xref: /linux/include/linux/compiler.h (revision 37cb8e1f8e10c6e9bd2a1b95cdda0620a21b0551)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_COMPILER_H
3 #define __LINUX_COMPILER_H
4 
5 #include <linux/compiler_types.h>
6 
7 #ifndef __ASSEMBLY__
8 
9 #ifdef __KERNEL__
10 
11 /*
12  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
13  * to disable branch tracing on a per file basis.
14  */
15 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
16     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
17 void ftrace_likely_update(struct ftrace_likely_data *f, int val,
18 			  int expect, int is_constant);
19 
20 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
21 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
22 
23 #define __branch_check__(x, expect, is_constant) ({			\
24 			int ______r;					\
25 			static struct ftrace_likely_data		\
26 				__attribute__((__aligned__(4)))		\
27 				__attribute__((section("_ftrace_annotated_branch"))) \
28 				______f = {				\
29 				.data.func = __func__,			\
30 				.data.file = __FILE__,			\
31 				.data.line = __LINE__,			\
32 			};						\
33 			______r = __builtin_expect(!!(x), expect);	\
34 			ftrace_likely_update(&______f, ______r,		\
35 					     expect, is_constant);	\
36 			______r;					\
37 		})
38 
39 /*
40  * Using __builtin_constant_p(x) to ignore cases where the return
41  * value is always the same.  This idea is taken from a similar patch
42  * written by Daniel Walker.
43  */
44 # ifndef likely
45 #  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
46 # endif
47 # ifndef unlikely
48 #  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
49 # endif
50 
51 #ifdef CONFIG_PROFILE_ALL_BRANCHES
52 /*
53  * "Define 'is'", Bill Clinton
54  * "Define 'if'", Steven Rostedt
55  */
56 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
57 #define __trace_if(cond) \
58 	if (__builtin_constant_p(!!(cond)) ? !!(cond) :			\
59 	({								\
60 		int ______r;						\
61 		static struct ftrace_branch_data			\
62 			__attribute__((__aligned__(4)))			\
63 			__attribute__((section("_ftrace_branch")))	\
64 			______f = {					\
65 				.func = __func__,			\
66 				.file = __FILE__,			\
67 				.line = __LINE__,			\
68 			};						\
69 		______r = !!(cond);					\
70 		______f.miss_hit[______r]++;					\
71 		______r;						\
72 	}))
73 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
74 
75 #else
76 # define likely(x)	__builtin_expect(!!(x), 1)
77 # define unlikely(x)	__builtin_expect(!!(x), 0)
78 #endif
79 
80 /* Optimization barrier */
81 #ifndef barrier
82 # define barrier() __memory_barrier()
83 #endif
84 
85 #ifndef barrier_data
86 # define barrier_data(ptr) barrier()
87 #endif
88 
89 /* Unreachable code */
90 #ifdef CONFIG_STACK_VALIDATION
91 #define annotate_reachable() ({						\
92 	asm("%c0:\n\t"							\
93 	    ".pushsection .discard.reachable\n\t"			\
94 	    ".long %c0b - .\n\t"					\
95 	    ".popsection\n\t" : : "i" (__COUNTER__));			\
96 })
97 #define annotate_unreachable() ({					\
98 	asm("%c0:\n\t"							\
99 	    ".pushsection .discard.unreachable\n\t"			\
100 	    ".long %c0b - .\n\t"					\
101 	    ".popsection\n\t" : : "i" (__COUNTER__));			\
102 })
103 #define ASM_UNREACHABLE							\
104 	"999:\n\t"							\
105 	".pushsection .discard.unreachable\n\t"				\
106 	".long 999b - .\n\t"						\
107 	".popsection\n\t"
108 #else
109 #define annotate_reachable()
110 #define annotate_unreachable()
111 #endif
112 
113 #ifndef ASM_UNREACHABLE
114 # define ASM_UNREACHABLE
115 #endif
116 #ifndef unreachable
117 # define unreachable() do { annotate_reachable(); do { } while (1); } while (0)
118 #endif
119 
120 /*
121  * KENTRY - kernel entry point
122  * This can be used to annotate symbols (functions or data) that are used
123  * without their linker symbol being referenced explicitly. For example,
124  * interrupt vector handlers, or functions in the kernel image that are found
125  * programatically.
