xref: /linux/include/linux/dma-resv.h (revision cbac924200b838cfb8d8b1415113d788089dc50b)
1 /*
2  * Header file for reservations for dma-buf and ttm
3  *
4  * Copyright(C) 2011 Linaro Limited. All rights reserved.
5  * Copyright (C) 2012-2013 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  * Thomas Hellstrom <thellstrom-at-vmware-dot-com>
12  *
13  * Based on bo.c which bears the following copyright notice,
14  * but is dual licensed:
15  *
16  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
17  * All Rights Reserved.
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a
20  * copy of this software and associated documentation files (the
21  * "Software"), to deal in the Software without restriction, including
22  * without limitation the rights to use, copy, modify, merge, publish,
23  * distribute, sub license, and/or sell copies of the Software, and to
24  * permit persons to whom the Software is furnished to do so, subject to
25  * the following conditions:
26  *
27  * The above copyright notice and this permission notice (including the
28  * next paragraph) shall be included in all copies or substantial portions
29  * of the Software.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
34  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
35  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
36  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
37  * USE OR OTHER DEALINGS IN THE SOFTWARE.
38  */
39 #ifndef _LINUX_RESERVATION_H
40 #define _LINUX_RESERVATION_H
41 
42 #include <linux/ww_mutex.h>
43 #include <linux/dma-fence.h>
44 #include <linux/slab.h>
45 #include <linux/seqlock.h>
46 #include <linux/rcupdate.h>
47 
48 extern struct ww_class reservation_ww_class;
49 
50 /**
51  * struct dma_resv_list - a list of shared fences
52  * @rcu: for internal use
53  * @shared_count: table of shared fences
54  * @shared_max: for growing shared fence table
55  * @shared: shared fence table
56  */
57 struct dma_resv_list {
58 	struct rcu_head rcu;
59 	u32 shared_count, shared_max;
60 	struct dma_fence __rcu *shared[];
61 };
62 
63 /**
64  * struct dma_resv - a reservation object manages fences for a buffer
65  *
66  * There are multiple uses for this, with sometimes slightly different rules in
67  * how the fence slots are used.
68  *
69  * One use is to synchronize cross-driver access to a struct dma_buf, either for
70  * dynamic buffer management or just to handle implicit synchronization between
71  * different users of the buffer in userspace. See &dma_buf.resv for a more
72  * in-depth discussion.
73  *
74  * The other major use is to manage access and locking within a driver in a
75  * buffer based memory manager. struct ttm_buffer_object is the canonical
76  * example here, since this is where reservation objects originated from. But
77  * use in drivers is spreading and some drivers also manage struct
78  * drm_gem_object with the same scheme.
79  */
80 struct dma_resv {
81 	/**
82 	 * @lock:
83 	 *
84 	 * Update side lock. Don't use directly, instead use the wrapper
85 	 * functions like dma_resv_lock() and dma_resv_unlock().
86 	 *
87 	 * Drivers which use the reservation object to manage memory dynamically
88 	 * also use this lock to protect buffer object state like placement,
89 	 * allocation policies or throughout command submission.
90 	 */
91 	struct ww_mutex lock;
92 
93 	/**
94 	 * @seq:
95 	 *
96 	 * Sequence count for managing RCU read-side synchronization, allows
97 	 * read-only access to @fence_excl and @fence while ensuring we take a
98 	 * consistent snapshot.
99 	 */
100 	seqcount_ww_mutex_t seq;
101 
102 	/**
103 	 * @fence_excl:
104 	 *
105 	 * The exclusive fence, if there is one currently.
106 	 *
107 	 * There are two ways to update this fence:
108 	 *
109 	 * - First by calling dma_resv_add_excl_fence(), which replaces all
110 	 *   fences attached to the reservation object. To guarantee that no
111 	 *   fences are lost, this new fence must signal only after all previous
112 	 *   fences, both shared and exclusive, have signalled. In some cases it
113 	 *   is convenient to achieve that by attaching a struct dma_fence_array
114 	 *   with all the new and old fences.
