code 377 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 378 * @generation: bus generation in which request and response are valid 379 * @speed: transmission speed 380 * @offset: 48bit wide offset into destination's address space 381 * @payload: data payload for the request subaction 382 * @length: length of the payload, in bytes 383 * @callback: function to be called when the transaction is completed 384 * @callback_data: data to be passed to the transaction completion callback 385 * 386 * A variation of __fw_send_request() to generate callback for response subaction without time 387 * stamp. 388 * 389 * The callback is invoked in the workqueue context in most cases. However, if an error is detected 390 * before queueing or the destination address refers to the local node, it is invoked in the 391 * current context instead. 392 */ 393 static inline void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, 394 int destination_id, int generation, int speed, 395 unsigned long long offset, void *payload, size_t length, 396 fw_transaction_callback_t callback, void *callback_data) 397 { 398 union fw_transaction_callback cb = { 399 .without_tstamp = callback, 400 }; 401 __fw_send_request(card, t, tcode, destination_id, generation, speed, offset, payload, 402 length, cb, false, callback_data); 403 } 404 405 /** 406 * fw_send_request_with_tstamp() - submit a request packet for transmission to generate callback for 407 * response with time stamp. 408 * @card: interface to send the request at 409 * @t: transaction instance to which the request belongs 410 * @tcode: transaction code 411 * @destination_id: destination node ID, consisting of bus_ID and phy_ID 412 * @generation: bus generation in which request and response are valid 413 * @speed: transmission speed 414 * @offset: 48bit wide offset into destination's address space 415 * @payload: data payload for the request subaction 416 * @length: length of the payload, in bytes 417 * @callback: function to be called when the transaction is completed 418 * @callback_data: data to be passed to the transaction completion callback 419 * 420 * A variation of __fw_send_request() to generate callback for response subaction with time stamp. 421 * 422 * The callback is invoked in the workqueue context in most cases. However, if an error is detected 423 * before queueing or the destination address refers to the local node, it is invoked in the current 424 * context instead. 425 */ 426 static inline void fw_send_request_with_tstamp(struct fw_card *card, struct fw_transaction *t, 427 int tcode, int destination_id, int generation, int speed, unsigned long long offset, 428 void *payload, size_t length, fw_transaction_callback_with_tstamp_t callback, 429 void *callback_data) 430 { 431 union fw_transaction_callback cb = { 432 .with_tstamp = callback, 433 }; 434 __fw_send_request(card, t, tcode, destination_id, generation, speed, offset, payload, 435 length, cb, true, callback_data); 436 } 437 438 int fw_cancel_transaction(struct fw_card *card, 439 struct fw_transaction *transaction); 440 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, 441 int generation, int speed, unsigned long long offset, 442 void *payload, size_t length); 443 const char *fw_rcode_string(int rcode); 444 445 static inline int fw_stream_packet_destination_id(int tag, int channel, int sy) 446 { 447 return tag << 14 | channel << 8 | sy; 448 } 449 450 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, 451 bool short_reset); 452 453 struct fw_descriptor { 454 struct list_head link; 455 size_t length; 456 u32 immediate; 457 u32 key; 458 const u32 *data; 459 }; 460 461 int fw_core_add_descriptor(struct fw_descriptor *desc); 462 void fw_core_remove_descriptor(struct fw_descriptor *desc); 463 464 /* 465 * The iso packet format allows for an immediate header/payload part 466 * stored in 'header' immediately after the packet info plus an 467 * indirect payload part that is pointer to by the 'payload' field. 468 * Applications can use one or the other or both to implement simple 469 * low-bandwidth streaming (e.g. audio) or more advanced 470 * scatter-gather streaming (e.g. assembling video frame automatically). 