xref: /linux/include/linux/compiler.h (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_COMPILER_H
3 #define __LINUX_COMPILER_H
4 
5 #include <linux/compiler_types.h>
6 
7 #ifndef __ASSEMBLY__
8 
9 #ifdef __KERNEL__
10 
11 /*
12  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
13  * to disable branch tracing on a per file basis.
14  */
15 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
16     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
17 void ftrace_likely_update(struct ftrace_likely_data *f, int val,
18 			  int expect, int is_constant);
19 
20 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
21 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
22 
23 #define __branch_check__(x, expect, is_constant) ({			\
24 			long ______r;					\
25 			static struct ftrace_likely_data		\
26 				__aligned(4)				\
27 				__section("_ftrace_annotated_branch")	\
28 				______f = {				\
29 				.data.func = __func__,			\
30 				.data.file = __FILE__,			\
31 				.data.line = __LINE__,			\
32 			};						\
33 			______r = __builtin_expect(!!(x), expect);	\
34 			ftrace_likely_update(&______f, ______r,		\
35 					     expect, is_constant);	\
36 			______r;					\
37 		})
38 
39 /*
40  * Using __builtin_constant_p(x) to ignore cases where the return
41  * value is always the same.  This idea is taken from a similar patch
42  * written by Daniel Walker.
43  */
44 # ifndef likely
45 #  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
46 # endif
47 # ifndef unlikely
48 #  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
49 # endif
50 
51 #ifdef CONFIG_PROFILE_ALL_BRANCHES
52 /*
53  * "Define 'is'", Bill Clinton
54  * "Define 'if'", Steven Rostedt
55  */
56 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) )
57 #define __trace_if(cond) \
58 	if (__builtin_constant_p(!!(cond)) ? !!(cond) :			\
59 	({								\
60 		int ______r;						\
61 		static struct ftrace_branch_data			\
62 			__aligned(4)					\
63 			__section("_ftrace_branch")			\
64 			______f = {					\
65 				.func = __func__,			\
66 				.file = __FILE__,			\
67 				.line = __LINE__,			\
68 			};						\
69 		______r = !!(cond);					\
70 		______f.miss_hit[______r]++;					\
71 		______r;						\
72 	}))
73 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
74 
75 #else
76 # define likely(x)	__builtin_expect(!!(x), 1)
77 # define unlikely(x)	__builtin_expect(!!(x), 0)
78 #endif
79 
80 /* Optimization barrier */
81 #ifndef barrier
82 # define barrier() __memory_barrier()
83 #endif
84 
85 #ifndef barrier_data
86 # define barrier_data(ptr) barrier()
87 #endif
88 
89 /* workaround for GCC PR82365 if needed */
90 #ifndef barrier_before_unreachable
91 # define barrier_before_unreachable() do { } while (0)
92 #endif
93 
94 /* Unreachable code */
95 #ifdef CONFIG_STACK_VALIDATION
96 /*
97  * These macros help objtool understand GCC code flow for unreachable code.
98  * The __COUNTER__ based labels are a hack to make each instance of the macros
99  * unique, to convince GCC not to merge duplicate inline asm statements.
100  */
101 #define annotate_reachable() ({						\
102 	asm volatile("%c0:\n\t"						\
103 		     ".pushsection .discard.reachable\n\t"		\
104 		     ".long %c0b - .\n\t"				\
105 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
106 })
107 #define annotate_unreachable() ({					\
108 	asm volatile("%c0:\n\t"						\
109 		     ".pushsection .discard.unreachable\n\t"		\
110 		     ".long %c0b - .\n\t"				\
111 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
112 })
113 #define ASM_UNREACHABLE							\
114 	"999:\n\t"							\
115 	".pushsection .discard.unreachable\n\t"				\
116 	".long 999b - .\n\t"						\
117 	".popsection\n\t"
118 #else
119 #define annotate_reachable()
120 #define annotate_unreachable()
121 #endif
122 
123 #ifndef ASM_UNREACHABLE
124 # define ASM_UNREACHABLE
125 #endif
126 #ifndef unreachable
127 # define unreachable() do {		\
128 	annotate_unreachable();		\
129 	__builtin_unreachable();	\
130 } while (0)
131 #endif
132 
133 /*
134  * KENTRY - kernel entry point
135  * This can be used to annotate symbols (functions or data) that are used
136  * without their linker symbol being referenced explicitly. For example,
137  * interrupt vector handlers, or functions in the kernel image that are found
138  * programatically.
