xref: /linux/include/linux/compiler.h (revision cc04a46f11ea046ed53e2c832ae29e4790f7e35f)
1 #ifndef __LINUX_COMPILER_H
2 #define __LINUX_COMPILER_H
3 
4 #ifndef __ASSEMBLY__
5 
6 #ifdef __CHECKER__
7 # define __user		__attribute__((noderef, address_space(1)))
8 # define __kernel	__attribute__((address_space(0)))
9 # define __safe		__attribute__((safe))
10 # define __force	__attribute__((force))
11 # define __nocast	__attribute__((nocast))
12 # define __iomem	__attribute__((noderef, address_space(2)))
13 # define __must_hold(x)	__attribute__((context(x,1,1)))
14 # define __acquires(x)	__attribute__((context(x,0,1)))
15 # define __releases(x)	__attribute__((context(x,1,0)))
16 # define __acquire(x)	__context__(x,1)
17 # define __release(x)	__context__(x,-1)
18 # define __cond_lock(x,c)	((c) ? ({ __acquire(x); 1; }) : 0)
19 # define __percpu	__attribute__((noderef, address_space(3)))
20 # define __pmem		__attribute__((noderef, address_space(5)))
21 #ifdef CONFIG_SPARSE_RCU_POINTER
22 # define __rcu		__attribute__((noderef, address_space(4)))
23 #else
24 # define __rcu
25 #endif
26 extern void __chk_user_ptr(const volatile void __user *);
27 extern void __chk_io_ptr(const volatile void __iomem *);
28 #else
29 # define __user
30 # define __kernel
31 # define __safe
32 # define __force
33 # define __nocast
34 # define __iomem
35 # define __chk_user_ptr(x) (void)0
36 # define __chk_io_ptr(x) (void)0
37 # define __builtin_warning(x, y...) (1)
38 # define __must_hold(x)
39 # define __acquires(x)
40 # define __releases(x)
41 # define __acquire(x) (void)0
42 # define __release(x) (void)0
43 # define __cond_lock(x,c) (c)
44 # define __percpu
45 # define __rcu
46 # define __pmem
47 #endif
48 
49 /* Indirect macros required for expanded argument pasting, eg. __LINE__. */
50 #define ___PASTE(a,b) a##b
51 #define __PASTE(a,b) ___PASTE(a,b)
52 
53 #ifdef __KERNEL__
54 
55 #ifdef __GNUC__
56 #include <linux/compiler-gcc.h>
57 #endif
58 
59 #ifdef CC_USING_HOTPATCH
60 #define notrace __attribute__((hotpatch(0,0)))
61 #else
62 #define notrace __attribute__((no_instrument_function))
63 #endif
64 
65 /* Intel compiler defines __GNUC__. So we will overwrite implementations
66  * coming from above header files here
67  */
68 #ifdef __INTEL_COMPILER
69 # include <linux/compiler-intel.h>
70 #endif
71 
72 /* Clang compiler defines __GNUC__. So we will overwrite implementations
73  * coming from above header files here
74  */
75 #ifdef __clang__
76 #include <linux/compiler-clang.h>
77 #endif
78 
79 /*
80  * Generic compiler-dependent macros required for kernel
81  * build go below this comment. Actual compiler/compiler version
82  * specific implementations come from the above header files
83  */
84 
85 struct ftrace_branch_data {
86 	const char *func;
87 	const char *file;
88 	unsigned line;
89 	union {
90 		struct {
91 			unsigned long correct;
92 			unsigned long incorrect;
93 		};
94 		struct {
95 			unsigned long miss;
96 			unsigned long hit;
97 		};
98 		unsigned long miss_hit[2];
99 	};
100 };
101 
102 /*
103  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
104  * to disable branch tracing on a per file basis.
105  */
106 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
107     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
108 void ftrace_likely_update(struct ftrace_branch_data *f, int val, int expect);
109 
110 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
111 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
112 
113 #define __branch_check__(x, expect) ({					\
114 			int ______r;					\
115 			static struct ftrace_branch_data		\
116 				__attribute__((__aligned__(4)))		\
117 				__attribute__((section("_ftrace_annotated_branch"))) \
118 				______f = {				\
119 				.func = __func__,			\
120 				.file = __FILE__,			\
121 				.line = __LINE__,			\
122 			};						\
123 			______r = likely_notrace(x);			\
124 			ftrace_likely_update(&______f, ______r, expect); \
125 			______r;					\
126 		})
127 
128 /*
129  * Using __builtin_constant_p(x) to ignore cases where the return
130  * value is always the same.  This idea is taken from a similar patch
131  * written by Daniel Walker.
