xref: /linux/include/crypto/skcipher.h (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /*
2  * Symmetric key ciphers.
3  *
4  * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the Free
8  * Software Foundation; either version 2 of the License, or (at your option)
9  * any later version.
10  *
11  */
12 
13 #ifndef _CRYPTO_SKCIPHER_H
14 #define _CRYPTO_SKCIPHER_H
15 
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 
20 /**
21  *	struct skcipher_request - Symmetric key cipher request
22  *	@cryptlen: Number of bytes to encrypt or decrypt
23  *	@iv: Initialisation Vector
24  *	@src: Source SG list
25  *	@dst: Destination SG list
26  *	@base: Underlying async request request
27  *	@__ctx: Start of private context data
28  */
29 struct skcipher_request {
30 	unsigned int cryptlen;
31 
32 	u8 *iv;
33 
34 	struct scatterlist *src;
35 	struct scatterlist *dst;
36 
37 	struct crypto_async_request base;
38 
39 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
40 };
41 
42 /**
43  *	struct skcipher_givcrypt_request - Crypto request with IV generation
44  *	@seq: Sequence number for IV generation
45  *	@giv: Space for generated IV
46  *	@creq: The crypto request itself
47  */
48 struct skcipher_givcrypt_request {
49 	u64 seq;
50 	u8 *giv;
51 
52 	struct ablkcipher_request creq;
53 };
54 
55 struct crypto_skcipher {
56 	int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
57 	              unsigned int keylen);
58 	int (*encrypt)(struct skcipher_request *req);
59 	int (*decrypt)(struct skcipher_request *req);
60 
61 	unsigned int ivsize;
62 	unsigned int reqsize;
63 	unsigned int keysize;
64 
65 	struct crypto_tfm base;
66 };
67 
68 /**
69  * struct skcipher_alg - symmetric key cipher definition
70  * @min_keysize: Minimum key size supported by the transformation. This is the
71  *		 smallest key length supported by this transformation algorithm.
72  *		 This must be set to one of the pre-defined values as this is
73  *		 not hardware specific. Possible values for this field can be
74  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
75  * @max_keysize: Maximum key size supported by the transformation. This is the
76  *		 largest key length supported by this transformation algorithm.
77  *		 This must be set to one of the pre-defined values as this is
78  *		 not hardware specific. Possible values for this field can be
79  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
80  * @setkey: Set key for the transformation. This function is used to either
81  *	    program a supplied key into the hardware or store the key in the
82  *	    transformation context for programming it later. Note that this
83  *	    function does modify the transformation context. This function can
84  *	    be called multiple times during the existence of the transformation
85  *	    object, so one must make sure the key is properly reprogrammed into
86  *	    the hardware. This function is also responsible for checking the key
87  *	    length for validity. In case a software fallback was put in place in
88  *	    the @cra_init call, this function might need to use the fallback if
89  *	    the algorithm doesn't support all of the key sizes.
90  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
91  *	     the supplied scatterlist containing the blocks of data. The crypto
92  *	     API consumer is responsible for aligning the entries of the
93  *	     scatterlist properly and making sure the chunks are correctly
94  *	     sized. In case a software fallback was put in place in the
95  *	     @cra_init call, this function might need to use the fallback if
96  *	     the algorithm doesn't support all of the key sizes. In case the
97  *	     key was stored in transformation context, the key might need to be
98  *	     re-programmed into the hardware in this function. This function
99  *	     shall not modify the transformation context, as this function may
100  *	     be called in parallel with the same transformation object.
101  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
102  *	     and the conditions are exactly the same.
103  * @init: Initialize the cryptographic transformation object. This function
104  *	  is used to initialize the cryptographic transformation object.
105  *	  This function is called only once at the instantiation time, right
106  *	  after the transformation context was allocated. In case the
107  *	  cryptographic hardware has some special requirements which need to
108  *	  be handled by software, this function shall check for the precise
109  *	  requirement of the transformation and put any software fallbacks
110  *	  in place.
111  * @exit: Deinitialize the cryptographic transformation object. This is a
112  *	  counterpart to @init, used to remove various changes set in
113  *	  @init.
114  * @ivsize: IV size applicable for transformation. The consumer must provide an
115  *	    IV of exactly that size to perform the encrypt or decrypt operation.
116  * @chunksize: Equal to the block size except for stream ciphers such as
117  *	       CTR where it is set to the underlying block size.
118  * @base: Definition of a generic crypto algorithm.
119  *
120  * All fields except @ivsize are mandatory and must be filled.