139  *
140  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
141  * are handled in their own way (with KEEP() in linker scripts).
142  *
143  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
144  * linker script. For example an architecture could KEEP() its entire
145  * boot/exception vector code rather than annotate each function and data.
146  */
147 #ifndef KENTRY
148 # define KENTRY(sym)						\
149 	extern typeof(sym) sym;					\
150 	static const unsigned long __kentry_##sym		\
151 	__used							\
152 	__section("___kentry" "+" #sym )			\
153 	= (unsigned long)&sym;
154 #endif
155 
156 #ifndef RELOC_HIDE
157 # define RELOC_HIDE(ptr, off)					\
158   ({ unsigned long __ptr;					\
159      __ptr = (unsigned long) (ptr);				\
160     (typeof(ptr)) (__ptr + (off)); })
161 #endif
162 
163 #ifndef OPTIMIZER_HIDE_VAR
164 /* Make the optimizer believe the variable can be manipulated arbitrarily. */
165 #define OPTIMIZER_HIDE_VAR(var)						\
166 	__asm__ ("" : "=r" (var) : "0" (var))
167 #endif
168 
169 /* Not-quite-unique ID. */
170 #ifndef __UNIQUE_ID
171 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
172 #endif
173 
174 #include <uapi/linux/types.h>
175 
176 #define __READ_ONCE_SIZE						\
177 ({									\
178 	switch (size) {							\
179 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;		\
180 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;		\
181 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;		\
182 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;		\
183 	default:							\
184 		barrier();						\
185 		__builtin_memcpy((void *)res, (const void *)p, size);	\
186 		barrier();						\
187 	}								\
188 })
189 
190 static __always_inline
191 void __read_once_size(const volatile void *p, void *res, int size)
192 {
193 	__READ_ONCE_SIZE;
194 }
195 
196 #ifdef CONFIG_KASAN
197 /*
198  * We can't declare function 'inline' because __no_sanitize_address confilcts
199  * with inlining. Attempt to inline it may cause a build failure.
200  * 	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
201  * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
202  */
203 # define __no_kasan_or_inline __no_sanitize_address notrace __maybe_unused
204 #else
205 # define __no_kasan_or_inline __always_inline
206 #endif
207 
208 static __no_kasan_or_inline
209 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
210 {
211 	__READ_ONCE_SIZE;
212 }
213 
214 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
215 {
216 	switch (size) {
217 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
218 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
219 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
220 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
221 	default:
222 		barrier();
223 		__builtin_memcpy((void *)p, (const void *)res, size);
224 		barrier();
225 	}
226 }
227 
228 /*
229  * Prevent the compiler from merging or refetching reads or writes. The
230  * compiler is also forbidden from reordering successive instances of
231  * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
232  * particular ordering. One way to make the compiler aware of ordering is to
233  * put the two invocations of READ_ONCE or WRITE_ONCE in different C
234  * statements.
235  *
236  * These two macros will also work on aggregate data types like structs or
237  * unions. If the size of the accessed data type exceeds the word size of
238  * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will
239  * fall back to memcpy(). There's at least two memcpy()s: one for the
240  * __builtin_memcpy() and then one for the macro doing the copy of variable
241  * - '__u' allocated on the stack.