132  */
133 # ifndef likely
134 #  define likely(x)	(__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 1))
135 # endif
136 # ifndef unlikely
137 #  define unlikely(x)	(__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 0))
138 # endif
139 
140 #ifdef CONFIG_PROFILE_ALL_BRANCHES
141 /*
142  * "Define 'is'", Bill Clinton
143  * "Define 'if'", Steven Rostedt
144  */
145 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
146 #define __trace_if(cond) \
147 	if (__builtin_constant_p((cond)) ? !!(cond) :			\
148 	({								\
149 		int ______r;						\
150 		static struct ftrace_branch_data			\
151 			__attribute__((__aligned__(4)))			\
152 			__attribute__((section("_ftrace_branch")))	\
153 			______f = {					\
154 				.func = __func__,			\
155 				.file = __FILE__,			\
156 				.line = __LINE__,			\
157 			};						\
158 		______r = !!(cond);					\
159 		______f.miss_hit[______r]++;					\
160 		______r;						\
161 	}))
162 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
163 
164 #else
165 # define likely(x)	__builtin_expect(!!(x), 1)
166 # define unlikely(x)	__builtin_expect(!!(x), 0)
167 #endif
168 
169 /* Optimization barrier */
170 #ifndef barrier
171 # define barrier() __memory_barrier()
172 #endif
173 
174 #ifndef barrier_data
175 # define barrier_data(ptr) barrier()
176 #endif
177 
178 /* Unreachable code */
179 #ifndef unreachable
180 # define unreachable() do { } while (1)
181 #endif
182 
183 #ifndef RELOC_HIDE
184 # define RELOC_HIDE(ptr, off)					\
185   ({ unsigned long __ptr;					\
186      __ptr = (unsigned long) (ptr);				\
187     (typeof(ptr)) (__ptr + (off)); })
188 #endif
189 
190 #ifndef OPTIMIZER_HIDE_VAR
191 #define OPTIMIZER_HIDE_VAR(var) barrier()
192 #endif
193 
194 /* Not-quite-unique ID. */
195 #ifndef __UNIQUE_ID
196 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
197 #endif
198 
199 #include <uapi/linux/types.h>
200 
201 static __always_inline void __read_once_size(const volatile void *p, void *res, int size)
202 {
203 	switch (size) {
204 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;
205 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;
206 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;
207 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;
208 	default:
209 		barrier();
210 		__builtin_memcpy((void *)res, (const void *)p, size);
211 		barrier();
212 	}
213 }
214 
215 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
216 {
217 	switch (size) {
218 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
219 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
220 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
221 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
222 	default:
223 		barrier();
224 		__builtin_memcpy((void *)p, (const void *)res, size);
225 		barrier();
226 	}
227 }
228 
229 /*
230  * Prevent the compiler from merging or refetching reads or writes. The
231  * compiler is also forbidden from reordering successive instances of
232  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
233  * compiler is aware of some particular ordering.  One way to make the
234  * compiler aware of ordering is to put the two invocations of READ_ONCE,
235  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
236  *
237  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
238  * data types like structs or unions. If the size of the accessed data
239  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
240  * READ_ONCE() and WRITE_ONCE()  will fall back to memcpy and print a
241  * compile-time warning.
242  *
243  * Their two major use cases are: (1) Mediating communication between
244  * process-level code and irq/NMI handlers, all running on the same CPU,
245  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
246  * mutilate accesses that either do not require ordering or that interact
247  * with an explicit memory barrier or atomic instruction that provides the
248  * required ordering.