115 	 *
116 	 * - Alternatively the fence can be set directly, which leaves the
117 	 *   shared fences unchanged. To guarantee that no fences are lost, this
118 	 *   new fence must signal only after the previous exclusive fence has
119 	 *   signalled. Since the shared fences are staying intact, it is not
120 	 *   necessary to maintain any ordering against those. If semantically
121 	 *   only a new access is added without actually treating the previous
122 	 *   one as a dependency the exclusive fences can be strung together
123 	 *   using struct dma_fence_chain.
124 	 *
125 	 * Note that actual semantics of what an exclusive or shared fence mean
126 	 * is defined by the user, for reservation objects shared across drivers
127 	 * see &dma_buf.resv.
128 	 */
129 	struct dma_fence __rcu *fence_excl;
130 
131 	/**
132 	 * @fence:
133 	 *
134 	 * List of current shared fences.
135 	 *
136 	 * There are no ordering constraints of shared fences against the
137 	 * exclusive fence slot. If a waiter needs to wait for all access, it
138 	 * has to wait for both sets of fences to signal.
139 	 *
140 	 * A new fence is added by calling dma_resv_add_shared_fence(). Since
141 	 * this often needs to be done past the point of no return in command
142 	 * submission it cannot fail, and therefore sufficient slots need to be
143 	 * reserved by calling dma_resv_reserve_shared().
144 	 *
145 	 * Note that actual semantics of what an exclusive or shared fence mean
146 	 * is defined by the user, for reservation objects shared across drivers
147 	 * see &dma_buf.resv.
148 	 */
149 	struct dma_resv_list __rcu *fence;
150 };
151 
152 /**
153  * struct dma_resv_iter - current position into the dma_resv fences
154  *
155  * Don't touch this directly in the driver, use the accessor function instead.
156  *
157  * IMPORTANT
158  *
159  * When using the lockless iterators like dma_resv_iter_next_unlocked() or
160  * dma_resv_for_each_fence_unlocked() beware that the iterator can be restarted.
161  * Code which accumulates statistics or similar needs to check for this with
162  * dma_resv_iter_is_restarted().
163  */
164 struct dma_resv_iter {
165 	/** @obj: The dma_resv object we iterate over */
166 	struct dma_resv *obj;
167 
168 	/** @all_fences: If all fences should be returned */
169 	bool all_fences;
170 
171 	/** @fence: the currently handled fence */
172 	struct dma_fence *fence;
173 
174 	/** @seq: sequence number to check for modifications */
175 	unsigned int seq;
176 
177 	/** @index: index into the shared fences */
178 	unsigned int index;
179 
180 	/** @fences: the shared fences; private, *MUST* not dereference  */
181 	struct dma_resv_list *fences;
182 
183 	/** @shared_count: number of shared fences */
184 	unsigned int shared_count;
185 
186 	/** @is_restarted: true if this is the first returned fence */
187 	bool is_restarted;
188 };
189 
190 struct dma_fence *dma_resv_iter_first_unlocked(struct dma_resv_iter *cursor);
191 struct dma_fence *dma_resv_iter_next_unlocked(struct dma_resv_iter *cursor);
192 struct dma_fence *dma_resv_iter_first(struct dma_resv_iter *cursor);
193 struct dma_fence *dma_resv_iter_next(struct dma_resv_iter *cursor);
194 
195 /**
196  * dma_resv_iter_begin - initialize a dma_resv_iter object
197  * @cursor: The dma_resv_iter object to initialize
198  * @obj: The dma_resv object which we want to iterate over
199  * @all_fences: If all fences should be returned or just the exclusive one
200  */
201 static inline void dma_resv_iter_begin(struct dma_resv_iter *cursor,
202 				       struct dma_resv *obj,
203 				       bool all_fences)
204 {
205 	cursor->obj = obj;
206 	cursor->all_fences = all_fences;
207 	cursor->fence = NULL;
208 }
209 
210 /**
211  * dma_resv_iter_end - cleanup a dma_resv_iter object
212  * @cursor: the dma_resv_iter object which should be cleaned up
213  *
214  * Make sure that the reference to the fence in the cursor is properly
215  * dropped.