121  */
122 struct skcipher_alg {
123 	int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
124 	              unsigned int keylen);
125 	int (*encrypt)(struct skcipher_request *req);
126 	int (*decrypt)(struct skcipher_request *req);
127 	int (*init)(struct crypto_skcipher *tfm);
128 	void (*exit)(struct crypto_skcipher *tfm);
129 
130 	unsigned int min_keysize;
131 	unsigned int max_keysize;
132 	unsigned int ivsize;
133 	unsigned int chunksize;
134 
135 	struct crypto_alg base;
136 };
137 
138 #define SKCIPHER_REQUEST_ON_STACK(name, tfm) \
139 	char __##name##_desc[sizeof(struct skcipher_request) + \
140 		crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \
141 	struct skcipher_request *name = (void *)__##name##_desc
142 
143 /**
144  * DOC: Symmetric Key Cipher API
145  *
146  * Symmetric key cipher API is used with the ciphers of type
147  * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
148  *
149  * Asynchronous cipher operations imply that the function invocation for a
150  * cipher request returns immediately before the completion of the operation.
151  * The cipher request is scheduled as a separate kernel thread and therefore
152  * load-balanced on the different CPUs via the process scheduler. To allow
153  * the kernel crypto API to inform the caller about the completion of a cipher
154  * request, the caller must provide a callback function. That function is
155  * invoked with the cipher handle when the request completes.
156  *
157  * To support the asynchronous operation, additional information than just the
158  * cipher handle must be supplied to the kernel crypto API. That additional
159  * information is given by filling in the skcipher_request data structure.
160  *
161  * For the symmetric key cipher API, the state is maintained with the tfm
162  * cipher handle. A single tfm can be used across multiple calls and in
163  * parallel. For asynchronous block cipher calls, context data supplied and
164  * only used by the caller can be referenced the request data structure in
165  * addition to the IV used for the cipher request. The maintenance of such
166  * state information would be important for a crypto driver implementer to
167  * have, because when calling the callback function upon completion of the
168  * cipher operation, that callback function may need some information about
169  * which operation just finished if it invoked multiple in parallel. This
170  * state information is unused by the kernel crypto API.
171  */
172 
173 static inline struct crypto_skcipher *__crypto_skcipher_cast(
174 	struct crypto_tfm *tfm)
175 {
176 	return container_of(tfm, struct crypto_skcipher, base);
177 }
178 
179 /**
180  * crypto_alloc_skcipher() - allocate symmetric key cipher handle
181  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
182  *	      skcipher cipher
183  * @type: specifies the type of the cipher
184  * @mask: specifies the mask for the cipher
185  *
186  * Allocate a cipher handle for an skcipher. The returned struct
187  * crypto_skcipher is the cipher handle that is required for any subsequent
188  * API invocation for that skcipher.
189  *
190  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
191  *	   of an error, PTR_ERR() returns the error code.
192  */
193 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
194 					      u32 type, u32 mask);
195 
196 static inline struct crypto_tfm *crypto_skcipher_tfm(
197 	struct crypto_skcipher *tfm)
198 {
199 	return &tfm->base;
200 }
201 
202 /**
203  * crypto_free_skcipher() - zeroize and free cipher handle
204  * @tfm: cipher handle to be freed
205  */
206 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
207 {
208 	crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
209 }
210 
211 /**
212  * crypto_has_skcipher() - Search for the availability of an skcipher.
213  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
214  *	      skcipher
215  * @type: specifies the type of the cipher
216  * @mask: specifies the mask for the cipher
217  *
218  * Return: true when the skcipher is known to the kernel crypto API; false
219  *	   otherwise
220  */
221 static inline int crypto_has_skcipher(const char *alg_name, u32 type,
222 					u32 mask)
223 {
224 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
225 			      crypto_skcipher_mask(mask));
226 }
227 
228 /**
229  * crypto_has_skcipher2() - Search for the availability of an skcipher.
230  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
231  *	      skcipher
232  * @type: specifies the type of the skcipher
233  * @mask: specifies the mask for the skcipher
234  *
235  * Return: true when the skcipher is known to the kernel crypto API; false
236  *	   otherwise
237  */
238 int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
239 
240 static inline const char *crypto_skcipher_driver_name(
241 	struct crypto_skcipher *tfm)
242 {
243 	return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
244 }
245 
246 static inline struct skcipher_alg *crypto_skcipher_alg(
247 	struct crypto_skcipher *tfm)
248 {
249 	return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
250 			    struct skcipher_alg, base);
251 }
252 
253 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
254 {
255 	if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
256 	    CRYPTO_ALG_TYPE_BLKCIPHER)
257 		return alg->base.cra_blkcipher.ivsize;
258 
259 	if (alg->base.cra_ablkcipher.encrypt)
260 		return alg->base.cra_ablkcipher.ivsize;
261 
262 	return alg->ivsize;
263 }
264 
265 /**
266  * crypto_skcipher_ivsize() - obtain IV size
267  * @tfm: cipher handle
268  *
269  * The size of the IV for the skcipher referenced by the cipher handle is
270  * returned. This IV size may be zero if the cipher does not need an IV.