249  */
250 
251 #define READ_ONCE(x) \
252 	({ union { typeof(x) __val; char __c[1]; } __u; __read_once_size(&(x), __u.__c, sizeof(x)); __u.__val; })
253 
254 #define WRITE_ONCE(x, val) \
255 ({							\
256 	union { typeof(x) __val; char __c[1]; } __u =	\
257 		{ .__val = (__force typeof(x)) (val) }; \
258 	__write_once_size(&(x), __u.__c, sizeof(x));	\
259 	__u.__val;					\
260 })
261 
262 /**
263  * READ_ONCE_CTRL - Read a value heading a control dependency
264  * @x: The value to be read, heading the control dependency
265  *
266  * Control dependencies are tricky.  See Documentation/memory-barriers.txt
267  * for important information on how to use them.  Note that in many cases,
268  * use of smp_load_acquire() will be much simpler.  Control dependencies
269  * should be avoided except on the hottest of hotpaths.
270  */
271 #define READ_ONCE_CTRL(x) \
272 ({ \
273 	typeof(x) __val = READ_ONCE(x); \
274 	smp_read_barrier_depends(); /* Enforce control dependency. */ \
275 	__val; \
276 })
277 
278 #endif /* __KERNEL__ */
279 
280 #endif /* __ASSEMBLY__ */
281 
282 #ifdef __KERNEL__
283 /*
284  * Allow us to mark functions as 'deprecated' and have gcc emit a nice
285  * warning for each use, in hopes of speeding the functions removal.
286  * Usage is:
287  * 		int __deprecated foo(void)
288  */
289 #ifndef __deprecated
290 # define __deprecated		/* unimplemented */
291 #endif
292 
293 #ifdef MODULE
294 #define __deprecated_for_modules __deprecated
295 #else
296 #define __deprecated_for_modules
297 #endif
298 
299 #ifndef __must_check
300 #define __must_check
301 #endif
302 
303 #ifndef CONFIG_ENABLE_MUST_CHECK
304 #undef __must_check
305 #define __must_check
306 #endif
307 #ifndef CONFIG_ENABLE_WARN_DEPRECATED
308 #undef __deprecated
309 #undef __deprecated_for_modules
310 #define __deprecated
311 #define __deprecated_for_modules
312 #endif
313 
314 /*
315  * Allow us to avoid 'defined but not used' warnings on functions and data,
316  * as well as force them to be emitted to the assembly file.
317  *
318  * As of gcc 3.4, static functions that are not marked with attribute((used))
319  * may be elided from the assembly file.  As of gcc 3.4, static data not so
320  * marked will not be elided, but this may change in a future gcc version.
321  *
322  * NOTE: Because distributions shipped with a backported unit-at-a-time
323  * compiler in gcc 3.3, we must define __used to be __attribute__((used))
324  * for gcc >=3.3 instead of 3.4.
325  *
326  * In prior versions of gcc, such functions and data would be emitted, but
327  * would be warned about except with attribute((unused)).
328  *
329  * Mark functions that are referenced only in inline assembly as __used so
330  * the code is emitted even though it appears to be unreferenced.
331  */
332 #ifndef __used
333 # define __used			/* unimplemented */
334 #endif
335 
336 #ifndef __maybe_unused
337 # define __maybe_unused		/* unimplemented */
338 #endif
339 
340 #ifndef __always_unused
341 # define __always_unused	/* unimplemented */
342 #endif
343 
344 #ifndef noinline
345 #define noinline
346 #endif
347 
348 /*
349  * Rather then using noinline to prevent stack consumption, use
350  * noinline_for_stack instead.  For documentation reasons.
351  */
352 #define noinline_for_stack noinline
353 
354 #ifndef __always_inline
355 #define __always_inline inline
356 #endif
357 
358 #endif /* __KERNEL__ */
359 
360 /*
361  * From the GCC manual:
362  *
363  * Many functions do not examine any values except their arguments,
364  * and have no effects except the return value.  Basically this is
365  * just slightly more strict class than the `pure' attribute above,
366  * since function is not allowed to read global memory.
367  *
368  * Note that a function that has pointer arguments and examines the
369  * data pointed to must _not_ be declared `const'.  Likewise, a
370  * function that calls a non-`const' function usually must not be
371  * `const'.  It does not make sense for a `const' function to return
372  * `void'.
373  */
374 #ifndef __attribute_const__
375 # define __attribute_const__	/* unimplemented */
376 #endif
377 
378 /*
379  * Tell gcc if a function is cold. The compiler will assume any path
380  * directly leading to the call is unlikely.