216  */
217 static inline void dma_resv_iter_end(struct dma_resv_iter *cursor)
218 {
219 	dma_fence_put(cursor->fence);
220 }
221 
222 /**
223  * dma_resv_iter_is_exclusive - test if the current fence is the exclusive one
224  * @cursor: the cursor of the current position
225  *
226  * Returns true if the currently returned fence is the exclusive one.
227  */
228 static inline bool dma_resv_iter_is_exclusive(struct dma_resv_iter *cursor)
229 {
230 	return cursor->index == 0;
231 }
232 
233 /**
234  * dma_resv_iter_is_restarted - test if this is the first fence after a restart
235  * @cursor: the cursor with the current position
236  *
237  * Return true if this is the first fence in an iteration after a restart.
238  */
239 static inline bool dma_resv_iter_is_restarted(struct dma_resv_iter *cursor)
240 {
241 	return cursor->is_restarted;
242 }
243 
244 /**
245  * dma_resv_for_each_fence_unlocked - unlocked fence iterator
246  * @cursor: a struct dma_resv_iter pointer
247  * @fence: the current fence
248  *
249  * Iterate over the fences in a struct dma_resv object without holding the
250  * &dma_resv.lock and using RCU instead. The cursor needs to be initialized
251  * with dma_resv_iter_begin() and cleaned up with dma_resv_iter_end(). Inside
252  * the iterator a reference to the dma_fence is held and the RCU lock dropped.
253  *
254  * Beware that the iterator can be restarted when the struct dma_resv for
255  * @cursor is modified. Code which accumulates statistics or similar needs to
256  * check for this with dma_resv_iter_is_restarted(). For this reason prefer the
257  * lock iterator dma_resv_for_each_fence() whenever possible.
258  */
259 #define dma_resv_for_each_fence_unlocked(cursor, fence)			\
260 	for (fence = dma_resv_iter_first_unlocked(cursor);		\
261 	     fence; fence = dma_resv_iter_next_unlocked(cursor))
262 
263 /**
264  * dma_resv_for_each_fence - fence iterator
265  * @cursor: a struct dma_resv_iter pointer
266  * @obj: a dma_resv object pointer
267  * @all_fences: true if all fences should be returned
268  * @fence: the current fence
269  *
270  * Iterate over the fences in a struct dma_resv object while holding the
271  * &dma_resv.lock. @all_fences controls if the shared fences are returned as
272  * well. The cursor initialisation is part of the iterator and the fence stays
273  * valid as long as the lock is held and so no extra reference to the fence is
274  * taken.
275  */
276 #define dma_resv_for_each_fence(cursor, obj, all_fences, fence)	\
277 	for (dma_resv_iter_begin(cursor, obj, all_fences),	\
278 	     fence = dma_resv_iter_first(cursor); fence;	\
279 	     fence = dma_resv_iter_next(cursor))
280 
281 #define dma_resv_held(obj) lockdep_is_held(&(obj)->lock.base)
282 #define dma_resv_assert_held(obj) lockdep_assert_held(&(obj)->lock.base)
283 
284 #ifdef CONFIG_DEBUG_MUTEXES
285 void dma_resv_reset_shared_max(struct dma_resv *obj);
286 #else
287 static inline void dma_resv_reset_shared_max(struct dma_resv *obj) {}
288 #endif
289 
290 /**
291  * dma_resv_lock - lock the reservation object
292  * @obj: the reservation object
293  * @ctx: the locking context
294  *
295  * Locks the reservation object for exclusive access and modification. Note,
296  * that the lock is only against other writers, readers will run concurrently
297  * with a writer under RCU. The seqlock is used to notify readers if they
298  * overlap with a writer.