271  *
272  * Return: IV size in bytes
273  */
274 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
275 {
276 	return tfm->ivsize;
277 }
278 
279 static inline unsigned int crypto_skcipher_alg_chunksize(
280 	struct skcipher_alg *alg)
281 {
282 	if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
283 	    CRYPTO_ALG_TYPE_BLKCIPHER)
284 		return alg->base.cra_blocksize;
285 
286 	if (alg->base.cra_ablkcipher.encrypt)
287 		return alg->base.cra_blocksize;
288 
289 	return alg->chunksize;
290 }
291 
292 /**
293  * crypto_skcipher_chunksize() - obtain chunk size
294  * @tfm: cipher handle
295  *
296  * The block size is set to one for ciphers such as CTR.  However,
297  * you still need to provide incremental updates in multiples of
298  * the underlying block size as the IV does not have sub-block
299  * granularity.  This is known in this API as the chunk size.
300  *
301  * Return: chunk size in bytes
302  */
303 static inline unsigned int crypto_skcipher_chunksize(
304 	struct crypto_skcipher *tfm)
305 {
306 	return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
307 }
308 
309 /**
310  * crypto_skcipher_blocksize() - obtain block size of cipher
311  * @tfm: cipher handle
312  *
313  * The block size for the skcipher referenced with the cipher handle is
314  * returned. The caller may use that information to allocate appropriate
315  * memory for the data returned by the encryption or decryption operation
316  *
317  * Return: block size of cipher
318  */
319 static inline unsigned int crypto_skcipher_blocksize(
320 	struct crypto_skcipher *tfm)
321 {
322 	return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
323 }
324 
325 static inline unsigned int crypto_skcipher_alignmask(
326 	struct crypto_skcipher *tfm)
327 {
328 	return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
329 }
330 
331 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
332 {
333 	return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
334 }
335 
336 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
337 					       u32 flags)
338 {
339 	crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
340 }
341 
342 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
343 						 u32 flags)
344 {
345 	crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
346 }
347 
348 /**
349  * crypto_skcipher_setkey() - set key for cipher
350  * @tfm: cipher handle
351  * @key: buffer holding the key
352  * @keylen: length of the key in bytes
353  *
354  * The caller provided key is set for the skcipher referenced by the cipher
355  * handle.
356  *
357  * Note, the key length determines the cipher type. Many block ciphers implement
358  * different cipher modes depending on the key size, such as AES-128 vs AES-192
359  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
360  * is performed.
361  *
362  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
363  */
364 static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
365 					 const u8 *key, unsigned int keylen)
366 {
367 	return tfm->setkey(tfm, key, keylen);
368 }
369 
370 static inline bool crypto_skcipher_has_setkey(struct crypto_skcipher *tfm)
371 {
372 	return tfm->keysize;
373 }
374 
375 static inline unsigned int crypto_skcipher_default_keysize(
376 	struct crypto_skcipher *tfm)
377 {
378 	return tfm->keysize;
379 }
380 
381 /**
382  * crypto_skcipher_reqtfm() - obtain cipher handle from request
383  * @req: skcipher_request out of which the cipher handle is to be obtained
384  *
385  * Return the crypto_skcipher handle when furnishing an skcipher_request
386  * data structure.
387  *
388  * Return: crypto_skcipher handle
389  */
390 static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
391 	struct skcipher_request *req)
392 {
393 	return __crypto_skcipher_cast(req->base.tfm);
394 }
395 
396 /**
397  * crypto_skcipher_encrypt() - encrypt plaintext
398  * @req: reference to the skcipher_request handle that holds all information
399  *	 needed to perform the cipher operation
400  *
401  * Encrypt plaintext data using the skcipher_request handle. That data
402  * structure and how it is filled with data is discussed with the
403  * skcipher_request_* functions.
404  *
405  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
406  */
407 static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
408 {
409 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
410 
411 	return tfm->encrypt(req);
412 }
413 
414 /**
415  * crypto_skcipher_decrypt() - decrypt ciphertext
416  * @req: reference to the skcipher_request handle that holds all information
417  *	 needed to perform the cipher operation
418  *
419  * Decrypt ciphertext data using the skcipher_request handle. That data
420  * structure and how it is filled with data is discussed with the
421  * skcipher_request_* functions.
422  *
423  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
424  */
425 static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
426 {
427 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
428 
429 	return tfm->decrypt(req);
430 }
431 
432 /**
433  * DOC: Symmetric Key Cipher Request Handle
434  *
435  * The skcipher_request data structure contains all pointers to data
436  * required for the symmetric key cipher operation. This includes the cipher
437  * handle (which can be used by multiple skcipher_request instances), pointer
438  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
439  * as a handle to the skcipher_request_* API calls in a similar way as
440  * skcipher handle to the crypto_skcipher_* API calls.