381  */
382 
383 #ifndef __cold
384 #define __cold
385 #endif
386 
387 /* Simple shorthand for a section definition */
388 #ifndef __section
389 # define __section(S) __attribute__ ((__section__(#S)))
390 #endif
391 
392 #ifndef __visible
393 #define __visible
394 #endif
395 
396 /* Are two types/vars the same type (ignoring qualifiers)? */
397 #ifndef __same_type
398 # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b))
399 #endif
400 
401 /* Is this type a native word size -- useful for atomic operations */
402 #ifndef __native_word
403 # define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long))
404 #endif
405 
406 /* Compile time object size, -1 for unknown */
407 #ifndef __compiletime_object_size
408 # define __compiletime_object_size(obj) -1
409 #endif
410 #ifndef __compiletime_warning
411 # define __compiletime_warning(message)
412 #endif
413 #ifndef __compiletime_error
414 # define __compiletime_error(message)
415 /*
416  * Sparse complains of variable sized arrays due to the temporary variable in
417  * __compiletime_assert. Unfortunately we can't just expand it out to make
418  * sparse see a constant array size without breaking compiletime_assert on old
419  * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
420  */
421 # ifndef __CHECKER__
422 #  define __compiletime_error_fallback(condition) \
423 	do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
424 # endif
425 #endif
426 #ifndef __compiletime_error_fallback
427 # define __compiletime_error_fallback(condition) do { } while (0)
428 #endif
429 
430 #define __compiletime_assert(condition, msg, prefix, suffix)		\
431 	do {								\
432 		bool __cond = !(condition);				\
433 		extern void prefix ## suffix(void) __compiletime_error(msg); \
434 		if (__cond)						\
435 			prefix ## suffix();				\
436 		__compiletime_error_fallback(__cond);			\
437 	} while (0)
438 
439 #define _compiletime_assert(condition, msg, prefix, suffix) \
440 	__compiletime_assert(condition, msg, prefix, suffix)
441 
442 /**
443  * compiletime_assert - break build and emit msg if condition is false
444  * @condition: a compile-time constant condition to check
445  * @msg:       a message to emit if condition is false
446  *
447  * In tradition of POSIX assert, this macro will break the build if the
448  * supplied condition is *false*, emitting the supplied error message if the
449  * compiler has support to do so.
450  */
451 #define compiletime_assert(condition, msg) \
452 	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
453 
454 #define compiletime_assert_atomic_type(t)				\
455 	compiletime_assert(__native_word(t),				\
456 		"Need native word sized stores/loads for atomicity.")
457 
458 /*
459  * Prevent the compiler from merging or refetching accesses.  The compiler
460  * is also forbidden from reordering successive instances of ACCESS_ONCE(),
461  * but only when the compiler is aware of some particular ordering.  One way
462  * to make the compiler aware of ordering is to put the two invocations of
463  * ACCESS_ONCE() in different C statements.
464  *
465  * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
466  * on a union member will work as long as the size of the member matches the
467  * size of the union and the size is smaller than word size.
468  *
469  * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
470  * between process-level code and irq/NMI handlers, all running on the same CPU,
471  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
472  * mutilate accesses that either do not require ordering or that interact
473  * with an explicit memory barrier or atomic instruction that provides the
474  * required ordering.
475  *
476  * If possible use READ_ONCE()/WRITE_ONCE() instead.
477  */
478 #define __ACCESS_ONCE(x) ({ \
479 	 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
480 	(volatile typeof(x) *)&(x); })
481 #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
482 
483 /**
484  * lockless_dereference() - safely load a pointer for later dereference
485  * @p: The pointer to load
486  *
487  * Similar to rcu_dereference(), but for situations where the pointed-to
488  * object's lifetime is managed by something other than RCU.  That
489  * "something other" might be reference counting or simple immortality.
490  */
491 #define lockless_dereference(p) \
492 ({ \
493 	typeof(p) _________p1 = READ_ONCE(p); \
494 	smp_read_barrier_depends(); /* Dependency order vs. p above. */ \
495 	(_________p1); \
496 })
497 
498 /* Ignore/forbid kprobes attach on very low level functions marked by this attribute: */
499 #ifdef CONFIG_KPROBES
500 # define __kprobes	__attribute__((__section__(".kprobes.text")))
501 # define nokprobe_inline	__always_inline
502 #else
503 # define __kprobes
504 # define nokprobe_inline	inline
505 #endif
506 #endif /* __LINUX_COMPILER_H */
507