242  *
243  * Their two major use cases are: (1) Mediating communication between
244  * process-level code and irq/NMI handlers, all running on the same CPU,
245  * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
246  * mutilate accesses that either do not require ordering or that interact
247  * with an explicit memory barrier or atomic instruction that provides the
248  * required ordering.
249  */
250 #include <asm/barrier.h>
251 #include <linux/kasan-checks.h>
252 
253 #define __READ_ONCE(x, check)						\
254 ({									\
255 	union { typeof(x) __val; char __c[1]; } __u;			\
256 	if (check)							\
257 		__read_once_size(&(x), __u.__c, sizeof(x));		\
258 	else								\
259 		__read_once_size_nocheck(&(x), __u.__c, sizeof(x));	\
260 	smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
261 	__u.__val;							\
262 })
263 #define READ_ONCE(x) __READ_ONCE(x, 1)
264 
265 /*
266  * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
267  * to hide memory access from KASAN.
268  */
269 #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
270 
271 static __no_kasan_or_inline
272 unsigned long read_word_at_a_time(const void *addr)
273 {
274 	kasan_check_read(addr, 1);
275 	return *(unsigned long *)addr;
276 }
277 
278 #define WRITE_ONCE(x, val) \
279 ({							\
280 	union { typeof(x) __val; char __c[1]; } __u =	\
281 		{ .__val = (__force typeof(x)) (val) }; \
282 	__write_once_size(&(x), __u.__c, sizeof(x));	\
283 	__u.__val;					\
284 })
285 
286 #endif /* __KERNEL__ */
287 
288 /*
289  * Force the compiler to emit 'sym' as a symbol, so that we can reference
290  * it from inline assembler. Necessary in case 'sym' could be inlined
291  * otherwise, or eliminated entirely due to lack of references that are
292  * visible to the compiler.
293  */
294 #define __ADDRESSABLE(sym) \
295 	static void * __section(".discard.addressable") __used \
296 		__PASTE(__addressable_##sym, __LINE__) = (void *)&sym;
297 
298 /**
299  * offset_to_ptr - convert a relative memory offset to an absolute pointer
300  * @off:	the address of the 32-bit offset value
301  */
302 static inline void *offset_to_ptr(const int *off)
303 {
304 	return (void *)((unsigned long)off + *off);
305 }
306 
307 #endif /* __ASSEMBLY__ */
308 
309 /* Compile time object size, -1 for unknown */
310 #ifndef __compiletime_object_size
311 # define __compiletime_object_size(obj) -1
312 #endif
313 #ifndef __compiletime_warning
314 # define __compiletime_warning(message)
315 #endif
316 #ifndef __compiletime_error
317 # define __compiletime_error(message)
318 #endif
319 
320 #ifdef __OPTIMIZE__
321 # define __compiletime_assert(condition, msg, prefix, suffix)		\
322 	do {								\
323 		extern void prefix ## suffix(void) __compiletime_error(msg); \
324 		if (!(condition))					\
325 			prefix ## suffix();				\
326 	} while (0)
327 #else
328 # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
329 #endif
330 
331 #define _compiletime_assert(condition, msg, prefix, suffix) \
332 	__compiletime_assert(condition, msg, prefix, suffix)
333 
334 /**
335  * compiletime_assert - break build and emit msg if condition is false
336  * @condition: a compile-time constant condition to check
337  * @msg:       a message to emit if condition is false
338  *
339  * In tradition of POSIX assert, this macro will break the build if the
340  * supplied condition is *false*, emitting the supplied error message if the
341  * compiler has support to do so.
342  */
343 #define compiletime_assert(condition, msg) \
344 	_compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)
345 
346 #define compiletime_assert_atomic_type(t)				\
347 	compiletime_assert(__native_word(t),				\
348 		"Need native word sized stores/loads for atomicity.")
349 
350 /* &a[0] degrades to a pointer: a different type from an array */
351 #define __must_be_array(a)	BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))
352 
353 #endif /* __LINUX_COMPILER_H */
354