441  */
442 
443 /**
444  * crypto_skcipher_reqsize() - obtain size of the request data structure
445  * @tfm: cipher handle
446  *
447  * Return: number of bytes
448  */
449 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
450 {
451 	return tfm->reqsize;
452 }
453 
454 /**
455  * skcipher_request_set_tfm() - update cipher handle reference in request
456  * @req: request handle to be modified
457  * @tfm: cipher handle that shall be added to the request handle
458  *
459  * Allow the caller to replace the existing skcipher handle in the request
460  * data structure with a different one.
461  */
462 static inline void skcipher_request_set_tfm(struct skcipher_request *req,
463 					    struct crypto_skcipher *tfm)
464 {
465 	req->base.tfm = crypto_skcipher_tfm(tfm);
466 }
467 
468 static inline struct skcipher_request *skcipher_request_cast(
469 	struct crypto_async_request *req)
470 {
471 	return container_of(req, struct skcipher_request, base);
472 }
473 
474 /**
475  * skcipher_request_alloc() - allocate request data structure
476  * @tfm: cipher handle to be registered with the request
477  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
478  *
479  * Allocate the request data structure that must be used with the skcipher
480  * encrypt and decrypt API calls. During the allocation, the provided skcipher
481  * handle is registered in the request data structure.
482  *
483  * Return: allocated request handle in case of success, or NULL if out of memory
484  */
485 static inline struct skcipher_request *skcipher_request_alloc(
486 	struct crypto_skcipher *tfm, gfp_t gfp)
487 {
488 	struct skcipher_request *req;
489 
490 	req = kmalloc(sizeof(struct skcipher_request) +
491 		      crypto_skcipher_reqsize(tfm), gfp);
492 
493 	if (likely(req))
494 		skcipher_request_set_tfm(req, tfm);
495 
496 	return req;
497 }
498 
499 /**
500  * skcipher_request_free() - zeroize and free request data structure
501  * @req: request data structure cipher handle to be freed
502  */
503 static inline void skcipher_request_free(struct skcipher_request *req)
504 {
505 	kzfree(req);
506 }
507 
508 static inline void skcipher_request_zero(struct skcipher_request *req)
509 {
510 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
511 
512 	memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
513 }
514 
515 /**
516  * skcipher_request_set_callback() - set asynchronous callback function
517  * @req: request handle
518  * @flags: specify zero or an ORing of the flags
519  *         CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
520  *	   increase the wait queue beyond the initial maximum size;
521  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
522  * @compl: callback function pointer to be registered with the request handle
523  * @data: The data pointer refers to memory that is not used by the kernel
524  *	  crypto API, but provided to the callback function for it to use. Here,
525  *	  the caller can provide a reference to memory the callback function can
526  *	  operate on. As the callback function is invoked asynchronously to the
527  *	  related functionality, it may need to access data structures of the
528  *	  related functionality which can be referenced using this pointer. The
529  *	  callback function can access the memory via the "data" field in the
530  *	  crypto_async_request data structure provided to the callback function.
531  *
532  * This function allows setting the callback function that is triggered once the
533  * cipher operation completes.
534  *
535  * The callback function is registered with the skcipher_request handle and
536  * must comply with the following template
537  *
538  *	void callback_function(struct crypto_async_request *req, int error)
539  */
540 static inline void skcipher_request_set_callback(struct skcipher_request *req,
541 						 u32 flags,
542 						 crypto_completion_t compl,
543 						 void *data)
544 {
545 	req->base.complete = compl;
546 	req->base.data = data;
547 	req->base.flags = flags;
548 }
549 
550 /**
551  * skcipher_request_set_crypt() - set data buffers
552  * @req: request handle
553  * @src: source scatter / gather list
554  * @dst: destination scatter / gather list
555  * @cryptlen: number of bytes to process from @src
556  * @iv: IV for the cipher operation which must comply with the IV size defined
557  *      by crypto_skcipher_ivsize
558  *
559  * This function allows setting of the source data and destination data
560  * scatter / gather lists.
561  *
562  * For encryption, the source is treated as the plaintext and the
563  * destination is the ciphertext. For a decryption operation, the use is
564  * reversed - the source is the ciphertext and the destination is the plaintext.
565  */
566 static inline void skcipher_request_set_crypt(
567 	struct skcipher_request *req,
568 	struct scatterlist *src, struct scatterlist *dst,
569 	unsigned int cryptlen, void *iv)
570 {
571 	req->src = src;
572 	req->dst = dst;
573 	req->cryptlen = cryptlen;
574 	req->iv = iv;
575 }
576 
577 #endif	/* _CRYPTO_SKCIPHER_H */
578 
579