299  *
300  * As the reservation object may be locked by multiple parties in an
301  * undefined order, a #ww_acquire_ctx is passed to unwind if a cycle
302  * is detected. See ww_mutex_lock() and ww_acquire_init(). A reservation
303  * object may be locked by itself by passing NULL as @ctx.
304  *
305  * When a die situation is indicated by returning -EDEADLK all locks held by
306  * @ctx must be unlocked and then dma_resv_lock_slow() called on @obj.
307  *
308  * Unlocked by calling dma_resv_unlock().
309  *
310  * See also dma_resv_lock_interruptible() for the interruptible variant.
311  */
312 static inline int dma_resv_lock(struct dma_resv *obj,
313 				struct ww_acquire_ctx *ctx)
314 {
315 	return ww_mutex_lock(&obj->lock, ctx);
316 }
317 
318 /**
319  * dma_resv_lock_interruptible - lock the reservation object
320  * @obj: the reservation object
321  * @ctx: the locking context
322  *
323  * Locks the reservation object interruptible for exclusive access and
324  * modification. Note, that the lock is only against other writers, readers
325  * will run concurrently with a writer under RCU. The seqlock is used to
326  * notify readers if they overlap with a writer.
327  *
328  * As the reservation object may be locked by multiple parties in an
329  * undefined order, a #ww_acquire_ctx is passed to unwind if a cycle
330  * is detected. See ww_mutex_lock() and ww_acquire_init(). A reservation
331  * object may be locked by itself by passing NULL as @ctx.
332  *
333  * When a die situation is indicated by returning -EDEADLK all locks held by
334  * @ctx must be unlocked and then dma_resv_lock_slow_interruptible() called on
335  * @obj.
336  *
337  * Unlocked by calling dma_resv_unlock().
338  */
339 static inline int dma_resv_lock_interruptible(struct dma_resv *obj,
340 					      struct ww_acquire_ctx *ctx)
341 {
342 	return ww_mutex_lock_interruptible(&obj->lock, ctx);
343 }
344 
345 /**
346  * dma_resv_lock_slow - slowpath lock the reservation object
347  * @obj: the reservation object
348  * @ctx: the locking context
349  *
350  * Acquires the reservation object after a die case. This function
351  * will sleep until the lock becomes available. See dma_resv_lock() as
352  * well.
353  *
354  * See also dma_resv_lock_slow_interruptible() for the interruptible variant.
355  */
356 static inline void dma_resv_lock_slow(struct dma_resv *obj,
357 				      struct ww_acquire_ctx *ctx)
358 {
359 	ww_mutex_lock_slow(&obj->lock, ctx);
360 }
361 
362 /**
363  * dma_resv_lock_slow_interruptible - slowpath lock the reservation
364  * object, interruptible
365  * @obj: the reservation object
366  * @ctx: the locking context
367  *
368  * Acquires the reservation object interruptible after a die case. This function
369  * will sleep until the lock becomes available. See
370  * dma_resv_lock_interruptible() as well.
371  */
372 static inline int dma_resv_lock_slow_interruptible(struct dma_resv *obj,
373 						   struct ww_acquire_ctx *ctx)
374 {
375 	return ww_mutex_lock_slow_interruptible(&obj->lock, ctx);
376 }
377 
378 /**
379  * dma_resv_trylock - trylock the reservation object
380  * @obj: the reservation object
381  *
382  * Tries to lock the reservation object for exclusive access and modification.
383  * Note, that the lock is only against other writers, readers will run
384  * concurrently with a writer under RCU. The seqlock is used to notify readers
385  * if they overlap with a writer.