126  *
127  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
128  * are handled in their own way (with KEEP() in linker scripts).
129  *
130  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
131  * linker script. For example an architecture could KEEP() its entire
132  * boot/exception vector code rather than annotate each function and data.
133  */
134 #ifndef KENTRY
135 # define KENTRY(sym)						\
136 	extern typeof(sym) sym;					\
137 	static const unsigned long __kentry_##sym		\
138 	__used							\
139 	__attribute__((section("___kentry" "+" #sym ), used))	\
140 	= (unsigned long)&sym;
141 #endif
142 
143 #ifndef RELOC_HIDE
144 # define RELOC_HIDE(ptr, off)					\
145   ({ unsigned long __ptr;					\
146      __ptr = (unsigned long) (ptr);				\
147     (typeof(ptr)) (__ptr + (off)); })
148 #endif
149 
150 #ifndef OPTIMIZER_HIDE_VAR
151 #define OPTIMIZER_HIDE_VAR(var) barrier()
152 #endif
153 
154 /* Not-quite-unique ID. */
155 #ifndef __UNIQUE_ID
156 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
157 #endif
158 
159 #include <uapi/linux/types.h>
160 
161 #define __READ_ONCE_SIZE						\
162 ({									\
163 	switch (size) {							\
164 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;		\
165 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;		\
166 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;		\
167 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;		\
168 	default:							\
169 		barrier();						\
170 		__builtin_memcpy((void *)res, (const void *)p, size);	\
171 		barrier();						\
172 	}								\
173 })
174 
175 static __always_inline
176 void __read_once_size(const volatile void *p, void *res, int size)
177 {
178 	__READ_ONCE_SIZE;
179 }
180 
181 #ifdef CONFIG_KASAN
182 /*
183  * This function is not 'inline' because __no_sanitize_address confilcts
184  * with inlining. Attempt to inline it may cause a build failure.
185  * 	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
186  * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
187  */
188 static __no_sanitize_address __maybe_unused
189 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
190 {
191 	__READ_ONCE_SIZE;
192 }
193 #else
194 static __always_inline
195 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
196 {
197 	__READ_ONCE_SIZE;
198 }
199 #endif
200 
201 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
202 {
203 	switch (size) {
204 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
205 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
206 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
207 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
208 	default:
209 		barrier();
210 		__builtin_memcpy((void *)p, (const void *)res, size);
211 		barrier();
212 	}
213 }
214 
215 /*
216  * Prevent the compiler from merging or refetching reads or writes. The
217  * compiler is also forbidden from reordering successive instances of
218  * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the
219  * compiler is aware of some particular ordering.  One way to make the
220  * compiler aware of ordering is to put the two invocations of READ_ONCE,
221  * WRITE_ONCE or ACCESS_ONCE() in different C statements.
222  *
223  * In contrast to ACCESS_ONCE these two macros will also work on aggregate
224  * data types like structs or unions. If the size of the accessed data
225  * type exceeds the word size of the machine (e.g., 32 bits or 64 bits)
226  * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at
227  * least two memcpy()s: one for the __builtin_memcpy() and then one for
228  * the macro doing the copy of variable - '__u' allocated on the stack.
229  *
230  * Their two major use cases are: (1) Mediating communication between
231  * process-level code and irq/NMI handlers, all running on the same CPU,
232  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
233  * mutilate accesses that either do not require ordering or that interact
234  * with an explicit memory barrier or atomic instruction that provides the
235  * required ordering.
236  */
237 #include <asm/barrier.h>
238 
239 #define __READ_ONCE(x, check)						\
240 ({									\
241 	union { typeof(x) __val; char __c[1]; } __u;			\
242 	if (check)							\
243 		__read_once_size(&(x), __u.__c, sizeof(x));		\
244 	else								\
245 		__read_once_size_nocheck(&(x), __u.__c, sizeof(x));	\
246 	smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
247 	__u.__val;							\
248 })
249 #define READ_ONCE(x) __READ_ONCE(x, 1)
250 
251 /*
252  * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
253  * to hide memory access from KASAN.