471 */ 472 struct fw_iso_packet { 473 u16 payload_length; /* Length of indirect payload */ 474 u32 interrupt:1; /* Generate interrupt on this packet */ 475 u32 skip:1; /* tx: Set to not send packet at all */ 476 /* rx: Sync bit, wait for matching sy */ 477 u32 tag:2; /* tx: Tag in packet header */ 478 u32 sy:4; /* tx: Sy in packet header */ 479 u32 header_length:8; /* Size of immediate header */ 480 u32 header[]; /* tx: Top of 1394 isoch. data_block */ 481 }; 482 483 #define FW_ISO_CONTEXT_TRANSMIT 0 484 #define FW_ISO_CONTEXT_RECEIVE 1 485 #define FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL 2 486 487 #define FW_ISO_CONTEXT_MATCH_TAG0 1 488 #define FW_ISO_CONTEXT_MATCH_TAG1 2 489 #define FW_ISO_CONTEXT_MATCH_TAG2 4 490 #define FW_ISO_CONTEXT_MATCH_TAG3 8 491 #define FW_ISO_CONTEXT_MATCH_ALL_TAGS 15 492 493 /* 494 * An iso buffer is just a set of pages mapped for DMA in the 495 * specified direction. Since the pages are to be used for DMA, they 496 * are not mapped into the kernel virtual address space. We store the 497 * DMA address in the page private. The helper function 498 * fw_iso_buffer_map() will map the pages into a given vma. 499 */ 500 struct fw_iso_buffer { 501 enum dma_data_direction direction; 502 struct page **pages; 503 int page_count; 504 int page_count_mapped; 505 }; 506 507 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card, 508 int page_count, enum dma_data_direction direction); 509 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card); 510 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed); 511 512 struct fw_iso_context; 513 typedef void (*fw_iso_callback_t)(struct fw_iso_context *context, 514 u32 cycle, size_t header_length, 515 void *header, void *data); 516 typedef void (*fw_iso_mc_callback_t)(struct fw_iso_context *context, 517 dma_addr_t completed, void *data); 518 519 union fw_iso_callback { 520 fw_iso_callback_t sc; 521 fw_iso_mc_callback_t mc; 522 }; 523 524 struct fw_iso_context { 525 struct fw_card *card; 526 struct work_struct work; 527 int type; 528 int channel; 529 int speed; 530 bool drop_overflow_headers; 531 size_t header_size; 532 union fw_iso_callback callback; 533 void *callback_data; 534 }; 535 536 struct fw_iso_context *fw_iso_context_create(struct fw_card *card, 537 int type, int channel, int speed, size_t header_size, 538 fw_iso_callback_t callback, void *callback_data); 539 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels); 540 int fw_iso_context_queue(struct fw_iso_context *ctx, 541 struct fw_iso_packet *packet, 542 struct fw_iso_buffer *buffer, 543 unsigned long payload); 544 void fw_iso_context_queue_flush(struct fw_iso_context *ctx); 545 int fw_iso_context_flush_completions(struct fw_iso_context *ctx); 546 547 /** 548 * fw_iso_context_schedule_flush_completions() - schedule work item to process isochronous context. 549 * @ctx: the isochronous context 550 * 551 * Schedule a work item on workqueue to process the isochronous context. The registered callback 552 * function is called by the worker when a queued packet buffer with the interrupt flag is 553 * completed, either after transmission in the IT context or after being filled in the IR context. 554 * The callback function is also called when the header buffer in the context becomes full, If it 555 * is required to process the context in the current context, fw_iso_context_flush_completions() is 556 * available instead. 557 * 558 * Context: Any context. 559 */ 560 static inline void fw_iso_context_schedule_flush_completions(struct fw_iso_context *ctx) 561 { 562 queue_work(ctx->card->isoc_wq, &ctx->work); 563 } 564 565 int fw_iso_context_start(struct fw_iso_context *ctx, 566 int cycle, int sync, int tags); 567 int fw_iso_context_stop(struct fw_iso_context *ctx); 568 void fw_iso_context_destroy(struct fw_iso_context *ctx); 569 void fw_iso_resource_manage(struct fw_card *card, int generation, 570 u64 channels_mask, int *channel, int *bandwidth, 571 bool allocate); 572 573 extern struct workqueue_struct *fw_workqueue; 574 575 #endif /* _LINUX_FIREWIRE_H */ 576