386  *
387  * Also note that since no context is provided, no deadlock protection is
388  * possible, which is also not needed for a trylock.
389  *
390  * Returns true if the lock was acquired, false otherwise.
391  */
392 static inline bool __must_check dma_resv_trylock(struct dma_resv *obj)
393 {
394 	return ww_mutex_trylock(&obj->lock, NULL);
395 }
396 
397 /**
398  * dma_resv_is_locked - is the reservation object locked
399  * @obj: the reservation object
400  *
401  * Returns true if the mutex is locked, false if unlocked.
402  */
403 static inline bool dma_resv_is_locked(struct dma_resv *obj)
404 {
405 	return ww_mutex_is_locked(&obj->lock);
406 }
407 
408 /**
409  * dma_resv_locking_ctx - returns the context used to lock the object
410  * @obj: the reservation object
411  *
412  * Returns the context used to lock a reservation object or NULL if no context
413  * was used or the object is not locked at all.
414  *
415  * WARNING: This interface is pretty horrible, but TTM needs it because it
416  * doesn't pass the struct ww_acquire_ctx around in some very long callchains.
417  * Everyone else just uses it to check whether they're holding a reservation or
418  * not.
419  */
420 static inline struct ww_acquire_ctx *dma_resv_locking_ctx(struct dma_resv *obj)
421 {
422 	return READ_ONCE(obj->lock.ctx);
423 }
424 
425 /**
426  * dma_resv_unlock - unlock the reservation object
427  * @obj: the reservation object
428  *
429  * Unlocks the reservation object following exclusive access.
430  */
431 static inline void dma_resv_unlock(struct dma_resv *obj)
432 {
433 	dma_resv_reset_shared_max(obj);
434 	ww_mutex_unlock(&obj->lock);
435 }
436 
437 /**
438  * dma_resv_excl_fence - return the object's exclusive fence
439  * @obj: the reservation object
440  *
441  * Returns the exclusive fence (if any). Caller must either hold the objects
442  * through dma_resv_lock() or the RCU read side lock through rcu_read_lock(),
443  * or one of the variants of each
444  *
445  * RETURNS
446  * The exclusive fence or NULL
447  */
448 static inline struct dma_fence *
449 dma_resv_excl_fence(struct dma_resv *obj)
450 {
451 	return rcu_dereference_check(obj->fence_excl, dma_resv_held(obj));
452 }
453 
454 /**
455  * dma_resv_shared_list - get the reservation object's shared fence list
456  * @obj: the reservation object
457  *
458  * Returns the shared fence list. Caller must either hold the objects
459  * through dma_resv_lock() or the RCU read side lock through rcu_read_lock(),
460  * or one of the variants of each
461  */
462 static inline struct dma_resv_list *dma_resv_shared_list(struct dma_resv *obj)
463 {
464 	return rcu_dereference_check(obj->fence, dma_resv_held(obj));
465 }
466 
467 void dma_resv_init(struct dma_resv *obj);
468 void dma_resv_fini(struct dma_resv *obj);
469 int dma_resv_reserve_shared(struct dma_resv *obj, unsigned int num_fences);
470 void dma_resv_add_shared_fence(struct dma_resv *obj, struct dma_fence *fence);
471 void dma_resv_add_excl_fence(struct dma_resv *obj, struct dma_fence *fence);
472 int dma_resv_get_fences(struct dma_resv *obj, bool write,
473 			unsigned int *num_fences, struct dma_fence ***fences);
474 int dma_resv_copy_fences(struct dma_resv *dst, struct dma_resv *src);
475 long dma_resv_wait_timeout(struct dma_resv *obj, bool wait_all, bool intr,
476 			   unsigned long timeout);
477 bool dma_resv_test_signaled(struct dma_resv *obj, bool test_all);
478 void dma_resv_describe(struct dma_resv *obj, struct seq_file *seq);
479 
480 #endif /* _LINUX_RESERVATION_H */
481