254  */
255 #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
256 
257 #define WRITE_ONCE(x, val) \
258 ({							\
259 	union { typeof(x) __val; char __c[1]; } __u =	\
260 		{ .__val = (__force typeof(x)) (val) }; \
261 	__write_once_size(&(x), __u.__c, sizeof(x));	\
262 	__u.__val;					\
263 })
264 
265 #endif /* __KERNEL__ */
266 
267 #endif /* __ASSEMBLY__ */
268 
269 /* Compile time object size, -1 for unknown */
270 #ifndef __compiletime_object_size
271 # define __compiletime_object_size(obj) -1
272 #endif
273 #ifndef __compiletime_warning
274 # define __compiletime_warning(message)
275 #endif
276 #ifndef __compiletime_error
277 # define __compiletime_error(message)
278 /*
279  * Sparse complains of variable sized arrays due to the temporary variable in
280  * __compiletime_assert. Unfortunately we can't just expand it out to make
281  * sparse see a constant array size without breaking compiletime_assert on old
282  * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether.
283  */
284 # ifndef __CHECKER__
285 #  define __compiletime_error_fallback(condition) \
286 	do { ((void)sizeof(char[1 - 2 * condition])); } while (0)
287 # endif
288 #endif
289 #ifndef __compiletime_error_fallback
290 # define __compiletime_error_fallback(condition) do { } while (0)
291 #endif
292 
293 #ifdef __OPTIMIZE__
294 # define __compiletime_assert(condition, msg, prefix, suffix)		\
295 	do {								\
296 		bool __cond = !(condition);				\
297 		extern void prefix ## suffix(void) __compiletime_error(msg); \
298 		if (__cond)						\
299 			prefix ## suffix();				\
300 		__compiletime_error_fallback(__cond);			\
301 	} while (0)
302 #else
303 # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
304 #endif
305 
306 #define _compiletime_assert(condition, msg, prefix, suffix) \
307 	__compiletime_assert(condition, msg, prefix, suffix)
308 
309 /**
310  * compiletime_assert - break build and emit msg if condition is false
311  * @condition: a compile-time constant condition to check
312  * @msg:       a message to emit if condition is false
313  *
314  * In tradition of POSIX assert, this macro will break the build if the
315  * supplied condition is *false*, emitting the supplied error message if the
316  * compiler has support to do so.
317  */
318 #define compiletime_assert(condition, msg) \
319 	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
320 
321 #define compiletime_assert_atomic_type(t)				\
322 	compiletime_assert(__native_word(t),				\
323 		"Need native word sized stores/loads for atomicity.")
324 
325 /*
326  * Prevent the compiler from merging or refetching accesses.  The compiler
327  * is also forbidden from reordering successive instances of ACCESS_ONCE(),
328  * but only when the compiler is aware of some particular ordering.  One way
329  * to make the compiler aware of ordering is to put the two invocations of
330  * ACCESS_ONCE() in different C statements.
331  *
332  * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE
333  * on a union member will work as long as the size of the member matches the
334  * size of the union and the size is smaller than word size.
335  *
336  * The major use cases of ACCESS_ONCE used to be (1) Mediating communication
337  * between process-level code and irq/NMI handlers, all running on the same CPU,
338  * and (2) Ensuring that the compiler does not  fold, spindle, or otherwise
339  * mutilate accesses that either do not require ordering or that interact
340  * with an explicit memory barrier or atomic instruction that provides the
341  * required ordering.
342  *
343  * If possible use READ_ONCE()/WRITE_ONCE() instead.
344  */
345 #define __ACCESS_ONCE(x) ({ \
346 	 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \
347 	(volatile typeof(x) *)&(x); })
348 #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x))
349 
350 #endif /* __LINUX_COMPILER_H */
351